HappyFace as a generic monitoring tool for HEP experiments
NASA Astrophysics Data System (ADS)
Kawamura, Gen; Magradze, Erekle; Musheghyan, Haykuhi; Quadt, Arnulf; Rzehorz, Gerhard
2015-12-01
The importance of monitoring on HEP grid computing systems is growing due to a significant increase in their complexity. Computer scientists and administrators have been studying and building effective ways to gather information on and clarify a status of each local grid infrastructure. The HappyFace project aims at making the above-mentioned workflow possible. It aggregates, processes and stores the information and the status of different HEP monitoring resources into the common database of HappyFace. The system displays the information and the status through a single interface. However, this model of HappyFace relied on the monitoring resources which are always under development in the HEP experiments. Consequently, HappyFace needed to have direct access methods to the grid application and grid service layers in the different HEP grid systems. To cope with this issue, we use a reliable HEP software repository, the CernVM File System. We propose a new implementation and an architecture of HappyFace, the so-called grid-enabled HappyFace. It allows its basic framework to connect directly to the grid user applications and the grid collective services, without involving the monitoring resources in the HEP grid systems. This approach gives HappyFace several advantages: Portability, to provide an independent and generic monitoring system among the HEP grid systems. Eunctionality, to allow users to perform various diagnostic tools in the individual HEP grid systems and grid sites. Elexibility, to make HappyFace beneficial and open for the various distributed grid computing environments. Different grid-enabled modules, to connect to the Ganga job monitoring system and to check the performance of grid transfers among the grid sites, have been implemented. The new HappyFace system has been successfully integrated and now it displays the information and the status of both the monitoring resources and the direct access to the grid user applications and the grid collective services.
Research and design of smart grid monitoring control via terminal based on iOS system
NASA Astrophysics Data System (ADS)
Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji
2017-06-01
Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
Towards a Global Service Registry for the World-Wide LHC Computing Grid
NASA Astrophysics Data System (ADS)
Field, Laurence; Alandes Pradillo, Maria; Di Girolamo, Alessandro
2014-06-01
The World-Wide LHC Computing Grid encompasses a set of heterogeneous information systems; from central portals such as the Open Science Grid's Information Management System and the Grid Operations Centre Database, to the WLCG information system, where the information sources are the Grid services themselves. Providing a consistent view of the information, which involves synchronising all these informations systems, is a challenging activity that has lead the LHC virtual organisations to create their own configuration databases. This experience, whereby each virtual organisation's configuration database interfaces with multiple information systems, has resulted in the duplication of effort, especially relating to the use of manual checks for the handling of inconsistencies. The Global Service Registry aims to address this issue by providing a centralised service that aggregates information from multiple information systems. It shows both information on registered resources (i.e. what should be there) and available resources (i.e. what is there). The main purpose is to simplify the synchronisation of the virtual organisation's own configuration databases, which are used for job submission and data management, through the provision of a single interface for obtaining all the information. By centralising the information, automated consistency and validation checks can be performed to improve the overall quality of information provided. Although internally the GLUE 2.0 information model is used for the purpose of integration, the Global Service Registry in not dependent on any particular information model for ingestion or dissemination. The intention is to allow the virtual organisation's configuration databases to be decoupled from the underlying information systems in a transparent way and hence simplify any possible future migration due to the evolution of those systems. This paper presents the Global Service Registry architecture, its advantages compared to the current situation and how it can support the evolution of information systems.
Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change
Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.
2015-01-01
Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander
2012-12-01
ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.
A Data Miner for the Information Power Grid
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.; Parks, John W. (Technical Monitor)
2002-01-01
Grid Miner (GM) is one of the early data mining applications developed by NASA to help users obtain information from the Information Power Grid (IPG). Topics cover include: benefits of data mining, potential use of grids in data mining activities, an overview of the GM application, and a brief review of GM architecture and implementation issues. The current status of the GM system is also discussed.
Twelve Principles for Green Energy Storage in Grid Applications.
Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T
2016-01-19
The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.
Does topological information matter for power grid vulnerability?
Ouyang, Min; Yang, Kun
2014-12-01
Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.
Does topological information matter for power grid vulnerability?
NASA Astrophysics Data System (ADS)
Ouyang, Min; Yang, Kun
2014-12-01
Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.
Use of Fuzzy Logic Systems for Assessment of Primary Faults
NASA Astrophysics Data System (ADS)
Petrović, Ivica; Jozsa, Lajos; Baus, Zoran
2015-09-01
In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.
Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar
Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
Kwf-Grid workflow management system for Earth science applications
NASA Astrophysics Data System (ADS)
Tran, V.; Hluchy, L.
2009-04-01
In this paper, we present workflow management tool for Earth science applications in EGEE. The workflow management tool was originally developed within K-wf Grid project for GT4 middleware and has many advanced features like semi-automatic workflow composition, user-friendly GUI for managing workflows, knowledge management. In EGEE, we are porting the workflow management tool to gLite middleware for Earth science applications K-wf Grid workflow management system was developed within "Knowledge-based Workflow System for Grid Applications" under the 6th Framework Programme. The workflow mangement system intended to - semi-automatically compose a workflow of Grid services, - execute the composed workflow application in a Grid computing environment, - monitor the performance of the Grid infrastructure and the Grid applications, - analyze the resulting monitoring information, - capture the knowledge that is contained in the information by means of intelligent agents, - and finally to reuse the joined knowledge gathered from all participating users in a collaborative way in order to efficiently construct workflows for new Grid applications. Kwf Grid workflow engines can support different types of jobs (e.g. GRAM job, web services) in a workflow. New class of gLite job has been added to the system, allows system to manage and execute gLite jobs in EGEE infrastructure. The GUI has been adapted to the requirements of EGEE users, new credential management servlet is added to portal. Porting K-wf Grid workflow management system to gLite would allow EGEE users to use the system and benefit from its avanced features. The system is primarly tested and evaluated with applications from ES clusters.
GridWise Standards Mapping Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosquet, Mia L.
''GridWise'' is a concept of how advanced communications, information and controls technology can transform the nation's energy system--across the spectrum of large scale, central generation to common consumer appliances and equipment--into a collaborative network, rich in the exchange of decision making information and an abundance of market-based opportunities (Widergren and Bosquet 2003) accompanying the electric transmission and distribution system fully into the information and telecommunication age. This report summarizes a broad review of standards efforts which are related to GridWise--those which could ultimately contribute significantly to advancements toward the GridWise vision, or those which represent today's current technological basis uponmore » which this vision must build.« less
Designing for Wide-Area Situation Awareness in Future Power Grid Operations
NASA Astrophysics Data System (ADS)
Tran, Fiona F.
Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration
2014-06-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
1991-01-01
Foundation FYDP ......... Five Year Defense Plan FSI ............ Fog Stability Index 17 G G ................ gravity, giga- GISM ......... Gridded ...Global Circulation Model GOES-TAP GOES imagery processing & dissemination system GCS .......... grid course GOFS ........ Global Ocean Flux Study GD...Analysis Support System Complex Systems GRID .......... Global Resource Information Data -Base GEMAG ..... geomagnetic GRIST..... grazing-incidence solar
Review of power sources for Alaska DOT & PF road weather information systems (RWIS) : phase I.
DOT National Transportation Integrated Search
2014-06-01
This report documents the findings related to a review of power sources for six off-grid Road Weather Information Systems (RWIS) in : Alaska. Various power sources were reviewed as a means of reliably operating the off-grid RWIS sites throughout the ...
78 FR 22846 - Smart Grid Advisory Committee Meeting Cancellation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Commerce. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Smart Grid Advisory Committee... INFORMATION CONTACT: Mr. Cuong Nguyen, Smart Grid and Cyber-Physical Systems Program Office, National...
Grid Data and Tools | Grid Modernization | NREL
technologies and strategies, including renewable resource data sets and models of the electric power system . Renewable Resource Data A library of resource information to inform the design of efficient, integrated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M
This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less
NASA Astrophysics Data System (ADS)
van Tuyet, Dao; Tuan, Ngo Anh; van Lang, Tran
Grid computing has been an increasing topic in recent years. It attracts the attention of many scientists from many fields. As a result, many Grid systems have been built for serving people's demands. At present, many tools for developing the Grid systems such as Globus, gLite, Unicore still developed incessantly. Especially, gLite - the Grid Middleware - was developed by the Europe Community scientific in recent years. Constant growth of Grid technology opened the way for new opportunities in term of information and data exchange in a secure and collaborative context. These new opportunities can be exploited to offer physicians new telemedicine services in order to improve their collaborative capacities. Our platform gives physicians an easy method to use telemedicine environment to manage and share patient's information (such as electronic medical record, images formatted DICOM) between remote locations. This paper presents the Grid Infrastructure based on gLite; some main components of gLite; the challenge scenario in which new applications can be developed to improve collaborative work between scientists; the process of deploying Hospital Open software Platform for E-health (HOPE) on the Grid.
NASA Astrophysics Data System (ADS)
Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.
2018-02-01
Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
System design and implementation of digital-image processing using computational grids
NASA Astrophysics Data System (ADS)
Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping
2005-06-01
As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
A Simple XML Producer-Consumer Protocol
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)
2001-01-01
There are many different projects from government, academia, and industry that provide services for delivering events in distributed environments. The problem with these event services is that they are not general enough to support all uses and they speak different protocols so that they cannot interoperate. We require such interoperability when we, for example, wish to analyze the performance of an application in a distributed environment. Such an analysis might require performance information from the application, computer systems, networks, and scientific instruments. In this work we propose and evaluate a standard XML-based protocol for the transmission of events in distributed systems. One recent trend in government and academic research is the development and deployment of computational grids. Computational grids are large-scale distributed systems that typically consist of high-performance compute, storage, and networking resources. Examples of such computational grids are the DOE Science Grid, the NASA Information Power Grid (IPG), and the NSF Partnerships for Advanced Computing Infrastructure (PACIs). The major effort to deploy these grids is in the area of developing the software services to allow users to execute applications on these large and diverse sets of resources. These services include security, execution of remote applications, managing remote data, access to information about resources and services, and so on. There are several toolkits for providing these services such as Globus, Legion, and Condor. As part of these efforts to develop computational grids, the Global Grid Forum is working to standardize the protocols and APIs used by various grid services. This standardization will allow interoperability between the client and server software of the toolkits that are providing the grid services. The goal of the Performance Working Group of the Grid Forum is to standardize protocols and representations related to the storage and distribution of performance data. These standard protocols and representations must support tasks such as profiling parallel applications, monitoring the status of computers and networks, and monitoring the performance of services provided by a computational grid. This paper describes a proposed protocol and data representation for the exchange of events in a distributed system. The protocol exchanges messages formatted in XML and it can be layered atop any low-level communication protocol such as TCP or UDP Further, we describe Java and C++ implementations of this protocol and discuss their performance. The next section will provide some further background information. Section 3 describes the main communication patterns of our protocol. Section 4 describes how we represent events and related information using XML. Section 5 describes our protocol and Section 6 discusses the performance of two implementations of the protocol. Finally, an appendix provides the XML Schema definition of our protocol and event information.
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greacen, Chris; Engel, Richard; Quetchenbach, Thomas
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project
NASA Astrophysics Data System (ADS)
Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.
2016-12-01
Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.
NASA Astrophysics Data System (ADS)
Alstone, Peter Michael
This work explores the intersections of information technology and off-grid electricity deployment in the developing world with focus on a key instance: the emergence of pay-as-you-go (PAYG) solar household-scale energy systems. It is grounded in detailed field study by my research team in Kenya between 2013-2014 that included primary data collection across the solar supply chain from global businesses through national and local distribution and to the end-users. We supplement the information with business process and national survey data to develop a detailed view of the markets, technology systems, and individuals who interact within those frameworks. The findings are presented in this dissertation as a series of four chapters with introductory, bridging, and synthesis material between them. The first chapter, Decentralized Energy Systems for Clean Electricity Access, presents a global view of the emerging off-grid power sector. Long-run trends in technology create "a unique moment in history" for closing the gap between global population and access to electricity, which has stubbornly held at 1-2 billion people without power since the initiation of the electric utility business model in the late 1800's. We show the potential for widespread near-term adoption of off-grid solar, which could lead to ten times less inequality in access and also ten times lower household-level climate impacts. Decentralized power systems that replace fuel-based incumbent lighting can advance the causes of climate stabilization, economic and social freedom and human health. Chapters two and three are focused on market and institutional dynamics present circa 2014 in for off-grid solar with a focus on the Kenya market. Chapter 2, "Off-grid Power and Connectivity", presents our findings related to the widespread influence of information technology across the supply chain for solar and in PAYG approaches. Using digital financing and embedded payment verification technology, PAYG businesses can help overcome key barriers to adoption of off-grid energy systems. The framework provides financing (or energy service payment structures) for users of off-grid solar, and we show is also instrumental for building trust in off-grid solar technology, facilitating supply chain coordination, and creating mechanisms and incentives for after-sales service. Chapter 3, Quality Communication, delves into detail on the information channels (both incumbent and ICT-based) that link retailers with regional and global markets for solar goods. In it we uncover the linked structure of physical distribution networks and the pathway for information about product characteristics (including, critically, the quality of products). The work shows that a few key decisions about product purchasing at the wholesale level, in places like Nairobi (the capital city for Kenya) create the bulk of the choice set for retail buyers, and show how targeting those wholesale purchasers is critically important for ensuring good-quality products are available. Chapter 4, the last in this dissertation, is titled Off-grid solar energy services enabled and evaluated through information technology and presents an analytic framework for using remote monitoring data from PAYG systems to assess the joint technological and behavioral drivers for energy access through solar home systems. Using large-scale (n ~ 1,000) data from a large PAYG business in Kenya (M-KOPA), we show that people tend to co-optimize between the quantity and reliability of service, using 55% of the energy technically possible but with only 5% system down time. Half of the users move their solar panel frequently (in response to concerns about theft, for the most part) and these users experienced 20% lower energy service quantities. The findings illustrate the implications of key trends for off-grid power: evolving system component technology architectures, opportunities for improved support to markets, and the use of background data from business and technology systems. (Abstract shortened by ProQuest.).
Accessing Wind Tunnels From NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Becker, Jeff; Biegel, Bryan (Technical Monitor)
2002-01-01
The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei
2017-03-01
The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen
In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmitmore » the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.« less
Towards Effective Clustering Techniques for the Analysis of Electric Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh
2013-11-30
Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less
Rotational-translational fourier imaging system
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2004-01-01
This invention has the ability to create Fourier-based images with only two grid pairs. The two grid pairs are manipulated in a manner that allows (1) a first grid pair to provide multiple real components of the Fourier-based image and (2) a second grid pair to provide multiple imaginary components of the Fourier-based image. The novelty of this invention resides in the use of only two grid pairs to provide the same imaging information that has been traditionally collected with multiple grid pairs.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taft, Jeffrey D.; Becker-Dippmann, Angela S.
2015-08-01
This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less
Unlocking the potential of the smart grid
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Mashayekh, Salman; Stadler, Michael
Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost,more » energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.« less
A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid
NASA Technical Reports Server (NTRS)
Lau, Shing-hon
2011-01-01
America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.
Grid Stability Awareness System (GSAS) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuerborn, Scott; Ma, Jian; Black, Clifton
The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
BOREAS Regional Soils Data in Raster Format and AEAC Projection
NASA Technical Reports Server (NTRS)
Monette, Bryan; Knapp, David; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor)
2000-01-01
This data set was gridded by BOREAS Information System (BORIS) Staff from a vector data set received from the Canadian Soil Information System (CanSIS). The original data came in two parts that covered Saskatchewan and Manitoba. The data were gridded and merged into one data set of 84 files covering the BOREAS region. The data were gridded into the AEAC projection. Because the mapping of the two provinces was done separately in the original vector data, there may be discontinuities in some of the soil layers because of different interpretations of certain soil properties. The data are stored in binary, image format files.
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
Using Computing and Data Grids for Large-Scale Science and Engineering
NASA Technical Reports Server (NTRS)
Johnston, William E.
2001-01-01
We use the term "Grid" to refer to a software system that provides uniform and location independent access to geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. These emerging data and computing Grids promise to provide a highly capable and scalable environment for addressing large-scale science problems. We describe the requirements for science Grids, the resulting services and architecture of NASA's Information Power Grid (IPG) and DOE's Science Grid, and some of the scaling issues that have come up in their implementation.
5th Annual Earth System Grid Federation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
The purpose of the Fifth Annual Earth System Grid Federation (ESGF) Face-to-Face (F2F) Conference was to present the most recent information on the state of ESGF’s software stack and to identify and address the data needs and gaps for the climate and weather communities that ESGF supports.
NASA Astrophysics Data System (ADS)
Liu, Xuan
Power grid is one of the most critical infrastructures in a nation and could suffer a variety of cyber attacks. With the development of Smart Grid, false data injection attack has recently attracted wide research interest. This thesis proposes a false data attack model with incomplete network information and develops optimal attack strategies for attacking load measurements and the real-time topology of a power grid. The impacts of false data on the economic and reliable operations of power systems are quantitatively analyzed in this thesis. To mitigate the risk of cyber attacks, a distributed protection strategies are also developed. It has been shown that an attacker can design false data to avoid being detected by the control center if the network information of a power grid is known to the attacker. In practice, however, it is very hard or even impossible for an attacker to obtain all network information of a power grid. In this thesis, we propose a local load redistribution attacking model based on incomplete network information and show that an attacker only needs to obtain the network information of the local attacking region to inject false data into smart meters in the local region without being detected by the state estimator. A heuristic algorithm is developed to determine a feasible attacking region by obtaining reduced network information. This thesis investigates the impacts of false data on the operations of power systems. It has been shown that false data can be designed by an attacker to: 1) mask the real-time topology of a power grid; 2) overload a transmission line; 3) disturb the line outage detection based on PMU data. To mitigate the risk of cyber attacks, this thesis proposes a new protection strategy, which intends to mitigate the damage effects of false data injection attacks by protecting a small set of critical measurements. To further reduce the computation complexity, a mixed integer linear programming approach is also proposed to separate the power grid into several subnetworks, then distributed protection strategy is applied to each subnetwork.
Resilience Metrics for the Electric Power System: A Performance-Based Approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Castillo, Andrea R; Silva-Monroy, Cesar Augusto
Grid resilience is a concept related to a power system's ability to continue operating and delivering power even in the event that low probability, high-consequence disruptions such as hurricanes, earthquakes, and cyber-attacks occur. Grid resilience objectives focus on managing and, ideally, minimizing potential consequences that occur as a result of these disruptions. Currently, no formal grid resilience definitions, metrics, or analysis methods have been universally accepted. This document describes an effort to develop and describe grid resilience metrics and analysis methods. The metrics and methods described herein extend upon the Resilience Analysis Process (RAP) developed by Watson et al. formore » the 2015 Quadrennial Energy Review. The extension allows for both outputs from system models and for historical data to serve as the basis for creating grid resilience metrics and informing grid resilience planning and response decision-making. This document describes the grid resilience metrics and analysis methods. Demonstration of the metrics and methods is shown through a set of illustrative use cases.« less
Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation
NASA Astrophysics Data System (ADS)
Anisenkov, A. V.
2018-03-01
In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).
NASA Astrophysics Data System (ADS)
Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi
2018-02-01
The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.
Energy Systems Integration News | Energy Systems Integration Facility |
Grid Modernization Project Informed by ESIF Research The Hawaii Public Utilities Commission approved on (HECO) to upgrade its five island power grids. The plan describes the scope and estimated cost to update the energy networks of Hawaiian Electric, Maui Electric, and Hawaii Electric Light in the next five
Tools and Techniques for Measuring and Improving Grid Performance
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Frumkin, M.; Smith, W.; VanderWijngaart, R.; Wong, P.; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on NASA's geographically dispersed computing resources, and the various methods by which the disparate technologies are integrated within a nationwide computational grid. Many large-scale science and engineering projects are accomplished through the interaction of people, heterogeneous computing resources, information systems and instruments at different locations. The overall goal is to facilitate the routine interactions of these resources to reduce the time spent in design cycles, particularly for NASA's mission critical projects. The IPG (Information Power Grid) seeks to implement NASA's diverse computing resources in a fashion similar to the way in which electric power is made available.
Advanced Computing Architectures for Cognitive Processing
2009-07-01
Evolution ................................................................................. 20 Figure 9: Logic diagram smart block-based neuron...48 Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameme, Dan Selorm Kwami; Guttromson, Ross
This report characterizes communications network latency under various network topologies and qualities of service (QoS). The characterizations are probabilistic in nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback control systems used in grid applications. The work involves the use of Raspberry Pi computers as a proxy for a controlled resource, and an ns-3 network simulator on a Linux server to create an experimental platform (testbed) that can be used to model wide-area grid control network communications in smart grid. Modbus protocol is used for information transport, and Routing Information Protocol is used for dynamic route selectionmore » within the simulated network.« less
The QuakeSim Project: Web Services for Managing Geophysical Data and Applications
NASA Astrophysics Data System (ADS)
Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet
2008-04-01
We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.
A Transparent Translation from Legacy System Model into Common Information Model: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Simpson, Jeffrey; Zhang, Yingchen
Advance in smart grid is forcing utilities towards better monitoring, control and analysis of distribution systems, and requires extensive cyber-based intelligent systems and applications to realize various functionalities. The ability of systems, or components within systems, to interact and exchange services or information with each other is the key to the success of smart grid technologies, and it requires efficient information exchanging and data sharing infrastructure. The Common Information Model (CIM) is a standard that allows different applications to exchange information about an electrical system, and it has become a widely accepted solution for information exchange among different platforms andmore » applications. However, most existing legacy systems are not developed using CIM, but using their own languages. Integrating such legacy systems is a challenge for utilities, and the appropriate utilization of the integrated legacy systems is even more intricate. Thus, this paper has developed an approach and open-source tool in order to translate legacy system models into CIM format. The developed tool is tested for a commercial distribution management system and simulation results have proved its effectiveness.« less
Solution of underdetermined systems of equations with gridded a priori constraints.
Stiros, Stathis C; Saltogianni, Vasso
2014-01-01
The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
Grid Enabled Geospatial Catalogue Web Service
NASA Technical Reports Server (NTRS)
Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush
2004-01-01
Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.
A policy system for Grid Management and Monitoring
NASA Astrophysics Data System (ADS)
Stagni, Federico; Santinelli, Roberto; LHCb Collaboration
2011-12-01
Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resoures are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.
A Petri Net model for distributed energy system
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less
Monitoring System for the GRID Monte Carlo Mass Production in the H1 Experiment at DESY
NASA Astrophysics Data System (ADS)
Bystritskaya, Elena; Fomenko, Alexander; Gogitidze, Nelly; Lobodzinski, Bogdan
2014-06-01
The H1 Virtual Organization (VO), as one of the small VOs, employs most components of the EMI or gLite Middleware. In this framework, a monitoring system is designed for the H1 Experiment to identify and recognize within the GRID the best suitable resources for execution of CPU-time consuming Monte Carlo (MC) simulation tasks (jobs). Monitored resources are Computer Elements (CEs), Storage Elements (SEs), WMS-servers (WMSs), CernVM File System (CVMFS) available to the VO HONE and local GRID User Interfaces (UIs). The general principle of monitoring GRID elements is based on the execution of short test jobs on different CE queues using submission through various WMSs and directly to the CREAM-CEs as well. Real H1 MC Production jobs with a small number of events are used to perform the tests. Test jobs are periodically submitted into GRID queues, the status of these jobs is checked, output files of completed jobs are retrieved, the result of each job is analyzed and the waiting time and run time are derived. Using this information, the status of the GRID elements is estimated and the most suitable ones are included in the automatically generated configuration files for use in the H1 MC production. The monitoring system allows for identification of problems in the GRID sites and promptly reacts on it (for example by sending GGUS (Global Grid User Support) trouble tickets). The system can easily be adapted to identify the optimal resources for tasks other than MC production, simply by changing to the relevant test jobs. The monitoring system is written mostly in Python and Perl with insertion of a few shell scripts. In addition to the test monitoring system we use information from real production jobs to monitor the availability and quality of the GRID resources. The monitoring tools register the number of job resubmissions, the percentage of failed and finished jobs relative to all jobs on the CEs and determine the average values of waiting and running time for the involved GRID queues. CEs which do not meet the set criteria can be removed from the production chain by including them in an exception table. All of these monitoring actions lead to a more reliable and faster execution of MC requests.
Uniformity on the grid via a configuration framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igor V Terekhov et al.
2003-03-11
As Grid permeates modern computing, Grid solutions continue to emerge and take shape. The actual Grid development projects continue to provide higher-level services that evolve in functionality and operate with application-level concepts which are often specific to the virtual organizations that use them. Physically, however, grids are comprised of sites whose resources are diverse and seldom project readily onto a grid's set of concepts. In practice, this also creates problems for site administrators who actually instantiate grid services. In this paper, we present a flexible, uniform framework to configure a grid site and its facilities, and otherwise describe the resourcesmore » and services it offers. We start from a site configuration and instantiate services for resource advertisement, monitoring and data handling; we also apply our framework to hosting environment creation. We use our ideas in the Information Management part of the SAM-Grid project, a grid system which will deliver petabyte-scale data to the hundreds of users. Our users are High Energy Physics experimenters who are scattered worldwide across dozens of institutions and always use facilities that are shared with other experiments as well as other grids. Our implementation represents information in the XML format and includes tools written in XQuery and XSLT.« less
Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.
Crăciun, Cora
2014-08-01
CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.
Simulation of Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2002-01-01
To better utilize its vast collection of heterogeneous resources that are geographically distributed across the United States, NASA is constructing a computational grid called the Information Power Grid (IPG). This paper describes various tools and techniques that we are developing to measure and improve the performance of a broad class of NASA applications when run on the IPG. In particular, we are investigating the areas of grid benchmarking, grid monitoring, user-level application scheduling, and decentralized system-level scheduling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk
The core vision of the smart grid concept is the realization of reliable two-way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-grid GOOSE messages with IEC-61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less
75 FR 39919 - Information Systems, Technical Advisory Committee; Notice of Partially Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... export controls applicable to information systems equipment and technology. Wednesday, July 28 Public Session 1. Welcome and Introductions. 2. Working Group Reports. 3. Smart Grid. 4. Civil Satellite...
Smart Grid Status and Metrics Report Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.
A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papersmore » covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.« less
A Job Monitoring and Accounting Tool for the LSF Batch System
NASA Astrophysics Data System (ADS)
Sarkar, Subir; Taneja, Sonia
2011-12-01
This paper presents a web based job monitoring and group-and-user accounting tool for the LSF Batch System. The user oriented job monitoring displays a simple and compact quasi real-time overview of the batch farm for both local and Grid jobs. For Grid jobs the Distinguished Name (DN) of the Grid users is shown. The overview monitor provides the most up-to-date status of a batch farm at any time. The accounting tool works with the LSF accounting log files. The accounting information is shown for a few pre-defined time periods by default. However, one can also compute the same information for any arbitrary time window. The tool already proved to be an extremely useful means to validate more extensive accounting tools available in the Grid world. Several sites have already been using the present tool and more sites running the LSF batch system have shown interest. We shall discuss the various aspects that make the tool essential for site administrators and end-users alike and outline the current status of development as well as future plans.
Web Proxy Auto Discovery for the WLCG
NASA Astrophysics Data System (ADS)
Dykstra, D.; Blomer, J.; Blumenfeld, B.; De Salvo, A.; Dewhurst, A.; Verguilov, V.
2017-10-01
All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily support that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids registered in the ATLAS Grid Information System (AGIS) and CMS SITECONF files, cross-checked with squids registered by sites in the Grid Configuration Database (GOCDB) and the OSG Information Management (OIM) system, and combined with some exceptions manually configured by people from ATLAS and CMS who operate WLCG Squid monitoring. WPAD servers at CERN respond to http requests from grid nodes all over the world with a PAC file that lists available web proxies, based on IP addresses matched from a database that contains the IP address ranges registered to organizations. Large grid sites are encouraged to supply their own WPAD web servers for more flexibility, to avoid being affected by short term long distance network outages, and to offload the WLCG WPAD servers at CERN. The CERN WPAD servers additionally support requests from jobs running at non-grid sites (particularly for LHC@Home) which they direct to the nearest publicly accessible web proxy servers. The responses to those requests are geographically ordered based on a separate database that maps IP addresses to longitude and latitude.
Web Proxy Auto Discovery for the WLCG
Dykstra, D.; Blomer, J.; Blumenfeld, B.; ...
2017-11-23
All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily supportmore » that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids registered in the ATLAS Grid Information System (AGIS) and CMS SITECONF files, cross-checked with squids registered by sites in the Grid Configuration Database (GOCDB) and the OSG Information Management (OIM) system, and combined with some exceptions manually configured by people from ATLAS and CMS who operate WLCG Squid monitoring. WPAD servers at CERN respond to http requests from grid nodes all over the world with a PAC file that lists available web proxies, based on IP addresses matched from a database that contains the IP address ranges registered to organizations. Large grid sites are encouraged to supply their own WPAD web servers for more flexibility, to avoid being affected by short term long distance network outages, and to offload the WLCG WPAD servers at CERN. The CERN WPAD servers additionally support requests from jobs running at non-grid sites (particularly for LHC@Home) which it directs to the nearest publicly accessible web proxy servers. Furthermore, the responses to those requests are geographically ordered based on a separate database that maps IP addresses to longitude and latitude.« less
Web Proxy Auto Discovery for the WLCG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykstra, D.; Blomer, J.; Blumenfeld, B.
All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily supportmore » that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids registered in the ATLAS Grid Information System (AGIS) and CMS SITECONF files, cross-checked with squids registered by sites in the Grid Configuration Database (GOCDB) and the OSG Information Management (OIM) system, and combined with some exceptions manually configured by people from ATLAS and CMS who operate WLCG Squid monitoring. WPAD servers at CERN respond to http requests from grid nodes all over the world with a PAC file that lists available web proxies, based on IP addresses matched from a database that contains the IP address ranges registered to organizations. Large grid sites are encouraged to supply their own WPAD web servers for more flexibility, to avoid being affected by short term long distance network outages, and to offload the WLCG WPAD servers at CERN. The CERN WPAD servers additionally support requests from jobs running at non-grid sites (particularly for LHC@Home) which it directs to the nearest publicly accessible web proxy servers. Furthermore, the responses to those requests are geographically ordered based on a separate database that maps IP addresses to longitude and latitude.« less
Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu
2017-07-03
The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.
A Petri Net model for distributed energy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopko, Joanna
2015-12-31
Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of themore » model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.« less
From the grid to the smart grid, topologically
NASA Astrophysics Data System (ADS)
Pagani, Giuliano Andrea; Aiello, Marco
2016-05-01
In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Today, increasing numbers of intermittent generation sources (e.g., wind and photovoltaic) and new mobile intermittent loads (e.g., electric vehicles) can significantly affect traditional utility business practices and operations. At the same time, a growing number of technologies and devices, from appliances to lighting systems, are being deployed at consumer premises that have more sophisticated controls and information that remain underused for anything beyond basic building equipment operations. The intersection of these two drivers is an untapped opportunity and underused resource that, if appropriately configured and realized in open standards, can provide significant energy efficiency and commensurate savings on utility bills,more » enhanced and lower cost reliability to utilities, and national economic benefits in the creation of new markets, sectors, and businesses being fueled by the seamless coordination of energy and information through device and technology interoperability. Or, as the Quadrennial Energy Review puts it, “A plethora of both consumer-level and grid-level devices are either in the market, under development, or at the conceptual stage. When tied together through the information technology that is increasingly being deployed on electric utilities’ distribution grids, they can be an important enabling part of the emerging grid of the future. However, what is missing is the ability for all of these devices to coordinate and communicate their operations with the grid, and among themselves, in a common language — an open standard.” In this paper, we define interoperability as the ability to exchange actionable information between two or more systems within a home or building, or across and within organizational boundaries. Interoperability relies on the shared meaning of the exchanged information, with agreed-upon expectations and consequences, for the response to the information exchange.« less
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
Using ESB and BPEL for Evolving Healthcare Systems Towards Pervasive, Grid-Enabled SOA
NASA Astrophysics Data System (ADS)
Koufi, V.; Malamateniou, F.; Papakonstantinou, D.; Vassilacopoulos, G.
Healthcare organizations often face the challenge of integrating diverse and geographically disparate information technology systems to respond to changing requirements and to exploit the capabilities of modern technologies. Hence, systems evolution, through modification and extension of the existing information technology infrastructure, becomes a necessity. Moreover, the availability of these systems at the point of care when needed is a vital issue for the quality of healthcare provided to patients. This chapter takes a process perspective of healthcare delivery within and across organizational boundaries and presents a disciplined approach for evolving healthcare systems towards a pervasive, grid-enabled service-oriented architecture using the enterprise system bus middleware technology for resolving integration issues, the business process execution language for supporting collaboration requirements and grid middleware technology for both addressing common SOA scalability requirements and complementing existing system functionality. In such an environment, appropriate security mechanisms must ensure authorized access to integrated healthcare services and data. To this end, a security framework addressing security aspects such as authorization and access control is also presented.
Experiences of engineering Grid-based medical software.
Estrella, F; Hauer, T; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T
2007-08-01
Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading to a set of recommendations from the delivery of the first deployed Grid-based medical imaging application. We report critically on the application of software engineering techniques in the specification and implementation of the MammoGrid project and show that use-case modelling is a suitable vehicle for representing medical requirements and for communicating effectively with the clinical community. This paper also discusses the practical advantages and limitations of applying the Grid to real-life clinical applications and presents the consequent lessons learned. The work presented in this paper demonstrates that given suitable commitment from collaborating radiologists it is practical to deploy in practice medical imaging analysis applications using the Grid but that standardization in and stability of the Grid software is a necessary pre-requisite for successful healthgrids. The MammoGrid prototype has therefore paved the way for further advanced Grid-based deployments in the medical and biomedical domains.
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk
2015-01-01
Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.
Electrolyzers Enhancing Flexibility in Electric Grids
Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...
2017-11-10
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less
Deterministic Walks with Choice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
ERIC Educational Resources Information Center
Mathis, B. Claude
The College Suggestor is an optical coincident system of information retrieval consisting of a series of plastic cards. Each card represents a characteristic of an institution and contains grid positions for 1,931 colleges and universities. The system of 217 card is so designed that the location of each college on the grid position is coincident…
Master Software Requirements Specification
NASA Technical Reports Server (NTRS)
Hu, Chaumin
2003-01-01
A basic function of a computational grid such as the NASA Information Power Grid (IPG) is to allow users to execute applications on remote computer systems. The Globus Resource Allocation Manager (GRAM) provides this functionality in the IPG and many other grids at this time. While the functionality provided by GRAM clients is adequate, GRAM does not support useful features such as staging several sets of files, running more than one executable in a single job submission, and maintaining historical information about execution operations. This specification is intended to provide the environmental and software functional requirements for the IPG Job Manager V2.0 being developed by AMTI for NASA.
A Security Architecture for Grid-enabling OGC Web Services
NASA Astrophysics Data System (ADS)
Angelini, Valerio; Petronzio, Luca
2010-05-01
In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid resources. While the gLite middleware is tied to a consolidated security approach based on X.509 certificates, our system is able to support different kinds of user's security infrastructures. Our central component, the G-OWS Security Framework, is based on the OASIS WS-Trust specifications and on the OGC GeoRM architectural framework. This allows to satisfy advanced requirements such as the enforcement of specific geospatial policies and complex secure web service chained requests. The typical use case is represented by a scientist belonging to a given organization who issues a request to a G-OWS Grid-enabled Web Service. The system initially asks the user to authenticate to his/her organization's security system and, after verification of the user's security credentials, it translates the user's digital identity into a G-OWS identity. This identity is linked to a set of attributes describing the user's access rights to the G-OWS services and resources. Inside the G-OWS Security system, access restrictions are applied making use of the enhanced Geospatial capabilities specified by the OGC GeoXACML. If the required action needs to make use of the Grid environment the system checks if the user is entitled to access a Grid infrastructure. In that case his/her identity is translated to a temporary Grid security token using the Short Lived Credential Services (IGTF Standard). In our case, for the specific gLite Grid infrastructure, some information (VOMS Attributes) is plugged into the Grid Security Token to grant the access to the user's Virtual Organization Grid resources. The resulting token is used to submit the request to the Grid and also by the various gLite middleware elements to verify the user's grants. Basing on the presented framework, the G-OWS Security Working Group developed a prototype, enabling the execution of OGC Web Services on the EGEE Production Grid through the federation with a Shibboleth based security infrastructure. Future plans aim to integrate other Web authentication services such as OpenID, Kerberos and WS-Federation.
[Tumor Data Interacted System Design Based on Grid Platform].
Liu, Ying; Cao, Jiaji; Zhang, Haowei; Zhang, Ke
2016-06-01
In order to satisfy demands of massive and heterogeneous tumor clinical data processing and the multi-center collaborative diagnosis and treatment for tumor diseases,a Tumor Data Interacted System(TDIS)was established based on grid platform,so that an implementing virtualization platform of tumor diagnosis service was realized,sharing tumor information in real time and carrying on standardized management.The system adopts Globus Toolkit 4.0tools to build the open grid service framework and encapsulats data resources based on Web Services Resource Framework(WSRF).The system uses the middleware technology to provide unified access interface for heterogeneous data interaction,which could optimize interactive process with virtualized service to query and call tumor information resources flexibly.For massive amounts of heterogeneous tumor data,the federated stored and multiple authorized mode is selected as security services mechanism,real-time monitoring and balancing load.The system can cooperatively manage multi-center heterogeneous tumor data to realize the tumor patient data query,sharing and analysis,and compare and match resources in typical clinical database or clinical information database in other service node,thus it can assist doctors in consulting similar case and making up multidisciplinary treatment plan for tumors.Consequently,the system can improve efficiency of diagnosis and treatment for tumor,and promote the development of collaborative tumor diagnosis model.
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
Human Factors for Situation Assessment in Grid Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.
2007-08-08
Executive Summary Despite advances in technology, power system operators must assimilate overwhelming amounts of data to keep the grid operating. Analyses of recent blackouts have clearly demonstrated the need to enhance the operator’s situation awareness (SA). The long-term objective of this research is to integrate valuable technologies into the grid operator environment that support decision making under normal and abnormal operating conditions and remove non-technical barriers to enable the optimum use of these technologies by individuals working alone and as a team. More specifically, the research aims to identify methods and principles to increase SA of grid operators in themore » context of system conditions that are representative or common across many operating entities and develop operationally relevant experimental methods for studying technologies and operational practices which contribute to SA. With increasing complexity and interconnectivity of the grid, the scope and complexity of situation awareness have grown. New paradigms are needed to guide research and tool development aimed to enhance and improve operations. In reviewing related research, operating practices, systems, and tools, the present study established a taxonomy that provides a perspective on research and development surrounding power grid situation awareness and clarifies the field of human factors/SA for grid operations. Information sources that we used to identify critical factors underlying SA included interviews with experienced operational personnel, available historical summaries and transcripts of abnormal conditions and outages (e.g., the August 14, 2003 blackout), scientific literature, and operational policies/procedures and other documentation. Our analysis of August 2003 blackout transcripts and interviews adopted a different perspective than previous analyses of this material, and we complemented this analysis with additional interviews. Based on our analysis and a broad literature review, we advocate a new perspective on SA in terms of sensemaking, also called situated or ecological decision making, where the focus of the investigation is to understand why the decision maker(s) experienced the situation the way they did, or why what they saw made sense to them at the time. This perspective is distinct from the traditional branch of human factors research in the field which focuses more on ergonomics and the transactional relationship between the human operator and the systems. Consistent with our findings from the literature review, we recognized an over-arching need to focus SA research on issues surrounding the concept of shared knowledge; e.g., awareness of what is happening in adjacent areas as well as one’s own area of responsibility. Major findings were: a) Inadequate communication/information sharing is pervasive, b) Information is available, but not used. Many tools and mechanisms exist for operators to build awareness of the physical grid system, yet the transcripts reveal that they still need to call and exchange information with operators of neighboring areas to improve or validate their SA. The specific types of information that they request are quite predictable and, in most cases, cover information that could be available to both operators and reliability coordinators through readily available displays or other data sources, c) Shared Knowledge is Required on Operations/Actions as Well as Physical Status. In an ideal, technologically and organizationally perfect world, every control room and every reliability coordinator may have access to complete data across all regional control areas and yet, there would still be reason for the operators to call each other to gain and improve their SA of power grid operations, and d) Situation Awareness as sensemaking and shared knowledge.« less
Load Balancing Strategies for Multi-Block Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)
2002-01-01
The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.
Autonomous Energy Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey
With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less
Information-theoretic characterization of dynamic energy systems
NASA Astrophysics Data System (ADS)
Bevis, Troy Lawson
The latter half of the 20th century saw tremendous growth in nearly every aspect of civilization. From the internet to transportation, the various infrastructures relied upon by society has become exponentially more complex. Energy systems are no exception, and today the power grid is one of the largest infrastructures in the history of the world. The growing infrastructure has led to an increase in not only the amount of energy produced, but also an increase in the expectations of the energy systems themselves. The need for a power grid that is reliable, secure, and efficient is apparent, and there have been several initiatives to provide such a system. These increases in expectations have led to a growth in the renewable energy sources that are being integrated into the grid, a change that increases efficiency and disperses the generation throughout the system. Although this change in the grid infrastructure is beneficial, it leads to grand challenges in system level control and operation. As the number of sources increases and becomes geographically distributed, the control systems are no longer local to the system. This means that communication networks must be enhanced to support multiple devices that must communicate reliably. A common solution to these new systems is to use wide area networks for the communication network, as opposed to point-to-point communication. Although the wide area network will support a large number of devices, it generally comes with a compromise in the form of latency in the communication system. Now the device controller has latency injected into the feedback loop of the system. Also, renewable energy sources are largely non-dispatchable generation. That is, they are never guaranteed to be online and supplying the demanded energy. As renewable generation is typically modeled as stochastic process, it would useful to include this behavior in the control system algorithms. The combination of communication latency and stochastic sources are compounded by the dynamics of the grid itself. Loads are constantly changing, as well as the sources; this can sometimes lead to a quick change in system states. There is a need for a metric to be able to take into consideration all of the factors detailed above; it needs to be able to take into consideration the amount of information that is available in the system and the rate that the information is losing its value. In a dynamic system, the information is only valid for a length of time, and the controller must be able to take into account the decay of currently held information. This thesis will present the information theory metrics in a way that is useful for application to dynamic energy systems. A test case involving synchronization of several generators is presented for analysis and application of the theory. The objective is to synchronize all the generators and connect them to a common bus. As the phase shift of each generator is a random process, the effects of latency and information decay can be directly observed. The results of the experiments clearly show that the expected outcomes are observed and that entropy and information theory is a valid metric for timing requirement extraction.
Latvian Education Informatization System LIIS
ERIC Educational Resources Information Center
Bicevskis, Janis; Andzans, Agnis; Ikaunieks, Evalds; Medvedis, Inga; Straujums, Uldis; Vezis, Viesturs
2004-01-01
The Latvian Education Informatization System LIIS project covers the whole information grid: education content, management, information services, infrastructure and user training at several levels--schools, school boards and Ministry of Education and Science. Informatization is the maintained process of creating the technical, economical and…
Parallel Proximity Detection for Computer Simulation
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)
1997-01-01
The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.
Parallel Proximity Detection for Computer Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)
1998-01-01
The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.
A tesselated probabilistic representation for spatial robot perception and navigation
NASA Technical Reports Server (NTRS)
Elfes, Alberto
1989-01-01
The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.
A bioinformatics knowledge discovery in text application for grid computing
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-01-01
Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749
A bioinformatics knowledge discovery in text application for grid computing.
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-06-16
A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it'smore » possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less
The Internet of things and Smart Grid
NASA Astrophysics Data System (ADS)
Li, Biao; Lv, Sen; Pan, Qing
2018-02-01
The Internet of things and smart grid are the frontier of information and Industry. The combination of Internet of things and smart grid will greatly enhance the ability of smart grid information and communication support. The key technologies of the Internet of things will be applied to the smart grid, and the grid operation and management information perception service centre will be built to support the commanding heights of the world’s smart grid.
Modern Grid Initiative Distribution Taxonomy Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Chen, Yousu; Chassin, David P.
2008-11-01
This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies ismore » the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.« less
Decentralized Grid Scheduling with Evolutionary Fuzzy Systems
NASA Astrophysics Data System (ADS)
Fölling, Alexander; Grimme, Christian; Lepping, Joachim; Papaspyrou, Alexander
In this paper, we address the problem of finding workload exchange policies for decentralized Computational Grids using an Evolutionary Fuzzy System. To this end, we establish a non-invasive collaboration model on the Grid layer which requires minimal information about the participating High Performance and High Throughput Computing (HPC/HTC) centers and which leaves the local resource managers completely untouched. In this environment of fully autonomous sites, independent users are assumed to submit their jobs to the Grid middleware layer of their local site, which in turn decides on the delegation and execution either on the local system or on remote sites in a situation-dependent, adaptive way. We find for different scenarios that the exchange policies show good performance characteristics not only with respect to traditional metrics such as average weighted response time and utilization, but also in terms of robustness and stability in changing environments.
Using Taxonomic Indexing Trees to Efficiently Retrieve SCORM-Compliant Documents in e-Learning Grids
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung
2008-01-01
With the flourishing development of e-Learning, more and more SCORM-compliant teaching materials are developed by institutes and individuals in different sites. In addition, the e-Learning grid is emerging as an infrastructure to enhance traditional e-Learning systems. Therefore, information retrieval schemes supporting SCORM-compliant documents…
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve
Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demandmore » response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.« less
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
NASA Astrophysics Data System (ADS)
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.
Modelling the spatial distribution of SO2 and NOx emissions in Ireland.
de Kluizenaar, Y; Aherne, J; Farrell, E P
2001-01-01
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.
Testbeds for Assessing Critical Scenarios in Power Control Systems
NASA Astrophysics Data System (ADS)
Dondossola, Giovanna; Deconinck, Geert; Garrone, Fabrizio; Beitollahi, Hakem
The paper presents a set of control system scenarios implemented in two testbeds developed in the context of the European Project CRUTIAL - CRitical UTility InfrastructurAL Resilience. The selected scenarios refer to power control systems encompassing information and communication security of SCADA systems for grid teleoperation, impact of attacks on inter-operator communications in power emergency conditions, impact of intentional faults on the secondary and tertiary control in power grids with distributed generators. Two testbeds have been developed for assessing the effect of the attacks and prototyping resilient architectures.
SoilGrids1km — Global Soil Information Based on Automated Mapping
Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez
2014-01-01
Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179
During running in place, grid cells integrate elapsed time and distance run
Kraus, Benjamin J.; Brandon, Mark P.; Robinson, Robert J.; Connerney, Michael A.; Hasselmo, Michael E.; Eichenbaum, Howard
2015-01-01
Summary The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience. PMID:26539893
Data Representations for Geographic Information Systems.
ERIC Educational Resources Information Center
Shaffer, Clifford A.
1992-01-01
Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
The State of NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.
mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants frameworkmore » is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.« less
Space-time modeling using environmental constraints in a mobile robot system
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1990-01-01
Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H; Kong, V; Jin, J
Purpose: A synchronized moving grid (SMOG) has been proposed to reduce scatter and lag artifacts in cone beam computed tomography (CBCT). However, information is missing in each projection because certain areas are blocked by the grid. A previous solution to this issue is acquiring 2 complimentary projections at each position, which increases scanning time. This study reports our first Result using an inter-projection sensor fusion (IPSF) method to estimate missing projection in our prototype SMOG-based CBCT system. Methods: An in-house SMOG assembling with a 1:1 grid of 3 mm gap has been installed in a CBCT benchtop. The grid movesmore » back and forth in a 3-mm amplitude and up-to 20-Hz frequency. A control program in LabView synchronizes the grid motion with the platform rotation and x-ray firing so that the grid patterns for any two neighboring projections are complimentary. A Catphan was scanned with 360 projections. After scatter correction, the IPSF algorithm was applied to estimate missing signal for each projection using the information from the 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct CBCT images. The CBCTs were compared to those reconstructed using normal projections without applying the SMOG system. Results: The SMOG-IPSF method may reduce image dose by half due to the blocked radiation by the grid. The method almost completely removed scatter related artifacts, such as the cupping artifacts. The evaluation of line pair patterns in the CatPhan suggested that the spatial resolution degradation was minimal. Conclusion: The SMOG-IPSF is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less
The ATLAS Eventlndex: data flow and inclusion of other metadata
NASA Astrophysics Data System (ADS)
Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration
2016-10-01
The ATLAS EventIndex is the catalogue of the event-related metadata for the information collected from the ATLAS detector. The basic unit of this information is the event record, containing the event identification parameters, pointers to the files containing this event as well as trigger decision information. The main use case for the EventIndex is event picking, as well as data consistency checks for large production campaigns. The EventIndex employs the Hadoop platform for data storage and handling, as well as a messaging system for the collection of information. The information for the EventIndex is collected both at Tier-0, when the data are first produced, and from the Grid, when various types of derived data are produced. The EventIndex uses various types of auxiliary information from other ATLAS sources for data collection and processing: trigger tables from the condition metadata database (COMA), dataset information from the data catalogue AMI and the Rucio data management system and information on production jobs from the ATLAS production system. The ATLAS production system is also used for the collection of event information from the Grid jobs. EventIndex developments started in 2012 and in the middle of 2015 the system was commissioned and started collecting event metadata, as a part of ATLAS Distributed Computing operations.
Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group
NASA Astrophysics Data System (ADS)
Mazzetti, Paolo
2010-05-01
In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an integration on existing solutions. More specifically, the Open Geospatial Consortium (OGC) Web Services (OWS) specifications play a fundamental role in geospatial information sharing (e.g. in INSPIRE Implementing Rules, GEOSS architecture, GMES Services, etc.). On the Grid side, the gLite middleware, developed in the European EGEE (Enabling Grids for E-sciencE) Projects, is widely spread in Europe and beyond, proving its high scalability and it is one of the middleware chosen for the future European Grid Infrastructure (EGI) initiative. Therefore the convergence between OWS and gLite technologies would be desirable for a seamless access to the Grid capabilities through OWS-compliant systems. Anyway, to achieve this harmonization there are some obstacles to overcome. Firstly, a semantics mismatch must be addressed: gLite handle low-level (e.g. close to the machine) concepts like "file", "data", "instruments", "job", etc., while geo-information services handle higher-level (closer to the human) concepts like "coverage", "observation", "measurement", "model", etc. Secondly, an architectural mismatch must be addressed: OWS implements a Web Service-Oriented-Architecture which is stateless, synchronous and with no embedded security (which is demanded to other specs), while gLite implements the Grid paradigm in an architecture which is stateful, asynchronous (even not fully event-based) and with strong embedded security (based on the VO paradigm). In recent years many initiatives and projects have worked out possible approaches for implementing Grid-enabled OWSs. Just to mention some: (i) in 2007 the OGC has signed a Memorandum of Understanding with the Open Grid Forum, "a community of users, developers, and vendors leading the global standardization effort for grid computing."; (ii) the OGC identified "WPS Profiles - Conflation; and Grid processing" as one of the tasks in the Geo Processing Workflow theme of the OWS Phase 6 (OWS-6); (iii) several national, European and international projects investigated different aspects of this integration, developing demonstrators and Proof-of-Concepts; In this context, "gLite enablement of OpenGeospatial Web Services" (G-OWS) is an initiative started in 2008 by the European CYCLOPS, GENESI-DR, and DORII Projects Consortia in order to collect/coordinate experiences on the enablement of OWS on top of the gLite middleware [GOWS]. Currently G-OWS counts ten member organizations from Europe and beyond, and four European Projects involved. It broadened its scope to the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Its operational objectives are the following: i) to contribute to the OGC-OGF initiative; ii) to release a reference implementation as standard gLite APIs (under the gLite software license); iii) to release a reference model (including procedures and guidelines) for OWS Grid-ification, as far as gLite is concerned; iv) to foster and promote the formation of consortiums for participation to projects/initiatives aimed at building Grid-enabled SDIs To achieve this objectives G-OWS bases its activities on two main guiding principles: a) the adoption of a service-oriented architecture based on the information modelling approach, and b) standardization as a means of achieving interoperability (i.e. adoption of standards from ISO TC211, OGC OWS, OGF). In the first year of activity G-OWS has designed a general architectural framework stemming from the FP6 CYCLOPS studies and enriched by the outcomes of other projects and initiatives involved (i.e. FP7 GENESI-DR, FP7 DORII, AIST GeoGrid, etc.). Some proof-of-concepts have been developed to demonstrate the flexibility and scalability of such architectural framework. The G-OWS WG developed implementations of gLite-enabled Web Coverage Service (WCS) and Web Processing Service (WPS), and an implementation of a Shibboleth authentication for gLite-enabled OWS in order to evaluate the possible integration of Web and Grid security models. The presentation will aim to communicate the G-OWS organization, activities, future plans and means to involve the ESSI community. References [Berners-Lee 1996] T. Berners-Lee, "WWW: Past, present, and future". IEEE Computer, 29(10), Oct. 1996, pp. 69-77. [Foster 2001] I. Foster, C. Kesselman and S. Tuecke, "The Anatomy of the Grid. The International Journal ofHigh Performance Computing Applications", 15(3):200-222, Fall 2001 [GOWS] G-OWS WG, https://www.g-ows.org/, accessed: 15 January 2010
Inventory Image of horizontal rule Global Products Updated: 7/28/2017 Global Forecast System (GFS) Model Global Data Assimilation System (GDAS) Model * Information about the GFS * Information about the GFS Name GFS GFS - Global longitude-latitude grid WCOSS File Name Inventory 0.25 degree resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
Exploration into technical procedures for vertical integration. [information systems
NASA Technical Reports Server (NTRS)
Michel, R. J.; Maw, K. D.
1979-01-01
Issues in the design and use of a digital geographic information system incorporating landuse, zoning, hazard, LANDSAT, and other data are discussed. An eleven layer database was generated. Issues in spatial resolution, registration, grid versus polygonal structures, and comparison of photointerpreted landuse to LANDSAT land cover are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Qi, Junjian; Kang, Wei
2016-08-01
Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less
Information Metacatalog for a Grid
NASA Technical Reports Server (NTRS)
Kolano, Paul
2007-01-01
SWIM is a Software Information Metacatalog that gathers detailed information about the software components and packages installed on a grid resource. Information is currently gathered for Executable and Linking Format (ELF) executables and shared libraries, Java classes, shell scripts, and Perl and Python modules. SWIM is built on top of the POUR framework, which is described in the preceding article. SWIM consists of a set of Perl modules for extracting software information from a system, an XML schema defining the format of data that can be added by users, and a POUR XML configuration file that describes how these elements are used to generate periodic, on-demand, and user-specified information. Periodic software information is derived mainly from the package managers used on each system. SWIM collects information from native package managers in FreeBSD, Solaris, and IRX as well as the RPM, Perl, and Python package managers on multiple platforms. Because not all software is available, or installed in package form, SWIM also crawls the set of relevant paths from the File System Hierarchy Standard that defines the standard file system structure used by all major UNIX distributions. Using these two techniques, the vast majority of software installed on a system can be located. SWIM computes the same information gathered by the periodic routines for specific files on specific hosts, and locates software on a system given only its name and type.
An Extensible Information Grid for Risk Management
NASA Technical Reports Server (NTRS)
Maluf, David A.; Bell, David G.
2003-01-01
This paper describes recent work on developing an extensible information grid for risk management at NASA - a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management - a closed-loop iterative process for explicit risk management, program/project management - a proactive process that includes risk management, and mishap management - a feedback loop for learning from historical risks that escaped other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, schemaless mapping of XML, and secure server-mediated communication using standard protocols.
GridAPPS-D Conceptual Design v1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, Ronald B.; Schneider, Kevin P.; McDermott, Thomas E.
2017-05-31
The purpose of this document is to provide a conceptual design of the distribution system application development platform being developed for the U.S. Department of Energy’s Advanced Distribution Management System (ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063. The platform will be referred to as GridAPPS-D. This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as themore » project progresses.« less
AGIS: Evolution of Distributed Computing information system for ATLAS
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.
2015-12-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
NASA Technical Reports Server (NTRS)
Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David
2000-01-01
This paper describes a project to evaluate the feasibility of combining Grid and Numerical Propulsion System Simulation (NPSS) technologies, with a view to leveraging the numerous advantages of commodity technologies in a high-performance Grid environment. A team from the NASA Glenn Research Center and Argonne National Laboratory has been studying three problems: a desktop-controlled parameter study using Excel (Microsoft Corporation); a multicomponent application using ADPAC, NPSS, and a controller program-, and an aviation safety application running about 100 jobs in near real time. The team has successfully demonstrated (1) a Common-Object- Request-Broker-Architecture- (CORBA-) to-Globus resource manager gateway that allows CORBA remote procedure calls to be used to control the submission and execution of programs on workstations and massively parallel computers, (2) a gateway from the CORBA Trader service to the Grid information service, and (3) a preliminary integration of CORBA and Grid security mechanisms. We have applied these technologies to two applications related to NPSS, namely a parameter study and a multicomponent simulation.
Integration of external metadata into the Earth System Grid Federation (ESGF)
NASA Astrophysics Data System (ADS)
Berger, Katharina; Levavasseur, Guillaume; Stockhause, Martina; Lautenschlager, Michael
2015-04-01
International projects with high volume data usually disseminate their data in a federated data infrastructure, e.g.~the Earth System Grid Federation (ESGF). The ESGF aims to make the geographically distributed data seamlessly discoverable and accessible. Additional data-related information is currently collected and stored in separate repositories by each data provider. This scattered and useful information is not or only partly available for ESGF users. Examples for such additional information systems are ES-DOC/metafor for model and simulation information, IPSL's versioning information, CHARMe for user annotations, DKRZ's quality information and data citation information. The ESGF Quality Control working team (esgf-qcwt) aims to integrate these valuable pieces of additional information into the ESGF in order to make them available to users and data archive managers by (i) integrating external information into ESGF portal, (ii) integrating links to external information objects into the ESGF metadata index, e.g. by the use of PIDs (Persistent IDentifiers), and (iii) automating the collection of external information during the ESGF data publication process. For the sixth phase of CMIP (Coupled Model Intercomparison Project), the ESGF metadata index is to be enriched by additional information on data citation, file version, etc. This information will support users directly and can be automatically exploited by higher level services (human and machine readability).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to themore » utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less
Importance of Grid Center Arrangement
NASA Astrophysics Data System (ADS)
Pasaogullari, O.; Usul, N.
2012-12-01
In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs
Integrating existing software toolkits into VO system
NASA Astrophysics Data System (ADS)
Cui, Chenzhou; Zhao, Yong-Heng; Wang, Xiaoqian; Sang, Jian; Luo, Ze
2004-09-01
Virtual Observatory (VO) is a collection of interoperating data archives and software tools. Taking advantages of the latest information technologies, it aims to provide a data-intensively online research environment for astronomers all around the world. A large number of high-qualified astronomical software packages and libraries are powerful and easy of use, and have been widely used by astronomers for many years. Integrating those toolkits into the VO system is a necessary and important task for the VO developers. VO architecture greatly depends on Grid and Web services, consequently the general VO integration route is "Java Ready - Grid Ready - VO Ready". In the paper, we discuss the importance of VO integration for existing toolkits and discuss the possible solutions. We introduce two efforts in the field from China-VO project, "gImageMagick" and "Galactic abundance gradients statistical research under grid environment". We also discuss what additional work should be done to convert Grid service to VO service.
Sharing Data and Analytical Resources Securely in a Biomedical Research Grid Environment
Langella, Stephen; Hastings, Shannon; Oster, Scott; Pan, Tony; Sharma, Ashish; Permar, Justin; Ervin, David; Cambazoglu, B. Barla; Kurc, Tahsin; Saltz, Joel
2008-01-01
Objectives To develop a security infrastructure to support controlled and secure access to data and analytical resources in a biomedical research Grid environment, while facilitating resource sharing among collaborators. Design A Grid security infrastructure, called Grid Authentication and Authorization with Reliably Distributed Services (GAARDS), is developed as a key architecture component of the NCI-funded cancer Biomedical Informatics Grid (caBIG™). The GAARDS is designed to support in a distributed environment 1) efficient provisioning and federation of user identities and credentials; 2) group-based access control support with which resource providers can enforce policies based on community accepted groups and local groups; and 3) management of a trust fabric so that policies can be enforced based on required levels of assurance. Measurements GAARDS is implemented as a suite of Grid services and administrative tools. It provides three core services: Dorian for management and federation of user identities, Grid Trust Service for maintaining and provisioning a federated trust fabric within the Grid environment, and Grid Grouper for enforcing authorization policies based on both local and Grid-level groups. Results The GAARDS infrastructure is available as a stand-alone system and as a component of the caGrid infrastructure. More information about GAARDS can be accessed at http://www.cagrid.org. Conclusions GAARDS provides a comprehensive system to address the security challenges associated with environments in which resources may be located at different sites, requests to access the resources may cross institutional boundaries, and user credentials are created, managed, revoked dynamically in a de-centralized manner. PMID:18308979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-07-01
This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-06-01
Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connectmore » a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less
ERIC Educational Resources Information Center
Allan, George
1999-01-01
A student-centered learning model for a course on information systems project management consisted of individual study and group discussion with facilitator guidance. Data from session records, repertory grids, and a learning network diagram showed that interactive learning was more effective and students took responsibility, although some…
Yue, Meng; Wang, Xiaoyu
2015-07-01
It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less
Li, Yi-Fan [Canadian Global Emissions Inventory Centre, Downsview, Ontario (Canada); Brenkert, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1996-01-01
This data base contains gridded (one degree by one degree) information on the world-wide distribution of the population for 1990 and country-specific information on the percentage of the country's population present in each grid cell (Li, 1996a). Secondly, the data base contains the percentage of a country's total area in a grid cell and the country's percentage of the grid cell that is terrestrial (Li, 1996b). Li (1996b) also developed an indicator signifying how many countries are represented in a grid cell and if a grid cell is part of the sea; this indicator is only relevant for the land, countries, and sea-partitioning information of the grid cell. Thirdly, the data base includes the latitude and longitude coordinates of each grid cell; a grid code number, which is a translation of the latitude/longitude value and is used in the Global Emission Inventory Activity (GEIA) data bases; the country or region's name; and the United Nations three-digit country code that represents that name.
Scientific Grid activities and PKI deployment in the Cybermedia Center, Osaka University.
Akiyama, Toyokazu; Teranishi, Yuuichi; Nozaki, Kazunori; Kato, Seiichi; Shimojo, Shinji; Peltier, Steven T; Lin, Abel; Molina, Tomas; Yang, George; Lee, David; Ellisman, Mark; Naito, Sei; Koike, Atsushi; Matsumoto, Shuichi; Yoshida, Kiyokazu; Mori, Hirotaro
2005-10-01
The Cybermedia Center (CMC), Osaka University, is a research institution that offers knowledge and technology resources obtained from advanced researches in the areas of large-scale computation, information and communication, multimedia content and education. Currently, CMC is involved in Japanese national Grid projects such as JGN II (Japan Gigabit Network), NAREGI and BioGrid. Not limited to Japan, CMC also actively takes part in international activities such as PRAGMA. In these projects and international collaborations, CMC has developed a Grid system that allows scientists to perform their analysis by remote-controlling the world's largest ultra-high voltage electron microscope located in Osaka University. In another undertaking, CMC has assumed a leadership role in BioGrid by sharing its experiences and knowledge on the system development for the area of biology. In this paper, we will give an overview of the BioGrid project and introduce the progress of the Telescience unit, which collaborates with the Telescience Project led by the National Center for Microscopy and Imaging Research (NCMIR). Furthermore, CMC collaborates with seven Computing Centers in Japan, NAREGI and National Institute of Informatics to deploy PKI base authentication infrastructure. The current status of this project and future collaboration with Grid Projects will be delineated in this paper.
Recommended GIS Analysis Methods for Global Gridded Population Data
NASA Astrophysics Data System (ADS)
Frye, C. E.; Sorichetta, A.; Rose, A.
2017-12-01
When using geographic information systems (GIS) to analyze gridded, i.e., raster, population data, analysts need a detailed understanding of several factors that affect raster data processing, and thus, the accuracy of the results. Global raster data is most often provided in an unprojected state, usually in the WGS 1984 geographic coordinate system. Most GIS functions and tools evaluate data based on overlay relationships (area) or proximity (distance). Area and distance for global raster data can be either calculated directly using the various earth ellipsoids or after transforming the data to equal-area/equidistant projected coordinate systems to analyze all locations equally. However, unlike when projecting vector data, not all projected coordinate systems can support such analyses equally, and the process of transforming raster data from one coordinate space to another often results unmanaged loss of data through a process called resampling. Resampling determines which values to use in the result dataset given an imperfect locational match in the input dataset(s). Cell size or resolution, registration, resampling method, statistical type, and whether the raster represents continuous or discreet information potentially influence the quality of the result. Gridded population data represent estimates of population in each raster cell, and this presentation will provide guidelines for accurately transforming population rasters for analysis in GIS. Resampling impacts the display of high resolution global gridded population data, and we will discuss how to properly handle pyramid creation using the Aggregate tool with the sum option to create overviews for mosaic datasets.
Evaluation of automated global mapping of Reference Soil Groups of WRB2015
NASA Astrophysics Data System (ADS)
Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria
2017-04-01
SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992
A Probabilistic Risk Mitigation Model for Cyber-Attacks to PMU Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousavian, Seyedamirabbas; Valenzuela, Jorge; Wang, Jianhui
The power grid is becoming more dependent on information and communication technologies. Complex networks of advanced sensors such as phasor measurement units (PMUs) are used to collect real time data to improve the observability of the power system. Recent studies have shown that the power grid has significant cyber vulnerabilities which could increase when PMUs are used extensively. Therefore, recognizing and responding to vulnerabilities are critical to the security of the power grid. This paper proposes a risk mitigation model for optimal response to cyber-attacks to PMU networks. We model the optimal response action as a mixed integer linear programmingmore » (MILP) problem to prevent propagation of the cyber-attacks and maintain the observability of the power system.« less
[Research on tumor information grid framework].
Zhang, Haowei; Qin, Zhu; Liu, Ying; Tan, Jianghao; Cao, Haitao; Chen, Youping; Zhang, Ke; Ding, Yuqing
2013-10-01
In order to realize tumor disease information sharing and unified management, we utilized grid technology to make the data and software resources which distributed in various medical institutions for effective integration so that we could make the heterogeneous resources consistent and interoperable in both semantics and syntax aspects. This article describes the tumor grid framework, the type of the service being packaged in Web Service Description Language (WSDL) and extensible markup language schemas definition (XSD), the client use the serialized document to operate the distributed resources. The service objects could be built by Unified Modeling Language (UML) as middle ware to create application programming interface. All of the grid resources are registered in the index and released in the form of Web Services based on Web Services Resource Framework (WSRF). Using the system we can build a multi-center, large sample and networking tumor disease resource sharing framework to improve the level of development in medical scientific research institutions and the patient's quality of life.
Smart Grid Information Clearinghouse (SGIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Saifur
Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.« less
Self managing experiment resources
NASA Astrophysics Data System (ADS)
Stagni, F.; Ubeda, M.; Tsaregorodtsev, A.; Romanovskiy, V.; Roiser, S.; Charpentier, P.; Graciani, R.
2014-06-01
Within this paper we present an autonomic Computing resources management system, used by LHCb for assessing the status of their Grid resources. Virtual Organizations Grids include heterogeneous resources. For example, LHC experiments very often use resources not provided by WLCG, and Cloud Computing resources will soon provide a non-negligible fraction of their computing power. The lack of standards and procedures across experiments and sites generated the appearance of multiple information systems, monitoring tools, ticket portals, etc... which nowadays coexist and represent a very precious source of information for running HEP experiments Computing systems as well as sites. These two facts lead to many particular solutions for a general problem: managing the experiment resources. In this paper we present how LHCb, via the DIRAC interware, addressed such issues. With a renewed Central Information Schema hosting all resources metadata and a Status System (Resource Status System) delivering real time information, the system controls the resources topology, independently of the resource types. The Resource Status System applies data mining techniques against all possible information sources available and assesses the status changes, that are then propagated to the topology description. Obviously, giving full control to such an automated system is not risk-free. Therefore, in order to minimise the probability of misbehavior, a battery of tests has been developed in order to certify the correctness of its assessments. We will demonstrate the performance and efficiency of such a system in terms of cost reduction and reliability.
Security attack detection algorithm for electric power gis system based on mobile application
NASA Astrophysics Data System (ADS)
Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan
2017-05-01
Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.
Thundercloud: Domain specific information security training for the smart grid
NASA Astrophysics Data System (ADS)
Stites, Joseph
In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.
Orzol, Leonard L.
1997-01-01
MODTOOLS uses the particle data calculated by MODPATH to construct several types of GIS output. MODTOOLS uses particle information recorded by MODPATH such as the row, column, or layer of the model grid, to generate a set of characteristics associated with each particle. The user can choose from the set of characteristics associated with each particle and use the capabilities of the GIS to selectively trace the movement of water discharging from specific cells in the model grid. MODTOOLS allows the hydrogeologist to utilize the capabilities of the GIS to graphically combine the results of the particle-tracking analysis, which facilitates the analysis and understanding of complex ground-water flow systems.
Integrating Gridded NASA Hydrological Data into CUAHSI HIS
NASA Technical Reports Server (NTRS)
Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Whiteaker, Tim; Valentine, David; Maidment, David; Hooper, Richard
2011-01-01
The amount of hydrological data available from NASA remote sensing and modeling systems is vast and ever-increasing;but, one challenge persists:increasing the usefulness of these data for, and thus their use by, end user communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of different end users, to thus better able to bridge the gap between NASA data and end user communities. One effective strategy is integrating the data in to end user community tools and environments. There is an ongoing collaborative effort between NASA HDISC, NASA Hydrological Sciences Branch, and CUAHSI to integrate NASA gridded hydrology data in to the CUAHSI Hydrologic Information System (HIS).
Decentralized energy systems for clean electricity access
NASA Astrophysics Data System (ADS)
Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.
2015-04-01
Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.
A Geometry Based Infra-Structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1998-01-01
The computational steps traditionally taken for most engineering analysis suites (computational fluid dynamics (CFD), structural analysis, heat transfer and etc.) are: (1) Surface Generation -- usually by employing a Computer Assisted Design (CAD) system; (2) Grid Generation -- preparing the volume for the simulation; (3) Flow Solver -- producing the results at the specified operational point; (4) Post-processing Visualization -- interactively attempting to understand the results. For structural analysis, integrated systems can be obtained from a number of commercial vendors. These vendors couple directly to a number of CAD systems and are executed from within the CAD Graphical User Interface (GUI). It should be noted that the structural analysis problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go to Initial Graphics Exchange Specification (IGES) or Standard Exchange Program (STEP) files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Specifically the problems with this procedure are:(1) File based -- Information flows from one step to the next via data files with formats specified for that procedure. File standards, when they exist, are wholly inadequate. For example, geometry from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as well as masses of other information of no interest for the Grid Generator). This is particularly onerous for modern CAD systems based on solid modeling. The part was a proper solid and in the translation to IGES has lost this important characteristic. STEP is another standard for CAD data that exists and supports the concept of a solid. The problem with STEP is that a solid modeling geometry kernel is required to query and manipulate the data within this type of file. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. Adroit multi-block methods are not far behind. This means that a million node steady-state solution can be computed on the order of hours (using current high performance computers) starting from this 'good' geometry. Unfortunately, the geometry usually transmitted from the CAD system is not 'good' in the grid generator sense. The grid generator needs smooth closed solid geometry. It can take a week (or more) of interaction with the CAD output (sometimes by hand) before the process can begin. One way Communication. (3) One-way Communication -- All information travels on from one phase to the next. This makes procedures like node adaptation difficult when attempting to add or move nodes that sit on bounding surfaces (when the actual surface data has been lost after the grid generation phase). Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive. There is also no way to easily deal with this system in a modular manner. One can only replace the grid generator, for example, if the software reads and writes the same files. Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric approach. This makes the actual geometry (not a discretized version) accessible to all phases of the analysis. The connection to the geometry is made through an Application Programming Interface (API) and NOT a file system. This API isolates the top-level applications (grid generators, solvers and visualization components) from the geometry engine. Also this allows the replacement of one geometry kernel with another, without effecting these top-level applications. For example, if UniGraphics is used as the CAD package then Parasolid (UG's own geometry engine) can be used for all geometric queries so that no solid geometry information is lost in a translation. This is much better than STEP because when the data is queried, the same software is executed as used in the CAD system. Therefore, one analyzes the exact part that is in the CAD system. CAPRI uses the same idea as the commercial structural analysis codes but does not specify control. Software components of the CAD system are used, but the analysis suite, not the CAD operator, specifies the control of the software session. This also means that the license issues (may be) minimized and individuals need not have to know how to operate a CAD system in order to run the suite.
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2007-01-01
NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.
Sensor Transmission Power Schedule for Smart Grids
NASA Astrophysics Data System (ADS)
Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.
2017-11-01
Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.
The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less
Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.; ...
2017-08-25
The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
Outlook for grid service technologies within the @neurIST eHealth environment.
Arbona, A; Benkner, S; Fingberg, J; Frangi, A F; Hofmann, M; Hose, D R; Lonsdale, G; Ruefenacht, D; Viceconti, M
2006-01-01
The aim of the @neurIST project is to create an IT infrastructure for the management of all processes linked to research, diagnosis and treatment development for complex and multi-factorial diseases. The IT infrastructure will be developed for one such disease, cerebral aneurysm and subarachnoid haemorrhage, but its core technologies will be transferable to meet the needs of other medical areas. Since the IT infrastructure for @neurIST will need to encompass data repositories, computational analysis services and information systems handling multi-scale, multi-modal information at distributed sites, the natural basis for the IT infrastructure is a Grid Service middleware. The project will adopt a service-oriented architecture because it aims to provide a system addressing the needs of medical researchers, clinicians and health care specialists (and their IT providers/systems) and medical supplier/consulting industries.
Custom Sky-Image Mosaics from NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David
2005-01-01
yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user
NASA Technical Reports Server (NTRS)
Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.
NASA Astrophysics Data System (ADS)
Gross, Kyle; Hayashi, Soichi; Teige, Scott; Quick, Robert
2012-12-01
Large distributed computing collaborations, such as the Worldwide LHC Computing Grid (WLCG), face many issues when it comes to providing a working grid environment for their users. One of these is exchanging tickets between various ticketing systems in use by grid collaborations. Ticket systems such as Footprints, RT, Remedy, and ServiceNow all have different schema that must be addressed in order to provide a reliable exchange of information between support entities and users in different grid environments. To combat this problem, OSG Operations has created a ticket synchronization interface called GOC-TX that relies on web services instead of error-prone email parsing methods of the past. Synchronizing tickets between different ticketing systems allows any user or support entity to work on a ticket in their home environment, thus providing a familiar and comfortable place to provide updates without having to learn another ticketing system. The interface is built in a way that it is generic enough that it can be customized for nearly any ticketing system with a web-service interface with only minor changes. This allows us to be flexible and rapidly bring new ticket synchronization online. Synchronization can be triggered by different methods including mail, web services interface, and active messaging. GOC-TX currently interfaces with Global Grid User Support (GGUS) for WLCG, Remedy at Brookhaven National Lab (BNL), and Request Tracker (RT) at the Virtual Data Toolkit (VDT). Work is progressing on the Fermi National Accelerator Laboratory (FNAL) ServiceNow synchronization. This paper will explain the problems faced by OSG and how they led OSG to create and implement this ticket synchronization system along with the technical details that allow synchronization to be preformed at a production level.
Smart Grid Interoperability Maturity Model Beta Version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Drummond, R.; Giroti, Tony
The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across anmore » information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.« less
SoilGrids250m: Global gridded soil information based on machine learning
Mendes de Jesus, Jorge; Heuvelink, Gerard B. M.; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N.; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A.; Batjes, Niels H.; Leenaars, Johan G. B.; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas
2017-01-01
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. PMID:28207752
SoilGrids250m: Global gridded soil information based on machine learning.
Hengl, Tomislav; Mendes de Jesus, Jorge; Heuvelink, Gerard B M; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A; Batjes, Niels H; Leenaars, Johan G B; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas
2017-01-01
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
Metrics for Assessment of Smart Grid Data Integrity Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annarita Giani; Miles McQueen; Russell Bent
2012-07-01
There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised datamore » by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.« less
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo
2010-05-01
Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.
Optimizing Resource Utilization in Grid Batch Systems
NASA Astrophysics Data System (ADS)
Gellrich, Andreas
2012-12-01
On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility.
Zaballos, Agustín; Navarro, Joan; Martín De Pozuelo, Ramon
2018-02-28
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid's data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
AstroGrid-D: Grid technology for astronomical science
NASA Astrophysics Data System (ADS)
Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve
2011-02-01
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui
2009-01-01
The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.
WE-EF-207-10: Striped Ratio Grids: A New Concept for Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S
2015-06-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. We propose the “striped ratio grid,” an anti-scatter grid with alternating stripes of high scatter rejection (attained, for example, by high grid ratio) and low scatter rejection. To minimize artifacts, stripes are oriented parallel to the direction of the ramp filter. Signal discontinuities at the boundaries between stripes provide information on local scatter content, although these discontinuities are contaminated by variation in primary radiation. Methods: We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid, andmore » processed them together to mimic a striped ratio grid. Two phantoms were scanned with the emulated striped ratio grid and compared with a conventional anti-scatter grid and a fan-beam acquisition, which served as ground truth. A nonlinear image processing algorithm was developed to mitigate the problem of primary variation. Results: The emulated striped ratio grid reduced scatter more effectively than the conventional grid alone. Contrast is thereby improved in projection imaging. In CT imaging, cupping is markedly reduced. Artifacts introduced by the striped ratio grid appear to be minimal. Conclusion: Striped ratio grids could be a simple and effective evolution of conventional anti-scatter grids. Unlike several other approaches currently under investigation for scatter management, striped ratio grids require minimal computation, little new hardware (at least for systems which already use removable grids) and impose few assumptions on the nature of the object being scanned.« less
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems
NASA Technical Reports Server (NTRS)
Kao, David L.; Chan, William M.
2012-01-01
Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.
Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M
2018-05-11
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations
Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.
2018-01-01
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633
Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications Under Jamming
2015-01-16
Conf. Wireless Netw. Security, 2011, pp. 47–52. [26] M. Strasser, B. Danev, and S. Capkun, “Detection of reactive jam- ming in sensor networks,” ACM...Evaluation of two anti-islanding schemes for a radial distribution system equipped with self-excited induction generator wind turbines ,” IEEE Trans...technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Tamil Nadu is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.
2010-03-01
Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.
Eisele, Thomas P; Keating, Joseph; Swalm, Chris; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Andrews, Linda; Beier, John C
2003-12-10
BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population asymptotically equal to 320,000) and Malindi (population asymptotically equal to 81,000), Kenya. Grid cells of 270 meters x 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter x 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2 = 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters x 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Jaime
2012-12-14
To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-09-01
This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less
NASA's Information Power Grid: Large Scale Distributed Computing and Data Management
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)
2001-01-01
Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.
Mission Networks: An Evolution in Information Sharing
2012-03-20
Publication 6-0 Joint Communications System states that the Global Information Grid ( GIG ) composed of the Defense Information Systems Network (DISN...of the GIG while the other branches of the United States Government (USG) such as the Department of State (DoS) utilize the ’.gov’ sub-network of...the GIG . The result is that unless the DOD has a ’need to know’ it will never have access to the DOS information that resides on the ’.gov’ sub-network
DOE Office of Scientific and Technical Information (OSTI.GOV)
McParland, Charles
The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, themore » vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the Internet are expected to be informative and pertinent.« less
Landfill Gas Electricity Project Interconnection Webinar
This page contains information about a webinar LMOP offered to LMOP Partners to address questions associated with connecting electricity generating systems to the grid during LFG energy project planning and implementation.
NASA Astrophysics Data System (ADS)
Taneja, Jayant Kumar
Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.
Provably secure time distribution for the electric grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith IV, Amos M; Evans, Philip G; Williams, Brian P
We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.
A Tutorial on Creating a Grid Cell Land Cover Data File from Remote Sensing Data.
1985-06-01
Creating a Grid Cell Land Cover Data File from Remote Sensing Data Gary E. Ford, Doreen L Meyer, and V. Ralph Algazi Signal and Image Processing Laboratory... L 1. INTRODUCTION Spatial data management systems, also known as geographic information systems, pro- vide powerful, practical tools for the...erosion [8]. Other -... ..... .. . . .. . . -5- 60 Z 0"C. 0 0. , ...- 9L> c 0 o o ( L - 0- 0.0a c 0 4- b. 0 ~ CL*~ C 0 .CL x 0 I" .- -J oo : -. 0 a a Z 0Z I1
Petroleum system modeling of the western Canada sedimentary basin - isopach grid files
Higley, Debra K.; Henry, Mitchell E.; Roberts, Laura N.R.
2005-01-01
This publication contains zmap-format grid files of isopach intervals that represent strata associated with Devonian to Holocene petroleum systems of the Western Canada Sedimentary Basin (WCSB) of Alberta, British Columbia, and Saskatchewan, Canada. Also included is one grid file that represents elevations relative to sea level of the top of the Lower Cretaceous Mannville Group. Vertical and lateral scales are in meters. The age range represented by the stratigraphic intervals comprising the grid files is 373 million years ago (Ma) to present day. File names, age ranges, formation intervals, and primary petroleum system elements are listed in table 1. Metadata associated with this publication includes information on the study area and the zmap-format files. The digital files listed in table 1 were compiled as part of the Petroleum Processes Research Project being conducted by the Central Energy Resources Team of the U.S. Geological Survey, which focuses on modeling petroleum generation, 3 migration, and accumulation through time for petroleum systems of the WCSB. Primary purposes of the WCSB study are to Construct the 1-D/2-D/3-D petroleum system models of the WCSB. Actual boundaries of the study area are documented within the metadata; excluded are northern Alberta and eastern Saskatchewan, but fringing areas of the United States are included.Publish results of the research and the grid files generated for use in the 3-D model of the WCSB.Evaluate the use of petroleum system modeling in assessing undiscovered oil and gas resources for geologic provinces across the World.
Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam
2017-12-01
Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Internet-based wide area measurement applications in deregulated power systems
NASA Astrophysics Data System (ADS)
Khatib, Abdel-Rahman Amin
Since the deregulation of power systems was started in 1989 in the UK, many countries have been motivated to undergo deregulation. The United State started deregulation in the energy sector in California back in 1996. Since that time many other states have also started the deregulation procedures in different utilities. Most of the deregulation market in the United States now is in the wholesale market area, however, the retail market is still undergoing changes. Deregulation has many impacts on power system network operation and control. The number of power transactions among the utilities has increased and many Independent Power Producers (IPPs) now have a rich market for competition especially in the green power market. The Federal Energy Regulatory Commission (FERC) called upon utilities to develop the Regional Transmission Organization (RTO). The RTO is a step toward the national transmission grid. RTO is an independent entity that will operate the transmission system in a large region. The main goal of forming RTOs is to increase the operation efficiency of the power network under the impact of the deregulated market. The objective of this work is to study Internet based Wide Area Information Sharing (WAIS) applications in the deregulated power system. The study is the first step toward building a national transmission grid picture using information sharing among utilities. Two main topics are covered as applications for the WAIS in the deregulated power system, state estimation and Total Transfer Capability (TTC) calculations. As a first step for building this national transmission grid picture, WAIS and the level of information sharing of the state estimation calculations have been discussed. WAIS impacts to the TTC calculations are also covered. A new technique to update the TTC using on line measurements based on WAIS created by sharing state estimation is presented.
Guest editorial. Integrated healthcare information systems.
Li, Ling; Ge, Ri-Li; Zhou, Shang-Ming; Valerdi, Ricardo
2012-07-01
The use of integrated information systems for healthcare has been started more than a decade ago. In recent years, rapid advances in information integration methods have spurred tremendous growth in the use of integrated information systems in healthcare delivery. Various techniques have been used for probing such integrated systems. These techniques include service-oriented architecture (SOA), EAI, workflow management, grid computing, and others. Many applications require a combination of these techniques, which gives rise to the emergence of enterprise systems in healthcare. Development of the techniques originated from different disciplines has the potential to significantly improve the performance of enterprise systems in healthcare. This editorial paper briefly introduces the enterprise systems in the perspective of healthcare informatics.
Is Fourier analysis performed by the visual system or by the visual investigator.
Ochs, A L
1979-01-01
A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.
AliEn—ALICE environment on the GRID
NASA Astrophysics Data System (ADS)
Saiz, P.; Aphecetche, L.; Bunčić, P.; Piskač, R.; Revsbech, J.-E.; Šego, V.; Alice Collaboration
2003-04-01
AliEn ( http://alien.cern.ch) (ALICE Environment) is a Grid framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed datasets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging. In the paper we will present the architecture and components of the system.
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Enhancing Discovery, Search, and Access of NASA Hydrological Data by Leveraging GEOSS
NASA Technical Reports Server (NTRS)
Teng, William L.
2015-01-01
An ongoing NASA-funded project has removed a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series) for selected variables of the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) and other EOSDIS (Earth Observing System Data Information System) data sets (e.g., precipitation, soil moisture). These time series (data rods) are pre-generated. Data rods Web services are accessible through the CUAHSI Hydrologic Information System (HIS) and the Goddard Earth Sciences Data and Information Services Center (GES DISC) but are not easily discoverable by users of other non-NASA data systems. The Global Earth Observation System of Systems (GEOSS) is a logical mechanism for providing access to the data rods. An ongoing GEOSS Water Services project aims to develop a distributed, global registry of water data, map, and modeling services cataloged using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. The ongoing data rods project has demonstrated the feasibility of leveraging the GEOSS infrastructure to help provide access to time series of model grid information or grids of information over a geographical domain for a particular time interval. A recently-begun, related NASA-funded ACCESS-GEOSS project expands on these prior efforts. Current work is focused on both improving the performance of the generation of on-the-fly (OTF) data rods and the Web interfaces from which users can easily discover, search, and access NASA data.
Energy access and sustainable development
NASA Astrophysics Data System (ADS)
Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry
2015-03-01
With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.
Controllable Grid Interface Test System | Energy Systems Integration
Facility | NREL Controllable Grid Interface Test System Controllable Grid Interface Test System NREL's controllable grid interface (CGI) test system can reduce certification testing time and costs grid interface is the first test facility in the United States that has fault simulation capabilities
Evaluating the Information Power Grid using the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
VanderWijngaartm Rob F.; Frumkin, Michael A.
2004-01-01
The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.
NASA Technical Reports Server (NTRS)
Spencer, M. M.; Wolf, J. M.; Schall, M. A.
1974-01-01
A system of computer programs were developed which performs geometric rectification and line-by-line mapping of airborne multispectral scanner data to ground coordinates and estimates ground area. The system requires aircraft attitude and positional information furnished by ancillary aircraft equipment, as well as ground control points. The geometric correction and mapping procedure locates the scan lines, or the pixels on each line, in terms of map grid coordinates. The area estimation procedure gives ground area for each pixel or for a predesignated parcel specified in map grid coordinates. The results of exercising the system with simulated data showed the uncorrected video and corrected imagery and produced area estimates accurate to better than 99.7%.
A Community-Based Approach to Leading the Nation in Smart Energy Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-12-31
Project Objectives The AEP Ohio gridSMART® Demonstration Project (Project) achieved the following objectives: • Built a secure, interoperable, and integrated smart grid infrastructure in northeast central Ohio that demonstrated the ability to maximize distribution system efficiency and reliability and consumer use of demand response programs that reduced energy consumption, peak demand, and fossil fuel emissions. • Actively attracted, educated, enlisted, and retained consumers in innovative business models that provided tools and information reducing consumption and peak demand. • Provided the U.S. Department of Energy (DOE) information to evaluate technologies and preferred smart grid business models to be extended nationally. Projectmore » Description Ohio Power Company (the surviving company of a merger with Columbus Southern Power Company), doing business as AEP Ohio (AEP Ohio), took a community-based approach and incorporated a full suite of advanced smart grid technologies for 110,000 consumers in an area selected for its concentration and diversity of distribution infrastructure and consumers. It was organized and aligned around: • Technology, implementation, and operations • Consumer and stakeholder acceptance • Data management and benefit assessment Combined, these functional areas served as the foundation of the Project to integrate commercially available products, innovative technologies, and new consumer products and services within a secure two-way communication network between the utility and consumers. The Project included Advanced Metering Infrastructure (AMI), Distribution Management System (DMS), Distribution Automation Circuit Reconfiguration (DACR), Volt VAR Optimization (VVO), and Consumer Programs (CP). These technologies were combined with two-way consumer communication and information sharing, demand response, dynamic pricing, and consumer products, such as plug-in electric vehicles and smart appliances. In addition, the Project incorporated comprehensive cyber security capabilities, interoperability, and a data assessment that, with grid simulation capabilities, made the demonstration results an adaptable, integrated solution for AEP Ohio and the nation.« less
SoilInfo App: global soil information on your palm
NASA Astrophysics Data System (ADS)
Hengl, Tomislav; Mendes de Jesus, Jorge
2015-04-01
ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.
Multi-agent coordination algorithms for control of distributed energy resources in smart grids
NASA Astrophysics Data System (ADS)
Cortes, Andres
Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.
A new range-free localisation in wireless sensor networks using support vector machine
NASA Astrophysics Data System (ADS)
Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing
2018-02-01
Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.
Intelligent Operation and Maintenance of Micro-grid Technology and System Development
NASA Astrophysics Data System (ADS)
Fu, Ming; Song, Jinyan; Zhao, Jingtao; Du, Jian
2018-01-01
In order to achieve the micro-grid operation and management, Studying the micro-grid operation and maintenance knowledge base. Based on the advanced Petri net theory, the fault diagnosis model of micro-grid is established, and the intelligent diagnosis and analysis method of micro-grid fault is put forward. Based on the technology, the functional system and architecture of the intelligent operation and maintenance system of micro-grid are studied, and the microcomputer fault diagnosis function is introduced in detail. Finally, the system is deployed based on the micro-grid of a park, and the micro-grid fault diagnosis and analysis is carried out based on the micro-grid operation. The system operation and maintenance function interface is displayed, which verifies the correctness and reliability of the system.
Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K
2015-07-01
Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation priority hotspot-III. This analysis complements assessment of ecosystems undergoing multiple threats. An integrated approach involving the deforestation and degradation indicators is useful in formulating the strategies to take appropriate conservation measures.
NASA Astrophysics Data System (ADS)
Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao
2017-01-01
With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.
Military Cyberspace: From Evolution to Revolution
2012-02-08
support the GCCs and enable USCYBERCOM to accomplish its mission? 15. SUBJECT TERMS Network Operations, Global Information Grid ( GIG ), Network...DATE: 08 February 2012 WORD COUNT: 5,405 PAGES: 30 KEY TERMS: Network Operations, Global Information Grid ( GIG ), Network Architecture...defense of the DOD global information grid ( GIG ). The DOD must pursue an enterprise approach to network management in the cyberspace domain to
Distributed intrusion detection system based on grid security model
NASA Astrophysics Data System (ADS)
Su, Jie; Liu, Yahui
2008-03-01
Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.
Real Time Monitor of Grid job executions
NASA Astrophysics Data System (ADS)
Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.
2010-04-01
In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.
Application of high performance asynchronous socket communication in power distribution automation
NASA Astrophysics Data System (ADS)
Wang, Ziyu
2017-05-01
With the development of information technology and Internet technology, and the growing demand for electricity, the stability and the reliable operation of power system have been the goal of power grid workers. With the advent of the era of big data, the power data will gradually become an important breakthrough to guarantee the safe and reliable operation of the power grid. So, in the electric power industry, how to efficiently and robustly receive the data transmitted by the data acquisition device, make the power distribution automation system be able to execute scientific decision quickly, which is the pursuit direction in power grid. In this paper, some existing problems in the power system communication are analysed, and with the help of the network technology, a set of solutions called Asynchronous Socket Technology to the problem in network communication which meets the high concurrency and the high throughput is proposed. Besides, the paper also looks forward to the development direction of power distribution automation in the era of big data and artificial intelligence.
You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...
2016-01-12
This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less
Unstructured Cartesian/prismatic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Karman, Steve L., Jr.
1995-01-01
The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Smart Grid Interoperability Maturity Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Levinson, Alex; Mater, J.
2010-04-28
The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizationalmore » alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knirsch, Fabian; Engel, Dominik; Neureiter, Christian
In a smart grid, data and information are transported, transmitted, stored, and processed with various stakeholders having to cooperate effectively. Furthermore, personal data is the key to many smart grid applications and therefore privacy impacts have to be taken into account. For an effective smart grid, well integrated solutions are crucial and for achieving a high degree of customer acceptance, privacy should already be considered at design time of the system. To assist system engineers in early design phase, frameworks for the automated privacy evaluation of use cases are important. For evaluation, use cases for services and software architectures needmore » to be formally captured in a standardized and commonly understood manner. In order to ensure this common understanding for all kinds of stakeholders, reference models have recently been developed. In this paper we present a model-driven approach for the automated assessment of such services and software architectures in the smart grid that builds on the standardized reference models. The focus of qualitative and quantitative evaluation is on privacy. For evaluation, the framework draws on use cases from the University of Southern California microgrid.« less
NASA Astrophysics Data System (ADS)
Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Siyal, Shahid; Zepeda, Eduardo; Taliotis, Constantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst
2017-04-01
In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. "Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030" is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank's 2015 Global Tracking Framework, roughly 15% of world population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a Geographic Information Systems (GIS) approach coupled with open access data and linked to the Electricity Model Base for Africa (TEMBA), a model that represents each continental African country's electricity supply system. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.
NASA Astrophysics Data System (ADS)
Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.
2016-03-01
Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.
Context-dependent spatially periodic activity in the human entorhinal cortex
Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.
2017-01-01
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399
Distributed control system for demand response by servers
NASA Astrophysics Data System (ADS)
Hall, Joseph Edward
Within the broad topical designation of smart grid, research in demand response, or demand-side management, focuses on investigating possibilities for electrically powered devices to adapt their power consumption patterns to better match generation and more efficiently integrate intermittent renewable energy sources, especially wind. Devices such as battery chargers, heating and cooling systems, and computers can be controlled to change the time, duration, and magnitude of their power consumption while still meeting workload constraints such as deadlines and rate of throughput. This thesis presents a system by which a computer server, or multiple servers in a data center, can estimate the power imbalance on the electrical grid and use that information to dynamically change the power consumption as a service to the grid. Implementation on a testbed demonstrates the system with a hypothetical but realistic usage case scenario of an online video streaming service in which there are workloads with deadlines (high-priority) and workloads without deadlines (low-priority). The testbed is implemented with real servers, estimates the power imbalance from the grid frequency with real-time measurements of the live outlet, and uses a distributed, real-time algorithm to dynamically adjust the power consumption of the servers based on the frequency estimate and the throughput of video transcoder workloads. Analysis of the system explains and justifies multiple design choices, compares the significance of the system in relation to similar publications in the literature, and explores the potential impact of the system.
GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.
NASA Astrophysics Data System (ADS)
Asavin, A. M.
2001-12-01
There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.
Fertilizer Emission Scenario Tool for crop management system scenarios
The Fertilizer Emission Scenario Tool for CMAQ is a high-end computer interface that simulates daily fertilizer application information for any gridded domain. It integrates the Weather Research and Forecasting model and CMAQ.
A Geometry Based Infra-structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The computational steps traditionally taken for most engineering analysis (CFD, structural analysis, and etc.) are: Surface Generation - usually by employing a CAD system; Grid Generation - preparing the volume for the simulation; Flow Solver - producing the results at the specified operational point; and Post-processing Visualization - interactively attempting to understand the results For structural analysis, integrated systems can be obtained from a number of commercial vendors. For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. Specifically the problems with this procedure are: (1) File based. Information flows from one step to the next via data files with formats specified for that procedure. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. (3) One-Way communication. All information travels on from one phase to the next. Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive.
NASA Technical Reports Server (NTRS)
Huning, J. R.; Logan, T. L.; Smith, J. H.
1982-01-01
The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.
A Unified Framework for Periodic, On-Demand, and User-Specified Software Information
NASA Technical Reports Server (NTRS)
Kolano, Paul Z.
2004-01-01
Although grid computing can increase the number of resources available to a user; not all resources on the grid may have a software environment suitable for running a given application. To provide users with the necessary assistance for selecting resources with compatible software environments and/or for automatically establishing such environments, it is necessary to have an accurate source of information about the software installed across the grid. This paper presents a new OGSI-compliant software information service that has been implemented as part of NASA's Information Power Grid project. This service is built on top of a general framework for reconciling information from periodic, on-demand, and user-specified sources. Information is retrieved using standard XPath queries over a single unified namespace independent of the information's source. Two consumers of the provided software information, the IPG Resource Broker and the IPG Neutralization Service, are briefly described.
High Frontier: The Journal for Space and Cyberspace Professionals. Volume 6, Number 4, August 2010
2010-08-01
information that warfighters rely on is likely to be useless (a three-way disaster is, anyway, logically impossible; if the global information grid...processing, exploitation, and dissemination (TCPED) of information . Space and cyber systems collectively provide the core functionality of the TCPED...rather than crisis management procedures. Space and cyber operations have several similarities dur- ing and can be extremely useful for informing Phase
Opportunity to Plug Your Car Into the Electric Grid is Arriving
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griego, G.
2010-06-01
Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save ownersmore » up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.« less
Cyberwarfare on the Electricity Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarka, N.; Ramesh, V.C.
2000-03-20
The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.
NASA Astrophysics Data System (ADS)
Anishkumar, A. R.; Sreejaya, P.
2016-12-01
Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.
Anlauf, Ruediger; Schaefer, Jenny; Kajitvichyanukul, Puangrat
2018-07-01
HYDRUS-1D is a well-established reliable instrument to simulate water and pesticide transport in soils. It is, however, a point-specific model which is usually used for site-specific simulations. Aim of the investigation was the development of pesticide accumulation and leaching risk maps for regions combining HYDRUS-1D as a model for pesticide fate with regional data in a geographical information system (GIS). It was realized in form of a python tool in ArcGIS. Necessary high resolution local soil information, however, is very often not available. Therefore, worldwide interpolated 250-m-grid soil data (SoilGrids.org) were successfully incorporated to the system. The functionality of the system is shown by examples from Thailand, where example regions that differ in soil properties and climatic conditions were exposed in the model system to pesticides with different properties. A practical application of the system will be the identification of areas where measures to optimize pesticide use should be implemented with priority. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, V.; Singh, A.; Sharma, S. P.
2016-12-01
Regular grid discretization is often utilized to define complex geological models. However, this subdivision strategy performs at lower precision to represent the topographical observation surface. We have developed a new 2D unstructured grid based inversion for magnetic data for models including topography. It will consolidate prior parametric information into a deterministic inversion system to enhance the boundary between the different lithology based on recovered magnetic susceptibility distribution from the inversion. The presented susceptibility model will satisfy both the observed magnetic data and parametric information and therefore can represent the earth better than geophysical inversion models that only honor the observed magnetic data. Geophysical inversion and lithology classification are generally treated as two autonomous methodologies and connected in a serial way. The presented inversion strategy integrates these two parts into a unified scheme. To reduce the storage space and computation time, the conjugate gradient method is used. It results in feasible and practical imaging inversion of magnetic data to deal with large number of triangular grids. The efficacy of the presented inversion is demonstrated using two synthetic examples and one field data example.
A study of ionospheric grid modification technique for BDS/GPS receiver
NASA Astrophysics Data System (ADS)
Liu, Xuelin; Li, Meina; Zhang, Lei
2017-07-01
For the single-frequency GPS receiver, ionospheric delay is an important factor affecting the positioning performance. There are many kinds of ionospheric correction methods, common models are Bent model, IRI model, Klobuchar model, Ne Quick model and so on. The US Global Positioning System (GPS) uses the Klobuchar coefficients transmitted in the satellite signal to correct the ionospheric delay error for a single frequency GPS receiver, but this model can only reduce the ionospheric error of about 50% in the mid-latitudes. In the Beidou system, the accuracy of the correction delay is higher. Therefore, this paper proposes a method that using BD grid information to correct GPS ionospheric delay to improve the ionospheric delay for the BDS/GPS compatible positioning receiver. In this paper, the principle of ionospheric grid algorithm is introduced in detail, and the positioning accuracy of GPS system and BDS/GPS compatible positioning system is compared and analyzed by the real measured data. The results show that the method can effectively improve the positioning accuracy of the receiver in a more concise way.
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
Suzuki, Noriyuki; Murasawa, Kaori; Sakurai, Takeo; Nansai, Keisuke; Matsuhashi, Keisuke; Moriguchi, Yuichi; Tanabe, Kiyoshi; Nakasugi, Osami; Morita, Masatoshi
2004-11-01
A spatially resolved and geo-referenced dynamic multimedia environmental fate model, G-CIEMS (Grid-Catchment Integrated Environmental Modeling System) was developed on a geographical information system (GIS). The case study for Japan based on the air grid cells of 5 x 5 km resolution and catchments with an average area of 9.3 km2, which corresponds to about 40,000 air grid cells and 38,000 river segments/catchment polygons, were performed for dioxins, benzene, 1,3-butadiene, and di-(2-ethyhexyl)phthalate. The averaged concentration of the model and monitoring output were within a factor of 2-3 for all the media. Outputs from G-CIEMS and the generic model were essentially comparable when identical parameters were employed, whereas the G-CIEMS model gave explicit information of distribution of chemicals in the environment. Exposure-weighted averaged concentrations (EWAC) in air were calculated to estimate the exposure ofthe population, based on the results of generic, G-CIEMS, and monitoring approaches. The G-CIEMS approach showed significantly better agreement with the monitoring-derived EWAC than the generic model approach. Implication for the use of a geo-referenced modeling approach in the risk assessment scheme is discussed as a generic-spatial approach, which can be used to provide more accurate exposure estimation with distribution information, using generally available data sources for a wide range of chemicals.
Utilizing data grid architecture for the backup and recovery of clinical image data.
Liu, Brent J; Zhou, M Z; Documet, J
2005-01-01
Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models. However, there has been limited investigation into the impact of this emerging technology in medical imaging and informatics. In particular, PACS technology, an established clinical image repository system, while having matured significantly during the past ten years, still remains weak in the area of clinical image data backup. Current solutions are expensive or time consuming and the technology is far from foolproof. Many large-scale PACS archive systems still encounter downtime for hours or days, which has the critical effect of crippling daily clinical operations. In this paper, a review of current backup solutions will be presented along with a brief introduction to grid technology. Finally, research and development utilizing the grid architecture for the recovery of clinical image data, in particular, PACS image data, will be presented. The focus of this paper is centered on applying a grid computing architecture to a DICOM environment since DICOM has become the standard for clinical image data and PACS utilizes this standard. A federation of PACS can be created allowing a failed PACS archive to recover its image data from others in the federation in a seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid is composed of one research laboratory and two clinical sites. The Globus 3.0 Toolkit (Co-developed by the Argonne National Laboratory and Information Sciences Institute, USC) for developing the core and user level middleware is utilized to achieve grid connectivity. The successful implementation and evaluation of utilizing data grid architecture for clinical PACS data backup and recovery will provide an understanding of the methodology for using Data Grid in clinical image data backup for PACS, as well as establishment of benchmarks for performance from future grid technology improvements. In addition, the testbed can serve as a road map for expanded research into large enterprise and federation level data grids to guarantee CA (Continuous Availability, 99.999% up time) in a variety of medical data archiving, retrieval, and distribution scenarios.
An XML-Based Protocol for Distributed Event Services
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)
2001-01-01
A recent trend in distributed computing is the construction of high-performance distributed systems called computational grids. One difficulty we have encountered is that there is no standard format for the representation of performance information and no standard protocol for transmitting this information. This limits the types of performance analysis that can be undertaken in complex distributed systems. To address this problem, we present an XML-based protocol for transmitting performance events in distributed systems and evaluate the performance of this protocol.
Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA
Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.
2001-01-01
The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
The National Grid Project: A system overview
NASA Technical Reports Server (NTRS)
Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel
1995-01-01
The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.
Integrating TITAN2D Geophysical Mass Flow Model with GIS
NASA Astrophysics Data System (ADS)
Namikawa, L. M.; Renschler, C.
2005-12-01
TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate slope and curvature from elevation, the selected one is based on estimation by a third-order finite difference method, which has shown to perform better or with minimal difference when compared to more computationally expensive methods. Derivatives are estimated using weighted sum of 8 grid neighbor values. The method was implemented and simulation results compared to derivatives estimated by a simplified version of the method (uses only 4 neighbor cells) and proven to perform better. TITAN2D uses an adaptative mesh grid, where resolution (grid cell size) is not constant, and visualization tools also uses texture with varying resolutions for efficient display. The API supports different resolutions applying bilinear interpolation when elevation, slope and curvature are required at a resolution higher (smaller cell size) than the original and using a nearest cell approach for elevations with lower resolution (larger) than the original. For material information nearest neighbor method is used since interpolation on categorical data has no meaning. Low fidelity characteristic of visualization allows use of nearest neighbor method for texture. Bilinear interpolation estimates the value at a point as the distance-weighted average of values at the closest four cell centers, and interpolation performance is just slightly inferior compared to more computationally expensive methods such as bicubic interpolation and kriging.
Polcicová, Gabriela; Tino, Peter
2004-01-01
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
Application of PMU-Based Information in the Indian Power System
NASA Astrophysics Data System (ADS)
Agarwal, P. K.; Agarwal, V. K.; Rathour, Harish
2013-05-01
SCADA/EMS system has been the most commonly used tool for real-time power system operation and control throughout the world. This system has been found to be very useful in steady-state analysis of the power system. The ever-increasing dependence of human society and every country's economy on electrical energy calls for reliable power delivery. In order to meet these expectations, engineers across the globe have been exploring such new technologies that can improve upon the limitations of SCADA and provide dynamic visibility of the power system. A breakthrough has now been achieved in the form of synchrophasor technology. Synchrophasor measurements using phasor measurement units (PMUs) deployed over a wide area, facilitate dynamic state measurement and visualization of a power system, which are useful in monitoring safety and security of the grid. The Power System Operation Corporation (POSOCO) has taken initiative and implemented a pilot project wherein nine phasor measurement units (PMUs) along with one phasor data concentrator (PDC) were commissioned in the Northern Region (NR) of India. The primary objective of this pilot project was to comprehend the synchrophasor technology and its applications in power system operation. The data received and information derived from the pilot project have been found to be very useful and helped in improving the performance of the grid operation in several ways. The pilot project is operational for the last two years; in the meanwhile, many other initiatives have also been taken in other regions by POSOCO. This article details the utilization of the data collected from the pilot projects and the application of the data in the improvement of Indian power grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Carrillo, Ismael M.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR)more » power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.« less
Occupancy change detection system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2009-09-01
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.
Establishment of key grid-connected performance index system for integrated PV-ES system
NASA Astrophysics Data System (ADS)
Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.
2016-08-01
In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ravindra; Uluski, Robert; Reilly, James T.
The objective of this survey is to benchmark current practices for DMS implementation to serve as a guide for future system implementations. The survey sought information on current plans to implement DMS, DMS functions of interest, implementation challenges, functional benefits achieved, and other relevant information. These survey results were combined (where possible) with results of similar surveys conducted in the previous four years to observe trends over time.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.
NASA Astrophysics Data System (ADS)
Abdoulaye, D.; Koalaga, Z.; Zougmore, F.
2012-02-01
This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.
Development of an information platform for new grid users in the biomedical field.
Skrowny, Daniela; Dickmann, Frank; Löhnhardt, Benjamin; Knoch, Tobias A; Sax, Ulrich
2010-01-01
Bringing new users into grids is a top priority for all grid initiatives and one of the most challenging tasks. Especially in life sciences it is essential to have a certain amount of users to establish a critical mass for a sustainable grid and give feedback back to the technological middleware layer. Based on the presumable lack of grid IT knowledge it is notably more arduous to satisfy user demands although here the requirements are especially demanding. Therefore, the development of an information- and learning platform could support the efforts of grid experts to guide new users. By providing a platform about grid technology and their feasibilities for users of the community of biomedicine potential, users could be supported using the high potential of their discipline.
Grid Integration Studies: Advancing Clean Energy Planning and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Chernyakhovskiy, Ilya
2016-07-01
Integrating significant variable renewable energy (VRE) into the grid requires an evolution in power system planning and operation. To plan for this evolution, power system stakeholders can undertake grid integration studies. This Greening the Grid document reviews grid integration studies, common elements, questions, and guidance for system planners.
Enhancing the cyber-security of smart grids with applications to synchrophasor data
NASA Astrophysics Data System (ADS)
Pal, Seemita
In the power grids, Supervisory Control and Data Acquisition (SCADA) systems are used as part of the Energy Management System (EMS) for enabling grid monitoring, control and protection. In recent times, with the ongoing installation of thousands of Phasor Measurement Units (PMUs), system operators are becoming increasingly reliant on PMU-generated synchrophasor measurements for executing wide-area monitoring and real-time control. The availability of PMU data facilitates dynamic state estimation of the system, thus improving the efficiency and resiliency of the grid. Since the SCADA and PMU data are used to make critical control decisions including actuation of physical systems, the timely availability and integrity of this networked data is of paramount importance. Absence or wrong control actions can potentially lead to disruption of operations, monetary loss, damage to equipments or surroundings or even blackout. This has posed new challenges to information security especially in this age of ever-increasing cyber-attacks. In this thesis, potential cyber-attacks on smart grids are presented and effective and implementable schemes are proposed for detecting them. The focus is mainly on three kinds of cyber-attacks and their detection: (i) gray-hole attacks on synchrophasor systems, (ii) PMU data manipulation attacks and (iii) data integrity attacks on SCADA systems. In the case of gray-hole attacks, also known as packet-drop attacks, the adversary may arbitrarily drop PMU data packets as they traverse the network, resulting in unavailability of time-sensitive data for the various critical power system applications. The fundamental challenge is to distinguish packets dropped by the adversary from those that occur naturally due to network congestion.The proposed gray-hole attack detection technique is based on exploiting the inherent timing information in the GPS time-stamped PMU data packets and using the temporal trends of the latencies to classify the cause of packet-drops and finally detect attacks, if any. In the case of PMU data manipulation attacks, the attacker may modify the data in the PMU packets in order to bias the system states and influence the control center into taking wrong decisions. The proposed detection technique is based on evaluating the equivalent impedances of the transmission lines and classifying the observed anomalies to determine the presence of attack and its location. The scheme for detecting data integrity attacks on SCADA systems is based on utilizing synchrophasor measurements from available PMUs in the grid. The proposed method uses a difference measure, developed in this thesis, to determine the relative divergence and mis-correlation between the datasets. Based on the estimated difference measure, tampered and genuine data can be distinguished. The proposed detection mechanisms have demonstrated high accuracy in real-time detection of attacks of various magnitudes, simulated on real PMU data obtained from the NY grid. By performing alarm clustering, the occurrence of false alarms has been reduced to almost zero. The solutions are computationally inexpensive, low on cost, do not add any overhead, and do not require any feedback from the network.
NASA Technical Reports Server (NTRS)
Chan, William M.
1993-01-01
An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.
Interoperability Context-Setting Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Hardin, Dave; Ambrosio, Ron
2007-01-31
As the deployment of automation technology advances, it touches upon many areas of our corporate and personal lives. A trend is emerging where systems are growing to the extent that integration is taking place with other systems to provide even greater capabilities more efficiently and effectively. GridWise™ provides a vision for this type of integration as it applies to the electric system. Imagine a time in the not too distant future when homeowners can offer the management of their electricity demand to participate in a more efficient and environmentally friendly operation of the electric power grid. They will do thismore » using technology that acts on their behalf in response to information from other components of the electric system. This technology will recognize their preferences to parameters such as comfort and the price of energy to form responses that optimize the local need to a signal that satisfies a higher-level need in the grid. For example, consider a particularly hot day with air stagnation in an area with a significant dependence on wind generation. To manage the forecasted peak electricity demand, the bulk system operator issues a critical peak price warning. Their automation systems alert electric service providers who distribute electricity from the wholesale electricity system to consumers. In response, the electric service providers use their automation systems to inform consumers of impending price increases for electricity. This information is passed to an energy management system at the premises, which acts on the homeowner’s behalf, to adjust the electricity usage of the onsite equipment (which might include generation from such sources as a fuel cell). The objective of such a system is to honor the agreement with the electricity service provider and reduce the homeowner’s bill while keeping the occupants as comfortable as possible. This will include actions such as moving the thermostat on the heating, ventilation, and air-conditioning (HVAC) unit up several degrees. The resulting load reduction becomes part of an aggregated response from the electricity service provider to the bulk system operator who is now in a better position to manage total system load with available generation. Looking across the electric system, from generating plants, to transmission substations, to the distribution system, to factories, office parks, and buildings, automation is growing, and the opportunities for unleashing new value propositions are exciting. How can we facilitate this change and do so in a way that ensures the reliability of electric resources for the wellbeing of our economy and security? The GridWise Architecture Council (GWAC) mission is to enable interoperability among the many entities that interact with the electric power system. A good definition of interoperability is, “The capability of two or more networks, systems, devices, applications, or components to exchange information between them and to use the information so exchanged.” As a step in the direction of enabling interoperability, the GWAC proposes a context-setting framework to organize concepts and terminology so that interoperability issues can be identified and debated, improvements to address issues articulated, and actions prioritized and coordinated across the electric power community.« less
Institutional Support | Grid Modernization | NREL
the challenges posed by grid modernization. Photo of two people standing in front of a display showing results from a grid study. The demand for objective technical assistance and information on grid related to grid modernization and increasing deployment of distributed energy and renewable resources. As
Spaceflight Operations Services Grid (SOSG) Prototype Implementation and Feasibility Study
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Thigpen, William W.; Lisotta, Anthony J.; Redman, Sandra
2004-01-01
Science Operations Services Grid is focusing on building a prototype grid-based environment that incorporates existing and new spaceflight services to enable current and future NASA programs with cost savings and new and evolvable methods to conduct science in a distributed environment. The Science Operations Services Grid (SOSG) will provide a distributed environment for widely disparate organizations to conduct their systems and processes in a more efficient and cost effective manner. These organizations include those that: 1) engage in space-based science and operations, 2) develop space-based systems and processes, and 3) conduct scientific research, bringing together disparate scientific disciplines like geology and oceanography to create new information. In addition educational outreach will be significantly enhanced by providing to schools the same tools used by NASA with the ability of the schools to actively participate on many levels in the science generated by NASA from space and on the ground. The services range from voice, video and telemetry processing and display to data mining, high level processing and visualization tools all accessible from a single portal. In this environment, users would not require high end systems or processes at their home locations to use these services. Also, the user would need to know minimal details about the applications in order to utilize the services. In addition, security at all levels is an underlying goal of the project. The Science Operations Services Grid will focus on four tools that are currently used by the ISS Payload community along with nine more that are new to the community. Under the prototype four Grid virtual organizations PO) will be developed to represent four types of users. They are a Payload (experimenters) VO, a Flight Controllers VO, an Engineering and Science Collaborators VO and an Education and Public Outreach VO. The User-based services will be implemented to replicate the operational voice, video, telemetry and commanding systems. Once the User-based services are in place, they will be analyzed to establish feasibility for Grid enabling. If feasible then each User-based service will be Grid enabled. The remaining non-Grid services if not already Web enabled will be so enabled. In the end, four portals will be developed one for each VO. Each portal will contain the appropriate User-based services required for that VO to operate.
Distribution Grid Integration Unit Cost Database | Solar Research | NREL
Unit Cost Database Distribution Grid Integration Unit Cost Database NREL's Distribution Grid Integration Unit Cost Database contains unit cost information for different components that may be used to associated with PV. It includes information from the California utility unit cost guides on traditional
Progress in Unsteady Turbopump Flow Simulations Using Overset Grid Systems
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Chan, William; Kwak, Dochan
2002-01-01
This viewgraph presentation provides information on unsteady flow simulations for the Second Generation RLV (Reusable Launch Vehicle) baseline turbopump. Three impeller rotations were simulated by using a 34.3 million grid points model. MPI/OpenMP hybrid parallelism and MLP shared memory parallelism has been implemented and benchmarked in INS3D, an incompressible Navier-Stokes solver. For RLV turbopump simulations a speed up of more than 30 times has been obtained. Moving boundary capability is obtained by using the DCF module. Scripting capability from CAD geometry to solution is developed. Unsteady flow simulations for advanced consortium impeller/diffuser by using a 39 million grid points model are currently underway. 1.2 impeller rotations are completed. The fluid/structure coupling is initiated.
Kiesler, James L.
2002-01-01
An analysis of the application indicates that the selected data layers to be combined should be at the greatest spatial resolution possible; however, all data layers do not have to be at the same spatial resolution. The spatial variation of the data layers should be adequately defined. The size of each grid cell should be small enough to maintain the spatial definition of smaller features within the data layers. The most accurate results are shown to occur when the values for the grid cells representing the individual data layers are summed and the mean of the summed grid-cell values is used to describe the watershed of interest.
The power grid monitoring promotion of Liaoning December 14th accident
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Gao, Ziji; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Wang, Mingkai; Qu, Zhi; Sun, Chenguang
2018-02-01
This paper introduces the main responsibilities of power grid monitoring and the accident of Liaoning Power Grid 500kV Xujia transformer substation at December 14th, 2016. This paper analyzes the problems exposed in this accident from the aspects of abnormal information judgment, fault information collection, auxiliary video monitoring, online monitoring of substation equipment, puts forward the corresponding improvement methods and summarizes the methods of improving the professional level of power grid equipment monitoring.
NASA Astrophysics Data System (ADS)
Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Zepeda, Eduardo; Siyal, Shahid; Taliotis, Costantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst
2017-08-01
In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. ‘Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030’ is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank’s 2015 Global Tracking Framework, roughly 15% of the world’s population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a geographic information systems approach coupled with open access data. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.
GLUE 2 deployment: Ensuring quality in the EGI/WLCG information system
NASA Astrophysics Data System (ADS)
Burke, Stephen; Alandes Pradillo, Maria; Field, Laurence; Keeble, Oliver
2014-06-01
The GLUE 2 information model is now fully supported in the production EGI/WLCG information system. However, to make it usable and allow clients to rely on the published information it is important that the meaning is clearly defined, and that information providers and site configurations are validated to ensure as far as possible that what they publish is correct. In this paper we describe the definition of a detailed schema usage profile, the implementation of a software tool to validate published information according to the profile and the use of the tool in the production Grid, and also summarise the overall state of GLUE 2 deployment.
Grid occupancy estimation for environment perception based on belief functions and PCR6
NASA Astrophysics Data System (ADS)
Moras, Julien; Dezert, Jean; Pannetier, Benjamin
2015-05-01
In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.
Evaluation of the Monotonic Lagrangian Grid and Lat-Long Grid for Air Traffic Management
NASA Technical Reports Server (NTRS)
Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay
2011-01-01
The Air Traffic Monotonic Lagrangian Grid (ATMLG) is used to simulate a 24 hour period of air traffic flow in the National Airspace System (NAS). During this time period, there are 41,594 flights over the United States, and the flight plan information (departure and arrival airports and times, and waypoints along the way) are obtained from an Federal Aviation Administration (FAA) Enhanced Traffic Management System (ETMS) dataset. Two simulation procedures are tested and compared: one based on the Monotonic Lagrangian Grid (MLG), and the other based on the stationary Latitude-Longitude (Lat- Long) grid. Simulating one full day of air traffic over the United States required the following amounts of CPU time on a single processor of an SGI Altix: 88 s for the MLG method, and 163 s for the Lat-Long grid method. We present a discussion of the amount of CPU time required for each of the simulation processes (updating aircraft trajectories, sorting, conflict detection and resolution, etc.), and show that the main advantage of the MLG method is that it is a general sorting algorithm that can sort on multiple properties. We discuss how many MLG neighbors must be considered in the separation assurance procedure in order to ensure a five-mile separation buffer between aircraft, and we investigate the effect of removing waypoints from aircraft trajectories. When aircraft choose their own trajectory, there are more flights with shorter duration times and fewer CD&R maneuvers, resulting in significant fuel savings.
Obstacle-avoiding navigation system
Borenstein, Johann; Koren, Yoram; Levine, Simon P.
1991-01-01
A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.
NASA Astrophysics Data System (ADS)
Meyer, B.; Chulliat, A.; Saltus, R.
2017-12-01
The Earth Magnetic Anomaly Grid at 2 arc min resolution version 3, EMAG2v3, combines marine and airborne trackline observations, satellite data, and magnetic observatory data to map the location, intensity, and extent of lithospheric magnetic anomalies. EMAG2v3 includes over 50 million new data points added to NCEI's Geophysical Database System (GEODAS) in recent years. The new grid relies only on observed data, and does not utilize a priori geologic structure or ocean-age information. Comparing this grid to other global magnetic anomaly compilations (e.g., EMAG2 and WDMAM), we can see that the inclusion of a priori ocean-age patterns forces an artificial linear pattern to the grid; the data-only approach allows for greater complexity in representing the evolution along oceanic spreading ridges and continental margins. EMAG2v3 also makes use of the satellite-derived lithospheric field model MF7 in order to accurately represent anomalies with wavelengths greater than 300 km and to create smooth grid merging boundaries. The heterogeneous distribution of errors in the observations used in compiling the EMAG2v3 was explored, and is reported in the final distributed grid. This grid is delivered at both 4 km continuous altitude above WGS84, as well as at sea level for all oceanic and coastal regions.
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Sun, Y.; Kalsi, Karanjit
This document is the second of a two-part report. Part 1 reviewed several demonstrations of transactive control and compared them in terms of their payoff functions, control decisions, information privacy, and mathematical solution concepts. It was suggested in Part 1 that these four listed components should be adopted for meaningful comparison and design of future transactive systems. Part 2 proposes qualitative and quantitative metrics that will be needed to compare alternative transactive systems. It then uses the analysis and design principles from Part 1 while conducting more in-depth analysis of two transactive demonstrations: the American Electric Power (AEP) gridSMART Demonstration,more » which used a double –auction market mechanism, and a consensus method like that used in the Pacific Northwest Smart Grid Demonstration. Ultimately, metrics must be devised and used to meaningfully compare alternative transactive systems. One significant contribution of this report is an observation that the decision function used for thermostat control in the AEP gridSMART Demonstration has superior performance if its decision function is recast to more accurately reflect the power that will be used under for thermostatic control under alternative market outcomes.« less
CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph
2003-07-30
Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) andmore » Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.« less
Moreno, Rodrigo; Street, Alexandre; Arroyo, José M; Mancarella, Pierluigi
2017-08-13
Electricity grid operators and planners need to deal with both the rapidly increasing integration of renewables and an unprecedented level of uncertainty that originates from unknown generation outputs, changing commercial and regulatory frameworks aimed to foster low-carbon technologies, the evolving availability of market information on feasibility and costs of various technologies, etc. In this context, there is a significant risk of locking-in to inefficient investment planning solutions determined by current deterministic engineering practices that neither capture uncertainty nor represent the actual operation of the planned infrastructure under high penetration of renewables. We therefore present an alternative optimization framework to plan electricity grids that deals with uncertain scenarios and represents increased operational details. The presented framework is able to model the effects of an array of flexible, smart grid technologies that can efficiently displace the need for conventional solutions. We then argue, and demonstrate via the proposed framework and an illustrative example, that proper modelling of uncertainty and operational constraints in planning is key to valuing operationally flexible solutions leading to optimal investment in a smart grid context. Finally, we review the most used practices in power system planning under uncertainty, highlight the challenges of incorporating operational aspects and advocate the need for new and computationally effective optimization tools to properly value the benefits of flexible, smart grid solutions in planning. Such tools are essential to accelerate the development of a low-carbon energy system and investment in the most appropriate portfolio of renewable energy sources and complementary enabling smart technologies.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
About the U.S. Electricity System and its Impact on the Environment
This page provides an overview of the U.S. electric grid, with links to more information about each of the component parts. It also introduces the environmental impacts of electricity generation, delivery, and use.
Grid Research | Grid Modernization | NREL
Grid Research Grid Research NREL addresses the challenges of today's electric grid through high researcher in a lab Integrated Devices and Systems Developing and evaluating grid technologies and integrated Controls Developing methods for real-time operations and controls of power systems at any scale Photo of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu Henry; Tate, Zeb; Abhyankar, Shrirang
The power grid has been evolving over the last 120 years, but it is seeing more changes in this decade and next than it has seen over the past century. In particular, the widespread deployment of intermittent renewable generation, smart loads and devices, hierarchical and distributed control technologies, phasor measurement units, energy storage, and widespread usage of electric vehicles will require fundamental changes in methods and tools for the operation and planning of the power grid. The resulting new dynamic and stochastic behaviors will demand the inclusion of more complexity in modeling the power grid. Solving such complex models inmore » the traditional computing environment will be a major challenge. Along with the increasing complexity of power system models, the increasing complexity of smart grid data further adds to the prevailing challenges. In this environment, the myriad of smart sensors and meters in the power grid increase by multiple orders of magnitude, so do the volume and speed of the data. The information infrastructure will need to drastically change to support the exchange of enormous amounts of data as smart grid applications will need the capability to collect, assimilate, analyze and process the data, to meet real-time grid functions. High performance computing (HPC) holds the promise to enhance these functions, but it is a great resource that has not been fully explored and adopted for the power grid domain.« less
Grids for Dummies: Featuring Earth Science Data Mining Application
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2002-01-01
This viewgraph presentation discusses the concept and advantages of linking computers together into data grids, an emerging technology for managing information across institutions, and potential users of data grids. The logistics of access to a grid, including the use of the World Wide Web to access grids, and security concerns are also discussed. The potential usefulness of data grids to the earth science community is also discussed, as well as the Global Grid Forum, and other efforts to establish standards for data grids.
A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2002-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.
The event notification and alarm system for the Open Science Grid operations center
NASA Astrophysics Data System (ADS)
Hayashi, S.; Teige and, S.; Quick, R.
2012-12-01
The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.
WebGIS based on semantic grid model and web services
NASA Astrophysics Data System (ADS)
Zhang, WangFei; Yue, CaiRong; Gao, JianGuo
2009-10-01
As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by ontology based on Grid technology and Web Services.
Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)
Sengupta, M.; Andreas, A.
2010-03-16
Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.
Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.
2017-01-18
As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.
A Coastal Hazards Data Base for the U.S. Gulf Coast (1993) (NDP-04bB)
Gornitz, Vivien M. [National Aeronautics and Space Administration, Goddard Institute for Space Studies, New York, NY (USA); White, Tammy W. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2008-01-01
This document describes the contents of a digital data base that may be used to identify coastlines along the U.S. Gulf Coast at risk to sea-level rise. The data base integrates point, line, and polygon data for the U.S. Gulf Coast into 0.25° latitude by 0.25° longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data base systems. Each coastal grid cell and line segment contains data on elevations, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights.
The Grid Analysis and Display System (GrADS)
NASA Technical Reports Server (NTRS)
Kinter, James L., III
1994-01-01
During the period 1 September 1993 - 31 August 1994, further development of the Grid Analysis and Display System (GrADS) was conducted at the Center for Ocean-Land-Atmosphere Studies (COLA) of the Institute of Global Environment and Society, Inc. (IGES) under subcontract 5555-31 from the University Space Research Association (USRA) administered by The Center of Excellence in Space Data and Information Sciences (CESDIS). This final report documents progress made under this subcontract and provides directions on how to access the software and documentation developed therein. A short description of GrADS is provided followed by summary of progress completed and a summary of the distribution of the software to date and the establishment of research collaborations.
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.
2015-01-01
In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation satellites. Both of these gridded products are generated for a.25 degree x.25 degree hourly grid, which are packaged into daily ASCII (American Standard Code for Information Interchange) files that can downloaded from the PPS FTP (File Transfer Protocol) site. To reduce the download size, the files are compressed using the gzip utility.This paper will focus on presenting high-level details about the gridded text product being generated from the instruments on the GPM core satellite. But summary information will also be presented about the partner radiometer gridded product. All retrievals for the partner radiometer are done using the GPROF2014 algorithmusing as input the PPS generated inter-calibrated 1C product for the radiometer.
Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Milos Manic
The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less
Contingency Analysis Post-Processing With Advanced Computing and Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin
Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.
Grid systems for Earth radiation budget experiment applications
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1981-01-01
Spatial coordinate transformations are developed for several global grid systems of interest to the Earth Radiation Budget Experiment. The grid boxes are defined in terms of a regional identifier and longitude-latitude indexes. The transformations associate longitude with a particular grid box. The reverse transformations identify the center location of a given grid box. Transformations are given to relate the rotating (Earth-based) grid systems to solar position expressed in an inertial (nonrotating) coordinate system. The FORTRAN implementations of the transformations are given, along with sample input and output.
7 CFR 1710.102 - Borrower eligibility for different types of loans.
Code of Federal Regulations, 2014 CFR
2014-01-01
... implementation of demand side management, energy conservation programs, and on grid and off grid renewable energy... management, energy conservation programs, and on grid and off grid renewable energy systems. (c) One hundred..., energy conservation programs, and on grid and off grid renewable energy systems. (See 7 CFR part 1712...
A Distribution Level Wide Area Monitoring System for the Electric Power Grid–FNET/GridEye
Liu, Yong; You, Shutang; Yao, Wenxuan; ...
2017-02-09
The wide area monitoring system (WAMS) is considered a pivotal component of future electric power grids. As a pilot WAMS that has been operated for more than a decade, the frequency monitoring network FNET/GridEye makes use of hundreds of global positioning system-synchronized phasor measurement sensors to capture the increasingly complicated grid behaviors across the interconnected power systems. In this paper, the FNET/GridEye system is overviewed and its operation experiences in electric power grid wide area monitoring are presented. Particularly, the implementation of a number of data analytics applications will be discussed in details. FNET/GridEye lays a firm foundation for themore » later WAMS operation in the electric power industry.« less
Spaceflight Operations Services Grid (SOSG) Project
NASA Technical Reports Server (NTRS)
Bradford, Robert; Lisotta, Anthony
2004-01-01
The motivation, goals, and objectives of the Space Operations Services Grid Project (SOSG) are covered in this viewgraph presentation. The goals and objectives of SOSG include: 1) Developing a grid-enabled prototype providing Space-based ground operations end user services through a collaborative effort between NASA, academia, and industry to assess the technical and cost feasibility of implementation of Grid technologies in the Space Operations arena; 2) Provide to space operations organizations and processes, through a single secure portal(s), access to all the information technology (Grid and Web based) services necessary for program/project development, operations and the ultimate creation of new processes, information and knowledge.
Grid site availability evaluation and monitoring at CMS
Lyons, Gaston; Maciulaitis, Rokas; Bagliesi, Giuseppe; ...
2017-10-01
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses distributed grid computing to store, process, and analyse the vast quantity of scientific data recorded every year. The computing resources are grouped into sites and organized in a tiered structure. Each site provides computing and storage to the CMS computing grid. Over a hundred sites worldwide contribute with resources from hundred to well over ten thousand computing cores and storage from tens of TBytes to tens of PBytes. In such a large computing setup scheduled and unscheduled outages occur continually and are not allowed to significantly impactmore » data handling, processing, and analysis. Unscheduled capacity and performance reductions need to be detected promptly and corrected. CMS developed a sophisticated site evaluation and monitoring system for Run 1 of the LHC based on tools of the Worldwide LHC Computing Grid. For Run 2 of the LHC the site evaluation and monitoring system is being overhauled to enable faster detection/reaction to failures and a more dynamic handling of computing resources. Furthermore, enhancements to better distinguish site from central service issues and to make evaluations more transparent and informative to site support staff are planned.« less
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia
2006-01-01
The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.
The swiss army knife of job submission tools: grid-control
NASA Astrophysics Data System (ADS)
Stober, F.; Fischer, M.; Schleper, P.; Stadie, H.; Garbers, C.; Lange, J.; Kovalchuk, N.
2017-10-01
grid-control is a lightweight and highly portable open source submission tool that supports all common workflows in high energy physics (HEP). It has been used by a sizeable number of HEP analyses to process tasks that sometimes consist of up to 100k jobs. grid-control is built around a powerful plugin and configuration system, that allows users to easily specify all aspects of the desired workflow. Job submission to a wide range of local or remote batch systems or grid middleware is supported. Tasks can be conveniently specified through the parameter space that will be processed, which can consist of any number of variables and data sources with complex dependencies on each other. Dataset information is processed through a configurable pipeline of dataset filters, partition plugins and partition filters. The partition plugins can take the number of files, size of the work units, metadata or combinations thereof into account. All changes to the input datasets or variables are propagated through the processing pipeline and can transparently trigger adjustments to the parameter space and the job submission. While the core functionality is completely experiment independent, full integration with the CMS computing environment is provided by a small set of plugins.
Grid site availability evaluation and monitoring at CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, Gaston; Maciulaitis, Rokas; Bagliesi, Giuseppe
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses distributed grid computing to store, process, and analyse the vast quantity of scientific data recorded every year. The computing resources are grouped into sites and organized in a tiered structure. Each site provides computing and storage to the CMS computing grid. Over a hundred sites worldwide contribute with resources from hundred to well over ten thousand computing cores and storage from tens of TBytes to tens of PBytes. In such a large computing setup scheduled and unscheduled outages occur continually and are not allowed to significantly impactmore » data handling, processing, and analysis. Unscheduled capacity and performance reductions need to be detected promptly and corrected. CMS developed a sophisticated site evaluation and monitoring system for Run 1 of the LHC based on tools of the Worldwide LHC Computing Grid. For Run 2 of the LHC the site evaluation and monitoring system is being overhauled to enable faster detection/reaction to failures and a more dynamic handling of computing resources. Furthermore, enhancements to better distinguish site from central service issues and to make evaluations more transparent and informative to site support staff are planned.« less
GIS characterization of spatially distributed lifeline damage
Toprak, Selcuk; O'Rourke, Thomas; Tutuncu, Ilker
1999-01-01
This paper describes the visualization of spatially distributed water pipeline damage following an earthquake using geographical information systems (GIS). Pipeline damage is expressed as a repair rate (RR). Repair rate contours are developed with GIS by dividing the study area into grid cells (n ?? n), determining the number of particular pipeline repairs in each grid cell, and dividing the number of repairs by the length of that pipeline in each cell area. The resulting contour plot is a two-dimensional visualization of point source damage. High damage zones are defined herein as areas with an RR value greater than the mean RR for the entire study area of interest. A hyperbolic relationship between visual display of high pipeline damage zones and grid size, n, was developed. The relationship is expressed in terms of two dimensionless parameters, threshold area coverage (TAC) and dimensionless grid size (DGS). The relationship is valid over a wide range of different map scales spanning approximately 1,200 km2 for the largest portion of the Los Angeles water distribution system to 1 km2 for the Marina in San Francisco. This relationship can aid GIS users to get sufficiently refined, but easily visualized, maps of damage patterns.
Grid site availability evaluation and monitoring at CMS
NASA Astrophysics Data System (ADS)
Lyons, Gaston; Maciulaitis, Rokas; Bagliesi, Giuseppe; Lammel, Stephan; Sciabà, Andrea
2017-10-01
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses distributed grid computing to store, process, and analyse the vast quantity of scientific data recorded every year. The computing resources are grouped into sites and organized in a tiered structure. Each site provides computing and storage to the CMS computing grid. Over a hundred sites worldwide contribute with resources from hundred to well over ten thousand computing cores and storage from tens of TBytes to tens of PBytes. In such a large computing setup scheduled and unscheduled outages occur continually and are not allowed to significantly impact data handling, processing, and analysis. Unscheduled capacity and performance reductions need to be detected promptly and corrected. CMS developed a sophisticated site evaluation and monitoring system for Run 1 of the LHC based on tools of the Worldwide LHC Computing Grid. For Run 2 of the LHC the site evaluation and monitoring system is being overhauled to enable faster detection/reaction to failures and a more dynamic handling of computing resources. Enhancements to better distinguish site from central service issues and to make evaluations more transparent and informative to site support staff are planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yocum, D.R.; Berman, E.; Canal, P.
2007-05-01
As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.
Climate Change Impacts on Freshwater Recreational Fishing in the United States
Using a geographic information system, a spatially explicit modeling framework was developed consisting grid cells organized into 2,099 eight-digit hydrologic unit code (HUC-8) polygons for the coterminous United States. Projected temperature and precipitation changes associated...
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)
2000-01-01
The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.
Grid computing technology for hydrological applications
NASA Astrophysics Data System (ADS)
Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.
2011-06-01
SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.
Integrated Access to Solar Observations With EGSO
NASA Astrophysics Data System (ADS)
Csillaghy, A.
2003-12-01
{\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests submitted to the grid. The consumer is thus in charge of tasks such as request handling, request composition, data visualization and data caching. The second component, the provider, is dedicated to data providing and processing. It links the grid to individual data providers and data centers. The third component, the broker, collects information about providers and allows consumers to perform the searches on the grid. Each component can exist in multiple instances. This follows a basic grid concept: The failure or unavailability of a single component will not generate a failure of the whole system, as other systems will take over the processing of requests. The architecture relies on a global data model for the semantics. The data model is in some way the brains of the grid. It provides a description of the information entities available within the grid, as well as a description of their relationships. EGSO is now in the development phase. A demonstration (www.egso.org/demo) is provided to get an idea about how the system will function once the project is completed. The demonstration focuses on retrieving data needed to determine the energy released in the solar atmosphere during the impulsive phase of flares. It allows finding simultaneous observations in the visible, UV, Soft X-rays, hard X-rays, gamma-rays, and radio. The types of observations that can be specified are images at high space and time resolutions as well as integrated emission and spectra from a yet limited set of instruments, including the NASA spacecraft TRACE, SOHO, RHESSI, and the ground-based observatories Phoenix-2 in Switzerland and Meudon Observatory in France
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
End-User Tools Towards AN Efficient Electricity Consumption: the Dynamic Smart Grid
NASA Astrophysics Data System (ADS)
Kamel, Fouad; Kist, Alexander A.
2010-06-01
Growing uncontrolled electrical demands have caused increased supply requirements. This causes volatile electrical markets and has detrimental unsustainable environmental impacts. The market is presently characterized by regular daily peak demand conditions associated with high electricity prices. A demand-side response system can limit peak demands to an acceptable level. The proposed scheme is based on energy demand and price information which is available online. An online server is used to communicate the information of electricity suppliers to users, who are able to use the information to manage and control their own demand. A configurable, intelligent switching system is used to control local loads during peak events and mange the loads at other times as necessary. The aim is to shift end user loads towards periods where energy demand and therefore also prices are at the lowest. As a result, this will flatten the load profile and avoiding load peeks which are costly for suppliers. The scheme is an endeavour towards achieving a dynamic smart grid demand-side-response environment using information-based communication and computer-controlled switching. Diffusing the scheme shall lead to improved electrical supply services and controlled energy consumption and prices.
Energy efficiency design strategies for buildings with grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Yimprayoon, Chanikarn
The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.
Data management and analysis for the Earth System Grid
NASA Astrophysics Data System (ADS)
Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.
2008-07-01
The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.
Global Gridded Data from the Goddard Earth Observing System Data Assimilation System (GEOS-DAS)
NASA Technical Reports Server (NTRS)
2001-01-01
The Goddard Earth Observing System Data Assimilation System (GEOS-DAS) timeseries is a globally gridded atmospheric data set for use in climate research. This near real-time data set is produced by the Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center in direct support of the operational EOS instrument product generation from the Terra (12/1999 launch), Aqua (05/2002 launch) and Aura (01/2004 launch) spacecrafts. The data is archived in the EOS Core System (ECS) at the Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC). The data is only a selection of the products available from the GEOS-DAS. The data is organized chronologically in timeseries format to facilitate the computation of statistics. GEOS-DAS data will be available for the time period January 1, 2000, through present.
Smart Operations in Distributed Energy Resources System
NASA Astrophysics Data System (ADS)
Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou
Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.
Schurr, K.M.; Cox, S.E.
1994-01-01
The Pesticide-Application Data-Base Management System was created as a demonstration project and was tested with data submitted to the Washington State Department of Agriculture by pesticide applicators from a small geographic area. These data were entered into the Department's relational data-base system and uploaded into the system's ARC/INFO files. Locations for pesticide applica- tions are assigned within the Public Land Survey System grids, and ARC/INFO programs in the Pesticide-Application Data-Base Management System can subdivide each survey section into sixteen idealized quarter-quarter sections for display map grids. The system provides data retrieval and geographic information system plotting capabilities from a menu of seven basic retrieval options. Additionally, ARC/INFO coverages can be created from the retrieved data when required for particular applications. The Pesticide-Application Data-Base Management System, or the general principles used in the system, could be adapted to other applica- tions or to other states.
NASA Astrophysics Data System (ADS)
Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.
2017-12-01
Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.
Scalable global grid catalogue for Run3 and beyond
NASA Astrophysics Data System (ADS)
Martinez Pedreira, M.; Grigoras, C.;
2017-10-01
The AliEn (ALICE Environment) file catalogue is a global unique namespace providing mapping between a UNIX-like logical name structure and the corresponding physical files distributed over 80 storage elements worldwide. Powerful search tools and hierarchical metadata information are integral parts of the system and are used by the Grid jobs as well as local users to store and access all files on the Grid storage elements. The catalogue has been in production since 2005 and over the past 11 years has grown to more than 2 billion logical file names. The backend is a set of distributed relational databases, ensuring smooth growth and fast access. Due to the anticipated fast future growth, we are looking for ways to enhance the performance and scalability by simplifying the catalogue schema while keeping the functionality intact. We investigated different backend solutions, such as distributed key value stores, as replacement for the relational database. This contribution covers the architectural changes in the system, together with the technology evaluation, benchmark results and conclusions.
Surfer: An Extensible Pull-Based Framework for Resource Selection and Ranking
NASA Technical Reports Server (NTRS)
Zolano, Paul Z.
2004-01-01
Grid computing aims to connect large numbers of geographically and organizationally distributed resources to increase computational power; resource utilization, and resource accessibility. In order to effectively utilize grids, users need to be connected to the best available resources at any given time. As grids are in constant flux, users cannot be expected to keep up with the configuration and status of the grid, thus they must be provided with automatic resource brokering for selecting and ranking resources meeting constraints and preferences they specify. This paper presents a new OGSI-compliant resource selection and ranking framework called Surfer that has been implemented as part of NASA's Information Power Grid (IPG) project. Surfer is highly extensible and may be integrated into any grid environment by adding information providers knowledgeable about that environment.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050
NASA Astrophysics Data System (ADS)
Blasch, Erik; Kadar, Ivan; Grewe, Lynne L.; Brooks, Richard; Yu, Wei; Kwasinski, Andres; Thomopoulos, Stelios; Salerno, John; Qi, Hairong
2017-05-01
During the 2016 SPIE DSS conference, nine panelists were invited to highlight the trends and opportunities in cyber-physical systems (CPS) and Internet of Things (IoT) with information fusion. The world will be ubiquitously outfitted with many sensors to support our daily living thorough the Internet of Things (IoT), manage infrastructure developments with cyber-physical systems (CPS), as well as provide communication through networked information fusion technology over the internet (NIFTI). This paper summarizes the panel discussions on opportunities of information fusion to the growing trends in CPS and IoT. The summary includes the concepts and areas where information supports these CPS/IoT which includes situation awareness, transportation, and smart grids.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility
2018-01-01
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29495599
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill
2000-01-01
We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3) Coupling large-scale computing and data systems to scientific and engineering instruments (e.g., realtime interaction with experiments through real-time data analysis and interpretation presented to the experimentalist in ways that allow direct interaction with the experiment (instead of just with instrument control); (5) Highly interactive, augmented reality and virtual reality remote collaborations (e.g., Ames / Boeing Remote Help Desk providing field maintenance use of coupled video and NDI to a remote, on-line airframe structures expert who uses this data to index into detailed design databases, and returns 3D internal aircraft geometry to the field); (5) Single computational problems too large for any single system (e.g. the rotocraft reference calculation). Grids also have the potential to provide pools of resources that could be called on in extraordinary / rapid response situations (such as disaster response) because they can provide common interfaces and access mechanisms, standardized management, and uniform user authentication and authorization, for large collections of distributed resources (whether or not they normally function in concert). IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: the scientist / design engineer whose primary interest is problem solving (e.g. determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user is the tool designer: the computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. The results of the analysis of the needs of these two types of users provides a broad set of requirements that gives rise to a general set of required capabilities. The IPG project is intended to address all of these requirements. In some cases the required computing technology exists, and in some cases it must be researched and developed. The project is using available technology to provide a prototype set of capabilities in a persistent distributed computing testbed. Beyond this, there are required capabilities that are not immediately available, and whose development spans the range from near-term engineering development (one to two years) to much longer term R&D (three to six years). Additional information is contained in the original.
Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.
Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J
2016-05-26
There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.
A Spacebased Ocean Surface Exchange Data Analysis System
NASA Technical Reports Server (NTRS)
Tang, Wenqing; Liu, W. Timothy
2000-01-01
Emerging technologies have provided unprecedented opportunities to transform information into knowledge and disseminate them in a much faster, cheaper, and userfriendly mode. We have set up a system to produce and disseminate high level (gridded) ocean surface wind data from the NASA Scatterometer and European Remote Sensing missions. The data system is being expanded to produce real-time gridded ocean surface winds from an improved sensor SeaWinds on the Quikscat Mission. The wind field will be combined with hydrologic parameters from the Tropical Rain Measuring Mission to monitor evolving weather systems and natural hazard in real time. It will form the basis for spacebased Ocean Surface Exchange Data Analysis System (SOSEDAS) which will include the production of ocean surface momentum, heat, and water fluxes needed for interdisciplinary studies of ocean-atmosphere interaction. Various commercial or non-commercial software tools have been compared and selected in terms of their ability in database management, remote data accessing, graphical interface, data quality, storage needs and transfer speed, etc. Issues regarding system security and user authentication, distributed data archiving and accessing, strategy to compress large-volume geophysical and satellite data/image. and increasing transferring speed are being addressed. A simple and easy way to access information and derive knowledge from spacebased data of multiple missions is being provided. The evolving 'knowledge system' will provide relevant infrastructure to address Earth System Science, make inroads in educating an informed populace, and illuminate decision and policy making.
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, Ian; Burman, Kari; Singh, Mohit
Providing clean and affordable energy services to the more than 1 billion people globally who lack access to electricity is a critical driver for poverty reduction, economic development, improved health, and social outcomes. More than 84% of populations without electricity are located in rural areas where traditional grid extension may not be cost-effective; therefore, distributed energy solutions such as mini-grids are critical. To address some of the root challenges of providing safe, quality, and financially viable mini-grid power systems to remote customers, the U.S. Department of Energy (DOE) teamed with the National Renewable Energy Laboratory (NREL) to develop a Qualitymore » Assurance Framework (QAF) for isolated mini-grids. The QAF for mini-grids aims to address some root challenges of providing safe, quality, and affordable power to remote customers via financially viable mini-grids through two key components: (1) Levels of service: Defines a standard set of tiers of end-user service and links them to technical parameters of power quality, power availability, and power reliability. These levels of service span the entire energy ladder, from basic energy service to high-quality, high-reliability, and high-availability service (often considered 'grid parity'); (2) Accountability and performance reporting framework: Provides a clear process of validating power delivery by providing trusted information to customers, funders, and/or regulators. The performance reporting protocol can also serve as a robust monitoring and evaluation tool for mini-grid operators and funding organizations. The QAF will provide a flexible alternative to rigid top-down standards for mini-grids in energy access contexts, outlining tiers of end-user service and linking them to relevant technical parameters. In addition, data generated through implementation of the QAF will provide the foundation for comparisons across projects, assessment of impacts, and greater confidence that will drive investment and scale-up in this sector. The QAF implementation process also defines a set of implementation guidelines that help the deployment of mini-grids on a regional or national scale, helping to insure successful rapid deployment of these relatively new remote energy options. Note that the QAF is technology agnostic, addressing both alternating current (AC) and direct current (DC) mini-grids, and is also applicable to renewable, fossil-fuel, and hybrid systems.« less
78 FR 12042 - Electric Grid Integration Technical Workshops
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
.... The documents are the Electricity Distribution System Workshop Discussion Summary and the Electricity... FURTHER INFORMATION CONTACT: Caitlin A. Callaghan, National Electricity Delivery Division, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy, Forrestal Building, Room 8E-032, 1000...
Energy Systems Integration: Data Call -- Become a Data Partner
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
This project aims to advance the understanding of costs associated with integrating PV onto the electric power distribution system while maintaining reliable grid operations. We have developed a bottom-up framework for calculating these costs as a function of PV penetration levels on specific feeders. This framework will used to inform and improve utility planning decisions, increase the transparency and speed associated with the interconnection process, and provide policymakers with more information on the total cost of energy from PV.
Characterization of steel rebar spacing using synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang
2018-03-01
Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, Kenneth; Makarov, Yuri V.; Rajagopal, Sankaran
The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of suchmore » a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included developing and integrating advanced probabilistic solar forecasts, including distributed PV forecasts, into closed –loop decision making processes. Additionally, new uncertainty quantifications methods and tools for the direct integration of uncertainty and variability information into grid operations at the transmission and distribution levels were developed and tested. During Phase 1, project work focused heavily on the design, development and demonstration of a set of processes and tools that could reliably and efficiently incorporate solar power into California’s grid operations. In Phase 2, connectivity between the ramping analysis tools and market applications software were completed, multiple dispatch scenarios demonstrated a successful reduction of overall uncertainty and an analysis to quantify increases in system operator reliability, and the transmission and distribution system uncertainty prediction tool was introduced to system operation engineers in a live webinar. The project met its goals, the experiments prove the advancements to methods and tools, when working together, are beneficial to not only the California Independent System Operator, but the benefits are transferable to other system operators in the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.
Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate themore » tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.« less
Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-02-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-01-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654
Automatic Overset Grid Generation with Heuristic Feedback Control
NASA Technical Reports Server (NTRS)
Robinson, Peter I.
2001-01-01
An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.
A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds
NASA Astrophysics Data System (ADS)
Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano
Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.
Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan
Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.
2002-01-01
This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.
Analysis of lightning field changes produced by Florida thunderstorms
NASA Technical Reports Server (NTRS)
Koshak, William John
1991-01-01
A new method is introduced for inferring the charges deposited in a lightning flash. Lightning-caused field changes (delta E's) are described by a more general volume charge distribution than is defined on a large cartesian grid system centered above the measuring networks. It is shown that a linear system of equations can be used to relate delta E's at the ground to the values of charge on this grid. It is possible to apply more general physical constraints to the charge solutions, and it is possible to access the information content of the delta E data. Computer-simulated delta E inversions show that the location and symmetry of the charge retrievals are usually consistent with the known test sources.
Low-cost wireless voltage & current grid monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Jacqueline
This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia
Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for amore » renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.« less
Emission & Generation Resource Integrated Database (eGRID)
The Emissions & Generation Resource Integrated Database (eGRID) is an integrated source of data on environmental characteristics of electric power generation. Twelve federal databases are represented by eGRID, which provides air emission and resource mix information for thousands of power plants and generating companies. eGRID allows direct comparison of the environmental attributes of electricity from different plants, companies, States, or regions of the power grid.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.
ERIC Educational Resources Information Center
Rosenfield, Lawrence William
This study sought to discover what critical apparatus would be most appropriate for observers of verbal discourse who choose to accept Aristotelian or "information theory" causal accounts of dynamic process. The major conclusions were: (1) Both causal systems employ a static grid to express relationships; but while the Aristotelian relations are…
Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs.
Vitolo, Claudia; Di Giuseppe, Francesca; D'Andrea, Mirko
2018-01-01
The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package.
Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs
Di Giuseppe, Francesca; D’Andrea, Mirko
2018-01-01
The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package. PMID:29293536
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Knight, Mark R.; Melton, Ronald B.
The Interoperability Strategic Vision whitepaper aims to promote a common understanding of the meaning and characteristics of interoperability and to provide a strategy to advance the state of interoperability as applied to integration challenges facing grid modernization. This includes addressing the quality of integrating devices and systems and the discipline to improve the process of successfully integrating these components as business models and information technology improve over time. The strategic vision for interoperability described in this document applies throughout the electric energy generation, delivery, and end-use supply chain. Its scope includes interactive technologies and business processes from bulk energy levelsmore » to lower voltage level equipment and the millions of appliances that are becoming equipped with processing power and communication interfaces. A transformational aspect of a vision for interoperability in the future electric system is the coordinated operation of intelligent devices and systems at the edges of grid infrastructure. This challenge offers an example for addressing interoperability concerns throughout the electric system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M.; Palchak, Joseph D; McBennett, Brendan
The higher-spatial-resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.' The Regional Study validates the relative value of mitigation strategies demonstrated in the National Study - namely, coordinatedmore » operations among states reduce production costs, and reducing coal minimum generation levels reduces RE curtailment. Significantly, the Regional Study also highlights a potential barrier to realizing the value of these mitigation strategies: when locations of RE development are planned independently of state-level transmission, intrastate congestion can result in undesirable levels of RE curtailment. Therefore a key objective of this study is to illustrate to state-level power system planners and operators, in particular, how a higher-resolution model, inclusive of intrastate granularity, can be used as a planning tool for two primary purposes: -To better anticipate, understand, and mitigate system constraints that could affect RE integration; and - To provide a modeling framework that can be used as part of future transmission studies and planning efforts. The Regional Study is not intended to predict precisely how RE will affect state-level operations. There is considerable uncertainty regarding the locations of the RE development, as well as how contract terms can affect access to the inherent physical flexibility of the system. But the scenarios analyzed identify the types of issues that can arise under various RE and transmission expansion pathways. The model developed for this study provides a rigorous framework for future work and can be updated with the characteristics of new capacity as more information on the future power system is known.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M
The higher-spatial-resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.' The Regional Study validates the relative value of mitigation strategies demonstrated in the National Study - namely, coordinatedmore » operations among states reduce production costs, and reducing coal minimum generation levels reduces RE curtailment. Significantly, the Regional Study also highlights a potential barrier to realizing the value of these mitigation strategies: when locations of RE development are planned independently of state-level transmission, intrastate congestion can result in undesirable levels of RE curtailment. Therefore a key objective of this study is to illustrate to state-level power system planners and operators, in particular, how a higher-resolution model, inclusive of intrastate granularity, can be used as a planning tool for two primary purposes: to better anticipate, understand, and mitigate system constraints that could affect RE integration; and to provide a modeling framework that can be used as part of future transmission studies and planning efforts. The Regional Study is not intended to predict precisely how RE will affect state-level operations. There is considerable uncertainty regarding the locations of the RE development, as well as how contract terms can affect access to the inherent physical flexibility of the system. But the scenarios analyzed identify the types of issues that can arise under various RE and transmission expansion pathways. The model developed for this study provides a rigorous framework for future work and can be updated with the characteristics of new capacity as more information on the future power system is known.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin
The higher-spatial-resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.' The Regional Study validates the relative value of mitigation strategies demonstrated in the National Study - namely, coordinatedmore » operations among states reduce production costs, and reducing coal minimum generation levels reduces RE curtailment. Significantly, the Regional Study also highlights a potential barrier to realizing the value of these mitigation strategies: when locations of RE development are planned independently of state-level transmission, intrastate congestion can result in undesirable levels of RE curtailment. Therefore a key objective of this study is to illustrate to state-level power system planners and operators, in particular, how a higher-resolution model, inclusive of intrastate granularity, can be used as a planning tool for two primary purposes: -To better anticipate, understand, and mitigate system constraints that could affect RE integration; and - To provide a modeling framework that can be used as part of future transmission studies and planning efforts. The Regional Study is not intended to predict precisely how RE will affect state-level operations. There is considerable uncertainty regarding the locations of the RE development, as well as how contract terms can affect access to the inherent physical flexibility of the system. But the scenarios analyzed identify the types of issues that can arise under various RE and transmission expansion pathways. The model developed for this study provides a rigorous framework for future work and can be updated with the characteristics of new capacity as more information on the future power system is known.« less
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation. PMID:22164047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Zhang, Wei; Sun, Y.
The increased penetration of renewable energy has significantly changed the conditions and the operational timing of the electricity grid. More flexible, faster ramping resources are needed to compensate for the uncertainty and variability introduced by renewable energy. Distributed energy resources (DERs) such as distributed generators, energy storage, and controllable loads could help manage the power grid in terms of both economic efficiency and operational reliability. In order to realize the benefits of DERs, coordination and control approaches must be designed to enable seamless integration of DERs into the power grid. Transactive coordination and control is a new approach for DERmore » integration, where individual resources are automated and engaged through market interaction. Transactive approaches use economic signals—prices or incentives—to engage DERs. These economic signals must reflect the true value of the DER contributions, so that they seamlessly and equitably compete for the opportunities that today are only available to grid-owned assets. Value signals must be communicated to the DERs in near-real time, the assets must be imbued with new forms of distributed intelligence and control to take advantage of the opportunities presented by these signals, and they must be capable of negotiating and transacting a range of market-driven energy services. The concepts of transactive energy systems are not new, but build upon evolutionary economic changes in financial and electric power markets. These concepts also recognize the different regional structures of wholesale power markets, electricity delivery markets, retail markets, and vertically integrated service provider markets. Although transactive energy systems are not revolutionary, they will be transformational in their ability to provide flexibility and operational efficiency. A main goal of this research is to establish useful foundation for analysis of transactive energy systems and to facilitate new transactive energy system design with demonstrable guarantees on stability and performance. Specifically, the goals are to (1) establish a theoretical basis for evaluating the performance of different transactive systems, (2) devise tools to address canonical problems that exemplify challenges and scenarios of transactive systems, and (3) provide guidelines for design of future transactive systems. This report, Part 1 of a two part series, advances the above-listed research objectives by reviewing existing transactive systems and identifying a theoretical foundation that integrates payoff functions, control decisions, information privacy, and mathematical solution concepts.« less
Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability andmore » reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.« less
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
2013-03-01
within the Global information Grid ( GiG ) (AFDD6-0, 2011). JP 1-02 describes the GiG : 10 The GIG is the globally interconnected, end-to-end set of...to warfighters, policy makers, and support personnel. The GIG includes all owned and leased communications and computing systems and services...software (including applications), data, security services, and other 19 associated services necessary to achieve information superiority. The GIG
System for Performing Single Query Searches of Heterogeneous and Dispersed Databases
NASA Technical Reports Server (NTRS)
Maluf, David A. (Inventor); Okimura, Takeshi (Inventor); Gurram, Mohana M. (Inventor); Tran, Vu Hoang (Inventor); Knight, Christopher D. (Inventor); Trinh, Anh Ngoc (Inventor)
2017-01-01
The present invention is a distributed computer system of heterogeneous databases joined in an information grid and configured with an Application Programming Interface hardware which includes a search engine component for performing user-structured queries on multiple heterogeneous databases in real time. This invention reduces overhead associated with the impedance mismatch that commonly occurs in heterogeneous database queries.
TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE
NASA Technical Reports Server (NTRS)
Vu, B. T.
1994-01-01
TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications
NASA Astrophysics Data System (ADS)
Shamsi, Pourya
Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.
Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system
NASA Astrophysics Data System (ADS)
Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian
2017-08-01
The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.
NASA Astrophysics Data System (ADS)
Vortanz, Karsten; Zayer, Peter
Das Gesetz zur Digitalisierung der Energiewende ist verabschiedet. Ab 2017 sind moderne Messeinrichtungen (mME) und intelligente Messsysteme (iMSys) zu verbauen und zu betreiben. Der "deutsche Weg" für die Einführung von Smart Metern sieht einen stufenweisen Rollout sowie ein Höchstmaß an Informations- und Datensicherheit vor. Dabei spielen iMSys und mME eine wichtige Rolle bei der Neugestaltung der intelligenten Netze (Smart Grids) und des neuen Marktmodells (Smart Market). Dieser Beitrag beschäftigt sich mit den neuen Gesetzen, den Marktrollen und ihren Aufgaben, Datenschutz und Datensicherheit, dem iMSys als sichere Lösung, dem sicheren Betrieb von Smart Meter Gateways, Smart Grid - Smart Market, dem Zusammenspiel zwischen reguliertem Bereich und Markt, den Einsatzbereichen der iMSys sowie den Auswirkungen auf Prozesse und Systeme und gibt Handlungsempfehlungen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentle, Jake Paul
2016-12-01
One primary goal of rendering today’s transmission grid “smarter” is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid’s true capacity. With the “Smarter Grid”, new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INLmore » Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation’s energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL’s DLR development supports EERE and The Wind Energy Technology Office’s goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational Fluid Dynamics (CFD) enhanced weather analysis and DLR software, INL’s project offers the potential of safely providing line ampacities up to 40 percent or more above existing SLRs, by using real time information rather than overly conservative SLR.« less
TRENCADIS--a WSRF grid MiddleWare for managing DICOM structured reporting objects.
Blanquer, Ignacio; Hernandez, Vicente; Segrelles, Damià
2006-01-01
The adoption of the digital processing of medical data, especially on radiology, has leaded to the availability of millions of records (images and reports). However, this information is mainly used at patient level, being the extraction of information, organised according to administrative criteria, which make the extraction of knowledge difficult. Moreover, legal constraints make the direct integration of information systems complex or even impossible. On the other side, the widespread of the DICOM format has leaded to the inclusion of other information different from just radiological images. The possibility of coding radiology reports in a structured form, adding semantic information about the data contained in the DICOM objects, eases the process of structuring images according to content. DICOM Structured Reporting (DICOM-SR) is a specification of tags and sections to code and integrate radiology reports, with seamless references to findings and regions of interests of the associated images, movies, waveforms, signals, etc. The work presented in this paper aims at developing of a framework to efficiently and securely share medical images and radiology reports, as well as to provide high throughput processing services. This system is based on a previously developed architecture in the framework of the TRENCADIS project, and uses other components such as the security system and the Grid processing service developed in previous activities. The work presented here introduces a semantic structuring and an ontology framework, to organise medical images considering standard terminology and disease coding formats (SNOMED, ICD9, LOINC..).
Documentation of a digital spatial data base for hydrologic investigations, Broward County, Florida
Sonenshein, R.S.
1992-01-01
Geographic information systems have become an important tool in planning for the protection and development of natural resources, including ground water and surface water. A digital spatial data base consisting of 18 data layers that can be accessed by a geographic information system was developed for Broward County, Florida. Five computer programs, including one that can be used to create documentation files for each data layer and four that can be used to create data layers from data files not already in geographic information system format, were also developed. Four types of data layers have been developed. Data layers for manmade features include major roads, municipal boundaries, the public land-survey section grid, land use, and underground storage tank facilities. The data layer for topographic features consists of surveyed point land-surface elevations. Data layers for hydrologic features include surface-water and rainfall data-collection stations, surface-water bodies, water-control district boundaries, and water-management basins. Data layers for hydrogeologic features include soil associations, transmissivity polygons, hydrogeologic unit depths, and a finite-difference model grid for south-central Broward County. Each data layer is documented as to the extent of the features, number of features, scale, data sources, and a description of the attribute tables where applicable.
Chew, Robert F; Amer, Safaa; Jones, Kasey; Unangst, Jennifer; Cajka, James; Allpress, Justine; Bruhn, Mark
2018-05-09
Conducting surveys in low- and middle-income countries is often challenging because many areas lack a complete sampling frame, have outdated census information, or have limited data available for designing and selecting a representative sample. Geosampling is a probability-based, gridded population sampling method that addresses some of these issues by using geographic information system (GIS) tools to create logistically manageable area units for sampling. GIS grid cells are overlaid to partition a country's existing administrative boundaries into area units that vary in size from 50 m × 50 m to 150 m × 150 m. To avoid sending interviewers to unoccupied areas, researchers manually classify grid cells as "residential" or "nonresidential" through visual inspection of aerial images. "Nonresidential" units are then excluded from sampling and data collection. This process of manually classifying sampling units has drawbacks since it is labor intensive, prone to human error, and creates the need for simplifying assumptions during calculation of design-based sampling weights. In this paper, we discuss the development of a deep learning classification model to predict whether aerial images are residential or nonresidential, thus reducing manual labor and eliminating the need for simplifying assumptions. On our test sets, the model performs comparable to a human-level baseline in both Nigeria (94.5% accuracy) and Guatemala (96.4% accuracy), and outperforms baseline machine learning models trained on crowdsourced or remote-sensed geospatial features. Additionally, our findings suggest that this approach can work well in new areas with relatively modest amounts of training data. Gridded population sampling methods like geosampling are becoming increasingly popular in countries with outdated or inaccurate census data because of their timeliness, flexibility, and cost. Using deep learning models directly on satellite images, we provide a novel method for sample frame construction that identifies residential gridded aerial units. In cases where manual classification of satellite images is used to (1) correct for errors in gridded population data sets or (2) classify grids where population estimates are unavailable, this methodology can help reduce annotation burden with comparable quality to human analysts.
TRMM .25 deg x .25 deg Gridded Precipitation Text Product
NASA Technical Reports Server (NTRS)
Stocker, Erich; Kelley, Owen
2009-01-01
Since the launch of the Tropical Rainfall Measuring Mission (TRMM), the Precipitation Measurement Missions science team has endeavored to provide TRMM precipitation retrievals in a variety of formats that are more easily usable by the broad science community than the standard Hierarchical Data Format (HDF) in which TRMM data is produced and archived. At the request of users, the Precipitation Processing System (PPS) has developed a .25 x .25 gridded product in an easily used ASCII text format. The entire TRMM mission data has been made available in this format. The paper provides the details of this new precipitation product that is designated with the TRMM designator 3G68.25. The format is packaged into daily files. It provides hourly precipitation information from the TRMM microwave imager (TMI), precipitation radar (PR), and TMI/PR combined rain retrievals. A major advantage of this approach is the inclusion only of rain data, compression when a particular grid has no rain from the PR or combined, and its direct ASCII text format. For those interested only in rain retrievals and whether rain is convection or stratiform, these products provide a huge reduction in the data volume inherent in the standard TRMM products. This paper provides examples of the 3G68 data products and their uses. It also provides information about C tools that can be used to aggregate daily files into larger time samples. In addition, it describes the possibilities inherent in the spatial sampling which allows resampling into coarser spatial sampling. The paper concludes with information about downloading the gridded text data products.
An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Kumbhare, Alok; Cao, Baohua
2011-07-09
Power utilities globally are increasingly upgrading to Smart Grids that use bi-directional communication with the consumer to enable an information-driven approach to distributed energy management. Clouds offer features well suited for Smart Grid software platforms and applications, such as elastic resources and shared services. However, the security and privacy concerns inherent in an information rich Smart Grid environment are further exacerbated by their deployment on Clouds. Here, we present an analysis of security and privacy issues in a Smart Grids software architecture operating on different Cloud environments, in the form of a taxonomy. We use the Los Angeles Smart Gridmore » Project that is underway in the largest U.S. municipal utility to drive this analysis that will benefit both Cloud practitioners targeting Smart Grid applications, and Cloud researchers investigating security and privacy.« less
Anisotropic encoding of three-dimensional space by place cells and grid cells
Hayman, R.; Verriotis, M.; Jovalekic, A.; Fenton, A.A.; Jeffery, K.J.
2011-01-01
The subjective sense of space may result in part from the combined activity of place cells, in the hippocampus, and grid cells in posterior cortical regions such as entorhinal cortex and pre/parasubiculum. In horizontal planar environments, place cells provide focal positional information while grid cells supply odometric (distance-measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three–dimensional. The present study explored this issue in rats exploring two different kinds of apparatus, a climbing wall (the “pegboard”) and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It appears that grid cell odometry (and by implication path integration) is impaired/absent in the vertical domain, at least when the animal itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic. PMID:21822271
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
Evaluation of a grid based molecular dynamics approach for polypeptide simulations.
Merelli, Ivan; Morra, Giulia; Milanesi, Luciano
2007-09-01
Molecular dynamics is very important for biomedical research because it makes possible simulation of the behavior of a biological macromolecule in silico. However, molecular dynamics is computationally rather expensive: the simulation of some nanoseconds of dynamics for a large macromolecule such as a protein takes very long time, due to the high number of operations that are needed for solving the Newton's equations in the case of a system of thousands of atoms. In order to obtain biologically significant data, it is desirable to use high-performance computation resources to perform these simulations. Recently, a distributed computing approach based on replacing a single long simulation with many independent short trajectories has been introduced, which in many cases provides valuable results. This study concerns the development of an infrastructure to run molecular dynamics simulations on a grid platform in a distributed way. The implemented software allows the parallel submission of different simulations that are singularly short but together bring important biological information. Moreover, each simulation is divided into a chain of jobs to avoid data loss in case of system failure and to contain the dimension of each data transfer from the grid. The results confirm that the distributed approach on grid computing is particularly suitable for molecular dynamics simulations thanks to the elevated scalability.
NASA Astrophysics Data System (ADS)
Nizamutdinova, T.; Mukhlynin, N.
2017-06-01
A significant increasing energy efficiency of the full cycle of production, transmission and distribution of electricity in grids should be based on the management of separate consumers of electricity. The existing energy supply systems based on the concept of «smart things» do not allow to identify the technical structure of the electricity consumption in the load nodes from the grid side. It makes solving the tasks of energy efficiency more difficult. To solve this problem, the use of Wavelet transform to create a mathematical tool for monitoring the load composition in the nodes of the distribution grids of 6-10 kV, 0.4 kV is proposed in this paper. The authors have created a unique wavelet based functions for some consumers, based on their current consumption graphs of these power consumers. Possibility of determination of the characteristics of individual consumers of electricity in total nodal charts of load is shown in the test case. In future, creation of a unified technical and informational model of load control will allow to solve the problem of increasing the economic efficiency of not only certain consumers, but also the entire power supply system as a whole.
The Community Multiscale Air Quality (CMAQ) modeling system was applied to a domain covering the northern hemisphere; meteorological information was derived from the Weather Research and Forecasting (WRF) model run on identical grid and projection configuration, while the emissio...
NASA's Participation in the National Computational Grid
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Zornetzer, Steve F. (Technical Monitor)
1998-01-01
Over the last several years it has become evident that the character of NASA's supercomputing needs has changed. One of the major missions of the agency is to support the design and manufacture of aero- and space-vehicles with technologies that will significantly reduce their cost. It is becoming clear that improvements in the process of aerospace design and manufacturing will require a high performance information infrastructure that allows geographically dispersed teams to draw upon resources that are broader than traditional supercomputing. A computational grid draws together our information resources into one system. We can foresee the time when a Grid will allow engineers and scientists to use the tools of supercomputers, databases and on line experimental devices in a virtual environment to collaborate with distant colleagues. The concept of a computational grid has been spoken of for many years, but several events in recent times are conspiring to allow us to actually build one. In late 1997 the National Science Foundation initiated the Partnerships for Advanced Computational Infrastructure (PACI) which is built around the idea of distributed high performance computing. The Alliance lead, by the National Computational Science Alliance (NCSA), and the National Partnership for Advanced Computational Infrastructure (NPACI), lead by the San Diego Supercomputing Center, have been instrumental in drawing together the "Grid Community" to identify the technology bottlenecks and propose a research agenda to address them. During the same period NASA has begun to reformulate parts of two major high performance computing research programs to concentrate on distributed high performance computing and has banded together with the PACI centers to address the research agenda in common.
Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM) Program, which is the integration of diverse power devices in an optimal configuration for space and terrestrial applications.
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
Wei, Yawei; Venayagamoorthy, Ganesh Kumar
2017-09-01
To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulakhe, D.; Rodriguez, A.; Wilde, M.
2008-03-01
Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less
Constructing a Community Response Grid (CRG): The Dublin, Ohio Case Study
ERIC Educational Resources Information Center
Freund, John F., III.
2012-01-01
During an emergency, information availability is critical to preserving life and minimizing damages. During the emergency response, however, information may not be available to those who need it. A community response grid (CRG) can help ameliorate this lack of availability by allowing people to document and distribute emergency information to…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... Smart Grid: Data Access, Third Party Use, and Privacy AGENCY: Department of Energy. ACTION: Notice of... information from smart meters, historical consumption data, and pricing and billing information. DOE will hold... electronic form--including real-time information from smart meters, historical consumption data, and pricing...
Knoch, Tobias A; Baumgärtner, Volkmar; de Zeeuw, Luc V; Grosveld, Frank G; Egger, Kurt
2009-01-01
With ever-new technologies emerging also the amount of information to be stored and processed is growing exponentially and is believed to be always at the limit. In contrast, however, huge resources are available in the IT sector alike e.g. the renewable energy sector, which are often even not at all used. This under-usage bares any rational especially in the IT sector where e.g. virtualisation and grid approaches could be fast implemented due to the great technical and fast turnover opportunities. Here, we describe this obvious paradox for the first time as the Inverse Tragedy of the Commons, in contrast to the Classical Tragedy of the Commons where resources are overexploited. From this perspective the grid IT sector attempting to share resources for better efficiency, reveals two challenges leading to the heart of the paradox: i) From a macro perspective all grid infrastructures involve not only mere technical solutions but also dominantly all of the autopoietic social sub-systems ranging from religion to policy. ii) On the micro level the individual players and their psychology and risk behaviour are of major importance for acting within the macro autopoietic framework. Thus, the challenges of grid implementation are similar to those of e.g. climate protection. This is well described by the classic Human Ecology triangle and our extension to a rectangle: invironment-individual-society-environment. Extension of this classical interdisciplinary field of basic and applied research to an e-Human Grid Ecology rational, allows the Inverse Tragedy of the Commons of the grid sector to be understood and approached better and implies obvious guidelines in the day-to-day management for grid and other (networked) resources, which is of importance for many fields with similar paradoxes as in (e-)society.
Federated ontology-based queries over cancer data
2012-01-01
Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included. Conclusions To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures. PMID:22373043
CAGI: Computer Aided Grid Interface. A work in progress
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David
1992-01-01
Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.
Prognostics Methodology for Complex Systems
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Mackey, Ryan
2003-01-01
An automatic method to schedule maintenance and repair of complex systems is produced based on a computational structure called the Informed Maintenance Grid (IMG). This method provides solutions to the two fundamental problems in autonomic logistics: (1) unambiguous detection of deterioration or impending loss of function and (2) determination of the time remaining to perform maintenance or other corrective action based upon information from the system. The IMG provides a health determination over the medium-to-longterm operation of the system, from one or more days to years of study. The IMG is especially applicable to spacecraft and both piloted and autonomous aircraft, or industrial control processes.
The construction of power grid operation index system considering the risk of maintenance
NASA Astrophysics Data System (ADS)
Tang, Jihong; Wang, Canlin; Jiang, Xinfan; Ye, Jianhui; Pan, Feilai
2018-02-01
In recent years, large-scale blackout occurred at home and abroad caused widespread concern about the operation of the grid in the world, and the maintenance risk is an important indicator of grid safety. The barrier operation of the circuit breaker exists in the process of overhaul of the power grid. The operation of the different barrier is of great significance to the change of the power flow, thus affecting the safe operation of the system. Most of the grid operating status evaluation index system did not consider the risk of maintenance, to this end, this paper from the security, economy, quality and cleanliness of the four angles, build the power grid operation index system considering the risk of maintenance.
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
Multi-off-grid methods in multi-step integration of ordinary differential equations
NASA Technical Reports Server (NTRS)
Beaudet, P. R.
1974-01-01
Description of methods of solving first- and second-order systems of differential equations in which all derivatives are evaluated at off-grid locations in order to circumvent the Dahlquist stability limitation on the order of on-grid methods. The proposed multi-off-grid methods require off-grid state predictors for the evaluation of the n derivatives at each step. Progressing forward in time, the off-grid states are predicted using a linear combination of back on-grid state values and off-grid derivative evaluations. A comparison is made between the proposed multi-off-grid methods and the corresponding Adams and Cowell on-grid integration techniques in integrating systems of ordinary differential equations, showing a significant reduction in the error at larger step sizes in the case of the multi-off-grid integrator.
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
Verification and Validation of the Coastal Modeling System. Report 2: CMS-Wave
2011-12-01
Figure 44. Offshore bathymetry showing NDBC and CDIP buoy locations. ........................................ 70 Figure 45. CMS-Wave modeling domain...the four measurement stations. During the same time intervals, offshore wave information was available from a Coastal Data Information Program ( CDIP ...were conducted with a grid of 236 × 398 cells with variable cell spacing of 30 to 200 m (see Figure 28). Directional wave spectra from CDIP 036 served
Gieger, Tracy L.; Karakashian, Alexander A.; Nikolova-Karakashian, Mariana N.; Posner, Lysa P.; Roback, Donald M.; Rivera, Judith N.; Chang, Sha
2017-01-01
GRID directs alternating regions of high- and low-dose radiation at tumors. A large animal model mimicking the geometries of human treatments is needed to complement existing rodent systems (eg, microbeam) and clarify the physical and biological attributes of GRID. A pilot study was undertaken in pet dogs with spontaneous soft tissue sarcomas to characterize responses to GRID. Subjects were treated with either 20 Gy (3 dogs) or 25 Gy (3 dogs), delivered using 6 MV X-rays and a commercial GRID collimator. Acute toxicity and tumor responses were assessed 2, 4, and 6 weeks later. Acute Radiation Therapy Oncology Group grade I skin toxicity was observed in 3 of the 6 dogs; none experienced a measurable response, per Response Evaluation Criteria in Solid Tumors. Serum vascular endothelial growth factor, tumor necrosis factor α, and secretory sphingomyelinase were assayed at baseline, 1, 4, 24, and 48 hours after treatment. There was a trend toward platelet-corrected serum vascular endothelial growth factor concentration being lower 1 and 48 hours after GRID than at baseline. There was a significant decrease in secretory sphingomyelinase activity 48 hours after 25 Gy GRID (P = .03). Serum tumor necrosis factor α was quantified measurable at baseline in 4 of the 6 dogs and decreased in each of those subjects at all post-GRID time points. The new information generated by this study includes the observation that high-dose, single fraction application of GRID does not induce measurable reduction in volume of canine soft tissue sarcomas. In contrast to previously published data, these data suggest that GRID may be associated with at least short-term reduction in serum concentration of vascular endothelial growth factor and serum activity of secretory sphingomyelinase. Because GRID can be applied safely, and these tumors can be subsequently surgically resected as part of routine veterinary care, pet dogs with sarcomas are an appealing model for studying the radiobiologic responses to spatially fractionated radiotherapy. PMID:28168937
Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya
NASA Astrophysics Data System (ADS)
Tarigan, E.
2017-11-01
Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.
Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter; ...
2018-06-12
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
NASA Technical Reports Server (NTRS)
Cole, M. M. (Principal Investigator)
1980-01-01
Only photographic prints and negative films of day-visible, day-IR and night-IR imagery were received. For northwest Queensland, only five day-visible and day-IR frames of acceptable quality were received. A master-grid was established over these frames within which selected grid sections are being enlarged photographically for the identification of stream courses and geological features permitting an interpretation of the imagery relative to ground truth information. The imagery is also being scanned and digitized using a Joyce-Loebl microdensitometer for classification purposes. For areas for which good quality HCMM imagery is available, valuable information is obtained on ephemeral and seasonal drainage systems. The day-IR cover is particularly helpful.
Forest management applications of Landsat data in a geographic information system
NASA Technical Reports Server (NTRS)
Maw, K. D.; Brass, J. A.
1982-01-01
The utility of land-cover data resulting from Landsat MSS classification can be greatly enhanced by use in combination with ancillary data. A demonstration forest management applications data base was constructed for Santa Cruz County, California, to demonstrate geographic information system applications of classified Landsat data. The data base contained detailed soils, digital terrain, land ownership, jurisdictional boundaries, fire events, and generalized land-use data, all registered to a UTM grid base. Applications models were developed from problems typical of fire management and reforestation planning.
On automating domain connectivity for overset grids
NASA Technical Reports Server (NTRS)
Chiu, Ing-Tsau
1994-01-01
An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximated body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian Systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems.
2012-05-06
was becoming a key component of the U.S. economy . “At the same time, it is becoming a vulnerable target in both war and peacetime.”4 He further...greater degree of access which complicates the matter with instant access to the global information grid ( GIG ). Specifically, smart phones have...other associated services and National Security Systems. Also called GIG . (This term and its definition are provided for information and are proposed
Leveraging Our Expertise To Inform International RE Roadmaps | Energy
energy targets to support Mexico's renewable energy goal. NREL and its Mexico partners developed the institutions need to take to determine how the electricity infrastructure and systems must change to accommodate high levels of renewables. The roadmap focuses on analysis methodologies-including grid expansion
Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant
Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.
2016-01-01
There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365
Integration of Grid and Local Batch Resources at DESY
NASA Astrophysics Data System (ADS)
Beyer, Christoph; Finnern, Thomas; Gellrich, Andreas; Hartmann, Thomas; Kemp, Yves; Lewendel, Birgit
2017-10-01
As one of the largest resource centres DESY has to support differing work flows of users from various scientific backgrounds. Users can be for one HEP experiments in WLCG or Belle II as well as local HEP users but also physicists from other fields as photon science or accelerator development. By abandoning specific worker node setups in favour of generic flat nodes with middleware resources provided via CVMFS, we gain flexibility to subsume different use cases in a homogeneous environment. Grid jobs and the local batch system are managed in a HTCondor based setup, accepting pilot, user and containerized jobs. The unified setup allows dynamic re-assignment of resources between the different use cases. Monitoring is implemented on global batch system metrics as well as on a per job level utilizing corresponding cgroup information.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Valuation of Electric Power System Services and Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael C. W.; Homer, Juliet S.; Balducci, Patrick J.
Accurate valuation of existing and new technologies and grid services has been recognized to be important to stimulate investment in grid modernization. Clear, transparent, and accepted methods for estimating the total value (i.e., total benefits minus cost) of grid technologies and services are necessary for decision makers to make informed decisions. This applies to home owners interested in distributed energy technologies, as well as to service providers offering new demand response services, and utility executives evaluating best investment strategies to meet their service obligation. However, current valuation methods lack consistency, methodological rigor, and often the capabilities to identify and quantifymore » multiple benefits of grid assets or new and innovative services. Distributed grid assets often have multiple benefits that are difficult to quantify because of the locational context in which they operate. The value is temporally, operationally, and spatially specific. It varies widely by distribution systems, transmission network topology, and the composition of the generation mix. The Electric Power Research Institute (EPRI) recently established a benefit-cost framework that proposes a process for estimating multiple benefits of distributed energy resources (DERs) and the associated cost. This document proposes an extension of this endeavor that offers a generalizable framework for valuation that quantifies the broad set of values for a wide range of technologies (including energy efficiency options, distributed resources, transmission, and generation) as well as policy options that affect all aspects of the entire generation and delivery system of the electricity infrastructure. The extension includes a comprehensive valuation framework of monetizable and non-monetizable benefits of new technologies and services beyond the traditional reliability objectives. The benefits are characterized into the following categories: sustainability, affordability, and security, flexibility, and resilience. This document defines the elements of a generic valuation framework and process as well as system properties and metrics by which value streams can be derived. The valuation process can be applied to determine the value on the margin of incremental system changes. This process is typically performed when estimating the value of a particular project (e.g., value of a merchant generator, or a distributed photovoltaic (PV) rooftop installation). Alternatively, the framework can be used when a widespread change in the grid operation, generation mix, or transmission topology is to be valued. In this case a comprehensive system analysis is required.« less
Error analysis for the proposed close grid geodynamic satellite measurement system (CLOGEOS)
NASA Technical Reports Server (NTRS)
Mueller, I. I.; Vangelder, B. H. W.; Kumar, M.
1975-01-01
The close grid geodynamic measurement system experiment which envisages an active ranging satellite and a grid of retro-reflectors or transponders in the San Andreas fault area is a detailed simulated study for recovering the relative positions in the grid. The close grid geodynamic measurement system for determining the relative motion of two plates in the California region (if feasible) could be used in other areas of the world to delineate and complete the picture of crustal motions over the entire globe and serve as a geodetic survey system. In addition, with less stringent accuracy standards, the system would also find usage in allied geological and marine geodesy fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Du, Pengwei; Greitzer, Frank L.
2012-12-31
This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less
Service differentiated and adaptive CSMA/CA over IEEE 802.15.4 for Cyber-Physical Systems.
Xia, Feng; Li, Jie; Hao, Ruonan; Kong, Xiangjie; Gao, Ruixia
2013-01-01
Cyber-Physical Systems (CPS) that collect, exchange, manage information, and coordinate actions are an integral part of the Smart Grid. In addition, Quality of Service (QoS) provisioning in CPS, especially in the wireless sensor/actuator networks, plays an essential role in Smart Grid applications. IEEE 802.15.4, which is one of the most widely used communication protocols in this area, still needs to be improved to meet multiple QoS requirements. This is because IEEE 802.15.4 slotted Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) employs static parameter configuration without supporting differentiated services and network self-adaptivity. To address this issue, this paper proposes a priority-based Service Differentiated and Adaptive CSMA/CA (SDA-CSMA/CA) algorithm to provide differentiated QoS for various Smart Grid applications as well as dynamically initialize backoff exponent according to traffic conditions. Simulation results demonstrate that the proposed SDA-CSMA/CA scheme significantly outperforms the IEEE 802.15.4 slotted CSMA/CA in terms of effective data rate, packet loss rate, and average delay.
Service Differentiated and Adaptive CSMA/CA over IEEE 802.15.4 for Cyber-Physical Systems
Gao, Ruixia
2013-01-01
Cyber-Physical Systems (CPS) that collect, exchange, manage information, and coordinate actions are an integral part of the Smart Grid. In addition, Quality of Service (QoS) provisioning in CPS, especially in the wireless sensor/actuator networks, plays an essential role in Smart Grid applications. IEEE 802.15.4, which is one of the most widely used communication protocols in this area, still needs to be improved to meet multiple QoS requirements. This is because IEEE 802.15.4 slotted Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) employs static parameter configuration without supporting differentiated services and network self-adaptivity. To address this issue, this paper proposes a priority-based Service Differentiated and Adaptive CSMA/CA (SDA-CSMA/CA) algorithm to provide differentiated QoS for various Smart Grid applications as well as dynamically initialize backoff exponent according to traffic conditions. Simulation results demonstrate that the proposed SDA-CSMA/CA scheme significantly outperforms the IEEE 802.15.4 slotted CSMA/CA in terms of effective data rate, packet loss rate, and average delay. PMID:24260021
NASA Astrophysics Data System (ADS)
Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.
2012-12-01
Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor (ASDP) was recently developed to merge PM2.5 estimates from National Aeronautics and Space Administration (NASA) satellite data and AirNow observational data, creating more precise maps and gridded data products for under-monitored areas. The ASDP can easily incorporate other data feeds, including fire and smoke locations, to build enhanced real-time air quality data products. In this presentation, we provide an overview of the features and functions of IMS, an explanation of how data moves through IMS, the rationale of the system architecture, and highlights of the ASDP as an example of the modularity and scalability of IMS.
Mitigating the Insider Threat with High-Dimensional Anomaly Detection
2004-12-01
a more serious attack. Various systems such as NSM [56], GrIDS [57], snort [58], Emerald [59], and Spice [60] generate alerts for portscan...reboot etc. The user measurements include the user profiles such as time of login , duration of user session, cumulative CPU time, names of files...already been implemented in a real-time system for information retrieval [3]. A technique developed at SRI in the Emerald system [22] uses historical
Integrating PV in Distributed Grids: Solutions and Technologies Workshop |
Energy Systems Integration Facility | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015 (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from
Rotational-translational fourier imaging system requiring only one grid pair
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2006-01-01
The sky contains many active sources that emit X-rays, gamma rays, and neutrons. Unfortunately hard X-rays, gamma rays, and neutrons cannot be imaged by conventional optics. This obstacle led to the development of Fourier imaging systems. In early approaches, multiple grid pairs were necessary in order to create rudimentary Fourier imaging systems. At least one set of grid pairs was required to provide multiple real components of a Fourier derived image, and another set was required to provide multiple imaginary components of the image. It has long been recognized that the expense associated with the physical production of the numerous grid pairs required for Fourier imaging was a drawback. Herein one grid pair (two grids), with accompanying rotation and translation, can be used if one grid has one more slit than the other grid, and if the detector is modified.
Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-01-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
NASA Astrophysics Data System (ADS)
de la Llave Plata, M.; Couaillier, V.; Le Pape, M.-C.; Marmignon, C.; Gazaix, M.
2013-03-01
This paper reports recent work on the extension of the multiblock structured solver elsA to deal with hybrid grids. The new hybrid-grid solver is called elsA-H (elsA-Hybrid), is based on the investigation of a new unstructured-grid module has been built within the original elsA CFD (computational fluid dynamics) system. The implementation benefits from the flexibility of the object-oriented design. The aim of elsA-H is to take advantage of the full potential of structured solvers and unstructured mesh generation by allowing any type of grid to be used within the same simulation process. The main challenge lies in the numerical treatment of the hybrid-grid interfaces where blocks of different type meet. In particular, one must pay attention to the transfer of information across these boundaries, so that the accuracy of the numerical scheme is preserved and flux conservation is guaranteed. In this paper, the numerical approach allowing to achieve this is presented. A comparison between the hybrid and the structured-grid methods is also carried out by considering a fully hexahedral multiblock mesh for which a few blocks have been transformed into unstructured. The performance of elsA-H for the simulation of internal flows will be demonstrated on a number of turbomachinery configurations.
Visual Analytics for Power Grid Contingency Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Huang, Zhenyu; Chen, Yousu
2014-01-20
Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure tomore » do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.« less
NASA Technical Reports Server (NTRS)
Koch, Steven E.; Mcqueen, Jeffery T.
1987-01-01
A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.
Improving Grid Resilience through Informed Decision-making (IGRID)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Laurie; Stamber, Kevin L.; Jeffers, Robert Fredric
The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for themore » foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.« less
NASA Technical Reports Server (NTRS)
Shyam, Vikram
2010-01-01
A preprocessor for the Computational Fluid Dynamics (CFD) code TURBO has been developed and tested. The preprocessor converts grids produced by GridPro (Program Development Company (PDC)) into a format readable by TURBO and generates the necessary input files associated with the grid. The preprocessor also generates information that enables the user to decide how to allocate the computational load in a multiple block per processor scenario.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.
2013-03-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2011-11-15
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Real-time performance monitoring and management system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2007-06-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
NASA Astrophysics Data System (ADS)
De Salvo, A.; Kataoka, M.; Sanchez Pineda, A.; Smirnov, Y.
2015-12-01
The ATLAS Installation System v2 is the evolution of the original system, used since 2003. The original tool has been completely re-designed in terms of database backend and components, adding support for submission to multiple backends, including the original Workload Management Service (WMS) and the new PanDA modules. The database engine has been changed from plain MySQL to Galera/Percona and the table structure has been optimized to allow a full High-Availability (HA) solution over Wide Area Network. The servlets, running on each frontend, have been also decoupled from local settings, to allow an easy scalability of the system, including the possibility of an HA system with multiple sites. The clients can also be run in multiple copies and in different geographical locations, and take care of sending the installation and validation jobs to the target Grid or Cloud sites. Moreover, the Installation Database is used as source of parameters by the automatic agents running in CVMFS, in order to install the software and distribute it to the sites. The system is in production for ATLAS since 2013, having as main sites in HA the INFN Roma Tier 2 and the CERN Agile Infrastructure. The Light Job Submission Framework for Installation (LJSFi) v2 engine is directly interfacing with PanDA for the Job Management, the Atlas Grid Information System (AGIS) for the site parameter configurations, and CVMFS for both core components and the installation of the software itself. LJSFi2 is also able to use other plugins, and is essentially Virtual Organization (VO) agnostic, so can be directly used and extended to cope with the requirements of any Grid or Cloud enabled VO. In this work we will present the architecture, performance, status and possible evolutions to the system for the LHC Run2 and beyond.
Aerodynamic simulation on massively parallel systems
NASA Technical Reports Server (NTRS)
Haeuser, Jochem; Simon, Horst D.
1992-01-01
This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.
NASA Astrophysics Data System (ADS)
Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.
2018-02-01
The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.
NASA Astrophysics Data System (ADS)
Bower, Ward
2011-09-01
An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth
As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.pymore » (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.« less
Semantic web data warehousing for caGrid.
McCusker, James P; Phillips, Joshua A; González Beltrán, Alejandra; Finkelstein, Anthony; Krauthammer, Michael
2009-10-01
The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges.
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
Application scenario analysis of Power Grid Marketing Large Data
NASA Astrophysics Data System (ADS)
Li, Xin; Zhang, Yuan; Zhang, Qianyu
2018-01-01
In recent years, large data has become an important strategic asset in the commercial economy, and its efficient management and application has become the focus of government, enterprise and academia. Power grid marketing data covers real data of electricity and other energy consumption and consumption costs and so on, which is closely related to each customer and the overall economic operation. Fully tap the inherent value of marketing data is of great significance for power grid company to make rapid and efficient response to the market demand and improve service level. The development of large data technology provides a new technical scheme for the development of marketing business under the new situation. Based on the study on current situation of marketing business, marketing information system and marketing data, this paper puts forward the application direction of marketing data and designed typical scenes for internal and external applications.
Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert
2015-12-08
Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.
Fault diagnosis of rolling element bearings with a spectrum searching method
NASA Astrophysics Data System (ADS)
Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo
2017-09-01
Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.
High-Density Stretchable Electrode Grids for Chronic Neural Recording
Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János
2018-01-01
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263
Design of Energy Storage Management System Based on FPGA in Micro-Grid
NASA Astrophysics Data System (ADS)
Liang, Yafeng; Wang, Yanping; Han, Dexiao
2018-01-01
Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.
An Efficient Means of Adaptive Refinement Within Systems of Overset Grids
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.
Study on key techniques for camera-based hydrological record image digitization
NASA Astrophysics Data System (ADS)
Li, Shijin; Zhan, Di; Hu, Jinlong; Gao, Xiangtao; Bo, Ping
2015-10-01
With the development of information technology, the digitization of scientific or engineering drawings has received more and more attention. In hydrology, meteorology, medicine and mining industry, the grid drawing sheet is commonly used to record the observations from sensors. However, these paper drawings may be destroyed and contaminated due to improper preservation or overuse. Further, it will be a heavy workload and prone to error if these data are manually transcripted into the computer. Hence, in order to digitize these drawings, establishing the corresponding data base will ensure the integrity of data and provide invaluable information for further research. This paper presents an automatic system for hydrological record image digitization, which consists of three key techniques, i.e., image segmentation, intersection point localization and distortion rectification. First, a novel approach to the binarization of the curves and grids in the water level sheet image has been proposed, which is based on the fusion of gradient and color information adaptively. Second, a fast search strategy for cross point location is invented and point-by-point processing is thus avoided, with the help of grid distribution information. And finally, we put forward a local rectification method through analyzing the central portions of the image and utilizing the domain knowledge of hydrology. The processing speed is accelerated, while the accuracy is still satisfying. Experiments on several real water level records show that our proposed techniques are effective and capable of recovering the hydrological observations accurately.
VOMS/VOMRS utilization patterns and convergence plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceccanti, A.; /INFN, CNAF; Ciaschini, V.
2010-01-01
The Grid community uses two well-established registration services, which allow users to be authenticated under the auspices of Virtual Organizations (VOs). The Virtual Organization Membership Service (VOMS), developed in the context of the Enabling Grid for E-sciencE (EGEE) project, is an Attribute Authority service that issues attributes expressing membership information of a subject within a VO. VOMS allows to partition users in groups, assign them roles and free-form attributes which are then used to drive authorization decisions. The VOMS administrative application, VOMS-Admin, manages and populates the VOMS database with membership information. The Virtual Organization Management Registration Service (VOMRS), developed atmore » Fermilab, extends the basic registration and management functionalities present in VOMS-Admin. It implements a registration workflow that requires VO usage policy acceptance and membership approval by administrators. VOMRS supports management of multiple grid certificates, and handling users' request for group and role assignments, and membership status. VOMRS is capable of interfacing to local systems with personnel information (e.g. the CERN Human Resource Database) and of pulling relevant member information from them. VOMRS synchronizes the relevant subset of information with VOMS. The recent development of new features in VOMS-Admin raises the possibility of rationalizing the support and converging on a single solution by continuing and extending existing collaborations between EGEE and OSG. Such strategy is supported by WLCG, OSG, US CMS, US Atlas, and other stakeholders worldwide. In this paper, we will analyze features in use by major experiments and the use cases for registration addressed by the mature single solution.« less
Self-localization of wireless sensor networks using self-organizing maps
NASA Astrophysics Data System (ADS)
Ertin, Emre; Priddy, Kevin L.
2005-03-01
Recently there has been a renewed interest in the notion of deploying large numbers of networked sensors for applications ranging from environmental monitoring to surveillance. In a typical scenario a number of sensors are distributed in a region of interest. Each sensor is equipped with sensing, processing and communication capabilities. The information gathered from the sensors can be used to detect, track and classify objects of interest. For a number of locations the sensors location is crucial in interpreting the data collected from those sensors. Scalability requirements dictate sensor nodes that are inexpensive devices without a dedicated localization hardware such as GPS. Therefore the network has to rely on information collected within the network to self-localize. In the literature a number of algorithms has been proposed for network localization which uses measurements informative of range, angle, proximity between nodes. Recent work by Patwari and Hero relies on sensor data without explicit range estimates. The assumption is that the correlation structure in the data is a monotone function of the intersensor distances. In this paper we propose a new method based on unsupervised learning techniques to extract location information from the sensor data itself. We consider a grid consisting of virtual nodes and try to fit grid in the actual sensor network data using the method of self organizing maps. Then known sensor network geometry can be used to rotate and scale the grid to a global coordinate system. Finally, we illustrate how the virtual nodes location information can be used to track a target.
VOMS/VOMRS utilization patterns and convergence plan
NASA Astrophysics Data System (ADS)
Ceccanti, A.; Ciaschini, V.; Dimou, M.; Garzoglio, G.; Levshina, T.; Traylen, S.; Venturi, V.
2010-04-01
The Grid community uses two well-established registration services, which allow users to be authenticated under the auspices of Virtual Organizations (VOs). The Virtual Organization Membership Service (VOMS), developed in the context of the Enabling Grid for E-sciencE (EGEE) project, is an Attribute Authority service that issues attributes expressing membership information of a subject within a VO. VOMS allows to partition users in groups, assign them roles and free-form attributes which are then used to drive authorization decisions. The VOMS administrative application, VOMS-Admin, manages and populates the VOMS database with membership information. The Virtual Organization Management Registration Service (VOMRS), developed at Fermilab, extends the basic registration and management functionalities present in VOMS-Admin. It implements a registration workflow that requires VO usage policy acceptance and membership approval by administrators. VOMRS supports management of multiple grid certificates, and handling users' request for group and role assignments, and membership status. VOMRS is capable of interfacing to local systems with personnel information (e.g. the CERN Human Resource Database) and of pulling relevant member information from them. VOMRS synchronizes the relevant subset of information with VOMS. The recent development of new features in VOMS-Admin raises the possibility of rationalizing the support and converging on a single solution by continuing and extending existing collaborations between EGEE and OSG. Such strategy is supported by WLCG, OSG, US CMS, US Atlas, and other stakeholders worldwide. In this paper, we will analyze features in use by major experiments and the use cases for registration addressed by the mature single solution.
NASA Astrophysics Data System (ADS)
Hoffrichter, André; Barrios, Hans; Massmann, Janek; Venkataramanachar, Bhavasagar; Schnettler, Armin
2018-02-01
The structural changes in the European energy system lead to an increase of renewable energy sources that are primarily connected to the distribution grid. Hence the stationary analysis of the transmission grid and the regionalization of generation capacities are strongly influenced by subordinate grid structures. To quantify the impact on the congestion management in the German transmission grid, a 110 kV grid model is derived using publicly available data delivered by Open Street Map and integrated into an existing model of the European transmission grid. Power flow and redispatch simulations are performed for three different regionalization methods and grid configurations. The results show a significant impact of the 110 kV system and prove an overestimation of power flows in the transmission grid when neglecting subordinate grids. Thus, the redispatch volume in Germany to dissolve bottlenecks in case of N-1 contingencies decreases by 38 % when considering the 110 kV grid.
NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation
Study | Energy Systems Integration Facility | NREL NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study When a large solar photovoltaic (PV) system is connected to the electric grid, a utility's
Energy Management and Optimization Methods for Grid Energy Storage Systems
Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.; ...
2017-08-24
Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less
Energy Management and Optimization Methods for Grid Energy Storage Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.
Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
Design of Grid Portal System Based on RIA
NASA Astrophysics Data System (ADS)
Cao, Caifeng; Luo, Jianguo; Qiu, Zhixin
Grid portal is an important branch of grid research. In order to solve the weak expressive force, the poor interaction, the low operating efficiency and other insufficiencies of the first and second generation of grid portal system, RIA technology was introduced to it. A new portal architecture was designed based on RIA and Web service. The concrete realizing scheme of portal system was presented by using Adobe Flex/Flash technology, which formed a new design pattern. In system architecture, the design pattern has B/S and C/S superiorities, balances server and its client side, optimizes the system performance, realizes platform irrelevance. In system function, the design pattern realizes grid service call, provides client interface with rich user experience, integrates local resources by using FABridge, LCDS, Flash player and some other components.
Three-grid accelerator system for an ion propulsion engine
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1994-01-01
An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
NASA Astrophysics Data System (ADS)
Abad Lopez, Carlos Adrian
Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility, dynamic learning methods for scheduling the maintenance of direct load control switches whose operating state is not directly observable and can only be inferred from the metered electricity consumption, and machine learning methods for accurately forecasting the load of hundreds of thousands of residential, commercial and industrial customers. These algorithms have been implemented in the software system provided by AutoGrid, Inc., and this system has helped several utilities in the Pacific Northwest, Oklahoma, California and Texas, provide more reliable power to their customers at significantly reduced prices. Providing power to widely spread out communities in developing countries using the conventional power grid is not economically feasible. The most attractive alternative source of affordable energy for these communities is solar micro-grids. We discuss risk-aware robust methods to optimally size and operate solar micro-grids in the presence of uncertain demand and uncertain renewable generation. These algorithms help system operators to increase their revenue while making their systems more resilient to inclement weather conditions.
Smart Grid Legislative and Regulatory Policies and Case Studies
2011-01-01
In recent years, a number of U.S. states have adopted or are considering smart grid related laws, regulations, and voluntary or mandatory requirements. At the same time, the number of smart grid pilot projects has been increasing rapidly. The Energy Information Administration (EIA) commissioned SAIC to research the development of smart grid in the United States and abroad. The research produced several documents that will help guide EIA as it considers how best to track smart grid developments.
A Debugger for Computational Grid Applications
NASA Technical Reports Server (NTRS)
Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of a debugger for computational grid applications. Details are given on NAS parallel tools groups (including parallelization support tools, evaluation of various parallelization strategies, and distributed and aggregated computing), debugger dependencies, scalability, initial implementation, the process grid, and information on Globus.
The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework
NASA Astrophysics Data System (ADS)
Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.
2016-12-01
The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During the 6th Session of the UN-GGIM in August 2016 the role of DGGS in the context of the GSGF was formally acknowledged. This paper proposes to highlight the synergies and role of DGGS in the Global Statistical Geospatial Framework and to show examples of the use of DGGS to combine geospatial statistics with traditional geoscientific data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Cochran, Jaquelin
2015-06-01
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.
Ion accelerator systems for high power 30 cm thruster operation
NASA Technical Reports Server (NTRS)
Aston, G.
1982-01-01
Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Distributed Accounting on the Grid
NASA Technical Reports Server (NTRS)
Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.
2001-01-01
By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.
Testing the seismology-based landquake monitoring system
NASA Astrophysics Data System (ADS)
Chao, Wei-An
2016-04-01
I have developed a real-time landquake monitoring system (RLMs), which monitor large-scale landquake activities in the Taiwan using real-time seismic network of Broadband Array in Taiwan for Seismology (BATS). The RLM system applies a grid-based general source inversion (GSI) technique to obtain the preliminary source location and force mechanism. A 2-D virtual source-grid on the Taiwan Island is created with an interval of 0.2° in both latitude and longitude. The depth of each grid point is fixed on the free surface topography. A database is stored on the hard disk for the synthetics, which are obtained using Green's functions computed by the propagator matrix approach for 1-D average velocity model, at all stations from each virtual source-grid due to nine elementary source components: six elementary moment tensors and three orthogonal (north, east and vertical) single-forces. Offline RLM system was carried out for events detected in previous studies. An important aspect of the RLM system is the implementation of GSI approach for different source types (e.g., full moment tensor, double couple faulting, and explosion source) by the grid search through the 2-D virtual source to automatically identify landquake event based on the improvement in waveform fitness and evaluate the best-fit solution in the monitoring area. With this approach, not only the force mechanisms but also the event occurrence time and location can be obtained simultaneously about 6-8 min after an occurrence of an event. To improve the insufficient accuracy of GSI-determined lotion, I further conduct a landquake epicenter determination (LED) method that maximizes the coherency of the high-frequency (1-3 Hz) horizontal envelope functions to determine the final source location. With good knowledge about the source location, I perform landquake force history (LFH) inversion to investigate the source dynamics (e.g., trajectory) for the relatively large-sized landquake event. With providing aforementioned source information in real-time, the government and emergency response agencies have sufficient reaction time for rapid assessment and response to landquake hazards. Since 2016, the RLM system has operated online.
Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System
NASA Astrophysics Data System (ADS)
Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.
2010-09-01
The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced by every plant in Canary Islands are estimated using a series of theoretical and statistical energy models.
NASA Astrophysics Data System (ADS)
Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.
2016-10-01
Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.
Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features
NASA Astrophysics Data System (ADS)
Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar
2017-09-01
In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.
Enabling Efficient Intelligence Analysis in Degraded Environments
2013-06-01
Magnets Grid widget for multidimensional information exploration ; and a record browser of Visual Summary Cards widget for fast visual identification of...evolution analysis; a Magnets Grid widget for multi- dimensional information exploration ; and a record browser of Visual Summary Cards widget for fast...attention and inattentional blindness. It also explores and develops various techniques to represent information in a salient way and provide efficient
A Public Health Grid (PHGrid): Architecture and value proposition for 21st century public health.
Savel, T; Hall, K; Lee, B; McMullin, V; Miles, M; Stinn, J; White, P; Washington, D; Boyd, T; Lenert, L
2010-07-01
This manuscript describes the value of and proposal for a high-level architectural framework for a Public Health Grid (PHGrid), which the authors feel has the capability to afford the public health community a robust technology infrastructure for secure and timely data, information, and knowledge exchange, not only within the public health domain, but between public health and the overall health care system. The CDC facilitated multiple Proof-of-Concept (PoC) projects, leveraging an open-source-based software development methodology, to test four hypotheses with regard to this high-level framework. The outcomes of the four PoCs in combination with the use of the Federal Enterprise Architecture Framework (FEAF) and the newly emerging Federal Segment Architecture Methodology (FSAM) was used to develop and refine a high-level architectural framework for a Public Health Grid infrastructure. The authors were successful in documenting a robust high-level architectural framework for a PHGrid. The documentation generated provided a level of granularity needed to validate the proposal, and included examples of both information standards and services to be implemented. Both the results of the PoCs as well as feedback from selected public health partners were used to develop the granular documentation. A robust high-level cohesive architectural framework for a Public Health Grid (PHGrid) has been successfully articulated, with its feasibility demonstrated via multiple PoCs. In order to successfully implement this framework for a Public Health Grid, the authors recommend moving forward with a three-pronged approach focusing on interoperability and standards, streamlining the PHGrid infrastructure, and developing robust and high-impact public health services. Published by Elsevier Ireland Ltd.
Moran, Edward H.
2002-01-01
The report contains environmental and urban geographic information system data for 14 sites in 5 watersheds in Anchorage, Alaska. These sites were examined during summer in 1999 and 2000 to determine effects of urbanization on water quality. The data sets are Environmental Systems Research Institute, Inc., shapefiles, coverages, and images. Also included are an elevation grid and a triangulated irregular network. Although the data are intended for users with advanced geographic information system capabilities, simple images of the data also are available. ArcView? 3.2 project, an ArcGIS? project, and 16 ArcExplorer2? projects are linked to the PDF file based report. Some of these coverages are large files over 10 MB. The largest coverage, impervious cover, is 208 MB.
Business Pattern of Distributed Energy in Electric Power System Reformation
NASA Astrophysics Data System (ADS)
Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI
2017-05-01
Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.
NASA Astrophysics Data System (ADS)
Pulusani, Praneeth R.
As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading transformers, lack of energy supply, and higher utility costs.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)
None
2018-01-16
The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data canât be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.
Transactive Campus Energy Systems: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Corbin, Charles D.; Haack, Jereme N.
Transactive energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. The fundamental purpose of transactive energy management is to seamlessly coordinate the operation of large numbers of new intelligent assets—such as distributed solar, energy storage and responsive building loads—to provide the flexibility needed to operate the power grid reliably and at minimum cost, particularly one filled with intermittent renewable generation such as the Pacific Northwest. It addresses the key challenge of providing smooth, stable, and predictable “control” of these assets, despite the fact that most are neither owned nor directly controlled by themore » power grid. The Clean Energy and Transactive Campus (CETC) work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and the Washington State Department of Commerce (Commerce) through the Clean Energy Fund (CEF). The project team consisted of PNNL, the University of Washington (UW) and Washington State University (WSU), to connect the PNNL, UW, and WSU campuses to form a multi-campus testbed for transaction-based energy management—transactive—solutions. Building on the foundational transactive system established by the Pacific Northwest Smart Grid Demonstration (PNWSGD), the purpose of the project was to construct the testbed as both a regional flexibility resource and as a platform for research and development (R&D) on buildings/grid integration and information-based energy efficiency. This report provides a summary of the various tasks performed under the CRADA.« less
Increasing the resilience and security of the United States' power infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
2015-08-01
The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less
On the application of Chimera/unstructured hybrid grids for conjugate heat transfer
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing
1995-01-01
A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.
AVQS: attack route-based vulnerability quantification scheme for smart grid.
Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik
2014-01-01
A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.
Development and Testing of a Prototype Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2009-01-01
The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basso, T.
Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series ofmore » standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.« less
Context-aware access control for pervasive access to process-based healthcare systems.
Koufi, Vassiliki; Vassilacopoulos, George
2008-01-01
Healthcare is an increasingly collaborative enterprise involving a broad range of healthcare services provided by many individuals and organizations. Grid technology has been widely recognized as a means for integrating disparate computing resources in the healthcare field. Moreover, Grid portal applications can be developed on a wireless and mobile infrastructure to execute healthcare processes which, in turn, can provide remote access to Grid database services. Such an environment provides ubiquitous and pervasive access to integrated healthcare services at the point of care, thus improving healthcare quality. In such environments, the ability to provide an effective access control mechanism that meets the requirement of the least privilege principle is essential. Adherence to the least privilege principle requires continuous adjustments of user permissions in order to adapt to the current situation. This paper presents a context-aware access control mechanism for HDGPortal, a Grid portal application which provides access to workflow-based healthcare processes using wireless Personal Digital Assistants. The proposed mechanism builds upon and enhances security mechanisms provided by the Grid Security Infrastructure. It provides tight, just-in-time permissions so that authorized users get access to specific objects according to the current context. These permissions are subject to continuous adjustments triggered by the changing context. Thus, the risk of compromising information integrity during task executions is reduced.
Grid Facilities | Grid Modernization | NREL
groundbreaking innovations and collaboration in grid research. Photo of the Energy Systems Integration Facility Energy Systems Integration Facility The Energy Systems Integration Facility is the nation's premier user Located in Boulder, Colorado, the National Wind Technology Center (NWTC) offers similar integration
Development of a large scale Chimera grid system for the Space Shuttle Launch Vehicle
NASA Technical Reports Server (NTRS)
Pearce, Daniel G.; Stanley, Scott A.; Martin, Fred W., Jr.; Gomez, Ray J.; Le Beau, Gerald J.; Buning, Pieter G.; Chan, William M.; Chiu, Ing-Tsau; Wulf, Armin; Akdag, Vedat
1993-01-01
The application of CFD techniques to large problems has dictated the need for large team efforts. This paper offers an opportunity to examine the motivations, goals, needs, problems, as well as the methods, tools, and constraints that defined NASA's development of a 111 grid/16 million point grid system model for the Space Shuttle Launch Vehicle. The Chimera approach used for domain decomposition encouraged separation of the complex geometry into several major components each of which was modeled by an autonomous team. ICEM-CFD, a CAD based grid generation package, simplified the geometry and grid topology definition by provoding mature CAD tools and patch independent meshing. The resulting grid system has, on average, a four inch resolution along the surface.
Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid
Jones, John W.; Price, Susan D.
2007-01-01
INTRODUCTION The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). Ground elevation data for the greater Everglades and the digital ground elevation models derived from them form the foundation for all EDEN water depth and associated ecologic/hydrologic modeling (Jones, 2004, Jones and Price, 2007). To use EDEN water depth and duration information most effectively, it is important to be able to view and manipulate information on elevation data quality and other land cover and habitat characteristics across the Everglades region. These requirements led to the development of the geographic data layer described in this techniques and methods report. Relying on extensive experience in GIS data development, distribution, and analysis, a great deal of forethought went into the design of the geographic data layer used to index elevation and other surface characteristics for the Greater Everglades region. To allow for simplicity of design and use, the EDEN area was broken into a large number of equal-sized rectangles ('Cells') that in total are referred to here as the 'grid'. Some characteristics of this grid, such as the size of its cells, its origin, the area of Florida it is designed to represent, and individual grid cell identifiers, could not be changed once the grid database was developed. Therefore, these characteristics were selected to design as robust a grid as possible and to ensure the grid's long-term utility. It is desirable to include all pertinent information known about elevation and elevation data collection as grid attributes. Also, it is very important to allow for efficient grid post-processing, sub-setting, analysis, and distribution. This document details the conceptual design of the EDEN grid spatial parameters and cell attribute-table content.
76 FR 80338 - Secretarial India Infrastructure Business Development Mission, March 25-30, 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
.../ from consumers on a near real-time basis and improve system reliability Moving to a smart grid to... technologies in India. The real challenge in the power sector in India lies in managing the upgrading of the....export.gov/newsletter/march2008/initiatives.html for additional information). Expenses for travel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, E.J.; Barazangi, M.; Isacks, B.L.
Topography and heterogeneous crustal structure have major effects on the propagation of regional seismic phases. We are collecting topographical, geological, and geophysical datasets for Eurasia into an information system that can be accessed via Internet connections. Now available are digital topography, satellite imagery, and data on sedimentary basins and crustal structure thicknesses. New datasets for Eurasia include maps of depth to Moho beneath Europe and Scandinavia. We have created regularly spaced grids of the crustal thickness values from these maps that can be used to create profiles of crustal structure. These profiles can be compared by an analyst or anmore » automatic program with the crustal seismic phases received along the propagation path to better understand and predict the path effects on phase amplitudes, a key to estimating magnitudes and yields, and for understanding variations in travel-time delays for phases such as Pn, important for improving regional event locations. The gridded data could also be used to model propagation of crustal phases in three dimensions. Digital elevation models, Satellite imagery, Geographic information systems, Lg Propagation, Moho, Geology, Crustal structure, Topographic relief.« less
Integration and management of massive remote-sensing data based on GeoSOT subdivision model
NASA Astrophysics Data System (ADS)
Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li
2016-07-01
Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.
Optimization of electrostatic dual-grid beam-deflection system
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.
1972-01-01
Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less
Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots
NASA Technical Reports Server (NTRS)
Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth
2007-01-01
A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.
Kinsey, Katharine; Firth, Jill; Elwyn, Glyn; Edwards, Adrian; Brain, Katherine; Marrin, Katy; Nye, Alan; Wood, Fiona
2017-12-01
Patient decision support tools have been developed as a means of providing accurate and accessible information in order for patients to make informed decisions about their care. Option Grids ™ are a type of decision support tool specifically designed to be used during clinical encounters. To explore patients' views of the Option Grid encounter tool used in clinical consultations with physiotherapists, in comparison with usual care, within a patient population who are likely to be disadvantaged by age and low health literacy. Semi-structured interviews with 72 patients (36 who had been given an Option Grid in their consultation and 36 who had not). Thematic analysis explored patients' understanding of treatment options, perceptions of involvement, and readability and utility of the Option Grid. Interviews suggested that the Option Grid facilitated more detailed discussion about the risks and benefits of a wider range of treatment options for osteoarthritis of the knee. Participants indicated that the Option Grid was clear and aided their understanding of a structured progression of the options as their condition advanced, although it was not clear whether the Option Grid facilitated greater engagement in shared decision making. The Option Grid for osteoarthritis of the knee was well received by patient participants who reported that it helped them to understand their options, and made the notion of choice explicit. Use of Option Grids should be considered within routine consultations. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, Nan
2018-03-01
Conversion of points or lines from vector to grid format, or vice versa, is the first operation required for most spatial analysis. Conversion, however, usually causes the location of points or lines to change, which influences the reliability of the results of spatial analysis or even results in analysis errors. The purpose of this paper is to evaluate the change of the location of points and lines during conversion using the concepts of probability and entropy. This paper shows that when a vector point is converted to a grid point, the vector point may be outside or inside the grid point. This paper deduces a formula for computing the probability that the vector point is inside the grid point. It was found that the probability increased with the side length of the grid and with the variances of the coordinates of the vector point. In addition, the location entropy of points and lines are defined in this paper. Formulae for computing the change of the location entropy during conversion are deduced. The probability mentioned above and the change of location entropy may be used to evaluate the location reliability of points and lines in Geographic Information Systems and may be used to choose an appropriate range of the side length of grids before conversion. The results of this study may help scientists and users to avoid mistakes caused by the change of location during conversion as well as in spatial decision and analysis.
System and method for islanding detection and prevention in distributed generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak
Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
NASA Astrophysics Data System (ADS)
Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven
2018-02-01
Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.
Distributed data analysis in ATLAS
NASA Astrophysics Data System (ADS)
Nilsson, Paul; Atlas Collaboration
2012-12-01
Data analysis using grid resources is one of the fundamental challenges to be addressed before the start of LHC data taking. The ATLAS detector will produce petabytes of data per year, and roughly one thousand users will need to run physics analyses on this data. Appropriate user interfaces and helper applications have been made available to ensure that the grid resources can be used without requiring expertise in grid technology. These tools enlarge the number of grid users from a few production administrators to potentially all participating physicists. ATLAS makes use of three grid infrastructures for the distributed analysis: the EGEE sites, the Open Science Grid, and Nordu Grid. These grids are managed by the gLite workload management system, the PanDA workload management system, and ARC middleware; many sites can be accessed via both the gLite WMS and PanDA. Users can choose between two front-end tools to access the distributed resources. Ganga is a tool co-developed with LHCb to provide a common interface to the multitude of execution backends (local, batch, and grid). The PanDA workload management system provides a set of utilities called PanDA Client; with these tools users can easily submit Athena analysis jobs to the PanDA-managed resources. Distributed data is managed by Don Quixote 2, a system developed by ATLAS; DQ2 is used to replicate datasets according to the data distribution policies and maintains a central catalog of file locations. The operation of the grid resources is continually monitored by the Ganga Robot functional testing system, and infrequent site stress tests are performed using the Hammer Cloud system. In addition, the DAST shift team is a group of power users who take shifts to provide distributed analysis user support; this team has effectively relieved the burden of support from the developers.
The Grid as a healthcare provision tool.
Hernández, V; Blanquer, I
2005-01-01
This paper presents a survey on HealthGrid technologies, describing the current status of Grid and eHealth and analyzing them in the medium-term future. The objective is to analyze the key points, barriers and driving forces for the take-up of HealthGrids. The article considers the procedures from other Grid disciplines such as high energy physics or biomolecular engineering and discusses the differences with respect to healthcare. It analyzes the status of the basic technology, the needs of the eHealth environment and the successes of current projects in health and other relevant disciplines. Information and communication technology (ICT) in healthcare is a promising area for the use of the Grid. There are many driving forces that are fostering the application of the secure, pervasive, ubiquitous and transparent access to information and computing resources that Grid technologies can provide. However, there are many barriers that must be solved. Many technical problems that arise in eHealth (standardization of data, federation of databases, content-based knowledge extraction, and management of personal data ...) can be solved with Grid technologies. The article presents the development of successful and demonstrative applications as the key for the take-up of HealthGrids, where short-term future medical applications will surely be biocomputing-oriented, and the future of Grid technologies on medical imaging seems promising. Finally, exploitation of HealthGrid is analyzed considering the curve of the adoption of ICT solutions and the definition of business models, which are far more complex than in other e-business technologies such ASP.
75 FR 42727 - Implementing the National Broadband Plan; Comment Period Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
..., state, and private entities seek to develop Smart Grid technologies. The second RFI requested information on the evolving needs of electric utilities as Smart Grid technologies are more broadly deployed... accept reply comments, data, and information regarding the National Broadband Plan RFI: Data Access and...
Mehl, S.; Hill, M.C.
2002-01-01
A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.