Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html. PMID:22679486
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.
NASA Astrophysics Data System (ADS)
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation
NASA Astrophysics Data System (ADS)
Farshchian, Bahador; Gatabi, Javad R.; Bernick, Steven M.; Park, Sooyeon; Lee, Gwan-Hyoung; Droopad, Ravindranath; Kim, Namwon
2017-02-01
We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.
NASA Astrophysics Data System (ADS)
Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis
2017-01-01
The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''
Design and analysis of grid stiffened fuselage panel with curved stiffeners
NASA Astrophysics Data System (ADS)
Hemanth, Bharath; Babu, N. C. Mahendra; Shivakumar, H. G.; Srikari, S.
2018-04-01
Designing and analyzing grid stiffened panel to understand the effect of stiffeners on stiffness of the panel is crucial in designing grid stiffened cylinder for fuselage application. Traditionally only straight stiffeners were used due to limited manufacturing capabilities and in recent years GSS with curved stiffeners have become a reality. The present work is on flat grid stiffened panel and the focus is to realize the change in stiffness by converting straight stiffeners in an isogrid panel to curved stiffeners. An isogrid stiffened panel is identified from literature for which experimental results were available and was considered for replacing straight stiffeners with curved stiffeners. Defining and designing the curve for curved stiffeners which can be used to replace straight stiffeners in isogrid pattern is crucial. FE model of the grid stiffened fuselage panel with isogrid pattern identified from the literature for which experimental data was available was developed and evaluated for stiffness. For the same panel, curved grid pattern to enhance stiffness of the panel was designed following existing design procedure. FE model of the grid stiffened fuselage panel with designed curved stiffeners was developed and evaluated for stiffness. It is established that the stiffness of panel can be increased by minimum of 2.82% to maximum of 11.93% by using curved stiffeners of particular curvature as a replacement for straight stiffeners in isogrid pattern with a slight mass penalty.
Self-similar grid patterns in free-space shuffle-exchange networks
NASA Astrophysics Data System (ADS)
Haney, Michael W.
1993-12-01
Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.
Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo
2007-11-01
The stationary grid commonly used with a digital x-ray detector causes a moiré interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moiré such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moiré pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moiré pattern, particularly the line frequency and displacement. The frequency of the moiré pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moiré frequency. The frequency of the moiré pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moiré-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moiré pattern were investigated.
Optimizing Grid Patterns on Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Burger, D. R.
1984-01-01
CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.
A single-cell spiking model for the origin of grid-cell patterns
Kempter, Richard
2017-01-01
Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386
Grid cells form a global representation of connected environments.
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-05-04
The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Grid Cells Form a Global Representation of Connected Environments
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-01-01
Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404
Grid-Optimization Program for Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Daniel, R. E.; Lee, T. S.
1986-01-01
CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.
Mathematical modeling of polymer flooding using the unstructured Voronoi grid
NASA Astrophysics Data System (ADS)
Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.
2017-12-01
Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.
Shearing-induced asymmetry in entorhinal grid cells.
Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I
2015-02-12
Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.
Optimize of shrink process with X-Y CD bias on hole pattern
NASA Astrophysics Data System (ADS)
Koike, Kyohei; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Oyama, Kenichi; Yaegashi, Hidetami
2017-03-01
Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][4] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. We tried to cure hole pattern roughness to use additional process such as Line smoothing[5] . Each smoothing process showed different effect. As the result, CDx shrink amount is smaller than CDy without one additional process. In this paper, we will report the pattern controllability comparison of EUV and 193-immersion. And we will discuss optimum method about CD bias on hole pattern.
Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen
2012-02-01
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.
Work step indication with grid-pattern projection for demented senior people.
Uranishi, Yuki; Yamamoto, Goshiro; Asghar, Zeeshan; Pulli, Petri; Kato, Hirokazu; Oshiro, Osamu
2013-01-01
This paper proposes a work step indication method for supporting daily work with a grid-pattern projection. To support an independent life of demented senior people, it is desirable that an instruction is easy to understand visually and not complicated. The proposed method in this paper uses a range image sensor and a camera in addition to a projector. A 3D geometry of a target scene is measured by the range image sensor, and the grid-pattern is projected onto the scene directly. Direct projection of the work step is easier to be associated with the target objects around the assisted person, and the grid-pattern is a solution to indicate the spatial instruction. A prototype has been implemented and has demonstrated that the proposed grid-pattern projection is easy to show the work step.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S
2015-10-05
Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex
Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.
2015-01-01
Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719
Grid point extraction and coding for structured light system
NASA Astrophysics Data System (ADS)
Song, Zhan; Chung, Ronald
2011-09-01
A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.
Human skin surface evaluation by image processing
NASA Astrophysics Data System (ADS)
Zhu, Liangen; Zhan, Xuemin; Xie, Fengying
2003-12-01
Human skin gradually lose its tension and becomes very dry as time flies by. Use of cosmetics is effective to prevent skin aging. Recently, there are many choices of products of cosmetics. To show their effects, It is desirable to develop a way to evaluate quantificationally skin surface condition. In this paper, An automatic skin evaluating method is proposed. The skin surface has the pattern called grid-texture. This pattern is composed of the valleys that spread vertically, horizontally, and obliquely and the hills separated by them. Changes of the grid are closely linked to the skin surface condition. They can serve as a good indicator for the skin condition. By measuring the skin grid using digital image processing technologies, we can evaluate skin surface about its aging, health, and alimentary status. In this method, the skin grid is first detected to form a closed net. Then, some skin parameters such as Roughness, tension, scale and gloss can be calculated from the statistical measurements of the net. Through analyzing these parameters, the condition of the skin can be monitored.
Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters
NASA Technical Reports Server (NTRS)
Barker, Timothy
1996-01-01
Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.
Modelling effects on grid cells of sensory input during self‐motion
Raudies, Florian; Hinman, James R.
2016-01-01
Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096
Human astrocytic grid networks patterned in parylene-C inlayed SiO2 trenches.
Jordan, M D; Raos, B J; Bunting, A S; Murray, A F; Graham, E S; Unsworth, C P
2016-10-01
Recent literature suggests that glia, and in particular astrocytes, should be studied as organised networks which communicate through gap junctions. Astrocytes, however, adhere to most surfaces and are highly mobile cells. In order to study, such organised networks effectively in vitro it is necessary to influence them to pattern to certain substrates whilst being repelled from others and to immobilise the astrocytes sufficiently such that they do not continue to migrate further whilst under study. In this article, we demonstrate for the first time how it is possible to facilitate the study of organised patterned human astrocytic networks using hNT astrocytes in a SiO2 trench grid network that is inlayed with the biocompatible material, parylene-C. We demonstrate how the immobilisation of astrocytes lies in the depth of the SiO2 trench, determining an optimum trench depth and that the optimum patterning of astrocytes is a consequence of the parylene-C inlay and the grid node spacing. We demonstrate high fidelity of the astrocytic networks and demonstrate that functionality of the hNT astrocytes through ATP evoked calcium signalling is also dependent on the grid node spacing. Finally, we demonstrate that the location of the nuclei on the grid nodes is also a function of the grid node spacing. The significance of this work, is to describe a suitable platform to facilitate the study of hNT astrocytes from the single cell level to the network level to improve knowledge and understanding of how communication links to spatial organisation at these higher order scales and trigger in vitro research further in this area with clinical applications in the area of epilepsy, stroke and focal cerebral ischemia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced electric propulsion research, 1991
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.
1992-01-01
A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.
Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter
NASA Astrophysics Data System (ADS)
Hassaine, L.; Mraoui, A.
2017-02-01
Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control
NASA Astrophysics Data System (ADS)
Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum
The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.
Gridless, pattern-driven point cloud completion and extension
NASA Astrophysics Data System (ADS)
Gravey, Mathieu; Mariethoz, Gregoire
2016-04-01
While satellites offer Earth observation with a wide coverage, other remote sensing techniques such as terrestrial LiDAR can acquire very high-resolution data on an area that is limited in extension and often discontinuous due to shadow effects. Here we propose a numerical approach to merge these two types of information, thereby reconstructing high-resolution data on a continuous large area. It is based on a pattern matching process that completes the areas where only low-resolution data is available, using bootstrapped high-resolution patterns. Currently, the most common approach to pattern matching is to interpolate the point data on a grid. While this approach is computationally efficient, it presents major drawbacks for point clouds processing because a significant part of the information is lost in the point-to-grid resampling, and that a prohibitive amount of memory is needed to store large grids. To address these issues, we propose a gridless method that compares point clouds subsets without the need to use a grid. On-the-fly interpolation involves a heavy computational load, which is met by using a GPU high-optimized implementation and a hierarchical pattern searching strategy. The method is illustrated using data from the Val d'Arolla, Swiss Alps, where high-resolution terrestrial LiDAR data are fused with lower-resolution Landsat and WorldView-3 acquisitions, such that the density of points is homogeneized (data completion) and that it is extend to a larger area (data extension).
Optimal configurations of spatial scale for grid cell firing under noise and uncertainty
Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil
2014-01-01
We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144
Design of Grid Portal System Based on RIA
NASA Astrophysics Data System (ADS)
Cao, Caifeng; Luo, Jianguo; Qiu, Zhixin
Grid portal is an important branch of grid research. In order to solve the weak expressive force, the poor interaction, the low operating efficiency and other insufficiencies of the first and second generation of grid portal system, RIA technology was introduced to it. A new portal architecture was designed based on RIA and Web service. The concrete realizing scheme of portal system was presented by using Adobe Flex/Flash technology, which formed a new design pattern. In system architecture, the design pattern has B/S and C/S superiorities, balances server and its client side, optimizes the system performance, realizes platform irrelevance. In system function, the design pattern realizes grid service call, provides client interface with rich user experience, integrates local resources by using FABridge, LCDS, Flash player and some other components.
Effect of Orthene on an unconfined population of the meadow vole (Microtus pennsylvanicus)
Jett, David A.; Nichols, James D.; Hines, James E.
1986-01-01
The possible impact on Microtus pennsylvanicus of ground applications of Orthene® insecticide was investigated in old-field habitats in northern Maryland during 1982 and 1983. The treatment grids in 1982 and 1983 were sprayed at 0.62 and 0.82 kg active ingredient/ha, respectively. A capture–recapture design robust to unequal capture probabilities was utilized to estimate population size, survival, and recruitment. Data on reproductive activity and relative weight change were also collected to investigate the effect of the insecticide treatment. There were no significant differences in population size or recruitment between control and treatment grids which could be directly related to the treatment. Survival rate was significantly lower on the treatment grid than on the control grid after spraying in 1983; however, survival rate was higher on the treatment grid after spraying in 1982. Significantly fewer pregnant adults were found on the treatment grid after spraying in 1982, whereas the proportions of voles lactating or with perforate vaginas or open pubic symphyses were slightly higher or remained unchanged during this period. Relative weight change was not affected by the treatment. Results do not indicate any pattern of inhibitory effects from the insecticide treatment. Field application of Orthene® did not have an adverse effect on this Microtus population.
Shuttle plate braiding machine
NASA Technical Reports Server (NTRS)
Huey, Jr., Cecil O. (Inventor)
1994-01-01
A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.
Polarization-dependent thin-film wire-grid reflectarray for terahertz waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi
2015-07-20
A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less
Synoptic Patterns Related to Tropical Cyclone Recurvature
1988-03-01
STY :Yfarge. Dominant and secondary contour patterns (Fig. 3.2) are identified and the angular difference (Table 5) between the pattern and the best...DATA l\\LVL/4/ DATA VRU/’ 1’/,VRV/’/ c DATA C/.0436610743/ ,DD/ 114.5915590262/ 1\\AYIELIST/~GRID/ 0:\\ VST ,:\\EST,l\\STH,l\\l\\TH c EQUIV ALE:\\CE...READ (5,:\\GRID) \\VRITE (6,:\\GRID) l\\1 = i\\\\ VST + l\\EST + 1 :\\J = 1\\STH + 1\\NTH + 1 IuCOYIP=20 IVCOl’viP= 20 0:RECU=O 1’\\RECV=O C** READ IN NO
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.; Verbist, K. M. J.
2016-12-01
Hydrological predictions at regional-to-global scales are often hampered by the lack of meteorological forcing data. The use of large-scale gridded meteorological data is able to overcome this limitation, but these data are subject to regional biases and unrealistic values at local scale. This is especially challenging in regions such as Chile, where climate exhibits high spatial heterogeneity as a result of long latitude span and dramatic elevation changes. However, regional station-based observational datasets are not fully exploited and have the potential of constraining biases and spatial patterns. This study aims at adjusting precipitation and temperature estimates from the Princeton University global meteorological forcing (PGF) gridded dataset to improve hydrological simulations over Chile, by assimilating 982 gauges from the Dirección General de Aguas (DGA). To merge station data with the gridded dataset, we use a state-space estimation method to produce optimal gridded estimates, considering both the error of the station measurements and the gridded PGF product. The PGF daily precipitation, maximum and minimum temperature at 0.25° spatial resolution are adjusted for the period of 1979-2010. Precipitation and temperature gauges with long and continuous records (>70% temporal coverage) are selected, while the remaining stations are used for validation. The leave-one-out cross validation verifies the robustness of this data assimilation approach. The merged dataset is then used to force the Variable Infiltration Capacity (VIC) hydrological model over Chile at daily time step which are compared to the observations of streamflow. Our initial results show that the station-merged PGF precipitation effectively captures drizzle and the spatial pattern of storms. Overall the merged dataset has significant improvements compared to the original PGF with reduced biases and stronger inter-annual variability. The invariant spatial pattern of errors between the station data and the gridded product opens up the possibility of merging real-time satellite and intermittent gauge observations to produce more accurate real-time hydrological predictions.
Improved grid-noise removal in single-frame digital moiré 3D shape measurement
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Kofman, Jonathan
2016-11-01
A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
Roca, Alberto I
2014-01-01
The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding
Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.
2015-01-01
Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric. PMID:26236245
Fenimore, E.E.
1980-08-22
A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.
Longest, P Worth; Vinchurkar, Samir
2007-04-01
A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.
Selforganization of modular activity of grid cells
Urdapilleta, Eugenio; Si, Bailu
2017-01-01
Abstract A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orientation of which are typically shared with neighboring cells. Grid spacing, in particular, has been found to increase along the dorso‐ventral axis of the entorhinal cortex but in discrete steps, that is, with a modular structure. In this study, we show that such a modular activity may result from the self‐organization of interacting units, which individually would not show discrete but rather continuously varying grid spacing. Within our “adaptation” network model, the effect of a continuously varying time constant, which determines grid spacing in the isolated cell model, is modulated by recurrent collateral connections, which tend to produce a few subnetworks, akin to magnetic domains, each with its own grid spacing. In agreement with experimental evidence, the modular structure is tightly defined by grid spacing, but also involves grid orientation and distortion, due to interactions across modules. Thus, our study sheds light onto a possible mechanism, other than simply assuming separate networks a priori, underlying the formation of modular grid representations. PMID:28768062
Grid cell spatial tuning reduced following systemic muscarinic receptor blockade
Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.
2014-01-01
Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379
Far-infrared bandpass filters from cross-shaped grids
NASA Technical Reports Server (NTRS)
Tomaselli, V. P.; Edewaard, D. C.; Gillan, P.; Moller, K. D.
1981-01-01
The optical transmission characteristics of electroformed metal grids with inductive and capacitive cross patterns have been investigated in the far-infrared spectral region. The transmission characteristics of one- and two-grid devices are represented by transmission line theory parameters. Results are used to suggest construction guidelines for two-grid bandpass filters.
NASA Technical Reports Server (NTRS)
Boccio, Dona
2003-01-01
Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1999-01-01
An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Akio; Konor, C.S.
Two types of vertical grids are used for atmospheric models: The Lorenz (L grid) and the Charney-Phillips grid (CP grid). In this paper, problems with the L grid are pointed out that are due to the existence of an extra degree of freedom in the vertical distribution of the temperature (and the potential temperature). Then a vertical differencing of the primitive equations based on the CP grid is presented, while most of the advantages of the L grid in a hybrid {sigma}-p vetical coordinate are maintained. The discrete hydrostatic equation is constructed in such a way that it is freemore » from the vertical computational mode in the thermal field. Also, the vertical advection of the potential temperature in the discrete thermodynamic equation is constructed in such a way that it reduces to the standard (and most straightforward) vertical differencing of the quasigeostrophic equations based on the CP grid. Simulations of standing oscillations superposed on a resting atmosphere are presented using two vertically discrete models, one based on the L grid and the other on the CP grid. The comparison of the simulations shows that with the L grid a stationary vertically zigzag pattern dominates in the thermal field, while with the CP grid no such pattern is evident. Simulations of the growth of an extrapolated cyclone in a cyclic channel on a {beta} plan are also presented using two different {sigma}-coordinate models, again one with the L grid and the other with the CP grid, starting from random disturbances. 17 refs., 8 figs.« less
Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence
NASA Astrophysics Data System (ADS)
Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem
2017-04-01
Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings from the 3DSGT by the time of the conference. {Acknowledgements}: This work has been supported partly by the EuHIT grant, 'Turbulence Generated by Sparse 3D Multi-Scale Grid (M3SG)', 2017. {References} [1] S. Laizet, J. C. Vassilicos. DNS of Fractal-Generated Turbulence. Flow Turbulence Combust 87:673705, (2011). [2] N. A. Malik. Sparse 3D Multi-Scale Grid Turbulence Generator. USPTO Application no. 14/710,531, Patent Pending, (2015). [3] J. Tellez, M. Gomez, B. Russo, J.M. Redondo. Surface Flow Image Velocimetry (SFIV) for hydraulics applications. 18th Int. Symposium on the Application of Laser Imaging Techniques in Fluid Mechanics, Lisbon, Portugal (2016).
Probabilistic Learning by Rodent Grid Cells
Cheung, Allen
2016-01-01
Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723
2014-01-01
Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393
Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.
2012-01-01
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204
Scalable patterning using laser-induced shock waves
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.
2018-04-01
An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.
NASA Astrophysics Data System (ADS)
Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.
2016-04-01
We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.
Target intersection probabilities for parallel-line and continuous-grid types of search
McCammon, R.B.
1977-01-01
The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.
Method of constructing dished ion thruster grids to provide hole array spacing compensation
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1976-01-01
The center-to-center spacings of a photoresist pattern for an array of holes applied to a thin metal sheet are increased by uniformly stretching the thin metal sheet in all directions along the plane of the sheet. The uniform stretching is provided by securely clamping the periphery of the sheet and applying an annular force against the face of the sheet, within the periphery of the sheet and around the photoresist pattern. The technique is used in the construction of ion thruster grid units where the outer or downstream grid is subjected to uniform stretching prior to convex molding. The technique provides alignment of the holes of grid pairs so as to direct the ion beamlets in a direction parallel to the axis of the grid unit and thereby provide optimization of the available thrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Qian, Yun; Fast, Jerome D.
2011-07-13
Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less
Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg
2016-01-01
After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979
Improving Grid Resilience through Informed Decision-making (IGRID)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Laurie; Stamber, Kevin L.; Jeffers, Robert Fredric
The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for themore » foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.« less
Microstructured block copolymer surfaces for control of microbe capture and aggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.
2014-01-01
The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less
Short-circuit current improvement in thin cells with a gridded back contact
NASA Technical Reports Server (NTRS)
Giuliano, M.; Wohlgemuth, J.
1980-01-01
The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.
NASA Astrophysics Data System (ADS)
Laiti, L.; Mallucci, S.; Piccolroaz, S.; Bellin, A.; Zardi, D.; Fiori, A.; Nikulin, G.; Majone, B.
2018-03-01
Assessing the accuracy of gridded climate data sets is highly relevant to climate change impact studies, since evaluation, bias correction, and statistical downscaling of climate models commonly use these products as reference. Among all impact studies those addressing hydrological fluxes are the most affected by errors and biases plaguing these data. This paper introduces a framework, coined Hydrological Coherence Test (HyCoT), for assessing the hydrological coherence of gridded data sets with hydrological observations. HyCoT provides a framework for excluding meteorological forcing data sets not complying with observations, as function of the particular goal at hand. The proposed methodology allows falsifying the hypothesis that a given data set is coherent with hydrological observations on the basis of the performance of hydrological modeling measured by a metric selected by the modeler. HyCoT is demonstrated in the Adige catchment (southeastern Alps, Italy) for streamflow analysis, using a distributed hydrological model. The comparison covers the period 1989-2008 and includes five gridded daily meteorological data sets: E-OBS, MSWEP, MESAN, APGD, and ADIGE. The analysis highlights that APGD and ADIGE, the data sets with highest effective resolution, display similar spatiotemporal precipitation patterns and produce the largest hydrological efficiency indices. Lower performances are observed for E-OBS, MESAN, and MSWEP, especially in small catchments. HyCoT reveals deficiencies in the representation of spatiotemporal patterns of gridded climate data sets, which cannot be corrected by simply rescaling the meteorological forcing fields, as often done in bias correction of climate model outputs. We recommend this framework to assess the hydrological coherence of gridded data sets to be used in large-scale hydroclimatic studies.
Perceived beauty of random texture patterns: A preference for complexity.
Friedenberg, Jay; Liby, Bruce
2016-07-01
We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.
Fiducial marker for correlating images
Miller, Lisa Marie [Rocky Point, NY; Smith, Randy J [Wading River, NY; Warren, John B [Port Jefferson, NY; Elliott, Donald [Hampton Bays, NY
2011-06-21
The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.
Laser shock wave assisted patterning on NiTi shape memory alloy surfaces
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.
2017-02-01
An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.
NASA Technical Reports Server (NTRS)
Egelkrout, D. W.; Horne, W. E.
1980-01-01
Electrostatic bonding (ESB) of thin (3 mil) Corning 7070 cover glasses to Ta2O5 AR-coated thin (2 mil) silicon wafers and solar cells is investigated. An experimental program was conducted to establish the effects of variations in pressure, voltage, temperature, time, Ta2O5 thickness, and various prebond glass treatments. Flat wafers without contact grids were used to study the basic effects for bonding to semiconductor surfaces typical of solar cells. Solar cells with three different grid patterns were used to determine additional requirements caused by the raised metallic contacts.
Strippable grid facilitates removal of grid-surfaced conical workpiece from die
NASA Technical Reports Server (NTRS)
Ruppe, E. P.
1966-01-01
Female die facilitates the removal of a sheet metal structure from a die used for explosive forming of the metal. The female die consists of a smooth conical frustum made of fiber glass with a cured epoxy-resin surface on which a molded grid pattern made of a polyurethane resin is overlaid.
Mapping Atmospheric Moisture Climatologies across the Conterminous United States
Daly, Christopher; Smith, Joseph I.; Olson, Keith V.
2015-01-01
Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree information, and station inventory files. PMID:26485026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Liang, X; Penagaricano, J
2015-06-15
Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD),more » GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply-seated and cannot be safely treated with LINAC-GRID.« less
NASA Astrophysics Data System (ADS)
Suharsono; Nurdian, S. W.; Palupi, I. R.
2016-11-01
Relocating hypocenter is a way to improve the velocity model of the subsurface. One of the method is Grid Search. To perform the distribution of the velocity in subsurface by tomography method, it is used the result of relocating hypocenter to be a reference for subsurface analysis in volcanic and major structural patterns, such as in Central Java. The main data of this study is the earthquake data recorded from 1952 to 2012 with the P wave number is 9162, the number of events is 2426 were recorded by 30 stations located in the vicinity of Central Java. Grid search method has some advantages they are: it can relocate the hypocenter more accurate because this method is dividing space lattice model into blocks, and each grid block can only be occupied by one point hypocenter. Tomography technique is done by travel time data that has had relocated with inversion pseudo bending method. Grid search relocated method show that the hypocenter's depth is shallower than before and the direction is to the south, the hypocenter distribution is modeled into the subduction zone between the continent of Eurasia with the Indo-Australian with an average angle of 14 °. The tomography results show the low velocity value is contained under volcanoes with value of -8% to -10%, then the pattern of the main fault structure in Central Java can be description by the results of tomography at high velocity that is from 8% to 10% with the direction is northwest and northeast-southwest.
Air-core grid for scattered x-ray rejection
Logan, C.M.; Lane, S.M.
1995-10-03
The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.
Air-core grid for scattered x-ray rejection
Logan, Clinton M.; Lane, Stephen M.
1995-01-01
The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.
Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui
2009-01-01
The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1992-01-01
A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.
Hiding Critical Targets in Smart Grid Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Wei; Li, Qinghua
With the integration of advanced communication technologies, the power grid is expected to greatly enhance efficiency and reliability of future power systems. However, since most electrical devices in power grid substations are connected via communication networks, cyber security of these communication networks becomes a critical issue. Real-World incidents such as Stuxnet have shown the feasibility of compromising a device in the power grid network to further launch more sophisticated attacks. To deal with security attacks of this spirit, this paper aims to hide critical targets from compromised internal nodes and hence protect them from further attacks launched by those compromisedmore » nodes. In particular, we consider substation networks and propose to add carefully-controlled dummy traffic to a substation network to make critical target nodes indistinguishable from other nodes in network traffic patterns. This paper describes the design and evaluation of such a scheme. Evaluations show that the scheme can effectively protect critical nodes with acceptable communication cost.« less
The capacity credit of grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Alsema, E. A.; van Wijk, A. J. M.; Turkenburg, W. C.
The capacity credit due photovoltaic (PV) power plants if integrated into the Netherlands grid was investigated, together with an estimate of the total allowable penetration. An hourly simulation was performed based on meteorological data from five stations and considering tilted surfaces, the current grid load pattern, and the load pattern after PV-power augmentation. The reliability of the grid was assessed in terms of a loss of load probability analysis, assuming power drops were limited to 1 GW. A projected tolerance for 2.5 GW of PV power was calculated. Peak demands were determined to be highest in winter, contrary to highest insolation levels; however, daily insolation levels coincided with daily peak demands. Combining the PV input with an equal amount of wind turbine power production was found to augment the capacity credit for both at aggregate outputs of 2-4 GW.
NASA Astrophysics Data System (ADS)
Meyer, B.; Chulliat, A.; Saltus, R.
2017-12-01
The Earth Magnetic Anomaly Grid at 2 arc min resolution version 3, EMAG2v3, combines marine and airborne trackline observations, satellite data, and magnetic observatory data to map the location, intensity, and extent of lithospheric magnetic anomalies. EMAG2v3 includes over 50 million new data points added to NCEI's Geophysical Database System (GEODAS) in recent years. The new grid relies only on observed data, and does not utilize a priori geologic structure or ocean-age information. Comparing this grid to other global magnetic anomaly compilations (e.g., EMAG2 and WDMAM), we can see that the inclusion of a priori ocean-age patterns forces an artificial linear pattern to the grid; the data-only approach allows for greater complexity in representing the evolution along oceanic spreading ridges and continental margins. EMAG2v3 also makes use of the satellite-derived lithospheric field model MF7 in order to accurately represent anomalies with wavelengths greater than 300 km and to create smooth grid merging boundaries. The heterogeneous distribution of errors in the observations used in compiling the EMAG2v3 was explored, and is reported in the final distributed grid. This grid is delivered at both 4 km continuous altitude above WGS84, as well as at sea level for all oceanic and coastal regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe; Besson, Pierre
2015-09-28
Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions andmore » away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.« less
Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.
Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph
2016-09-12
Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
Business Pattern of Distributed Energy in Electric Power System Reformation
NASA Astrophysics Data System (ADS)
Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI
2017-05-01
Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.
SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M; Tobias, R; Pankuch, M
Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less
Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation
Kubie, John L.; Fenton, André A.
2012-01-01
The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948
NASA Astrophysics Data System (ADS)
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.
2018-01-01
Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.
NASA Astrophysics Data System (ADS)
Bashir, F.; Zeng, X.; Gupta, H. V.; Hazenberg, P.
2017-12-01
Drought as an extreme event may have far reaching socio-economic impacts on agriculture based economies like Pakistan. Effective assessment of drought requires high resolution spatiotemporally continuous hydrometeorological information. For this purpose, new in-situ daily observations based gridded analyses of precipitation, maximum, minimum and mean temperature and diurnal temperature range are developed, that covers whole Pakistan on 0.01º latitude-longitude for a 54-year period (1960-2013). The number of participating meteorological observatories used in these gridded analyses is 2 to 6 times greater than any other similar product available. This data set is used to identify extreme wet and dry periods and their spatial patterns across Pakistan using Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI). Periodicity of extreme events is estimated at seasonal to decadal scales. Spatiotemporal signatures of drought incidence indicating its extent and longevity in different areas may help water resource managers and policy makers to mitigate the severity of the drought and its impact on food security through suitable adaptive techniques. Moreover, this high resolution gridded in-situ observations of precipitation and temperature is used to evaluate other coarser-resolution gridded products.
Optimization of electrostatic dual-grid beam-deflection system
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.
1972-01-01
Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.
Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes
2013-01-01
Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.
Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes
2013-01-01
Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID:23451099
Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Smith, C. Frederic
1990-01-01
Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.
Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-03-08
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.
Quantitative characterization of the small-scale fracture patterns on the plains of Venus
NASA Technical Reports Server (NTRS)
Sammis, Charles G.; Bowman, David D.
1995-01-01
The objectives of this research project were to (1) compile a comprehensive database of the occurrence of regularly spaced kilometer scale lineations on the volcanic plains of Venus in an effort to verify the effectiveness of the shear-lag model developed by Banerdt and Sammis (1992), and (2) develop a model for the formation of irregular kilometer scale lineations such as typified in the gridded plains region of Guinevere Planitia. Attached to this report is the paper 'A Tectonic Model for the Formation of the Gridded Plains on Guinevere Planitia, Venus, and Implications for the Elastic Thickness of the Lithosphere'.
Site-specific strong ground motion prediction using 2.5-D modelling
NASA Astrophysics Data System (ADS)
Narayan, J. P.
2001-08-01
An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of the site with respect to the epicentre. This adjustment is necessary since the response is computed keeping the epicentre, focus and the desired site in the same xz-plane, with the x-axis pointing in the north direction.
Grid-cell representations in mental simulation
Bellmund, Jacob LS; Deuker, Lorena; Navarro Schröder, Tobias; Doeller, Christian F
2016-01-01
Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation. DOI: http://dx.doi.org/10.7554/eLife.17089.001 PMID:27572056
NASA Astrophysics Data System (ADS)
Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan
2016-08-01
Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-10-06
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-01-01
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744
Saltiel, Philippe; d'Avella, Andrea; Tresch, Matthew C; Wyler, Kuno; Bizzi, Emilio
2017-01-01
The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results suggest two CPG components: modules, i.e., synergies; and temporal patterning, seen as a temporal grid in the cat, and a traveling wave in the frog. Animal and limb navigation have similarities. Research relating grid cells to the theta rhythm and on segmentation during navigation may relate to our temporal grid and traveling wave results. Winfree's mathematical work, combining critical phases and a traveling wave, also appears important. We conclude suggesting tracing, and imaging experiments to investigate our CPG model.
Scattering apodizer for laser beams
Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.
1985-01-01
A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.
Scattering apodizer for laser beams
Summers, M.A.; Hagen, W.F.; Boyd, R.D.
1984-01-01
A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.
Analysis of Electric Vehicle Charging Impact on the Electric Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zeming; Tian, Hao; Beshir, Mohammed J.
2016-09-24
In order to evaluate the impact of electric vehicles (EVs) on the distribution grid and assess their potential benefits to the future smart grid, it is crucial to study the EV charging patterns and the usage charging station. Though EVs are not yet widely adopted nationwide, a valuable methodology to conduct such studies is the statistical analysis of real-world charging data. This paper presents actual EV charging behavior of 64 EVs (5 brands, 8 models) from EV users and charging stations at Los Angeles Department of Water and Power for more than one year. Twenty-four-hour EV charging load curves havemore » been generated and studied for various load periods: daily, monthly, seasonally and yearly. Finally, the effect and impact of EV load on the California distribution network are evaluated at different EV penetration rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weina; Jiang, Lan; Li, Xiaowei, E-mail: lixiaowei@bit.edu.cn
We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence ofmore » the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.« less
NASA Technical Reports Server (NTRS)
Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.
1988-01-01
Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.
Xu, Hui Qiu; Huang, Yin Hua; Wu, Zhi Feng; Cheng, Jiong; Li, Cheng
2016-10-01
Based on 641 agricultural top soil samples (0-20 cm) and land use map in 2005 of Guangzhou, we used single-factor pollution indices and Pearson/Spearman correlation and partial redundancy analyses and quantified the soil contamination with As and Cd and their relationships with landscape heterogeneity at three grid scales of 2 km×2 km, 5 km×5 km, and 10 km×10 km as well as the determinant landscape heterogeneity factors at a certain grid scale. 5.3% and 7.2% of soil samples were contaminated with As and Cd, respectively. At the three scales, the agricultural soil As and Cd contamination were generally significantly correlated with parent materials' composition, river/road density and landscape patterns of several land use types, indicating the parent materials, sewage irrigation and human activities (e.g., industrial and traffic activities, and the additions of pesticides and fertilizers) were possibly the main input pathways of trace metals. Three subsets of landscape heterogeneity variables (i.e., parent materials, distance-density variables, and landscape patterns) could explain 12.7%-42.9% of the variation of soil contamination with As and Cd, of which the explanatory power increased with the grid scale and the determinant factors varied with scales. Parent materials had higher contribution to the variations of soil contamination at the 2 and 10 km grid scales, while the contributions of landscape patterns and distance-density variables generally increased with the grid scale. Adjusting the distribution of cropland and optimizing the landscape pattern of land use types are important ways to reduce soil contamination at local scales, which urban planners and decision makers should pay more attention to.
Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells
Barry, Caswell; Heys, James G.; Hasselmo, Michael E.
2012-01-01
Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. Recent experimental results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modeling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations impinging on entorhinal stellate cells, the frequency of which is modulated by acetylcholine. Here we propose that increased cholinergic signaling in response to environmental novelty triggers grid expansion by reducing the frequency of the oscillations. Furthermore, we argue that cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between expanded grid cells and other spatial inputs to the hippocampus, such as boundary vector cells. Indeed, a further source of mismatch is likely to occur between grid cells of different native scales which may expand by different relative amounts. PMID:22363266
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
Three-Dimensional Effects on Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.
2002-01-01
In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.
Optimising LAN access to grid enabled storage elements
NASA Astrophysics Data System (ADS)
Stewart, G. A.; Cowan, G. A.; Dunne, B.; Elwell, A.; Millar, A. P.
2008-07-01
When operational, the Large Hadron Collider experiments at CERN will collect tens of petabytes of physics data per year. The worldwide LHC computing grid (WLCG) will distribute this data to over two hundred Tier-1 and Tier-2 computing centres, enabling particle physicists around the globe to access the data for analysis. Although different middleware solutions exist for effective management of storage systems at collaborating institutes, the patterns of access envisaged for Tier-2s fall into two distinct categories. The first involves bulk transfer of data between different Grid storage elements using protocols such as GridFTP. This data movement will principally involve writing ESD and AOD files into Tier-2 storage. Secondly, once datasets are stored at a Tier-2, physics analysis jobs will read the data from the local SE. Such jobs require a POSIX-like interface to the storage so that individual physics events can be extracted. In this paper we consider the performance of POSIX-like access to files held in Disk Pool Manager (DPM) storage elements, a popular lightweight SRM storage manager from EGEE.
Explosive force of primacord grid forms large sheet metal parts
NASA Technical Reports Server (NTRS)
1966-01-01
Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.
Hasselmo, Michael E.
2008-01-01
This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258
An optimized top contact design for solar cell concentrators
NASA Technical Reports Server (NTRS)
Desalvo, Gregory C.; Barnett, Allen M.
1985-01-01
A new grid optimization scheme is developed for point focus solar cell concentrators which employs a separated grid and busbar concept. Ideally, grid lines act as the primary current collectors and receive all of the current from the semiconductor region. Busbars are the secondary collectors which pick up current from the grids and carry it out of the active region of the solar cell. This separation of functions leads to a multithickness metallization design, where the busbars are made larger in cross section than the grids. This enables the busbars to carry more current per unit area of shading, which is advantageous under high solar concentration where large current densities are generated. Optimized grid patterns using this multilayer concept can provide a 1.6 to 20 percent increase in output power efficiency over optimized single thickness grids.
ARPA-E: Advancing the Electric Grid
Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael
2018-06-07
The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.
NASA Astrophysics Data System (ADS)
Qu, Yue; Slootsky, Michael; Forrest, Stephen
2015-10-01
We demonstrate a method for extracting waveguided light trapped in the organic and indium tin oxide layers of bottom emission organic light emitting devices (OLEDs) using a patterned planar grid layer (sub-anode grid) between the anode and the substrate. The scattering layer consists of two transparent materials with different refractive indices on a period sufficiently large to avoid diffraction and other unwanted wavelength-dependent effects. The position of the sub-anode grid outside of the OLED active region allows complete freedom in varying its dimensions and materials from which it is made without impacting the electrical characteristics of the device itself. Full wave electromagnetic simulation is used to study the efficiency dependence on refractive indices and geometric parameters of the grid. We show the fabrication process and characterization of OLEDs with two different grids: a buried sub-anode grid consisting of two dielectric materials, and an air sub-anode grid consisting of a dielectric material and gridline voids. Using a sub-anode grid, substrate plus air modes quantum efficiency of an OLED is enhanced from (33+/-2)% to (40+/-2)%, resulting in an increase in external quantum efficiency from (14+/-1)% to (18+/-1)%, with identical electrical characteristics to that of a conventional device. By varying the thickness of the electron transport layer (ETL) of sub-anode grid OLEDs, we find that all power launched into the waveguide modes is scattered into substrate. We also demonstrate a sub-anode grid combined with a thick ETL significantly reduces surface plasmon polaritons, and results in an increase in substrate plus air modes by a >50% compared with a conventional OLED. The wavelength, viewing angle and molecular orientational independence provided by this approach make this an attractive and general solution to the problem of extracting waveguided light and reducing plasmon losses in OLEDs.
Saptio-temporal complementarity of wind and solar power in India
NASA Astrophysics Data System (ADS)
Lolla, Savita; Baidya Roy, Somnath; Chowdhury, Sourangshu
2015-04-01
Wind and solar power are likely to be a part of the solution to the climate change problem. That is why they feature prominently in the energy policies of all industrial economies including India. One of the major hindrances that is preventing an explosive growth of wind and solar energy is the issue of intermittency. This is a major problem because in a rapidly moving economy, energy production must match the patterns of energy demand. Moreover, sudden increase and decrease in energy supply may destabilize the power grids leading to disruptions in power supply. In this work we explore if the patterns of variability in wind and solar energy availability can offset each other so that a constant supply can be guaranteed. As a first step, this work focuses on seasonal-scale variability for each of the 5 regional power transmission grids in India. Communication within each grid is better than communication between grids. Hence, it is assumed that the grids can switch sources relatively easily. Wind and solar resources are estimated using the MERRA Reanalysis data for the 1979-2013 period. Solar resources are calculated with a 20% conversion efficiency. Wind resources are estimated using a 2 MW turbine power curve. Total resources are obtained by optimizing location and number of wind/solar energy farms. Preliminary results show that the southern and western grids are more appropriate for cogeneration than the other grids. Many studies on wind-solar cogeneration have focused on temporal complementarity at local scale. However, this is one of the first studies to explore spatial complementarity over regional scales. This project may help accelerate renewable energy penetration in India by identifying regional grid(s) where the renewable energy intermittency problem can be minimized.
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid
Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-01-01
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474
NASA Technical Reports Server (NTRS)
Sovey, J.
1997-01-01
Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.
Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil
2018-06-18
We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.
Population dynamics of Microtus pennsylvanicus in corridor-linked patches
Coffman, C.J.; Nichols, J.D.; Pollock, K.H.
2001-01-01
Corridors have become a key issue in the discussion of conservation planning: however, few empirical data exist on the use of corridors and their effects on population dynamics. The objective of this replicated, population level, capture-re-capture experiment on meadow voles was to estimate and compare population characteristics of voles between (1) corridor-linked fragments, (2) isolated or non-linked fragments, and (3) unfragmented areas. We conducted two field experiments involving 22600 captures of 5700 individuals. In the first, the maintained corridor study, corridors were maintained at the time of fragmentation, and in the second, the constructed corridor study, we constructed corridors between patches that had been fragmented for some period of time. We applied multistate capture-recapture models with the robust design to estimate adult movement and survival rates, population size, temporal variation in population size, recruitment, and juvenile survival rates. Movement rates increased to a greater extent on constructed corridor-linked grids than on the unfragmented or non-linked fragmented grids between the pre- and post-treatment periods. We found significant differences in local survival on the treated (corridor-linked) grids compared to survival on the fragmented and unfragmented grids between the pre- and post-treatment periods. We found no clear pattern of treatment effects on population size or recruitment in either study. However, in both studies, we found that unfragmented grids were more stable than the fragmented grids based on lower temporal variability in population size. To our knowledge, this is the first experimental study demonstrating that corridors constructed between existing fragmented populations can indeed cause increases in movement and associated changes in demography, supporting the use of constructed corridors for this purpose in conservation biology.
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
Blanc, Élodie
2017-01-26
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2009-01-01
The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.
Battery-powered, electrocuting trap for stable flies (Diptera: Muscidae).
Pickens, L G
1991-11-01
A solar-charged, battery-powered, electrocuting grid was combined with a white plywood base to make a portable, pulsed-current, pest-electrocuting device that attracted and killed stable flies, Stomoxys calcitrans (L.), outdoors. The grid was powered once every 1-2 s by a 0.016-s pulse of 60-Hz alternating current of 4 mA and 9,500 V. Power was turned off at night by a photoresistor. The trap functioned continuously for 14 d with an unrecharged 12-V, 18A/h lawn-tractor battery and killed as many as 4,000 flies per day. Solar cells were used to charge a single 12-V battery continuously that operated 12 grids for a period of 90 d. The grid did not short circuit for any length of time even during heavy rainstorms or when large insects were killed. The incorporation of moiré patterns and the utilization of the correct size, orientation, and placement of wires made the electrocuting grid itself attractive to stable flies. The traps were spaced at distances of up to 120 m from the battery and pulse circuit. The electrocuting traps were more effective than sticky traps and avoided the problems associated with chemicals. They are well suited for use around calf pens, dog kennels, or large animal shelters.
Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Élodie
This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less
High friction interactive aircraft tire-runway systems
NASA Technical Reports Server (NTRS)
Clark, S. K.
1974-01-01
The principle of utilizing geometric interaction between runway asperities and tire pattern design is discussed, and a theoretical basis is presented for substantial enhancement of frictional effects by this process. Test data confirming this is given. First order analytical expressions are given for the increased friction coefficients and for the engagement distances required. High speed friction data on a 7.00 x 8 aircraft tire is presented confirming this. Example design geometries are shown for the tire tread groove pattern, and designs and materials are discussed for the asperity grid and its attachment system.
Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam
2017-12-01
Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Regional Atmospheric Modeling of Caribbean Climate
NASA Astrophysics Data System (ADS)
Winter, A.; Gonzalez, J.; Ramirez, N.; Vásquez, R.
2002-12-01
We use the Regional Atmospheric Modeling System (RAMS) to simulate climatic pattern on the island of Puerto Rico. We hope our analyses will be used to determine the effects of climate change on other Caribbean and tropical islands. Our first experiments were to simulate the precipitation patterns on the island and the urban heat island effect. The main model configuration consists of two grids. Grid 1 covers the entire Caribbean area and has a horizontal resolution of 20 km; it was used mainly for downscaling the large-scale observational data and for boundary nudging. Grid 2 has a horizontal resolution of 5 km and covers the island of Puerto Rico and surrounding waters with the full microphysical parameterization. RAMS was configured to use a vegetation index based on AVHRR data from NOAA 12 and NOAA 14 satellites. From these images we show that the vegetation for the month of January is more abundant than in March. Mean diameters for cloud droplets and raindrops where specified as 35 micrometers and 100 micrometers, respectively. We minimized errors due to clouds by combining data into a monthly composites. We found that experimentation with the microphysical parameterization had a significant impact in the total precipitation amount over the island. RAMS robustly simulated the total accumulated precipitation for the month of April 1998 as well the dependence of the precipitation pattern on the local topography over the island of Puerto Rico. To test the urban heat island effect RAMS was configured using only infrared emission and absorption of water vapor and carbon dioxide without treating clouds or condensate. A soil model was used with ten layers 5 cm thick. The model clearly shows that because of the urban heat island effect San Juan is 5° warmer than the surrounding area. The model results were validated using an extensive network of environmental monitoring instruments from various agencies covering the island of Puerto Rico. The data was converted to a common format using the Java application and made available over the internet using Java Server Pages. Statistical analysis and neural network techniques were employed to improve resolution of sparse lower atmospheric data.
Multiblock grid generation with automatic zoning
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1995-01-01
An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.
OxfordGrid: a web interface for pairwise comparative map views.
Yang, Hongyu; Gingle, Alan R
2005-12-01
OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.
Wide-angle display-type retarding field analyzer with high energy and angular resolutions
NASA Astrophysics Data System (ADS)
Muro, Takayuki; Ohkochi, Takuo; Kato, Yukako; Izumi, Yudai; Fukami, Shun; Fujiwara, Hidenori; Matsushita, Tomohiro
2017-12-01
Deployments of spherical grids to obtain high energy and angular resolutions for retarding field analyzers (RFAs) having acceptance angles as large as or larger than ±45° were explored under the condition of using commercially available microchannel plates with effective diameters of approximately 100 mm. As a result of electron trajectory simulations, a deployment of three spherical grids with significantly different grid separations instead of conventional equidistant separations showed an energy resolving power (E/ΔE) of 3200 and an angular resolution of 0.6°. The mesh number of the wire mesh retarding grid used for the simulation was 250. An RFA constructed with the simulated design experimentally showed an E/ΔE of 1100 and an angular resolution of 1°. Using the RFA and synchrotron radiation of 900 eV, photoelectron diffraction (PED) measurements were performed for single-crystal graphite. A clear C 1s PED pattern was observed even when the differential energy of the RFA was set at 0.5 eV. Further improvement of the energy resolution was theoretically examined under the assumption of utilizing a retarding grid fabricated by making a large number of radially directed cylindrical holes through a partial spherical shell instead of using a wire mesh retarding grid. An E/ΔE of 14 500 was predicted for a hole design with a diameter of 60 μm and a depth of 100 μm. A retarding grid with this hole design and a holed area corresponding to an acceptance angle of ±7° was fabricated. An RFA constructed with this retarding grid experimentally showed an E/ΔE of 1800. Possible reasons for the experimental E/ΔE lower than the theoretical values are discussed.
Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination
NASA Astrophysics Data System (ADS)
Delica, Serafin; Mar Blanca, Carlo
2007-10-01
We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 μm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, S; Das, I; Indiana University Health Methodist Hospital, Indianapolis, IN
2014-06-01
Purpose: IMRT has become standard of care for complex treatments to optimize dose to target and spare normal tissues. However, the impact of calculation grid size is not widely known especially dose distribution, tumor control probability (TCP) and normal tissue complication probability (NTCP) which is investigated in this study. Methods: Ten head and neck IMRT patients treated with 6 MV photons were chosen for this study. Using Eclipse TPS, treatment plans were generated for different grid sizes in the range 1–5 mm for the same optimization criterion with specific dose-volume constraints. The dose volume histogram (DVH) was calculated for allmore » IMRT plans and dosimetric data were compared. ICRU-83 dose points such as D2%, D50%, D98%, as well as the homogeneity and conformity indices (HI, CI) were calculated. In addition, TCP and NTCP were calculated from DVH data. Results: The PTV mean dose and TCP decreases with increasing grid size with an average decrease in mean dose by 2% and TCP by 3% respectively. Increasing grid size from 1–5 mm grid size, the average mean dose and NTCP for left parotid was increased by 6.0% and 8.0% respectively. Similar patterns were observed for other OARs such as cochlea, parotids and spinal cord. The HI increases up to 60% and CI decreases on average by 3.5% between 1 and 5 mm grid that resulted in decreased TCP and increased NTCP values. The number of points meeting the gamma criteria of ±3% dose difference and ±3mm DTA was higher with a 1 mm on average (97.2%) than with a 5 mm grid (91.3%). Conclusion: A smaller calculation grid provides superior dosimetry with improved TCP and reduced NTCP values. The effect is more pronounced for smaller OARs. Thus, the smallest possible grid size should be used for accurate dose calculation especially in H and N planning.« less
Esliger, Dale W; Sherar, Lauren B; Muhajarine, Nazeem
2012-07-26
To determine whether, and to what extent, a relation exists between neighbourhood design and children's physical activity and sedentary behaviours in Saskatoon. Three neighbourhood designs were assessed: 1) core neighbourhoods developed before 1930 that follow a grid pattern, 2) fractured-grid pattern neighbourhoods that were developed between the 1930s and mid-1960s, and 3) curvilinear-pattern neighbourhoods that were developed between the mid-1960s through to 1998. Children aged 10-14 years (N=455; mean age 11.7 years), grouped by the neighbourhoods they resided in, had their physical activity and sedentary behaviour objectively measured by accelerometry for 7 days. ANCOVA and MANCOVA (multivariate analysis of covariance) models were used to assess group differences (p<0.05). Group differences were apparent on weekdays but not on weekend days. When age, sex and family income had been controlled for, children living in fractured-grid neighbourhoods had, on average, 83 and 55 fewer accelerometer counts per minute on weekdays than the children in the core and curvilinear-pattern neighbourhoods, respectively. Further analyses showed that the children in the fractured-grid neighbourhoods accumulated 15 and 9 fewer minutes of moderate-to-vigorous physical activity per day and had a greater time spent in sedentary behaviour (23 and 17 minutes) than those in core and curvilinear-pattern neighbourhoods, respectively. These data suggest that in Saskatoon there is a relation between neighbourhood design and children's physical activity and sedentary behaviours. Further work is needed to tease out which features of the built environments have the greatest impact on these important lifestyle behaviours. This information, offered in the context of ongoing development of neighbourhoods, as we see in Saskatoon, is critical to an evidence-informed approach to urban development and planning.
NASA Astrophysics Data System (ADS)
Srikantha, Pirathayini
Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these serve to improve the resiliency of the future smart grid. It is demonstrated both theoretically and practically that the techniques proposed in this thesis are highly scalable and robust with superior convergence characteristics. These distributed and decentralized algorithms allow individual actuating nodes to execute self-healing and adaptive actions when exposed to changes in the grid so that the optimal operating state in the grid is maintained consistently.
The functional micro-organization of grid cells revealed by cellular-resolution imaging
Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.
2015-01-01
Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986
The effects of gypsy moth defoliation on soil water chemistry
Thomas R., Jr. Eagle; Ray R., Jr. Hicks
1993-01-01
Twenty-eight plots were established in oak stands along the leading edge of gypsy moth migration into north-central West Virginia. Plots were arranged in a 3-chain square grid pattern in areas of varying aspect, percent slope, elevation, site index and species composition. Soft water, gypsy moth frass and leaf fragments generated by larval feeding were collected weekly...
Stress Conflation: Evidence from Sooke.
ERIC Educational Resources Information Center
Davis, Stuart
A comparison of the application of two current theories of stress to a particular stress pattern found in the Salish language Sooke is presented. Hammond's (1986) grid-like tree structure representation of stress is compared with Halle and Vergnaud's (1986) tree-like grid structure. Examples in the Australian language Maranungku show that, in…
Grid Convergence for Turbulent Flows(Invited)
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel
2015-01-01
A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
Lamichhane, Babu Ram; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Dhakal, Maheshwar; Acharya, Krishna Prasad; Pradhan, Narendra Man Babu; Smith, James L. David; Malla, Sabita; Thakuri, Bishnu Singh; Yackulic, Charles B.
2018-01-01
Understanding how wide-ranging animals use landscapes in which human use is highly heterogeneous is important for determining patterns of human–wildlife conflict and designing mitigation strategies. Here, we show how biological sign surveys in forested components of a human-dominated landscape can be combined with human interviews in agricultural portions of a landscape to provide a full picture of seasonal use of different landscape components by wide-ranging animals and resulting human–wildlife conflict. We selected Asian elephants (Elephas maximus) in Nepal to illustrate this approach. Asian elephants are threatened throughout their geographic range, and there are large gaps in our understanding of their landscape-scale habitat use. We identified all potential elephant habitat in Nepal and divided the potential habitat into sampling units based on a 10 km by 10 km grid. Forested areas within grids were surveyed for signs of elephant use, and local villagers were interviewed regarding elephant use of agricultural areas and instances of conflict. Data were analyzed using single-season and multi-season (dynamic) occupancy models. A single-season occupancy model applied to data from 139 partially or wholly forested grid cells estimated that 0.57 of grid cells were used by elephants. Dynamic occupancy models fit to data from interviews across 158 grid cells estimated that monthly use of non-forested, human-dominated areas over the preceding year varied between 0.43 and 0.82 with a minimum in February and maximum in October. Seasonal patterns of crop raiding by elephants coincided with monthly elephant use of human-dominated areas, and serious instances of human–wildlife conflict were common. Efforts to mitigate human–elephant conflict in Nepal are likely to be most effective if they are concentrated during August through December when elephant use of human-dominated landscapes and human–elephant conflict are most common.
The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian
2017-04-01
The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.
Estoque, Ronald C; Murayama, Yuji; Myint, Soe W
2017-01-15
Due to its adverse impacts on urban ecological environment and the overall livability of cities, the urban heat island (UHI) phenomenon has become a major research focus in various interrelated fields, including urban climatology, urban ecology, urban planning, and urban geography. This study sought to examine the relationship between land surface temperature (LST) and the abundance and spatial pattern of impervious surface and green space in the metropolitan areas of Bangkok (Thailand), Jakarta (Indonesia), and Manila (Philippines). Landsat-8 OLI/TIRS data and various geospatial approaches, including urban-rural gradient, multiresolution grid-based, and spatial metrics-based techniques, were used to facilitate the analysis. We found a significant strong correlation between mean LST and the density of impervious surface (positive) and green space (negative) along the urban-rural gradients of the three cities, depicting a typical UHI profile. The correlation of impervious surface density with mean LST tends to increase in larger grids, whereas the correlation of green space density with mean LST tends to increase in smaller grids, indicating a stronger influence of impervious surface and green space on the variability of LST in larger and smaller areas, respectively. The size, shape complexity, and aggregation of the patches of impervious surface and green space also had significant relationships with mean LST, though aggregation had the most consistent strong correlation. On average, the mean LST of impervious surface is about 3°C higher than that of green space, highlighting the important role of green spaces in mitigating UHI effects, an important urban ecosystem service. We recommend that the density and spatial pattern of urban impervious surfaces and green spaces be considered in landscape and urban planning so that urban areas and cities can have healthier and more comfortable living urban environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Organic electronics for high-resolution electrocorticography of the human brain.
Khodagholy, Dion; Gelinas, Jennifer N; Zhao, Zifang; Yeh, Malcolm; Long, Michael; Greenlee, Jeremy D; Doyle, Werner; Devinsky, Orrin; Buzsáki, György
2016-11-01
Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface. We demonstrate the feasibility and safety of intraoperative recording with NeuroGrids in anesthetized and awake subjects. Highly localized and propagating physiological and pathological LFP patterns were recorded, and correlated neural firing provided evidence about their local generation. Application of NeuroGrids to brain disorders, such as epilepsy, may improve diagnostic precision and therapeutic outcomes while reducing complications associated with invasive electrodes conventionally used to acquire high-resolution and spiking data.
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.
Defect inspection of periodic patterns with low-order distortions
NASA Astrophysics Data System (ADS)
Khalaj, Babak H.; Aghajan, Hamid K.; Paulraj, Arogyaswami; Kailath, Thomas
1994-03-01
A self-reliance technique is developed for detecting defects in repeated pattern wafers and masks with low-order distortions. If the patterns are located on a perfect rectangular grid, it is possible to estimate the period of repeated patterns in both directions, and then produce a defect-free reference image for making comparison with the actual image. But in some applications, the repeated patterns are somehow shifted from their desired position on a rectangular grid, and the aforementioned algorithm cannot be directly applied. In these situations, to produce a defect-free reference image and locate the defected cells, it is necessary to estimate the amount of misalignment of each cell beforehand. The proposed technique first estimates the misalignment of repeated patterns in each row and column. After estimating the location of all cells in the image, a defect-free reference image is generated by averaging over all the cells and is compared with the input image to localize the possible defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H; Kong, V; Jin, J
Purpose: A synchronized moving grid (SMOG) has been proposed to reduce scatter and lag artifacts in cone beam computed tomography (CBCT). However, information is missing in each projection because certain areas are blocked by the grid. A previous solution to this issue is acquiring 2 complimentary projections at each position, which increases scanning time. This study reports our first Result using an inter-projection sensor fusion (IPSF) method to estimate missing projection in our prototype SMOG-based CBCT system. Methods: An in-house SMOG assembling with a 1:1 grid of 3 mm gap has been installed in a CBCT benchtop. The grid movesmore » back and forth in a 3-mm amplitude and up-to 20-Hz frequency. A control program in LabView synchronizes the grid motion with the platform rotation and x-ray firing so that the grid patterns for any two neighboring projections are complimentary. A Catphan was scanned with 360 projections. After scatter correction, the IPSF algorithm was applied to estimate missing signal for each projection using the information from the 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct CBCT images. The CBCTs were compared to those reconstructed using normal projections without applying the SMOG system. Results: The SMOG-IPSF method may reduce image dose by half due to the blocked radiation by the grid. The method almost completely removed scatter related artifacts, such as the cupping artifacts. The evaluation of line pair patterns in the CatPhan suggested that the spatial resolution degradation was minimal. Conclusion: The SMOG-IPSF is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less
Feasibility of a simple method of hybrid collimation for megavoltage grid therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almendral, Pedro; Mancha, Pedro J.; Roberto, Daniel
2013-05-15
Purpose: Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. Methods: The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equallymore » spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. Results: The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. Conclusions: The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.« less
Feasibility of a simple method of hybrid collimation for megavoltage grid therapy.
Almendral, Pedro; Mancha, Pedro J; Roberto, Daniel
2013-05-01
Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equally spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.
Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing.
Patorski, Krzysztof; Trusiak, Maciej; Tkaczyk, Tomasz
2014-04-21
We introduce a fast, simple, adaptive and experimentally robust method for reconstructing background-rejected optically-sectioned images using two-shot structured illumination microscopy. Our innovative data demodulation method needs two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement between two frames is not required. Upon frames subtraction the input pattern with increased grid modulation is obtained. The first demodulation stage comprises two-dimensional data processing based on the empirical mode decomposition for the object spatial frequency selection (noise reduction and bias term removal). The second stage consists in calculating high contrast image using the two-dimensional spiral Hilbert transform. Our algorithm effectiveness is compared with the results calculated for the same input data using structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. Results of our approach compare very favorably with SIM and HiLo techniques.
NASA Technical Reports Server (NTRS)
Kumar, M.
1976-01-01
The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.
Angular and Polarization Response of Multimode Sensors with Resistive-Grid Absorbers
NASA Technical Reports Server (NTRS)
Kusaka, Akito; Wollack, Edward J.; Stevenson, Thomas R.
2014-01-01
High sensitivity receiver systems with near ideal polarization sensitivity are highly desirable for development of millimeter and sub-millimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this paper, we examine the angular- and polarization- dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of eta/2, where eta is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of eta/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to < or approx. 60deg. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this paper offer key tools in the design consideration of the instruments using the multimoded polarimeters.
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Suarez, Max; Sawyer, William; Govindaraju, Ravi C.
1999-01-01
The results obtained with the variable resolution stretched grid (SG) GEOS GCM (Goddard Earth Observing System General Circulation Models) are discussed, with the emphasis on the regional down-scaling effects and their dependence on the stretched grid design and parameters. A variable resolution SG-GCM and SG-DAS using a global stretched grid with fine resolution over an area of interest, is a viable new approach to REGIONAL and subregional CLIMATE studies and applications. The stretched grid approach is an ideal tool for representing regional to global scale interactions. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The GEOS SG-GCM is used for simulations of the anomalous U.S. climate events of 1988 drought and 1993 flood, with enhanced regional resolution. The height low level jet, precipitation and other diagnostic patterns are successfully simulated and show the efficient down-scaling over the area of interest the U.S. An imitation of the nested grid approach is performed using the developed SG-DAS (Data Assimilation System) that incorporates the SG-GCM. The SG-DAS is run with withholding data over the area of interest. The design immitates the nested grid framework with boundary conditions provided from analyses. No boundary condition buffer is needed for the case due to the global domain of integration used for the SG-GCM and SG-DAS. The experiments based on the newly developed versions of the GEOS SG-GCM and SG-DAS, with finer 0.5 degree (and higher) regional resolution, are briefly discussed. The major aspects of parallelization of the SG-GCM code are outlined. The KEY OBJECTIVES of the study are: 1) obtaining an efficient DOWN-SCALING over the area of interest with fine and very fine resolution; 2) providing CONSISTENT interactions between regional and global scales including the consistent representation of regional ENERGY and WATER BALANCES; 3) providing a high computational efficiency for future SG-GCM and SG-DAS versions using PARALLEL codes.
Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem
2016-06-27
While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.
NASA Astrophysics Data System (ADS)
Dran, Martín; Arbó, Diego G.
2018-05-01
We analyze the doubly differential electron momentum distribution in above-threshold ionization of atomic hydrogen by a linearly polarized mid-infrared laser pulse. We reproduce side rings in the momentum distribution with forward-backward symmetry previously observed by Lemell et al. [Phys. Rev. A 87, 013421 (2013), 10.1103/PhysRevA.87.013421], whose origin, as far as we know, has not been explained so far. By developing a Fourier theory of moiré patterns, we demonstrate that such structures stem from the interplay between intra- and intercycle interference patterns which work as two separate grids in the two-dimensional momentum domain. We use a three-dimensional (3D) description based on the saddle-point approximation (SPA) to unravel the nature of these structures. When the periods of the two grids (intra- and intercycle) are similar, principal moiré patterns arise symmetrically as concentric rings in the forward and backward directions at high electron kinetic energy. Higher order moiré patterns are observed and characterized when the period of one grid is multiple of the other. We find a scale law for the position (in momentum space) of the center of the moiré rings in the tunneling regime. We verify the SPA predictions by comparison with time-dependent distorted-wave strong-field approximation calculations and the solutions of the full 3D time-dependent Schrödinger equation.
Peng, Valery; Suchowerska, Natalka; Rogers, Linda; Claridge Mackonis, Elizabeth; Oakes, Samantha; McKenzie, David R
2017-08-01
In microbeam radiotherapy (MRT), parallel arrays of high-intensity synchrotron x-ray beams achieve normal tissue sparing without compromising tumor control. Grid-therapy using clinical linacs has spatial modulation on a larger scale and achieves promising results for palliative treatments of bulky tumors. The availability of high definition multileaf collimators (HDMLCs) with 2.5 mm leaves provides an opportunity for grid-therapy to more closely approach MRT. However, challenges to the wider implementation of grid-therapy remain because spatial modulation of the target volume runs counter to current radiotherapy practice and mechanisms for the beneficial effects of MRT are not fully understood. Without more knowledge of cell dose responses, a quantitative basis for planning treatments is difficult. The aim of this study is to determine if therapeutic benefits of MRT can be achieved using a linac with HDMLCs and if so, to develop a predictive model to support treatment planning. HD120-MLCs of a Varian Novalis TX TM were used to generate grid patterns of 2.5 and 5.0 mm spacing, which were characterized dosimetrically using Gafchromic TM EBT3 film. Clonogenic survival of normal (HUVEC) and cancer (NCI-H460, HCC-1954) cell lines following irradiation under the grid and open fields using a 6 MV photon beam were compared in-vitro for the same average dose. Relative to an open field, survival of normal cells in a 2.5 mm striped field was the same, while the survival of both cancer cell lines was significantly lower. A mathematical model was developed to incorporate dose gradients of the spatial modulation into the standard linear quadratic model. Our new bystander extended LQ model assumes spatial gradients drive the diffusion of soluble factors that influence survival through bystander effects, successfully predicting the experimental results that show an increased therapeutic ratio. Our results challenge conventional radiotherapy practice and propose that additional gain can be realized by prescribing spatially modulated treatments to harness the bystander effect.
Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong
2017-06-14
Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.
Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose
2017-08-01
Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
Correlations and Functional Connections in a Population of Grid Cells
Roudi, Yasser
2015-01-01
We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908
3D face analysis by using Mesh-LBP feature
NASA Astrophysics Data System (ADS)
Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong
2017-11-01
Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.
The functional micro-organization of grid cells revealed by cellular-resolution imaging.
Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A
2014-12-03
Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.
High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography.
Hu, Junqiang; Gondarenko, Alexander A; Dang, Alex P; Bashour, Keenan T; O'Connor, Roddy S; Lee, Sunwoo; Liapis, Anastasia; Ghassemi, Saba; Milone, Michael C; Sheetz, Michael P; Dustin, Michael L; Kam, Lance C; Hone, James C
2016-04-13
We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 μm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 μm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.
Optimization of solar cell contacts by system cost-per-watt minimization
NASA Technical Reports Server (NTRS)
Redfield, D.
1977-01-01
New, and considerably altered, optimum dimensions for solar-cell metallization patterns are found using the recently developed procedure whose optimization criterion is the minimum cost-per-watt effect on the entire photovoltaic system. It is also found that the optimum shadow fraction by the fine grid is independent of metal cost and resistivity as well as cell size. The optimum thickness of the fine grid metal depends on all these factors, and in familiar cases it should be appreciably greater than that found by less complete analyses. The optimum bus bar thickness is much greater than those generally used. The cost-per-watt penalty due to the need for increased amounts of metal per unit area on larger cells is determined quantitatively and thereby provides a criterion for the minimum benefits that must be obtained in other process steps to make larger cells cost effective.
Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome
2009-01-01
We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.
NASA Astrophysics Data System (ADS)
Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome
2009-05-01
We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1989-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1987-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Xue, Wen; Chen, Ju; Jiang, Ao-yu
2018-01-01
The corrosion development of the reinforcement and shear stud connectors in the cracked steel–concrete composite beams under the salt-fog wet–dry cycles is presented in this investigation. Seven identical composite beams with load-induced concrete cracks were exposed to an aggressive chloride environment. The reinforcement and shear connectors were retrieved after specimens underwent a specified number of wet–dry cycles to obtain the corrosion pattern and the cross-section loss at different exposure times and their evolutions. The crack map, the corrosion pattern and the cross-section loss were measured and presented. Based on the experimental results, the influence of crack characteristics, including crack widths, orientations and positions on the corrosion rate and distribution, were accessed. Moreover, the effects of the connecting weldments on the corrosion initiations and patterns were analyzed. It was shown that the corrosion rate would increase with the number of wet–dry cycles. The characteristics of load-induced cracks could have different influences on the steel grids and shear stud connectors. The corrosion tended to initiate from the connecting weldments, due to the potential difference with the parent steel and the aggressive exposure environment, leading to a preferential weldment attack. PMID:29565836
Convection and Overshoot in Models of Doradus and Scuti Stars
Lovekin, Catherine C.; Guzik, Joyce Ann
2017-10-27
We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. Wemore » also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.« less
Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
NASA Astrophysics Data System (ADS)
Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian
2015-09-01
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.
Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian
2015-01-01
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated. PMID:26333520
Convection and Overshoot in Models of Doradus and Scuti Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovekin, Catherine C.; Guzik, Joyce Ann
We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. Wemore » also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.« less
Convection and Overshoot in Models of γ Doradus and δ Scuti Stars
NASA Astrophysics Data System (ADS)
Lovekin, C. C.; Guzik, J. A.
2017-11-01
We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. We have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. As a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.
Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics
NASA Technical Reports Server (NTRS)
Anderson, John R.; Sengupta, Anita; Brophy, John R.
2004-01-01
The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.
Culture and Community in Online Courses: A Grid and Group Explanation
ERIC Educational Resources Information Center
Case, Stephoni Lynn
2010-01-01
Scope and method of study: Using Mary Douglas' (1982) Grid and Group Typology, the purpose of this case study was to explain the distinctive patterns of student engagement, communication and community in the culture of four online courses. The participants were four online instructors and four of their students who completed online courses at…
Bouda, Martin; Caplan, Joshua S.; Saiers, James E.
2016-01-01
Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not characterize the scaling of our digitizations well: the scaling exponent was a function of scale. Our findings serve as a caution against applying FD under the assumption of statistical self-similarity without rigorously evaluating it first. PMID:26925073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub
The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin
2015-03-01
The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.
Grid pattern of nanothick microgel network.
Chen, Guoping; Kawazoe, Naoki; Fan, Yujiang; Ito, Yoshihiro; Tateishi, Tetsuya
2007-05-22
A novel grid pattern of two kinds of nanothick microgels was developed by alternate patterning using photolithography. At first, 100-microm-wide nanothick PAAm microgel stripes were grafted on a polystyrene surface by UV irradiation of the photoreactive azidobenzoyl-derivatized polyallylamine-coated surface through a photomask with 100-microm-wide stripes. Then, a second set of 100-microm-wide nanothick PAAc microgel stripes were grafted across the PAAm-grated polystyrene surface by UV irradiation of the photoreactive azidophenyl-derivatized poly(acrylic acid)-coated surface through a photomask placed perpendicularly to the first set of PAAm microgel stripes. The PAAc microgel stripe pattern was formed over the PAAm microgel stripe pattern. The cross angle of the two microgel stripes could be controlled by adjusting the position of the photomask when the second microgel pattern was prepared. Swelling and shrinking of the microgels were investigated by scanning probe microscopy (SPM) in an aqueous solution. SPM observation indicated that the thickness of the gel network was 100 to 500 nm. The regions containing PAAm, PAAc, and the PAAc-PAAm overlapping microgels showed different swelling and shrinking properties when the pH was changed. The PAAm microgel swelled at low pH and shrank at high pH whereas the PAAc microgel swelled at high pH and shrank at low pH. However, the PAAc-PAAm overlapping microgel did not change as significantly as did the two microgels, indicating that the swelling and shrinking of the two gels was partially offset. The pH-induced structural change was repeatedly reversible. The novel grid pattern of nanothick microgels will find applications in various fields such as smart actuators, artificial muscles, sensors, and drug delivery systems as well as in tissue engineering and so forth.
Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells
Si, Bailu; Romani, Sandro; Tsodyks, Misha
2014-01-01
The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. PMID:24743341
Zhou, Qi Tony; Tong, Zhenbo; Tang, Patricia; Citterio, Mauro; Yang, Runyu; Chan, Hak-Kim
2013-04-01
The objective of this study is to investigate the effect of device design of the Aerolizer(®) on the aerosolization of a carrier-based dry powder inhaler formulation (Foradile(®)). The Aerolizer was modified by reducing the air inlet size and mouthpiece length to 1/3 of the original dimensions, or by increasing the grid voidage. Aerosolization of the powder formulation was assessed on a multi-stage liquid impinger at air flow rates of 30, 60, and 100 L/min. Coupled CFD-DEM simulations were performed to investigate the air flow pattern and particle impaction. There was no significant difference in the aerosolization behavior between the original and 1/3 mouthpiece length devices. Significant increases in FPF total and FPF emitted were demonstrated when the inlet size was reduced, and the results were explained by the increases in air velocity and turbulence from the CFD analysis. No significant differences were shown in FPF total and FPF emitted when the grid voidage was increased, but more drugs were found to deposit in induction port and to a lesser extent, the mouthpiece. This was supported by the CFD-DEM analysis which showed the particle-device collisions mainly occurred in the inhaler chamber, and the cross-grid design increased the particle-device collisions on both mouthpiece and induction port. The air inlet size and grid structure of the Aerolizer(®) were found to impact significantly on the aerosolization of the carrier-based powder.
Using AUVs and Sources of Opportunity to Evaluate Acoustic Propagation
1999-09-30
pattern simulated that of a typical minefield survey. The AUV followed a lawn mower pattern with a constant 3-knot speed inside a 500-m square grid box...same lawn mower pattern as used in the previous experiment, except it only surfaced at the east turns. Thirdly, the MFSK modem signal was only
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
Compensation of long-range process effects on photomasks by design data correction
NASA Astrophysics Data System (ADS)
Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny
2002-12-01
CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.
Variability of 137Cs inventory at a reference site in west-central Iran.
Bazshoushtari, Nasim; Ayoubi, Shamsollah; Abdi, Mohammad Reza; Mohammadi, Mohammad
2016-12-01
137 Cs technique has been widely used for the evaluation rates and patterns of soil erosion and deposition. This technique requires an accurate estimate of the values of 137 Cs inventory at the reference site. This study was conducted to evaluate the variability of the inventory of 137 Cs regarding to the sampling program including sample size, distance and sampling method at a reference site located in vicinity of Fereydan district in Isfahan province, west-central Iran. Two 3 × 8 grids were established comprising large grid (35 m length and 8 m width), and small grid (24 m length and 6 m width). At each grid intersection two soil samples were collected from 0 to 15 cm and 15-30 cm depths, totally 96 soil samples from 48 sampling points. Coefficients of variation for 137 Cs inventory in the soil samples was relatively low (CV = 15%), and the sampling distance and methods used did not significantly affect the 137 Cs inventories across the studied reference site. To obtain a satisfactory estimate of the mean 137 Cs activity in the reference sites, particularly those located in the semiarid regions, it is recommended to collect at least four samples along in a grid pattern 3 m apart. Copyright © 2016 Elsevier Ltd. All rights reserved.
Personal Visual Aids for Aircrew.
1981-06-01
oedema or areas of pigmentation or depigmentation, such as central serous retinopathy or focal choroiditis of differing aetiology. Heat induced lenticular ...Fig 11). a. Normal grid pattern b. Pincushion distortion c. Astigmatic distortion d. Para central scotoma Fig 11. Amsler grids illustrating visual...ML). Ophtalmologie. Maladie yeux. Astigmatisme . Corne. Prothbse. Pilotes. Vision. Lunettes. 46. A propos du vol et de la correction des presbytes
Pressurized security barrier and alarm system
Carver, Don W.
1995-01-01
A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder's making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed.
Pressurized security barrier and alarm system
Carver, D.W.
1995-04-11
A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder`s making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed. 7 figures.
Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change
Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.
2015-01-01
Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956
NASA Technical Reports Server (NTRS)
Swinbank, Richard; Purser, James
2006-01-01
Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.
NASA Astrophysics Data System (ADS)
Oriani, F.; Stisen, S.
2016-12-01
Rainfall amount is one of the most sensitive inputs to distributed hydrological models. Its spatial representation is of primary importance to correctly study the uncertainty of basin recharge and its propagation to the surface and underground circulation. We consider here the 10-km-grid rainfall product provided by the Danish Meteorological Institute as input to the National Water Resources Model of Denmark. Due to a drastic reduction in the rain gauge network in recent years (from approximately 500 stations in the period 1996-2006, to 250 in the period 2007-2014), the grid rainfall product, based on the interpolation of these data, is much less reliable. Consequently, the related hydrological model shows a significantly lower prediction power. To give a better estimation of spatial rainfall at the grid points far from ground measurements, we use the direct sampling technique (DS) [1], belonging to the family of multiple-point geostatistics. DS, already applied to rainfall and spatial variable estimation [2, 3], simulates a grid value by sampling a training data set where a similar data neighborhood occurs. In this way, complex statistical relations are preserved by generating similar spatial patterns to the ones found in the training data set. Using the reliable grid product from the period 1996-2006 as training data set, we first test the technique by simulating part of this data set, then we apply the technique to the grid product of the period 2007-2014, and subsequently analyzing the uncertainty propagation to the hydrological model. We show that DS can improve the reliability of the rainfall product by generating more realistic rainfall patterns, with a significant repercussion on the hydrological model. The reduction of rain gauge networks is a global phenomenon which has huge implications for hydrological model performance and the uncertainty assessment of water resources. Therefore, the presented methodology can potentially be used in many regions where historical records can act as training data. [1] G.Mariethoz et al. (2010), Water Resour. Res., 10.1029/2008WR007621.[2] F. Oriani et al. (2014), Hydrol. Earth Syst. Sc., 10.5194/hessd-11-3213-2014. [3] G. Mariethoz et al. (2012), Water Resour. Res., 10.1029/2012WR012115.
Simple Analytic Model for Nanowire Array Polarizers
NASA Astrophysics Data System (ADS)
Pelletier, Vincent; Asakawa, Koji; Wu, Mingshaw; Register, Richard; Chaikin, Paul
2006-03-01
Cylinder-forming diblock copolymers can be used to pattern nanowire arrays on a transparent substrate to be used as a polarizer, as described by Koji Asakawa in a complementary talk at this meeting. With a 33nm period, these wire arrays can polarize UV radiation, which is of great interest in lithography, astronomy and other areas. One can gain an analytical understanding of such an array made of non-perfectly conducting material of finite thickness using a model with an appropriately averaged complex dielectric function in an infinite wavelength approximation. This analysis predicts that the grid can go from an E-polarizer to an H-polarizer as the wavelength decreases below a cross-over wavelength, and experimental data confirm this cross-over. The overall response of the polarizing grid depends primarily on the plasma frequency of the metal used and the volume fraction of the nanowires, as well as the grid thickness. A numerical approach is also used to confirm the analytical model and assess departure from infinite wavelength effects. For our array dimensions, the polarization is only slightly different from this approximation for wavelengths down to 150nm.
Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation
NASA Technical Reports Server (NTRS)
Woo, D. S.
1982-01-01
The procedure used to generate MEBES masks and produce test wafers from the 10X Mann 1600 Pattern Generator Tape using existing CAD utility programs and the MEBES machine in the RCA Solid State Technology Center are described. The test vehicle used is the MSFC-designed SC102 Solar House Timing Circuit. When transforming the Mann 1600 tapes into MEBES tapes, extreme care is required in order to obtain accurate minimum linewidths when working with two different coding systems because the minimum grid sizes may be different for the two systems. The minimum grid sizes are 0.025 mil for MSFC Mann 1600 and 0.02 mil for MEBES. Some snapping to the next grid is therefore inevitable, and the results of this snapping effect are significant when submicron lines are present. However, no problem was noticed in the SC102 circuit because its minimum linewidth is 0.3 mil (7.6 microns). MEBES masks were fabricated and wafers were processed using the silicon-gate CMOS/SOS and aluminum-gate COS/MOS processing.
Mapping air quality zones for coastal urban centers.
Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari
2017-05-01
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates. A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land-sea breeze effects that can be used to manage local air quality in areas of similar microclimates.
Femtosecond laser patterning of biological materials
NASA Astrophysics Data System (ADS)
Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.
2011-03-01
This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.
Diffraction Analysis of Antennas With Mesh Surfaces
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya
1987-01-01
Strip-aperture model replaces wire-grid model. Far-field radiation pattern of antenna with mesh reflector calculated more accurately with new strip-aperture model than with wire-grid model of reflector surface. More adaptable than wire-grid model to variety of practical configurations and decidedly superior for reflectors in which mesh-cell width exceeds mesh thickness. Satisfies reciprocity theorem. Applied where mesh cells are no larger than tenth of wavelength. Small cell size permits use of simplifying approximation that reflector-surface current induced by electromagnetic field is present even in apertures. Approximation useful in calculating far field.
Asano, Kosuke; Yokoyama, Satoshi; Kemmochi, Atsushi; Yatagai, Toyohiko
2014-05-01
A wire grid polarizer comprised of chromium oxide is designed for a micro-lithography system using an ArF excimer laser. Optical properties for some material candidates are calculated using a rigorous coupled-wave analysis. The chromium oxide wire grid polarizer with a 90 nm period is fabricated by a double-patterning technique using KrF lithography and dry etching. The extinction ratio of the grating is greater than 20 dB (100:1) at a wavelength of 193 nm. Differences between the calculated and experimental results are discussed.
The abrupt development of adult-like grid cell firing in the medial entorhinal cortex
Wills, Thomas J.; Barry, Caswell; Cacucci, Francesca
2012-01-01
Understanding the development of the neural circuits subserving specific cognitive functions such as navigation remains a central problem in neuroscience. Here, we characterize the development of grid cells in the medial entorhinal cortex, which, by nature of their regularly spaced firing fields, are thought to provide a distance metric to the hippocampal neural representation of space. Grid cells emerge at the time of weaning in the rat, at around 3 weeks of age. We investigated whether grid cells in young rats are functionally equivalent to those observed in the adult as soon as they appear, or if instead they follow a gradual developmental trajectory. We find that, from the very youngest ages at which reproducible grid firing is observed (postnatal day 19): grid cells display adult-like firing fields that tessellate to form a coherent map of the local environment; that this map is universal, maintaining its internal structure across different environments; and that grid cells in young rats, as in adults, also encode a representation of direction and speed. To further investigate the developmental processes leading up to the appearance of grid cells, we present data from individual medial entorhinal cortex cells recorded across more than 1 day, spanning the period before and after the grid firing pattern emerged. We find that increasing spatial stability of firing was correlated with increasing gridness. PMID:22557949
NASA Astrophysics Data System (ADS)
Lee, Ming-Wei; Chen, Yi-Chun
2014-02-01
In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally.
Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2010-01-01
The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.
The neglected nonlocal effects of deforestation
NASA Astrophysics Data System (ADS)
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation and the more realistic pattern. Globally averaged, the deforestation-induced warming of the local effects is counteracted by the nonlocal effects, which are about three times as strong as the local effects (up to 0.1K local warming versus -0.3K nonlocal cooling). Thus, the nonlocal effects are more cooling than the local effects are warming, and this is valid not only for idealized simulations of large-scale deforestation, but also for a more realistic deforestation scenario. We conclude that the local effects of deforestation only yield an incomplete picture of the total climate effects by biogeophysical pathways. While the local effects capture the direct climatic response at the site of deforestation, the nonlocal effects have to be included if the biogeophysical effects of deforestation are considered for an implementation in climate policies.
Ackermann, Roland; Kammel, Robert; Merker, Marina; Kamm, Andreas; Tünnermann, Andreas; Nolte, Stefan
2013-01-01
Optical side-effects of fs-laser treatment in refractive surgery are investigated by means of a model eye. We show that rainbow glare is the predominant perturbation, which can be avoided by randomly distributing laser spots within the lens. For corneal applications such as fs-LASIK, even a regular grid with spot-to-spot distances of ~3 µm is sufficient to minimize rainbow glare perception. Contrast sensitivity is affected, when the lens is treated with large 3D-patterns. PMID:23413236
Polcicová, Gabriela; Tino, Peter
2004-01-01
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.
Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Kleb, Bill
2007-01-01
Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.
Patterned microstructures formed with MeV Au implantation in Si(1 0 0)
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.
2006-09-01
Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.
NASA Astrophysics Data System (ADS)
Harris, Chioke B.; Webber, Michael E.
2012-09-01
With the emerging nationwide availability of battery electric vehicles (BEVs) at prices attainable for many consumers, electric utilities, system operators and researchers have been investigating the impact of this new source of energy demand. The presence of BEVs on the electric grid might offer benefits equivalent to dedicated utility-scale energy storage systems by leveraging vehicles’ grid-connected energy storage through vehicle-to-grid (V2G) enabled infrastructure. It is, however, unclear whether BEVs will be available to provide needed grid services when those services are in highest demand. In this work, a set of GPS vehicle travel data from the Puget Sound Regional Council (PSRC) is analyzed to assess temporal patterns in vehicle use. These results show that vehicle use does not vary significantly across months, but differs noticeably between weekdays and weekends, such that averaging the data together could lead to erroneous V2G modeling results. Combination of these trends with wind generation and electricity demand data from the Electric Reliability Council of Texas (ERCOT) indicates that BEV availability does not align well with electricity demand and wind generation during the summer months, limiting the quantity of ancillary services that could be provided with V2G. Vehicle availability aligns best between the hours of 9 pm and 8 am during cooler months of the year, when electricity demand is bimodal and brackets the hours of highest vehicle use.
Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.
1996-01-01
A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.
Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster
NASA Technical Reports Server (NTRS)
Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis
1991-01-01
A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.
A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.
2000-01-01
The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.
Context-dependent spatially periodic activity in the human entorhinal cortex
Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.
2017-01-01
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
Synthetic perspective optical flow: Influence on pilot control tasks
NASA Technical Reports Server (NTRS)
Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.
1989-01-01
One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.
Effects of low-scale landscape structures on aeolian transport processes on arable land
NASA Astrophysics Data System (ADS)
Siegmund, Nicole; Funk, Roger; Koszinsky, Sylvia; Buschiazzo, Daniel Eduardo; Sommer, Michael
2018-06-01
The landscape of the semiarid Pampa in central Argentina is characterized by late Pleistocene aeolian deposits, covering large plains with sporadic dune structures. Since the current land use changed from extensive livestock production within the Caldenal forest ecosystem to arable land, the wind erosion risk increased distinctly. We measured wind erosion and deposition patterns at the plot scale and investigated the spatial variability of the erosion processes. The wind-induced mass-transport was measured with 18 Modified Wilson and Cooke samplers (MWAC), installed on a 1.44 ha large field in a 20 × 40 m grid. Physical and chemical soil properties from the upper soil as well as a digital elevation model were recorded in a 20 × 20 m grid. In a 5-month measuring campaign data from seven storms with three different wind directions was obtained. Results show very heterogeneous patterns of erosion and deposition for each storm and indicate favoured erosion on windward and deposits on leeward terrain positions. Furthermore, a multiple regression model was build, explaining up to 70% of the spatial variance of erosion by just using four predictors: topsoil thickness, relative elevation, soil organic carbon content and slope direction. Our findings suggest a structure-process-structure complex where the landscape structure determines the effects of recent wind erosion processes which again slowly influence the structure, leading to a gradual increase of soil heterogeneity.
Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene
2009-10-01
In core-collapse supernovae, the ν{sub e} and ν-bar {sub e} species may experience collective flavor swaps to non-electron species ν{sub x}, within energy intervals limited by relatively sharp boundaries (''splits''). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l{sub e}, l{sub ē}, l{sub x}) with respect to the usual ''energy equipartition'' case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l{sub e}+l{sub ē}+4l{sub x} = 1 in a ternary diagram, which is exploredmore » via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.« less
Instant provisioning of wavelength service using quasi-circuit optical burst switching
NASA Astrophysics Data System (ADS)
Xie, Hongyi; Li, Yanhe; Zheng, Xiaoping; Zhang, Hanyi
2006-09-01
Due to the recent outstanding advancement of optical networking technology, pervasive Grid computing will be a feasible option in the near future. As Grid infrastructure, optical networks must be able to handle different Grid traffic patterns with various traffic characteristics as well as different QoS requirements. With current optical switching technology, optical circuit switching is suitable for data-intensive Grid applications while optical burst switching is suitable to submit small Grid jobs. However, there would be high bandwidth short-lived traffic in some emerging Grid applications such as multimedia editing. This kind of traffic couldn't be well supported by both OCS and conventional OBS because of considerable path setup delay and bandwidth waste in OCS and inherent loss in OBS. Quasi-Circuit OBS (QCOBS) is proposed in this paper to address this challenge, providing one-way reserved, nearly lossless, instant provisioned wavelength service in OBS networks. Simulation results show that QCOBS achieves lossless transmission at low and moderate loads, and very low loss probability at high loads with proper guard time configuration.
Modeling and clustering water demand patterns from real-world smart meter data
NASA Astrophysics Data System (ADS)
Cheifetz, Nicolas; Noumir, Zineb; Samé, Allou; Sandraz, Anne-Claire; Féliers, Cédric; Heim, Véronique
2017-08-01
Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix) model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN) in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.
NASA Astrophysics Data System (ADS)
Ferreira, Flávio P.; Forte, Paulo M. F.; Felgueiras, Paulo E. R.; Bret, Boris P. J.; Belsley, Michael S.; Nunes-Pereira, Eduardo J.
2017-02-01
An Automatic Optical Inspection (AOI) system for optical inspection of imaging devices used in automotive industry using an inspecting optics of lower spatial resolution than the device under inspection is described. This system is robust and with no moving parts. The cycle time is small. Its main advantage is that it is capable of detecting and quantifying defects in regular patterns, working below the Shannon-Nyquist criterion for optical resolution, using a single low resolution image sensor. It is easily scalable, which is an important advantage in industrial applications, since the same inspecting sensor can be reused for increasingly higher spatial resolutions of the devices to be inspected. The optical inspection is implemented with a notch multi-band Fourier filter, making the procedure especially fitted for regular patterns, like the ones that can be produced in image displays and Head Up Displays (HUDs). The regular patterns are used in production line only, for inspection purposes. For image displays, functional defects are detected at the level of a sub-image display grid element unit. Functional defects are the ones impairing the function of the display, and are preferred in AOI to the direct geometric imaging, since those are the ones directly related with the end-user experience. The shift in emphasis from geometric imaging to functional imaging is critical, since it is this that allows quantitative inspection, below Shannon-Nyquist. For HUDs, the functional detect detection addresses defects resulting from the combined effect of the image display and the image forming optics.
Circadian analysis of large human populations: inferences from the power grid.
Stowie, Adam C; Amicarelli, Mario J; Crosier, Caitlin J; Mymko, Ryan; Glass, J David
2015-03-01
Few, if any studies have focused on the daily rhythmic nature of modern industrialized populations. The present study utilized real-time load data from the U.S. Pacific Northwest electrical power grid as a reflection of human operative household activity. This approach involved actigraphic analyses of continuously streaming internet data (provided in 5 min bins) from a human subject pool of approximately 43 million primarily residential users. Rhythm analyses reveal striking seasonal and intra-week differences in human activity patterns, largely devoid of manufacturing and automated load interference. Length of the diurnal activity period (alpha) is longer during the spring than the summer (16.64 h versus 15.98 h, respectively; p < 0.01). As expected, significantly more activity occurs in the solar dark phase during the winter than during the summer (6.29 h versus 2.03 h, respectively; p < 0.01). Interestingly, throughout the year a "weekend effect" is evident, where morning activity onset occurs approximately 1 h later than during the work week (5:54 am versus 6:52 am, respectively; p < 0.01). This indicates a general phase-delaying response to the absence of job-related or other weekday morning arousal cues, substantiating a preference or need to sleep longer on weekends. Finally, a shift in onset time can be seen during the transition to Day Light Saving Time, but not the transition back to Standard Time. The use of grid power load as a means for human actimetry assessment thus offers new insights into the collective diurnal activity patterns of large human populations.
Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling
NASA Astrophysics Data System (ADS)
Tian, Chang-Hai; Zhang, Xi-Yun; Wang, Zhen-Hua; Liu, Zong-Hua
2017-06-01
Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Advanced analysis of forest fire clustering
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Pereira, Mario; Golay, Jean
2017-04-01
Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.
NASA Astrophysics Data System (ADS)
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao
2017-08-01
A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.
Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands
NASA Astrophysics Data System (ADS)
Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.
2017-05-01
The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.
A Research Program in Computer Technology
1979-01-01
barrier walls within the cell in a grid or "waffle" pattern, sepnrnting each pixel from its neighbors. The walls need not extend to the front surface...migration and degradation of display p(.rformanco. The grid can be made of photoresist film by standard photolithographic techniques. I xtruurrs. Using the EP...this variation is normally quite smooth, but significant. However, for use in a smart terminal, where visible cursor feedback is available or where
Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem
2016-01-01
With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10-14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children.
NASA Technical Reports Server (NTRS)
Nakamura, S.
1983-01-01
The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.
Treeby, Bradley E; Tumen, Mustafa; Cox, B T
2011-01-01
A k-space pseudospectral model is developed for the fast full-wave simulation of nonlinear ultrasound propagation through heterogeneous media. The model uses a novel equation of state to account for nonlinearity in addition to power law absorption. The spectral calculation of the spatial gradients enables a significant reduction in the number of required grid nodes compared to finite difference methods. The model is parallelized using a graphical processing unit (GPU) which allows the simulation of individual ultrasound scan lines using a 256 x 256 x 128 voxel grid in less than five minutes. Several numerical examples are given, including the simulation of harmonic ultrasound images and beam patterns using a linear phased array transducer.
NASA Astrophysics Data System (ADS)
Vidmar, David; Narayan, Sanjiv M.; Krummen, David E.; Rappel, Wouter-Jan
2016-11-01
We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.
NASA Technical Reports Server (NTRS)
Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)
2008-01-01
A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.
Geometrical correction of the e-beam proximity effect for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-06-01
Increasing demands on pattern fidelity and CD accuracy in e- beam lithography require a correction of the e-beam proximity effect. The new needs are mainly coming from OPC at mask level and x-ray lithography. The e-beam proximity limits the achievable resolution and affects neighboring structures causing under- or over-exposion depending on the local pattern densities and process settings. Methods to compensate for this unequilibrated does distribution usually use a dose modulation or multiple passes. In general raster scan systems are not able to apply variable doses in order to compensate for the proximity effect. For system of this kind a geometrical modulation of the original pattern offers a solution for compensation of line edge deviations due to the proximity effect. In this paper a new method for the fast correction of the e-beam proximity effect via geometrical pattern optimization is described. The method consists of two steps. In a first step the pattern dependent dose distribution caused by back scattering is calculated by convolution of the pattern with the long range part of the proximity function. The restriction to the long range part result in a quadratic sped gain in computing time for the transformation. The influence of the short range part coming from forward scattering is not pattern dependent and can therefore be determined separately in a second step. The second calculation yields the dose curve at the border of a written structure. The finite gradient of this curve leads to an edge displacement depending on the amount of underground dosage at the observed position which was previously determined in the pattern dependent step. This unintended edge displacement is corrected by splitting the line into segments and shifting them by multiples of the writers address grid to the opposite direction.
Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.
Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A
2011-07-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.
Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn
Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.
2011-01-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID:22069748
Measuring accessibility of sustainable transportation using space syntax in Bojonggede area
NASA Astrophysics Data System (ADS)
Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.
2017-12-01
Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, Edward
Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simplemore » but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.« less
Microlens array for focusing airborne ultrasound using heated wire grid
NASA Astrophysics Data System (ADS)
Cai, Liang-Wu; Sánchez-Dehesa, José
2007-10-01
This letter reports on the focusing of airborne ultrasound by a simple grid of heated wires. The focusing is analogous to that of an array of optical microlenses. The focusing pattern is determined by the spacing between wires, and the focusing areas are tightly confined with a great "depth of field." Such acoustical microlens arrays have great potentials for shaping beams produced by ultrasonic transducers, in applications such as ultrasonic cleaning and nondestructive testing.
Lebedev, Mikhail A; Pimashkin, Alexey; Ossadtchi, Alexei
2018-01-01
According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.
Review of the development of multi-terminal HVDC and DC power grid
NASA Astrophysics Data System (ADS)
Chen, Y. X.
2017-11-01
Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X; Driewer, J; Lei, Y
2015-06-15
Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thicknessmore » of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.« less
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Using Grid Cells for Navigation
Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil
2015-01-01
Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860
Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays
NASA Technical Reports Server (NTRS)
Humphreys, Jr., William M. (Inventor); Brooks, Thomas F. (Inventor)
2012-01-01
Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.
Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays
NASA Technical Reports Server (NTRS)
Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)
2010-01-01
A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.
Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Qiu, Jiangxiao; Kucharik, Christopher J.
2016-09-01
Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1-3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity.
Zhang, Yingying; Gong, He; Sun, Yan; Huang, Yan; Fan, Yubo
2016-05-01
Numerous studies have shown that surface topography can promote cell-substrate associations and deeply influence cell fate. The intracellular mechanism or how micro- or nano-patterned extracellular signal is ultimately linked to activity of nuclear transcription factors remains unknown. It has been reported that Yes-associated protein (YAP) can respond to extracellular matrix microenvironment signals, thus regulates stem cell differentiation process. We propose that YAP may play a role in mediating the topography induced cell differentiation. To this end, we fabricated polydimethylsiloxane (PDMS) micropatterns with grid topology (GT) (3 μm pattern width, 2 μm pattern interval length, 7 μm pattern height); nonpatterned PDMS substrates were used as the planar controls. The MC3T3-E1 cells were then cultured on these surfaces, respectively, in osteogenic inducing medium. Cell differentiation in terms of osteogenesis related gene expression, protein levels, alkaline phosphatase activity and extracellular matrix mineralization was assessed. It was shown that the cells on GT surfaces had stronger osteogenesis capacity. In addition, expression level of YAP was increased when MC3T3-E1 cells grew on GT substrates, which was similar to the levels of osteogenic differentiation markers. It was also shown that YAP knockdown attenuated GT substrates-induced MC3T3-E1 differentiation, which reduced the osteogenic differentiation effect of the GT substrates. Collectively, our findings indicate that GT substrates-induced MC3T3-E1 differentiation may be associated with YAP. This paper provides new target points for transcriptional mechanism research of microenvironment induced cell differentiation and a useful approach to obtain more biofunctionalization scaffolds for tissue engineering. © 2016 Wiley Periodicals, Inc.
Film patterned retarder for stereoscopic three-dimensional display using ink-jet printing method.
Lim, Young Jin; Yu, Ji Hoon; Song, Ki Hoon; Lee, Myong-Hoon; Ren, Hongwen; Mun, Byung-June; Lee, Gi-Dong; Lee, Seung Hee
2014-09-22
We propose a film patterned retarder (FPR) for stereoscopic three-dimensional display with polarization glasses using ink-jet printing method. Conventional FPR process requires coating of photo-alignment and then UV exposure using wire-grid mask, which is very expensive and difficult. The proposed novel fabrication method utilizes a plastic substrate made of polyether sulfone and an alignment layer, poly (4, 4' - (9, 9 -fluorenyl) diphenylene cyclobutanyltetracarboximide) (9FDA/CBDA) in which the former and the latter aligns reactive mesogen along and perpendicular to the rubbing direction, respectively. The ink-jet printing of 9FDA/CBDA line by line allows fabricating the cost effective FPR which can be widely applied for 3D display applications.
NASA Astrophysics Data System (ADS)
Trusiak, M.; Patorski, K.; Tkaczyk, T.
2014-12-01
We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).
The Global Precipitation Patterns Associated with Short-Term Extratropical Climate Fluctuations
NASA Technical Reports Server (NTRS)
Huffman, George J.; Adler, Robert F.; Bolvin, David T.
1999-01-01
Two globally-complete, observation-only precipitation datasets have recently been developed for the Global Precipitation Climatology Project (GPCP). Both depend heavily on a variety of satellite input, as well as gauge data over land. The first, Version 2x79, provides monthly estimates on a 2.5 deg. x 2.5 deg. lat/long grid for the period 1979 through late 1999 (by the time of the conference). The second, the One-Degree Daily (1DD), provides daily estimates on a 1 deg. x l deg. grid for the period 1997 through late 1999 (by the time of the conference). Both are in beta test preparatory to release as official GPCP products. These datasets provide a unique perspective on the hydrological effects of the various atmospheric flow anomalies that have been identified by meteorologists. In this paper we discuss the regional precipitation effects that result from persistent extratropical flow anomalies. We will focus on the Pacific-North America (PNA) and North Atlantic Oscillation (NAO) patterns. Each characteristically becomes established on synoptic time scales, but then persists for periods that can exceed a month. The onset phase of each appears to have systematic mobile features, while the mature phase tend to be more stationary. Accordingly, composites of monthly data for outstanding positive and negative events (separately) contained in the 20-year record reveal the climatological structure of the precipitation during the mature phase. The climatological anomalies of the positive, negative, and (positive-negative) composites show the expected storm-track-related shifts in precipitation, and provide the advantage of putting the known precipitation effects over land in the context of the total pattern over land and ocean. As well, this global perspective points out some unexpected areas of correlation. Day-by-day composites of daily data anchored to the onset date demonstrate the systematic features during the onset. Although the 1DD has a fairly short record, some preliminary results are shown and compared to previous work with numerical weather prediction models.
Sensor for Boundary Shear Stress in Fluid Flow
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.
2012-01-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.
NASA Astrophysics Data System (ADS)
Sanz-Gorrachategui, Iván; Bernal, Carlos; Oyarbide, Estanis; Garayalde, Erik; Aizpuru, Iosu; Canales, Jose María; Bono-Nuez, Antonio
2018-02-01
The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures over day-night cycles. Much of previous development work has been carried out in order to model the short term evolution of battery variables. Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer's tests, batteries fail to perform as expected. This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at higher temperatures than the nominal one.
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.; Ochs, H. T., III; Kidder, S. Q.; Scott, R. W.; Chen, J.; Isard, D.; Chance, B.
1986-01-01
A three-dimensional diagnostic model for the assimilation of satellite and conventional meteorological data is developed with the variational method of undetermined multipliers. Gridded fields of data from different type, quality, location, and measurement source are weighted according to measurement accuracy and merged using least squares criteria so that the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation are satisfied. The model is used to compare multivariate variational objective analyses with and without satellite data with initial analyses and the observations through criteria that were determined by the dynamical constraints, the observations, and pattern recognition. It is also shown that the diagnoses of local tendencies of the horizontal velocity components are in good comparison with the observed patterns and tendencies calculated with unadjusted data. In addition, it is found that the day-night difference in TOVS biases are statistically different (95% confidence) at most levels. Also developed is a hybrid nonlinear sigma vertical coordinate that eliminates hydrostatic truncation error in the middle and upper troposphere and reduces truncation error in the lower troposphere. Finally, it is found that the technique used to grid the initial data causes boundary effects to intrude into the interior of the analysis a distance equal to the average separation between observations.
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
Grid orthogonality effects on predicted turbine midspan heat transfer and performance
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Ameri, A. A.
1995-01-01
The effect of five different C type grid geometries on the predicted heat transfer and aerodynamic performance of a turbine stator is examined. Predictions were obtained using two flow analysis codes. One was a finite difference analysis, and the other was a finite volume analysis. Differences among the grids in terms of heat transfer and overall performance were small. The most significant difference among the five grids occurred in the prediction of pitchwise variation in total pressure. There was consistency between results obtained with each of the flow analysis codes when the same grid was used. A grid generating procedure in which the viscous grid is embedded within an inviscid type grid resulted in the best overall performance.
Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity
2018-01-01
Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399
NASA Astrophysics Data System (ADS)
Liu, Ge; Wu, Renguang; Zhang, Yuanzhi; Nan, Sulan
2014-07-01
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked, possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain. The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southern flank of the TP. Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale. The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific. The SCAP anomaly has an independent effect and may directly modulate the land surface heating and, consequently, vertical motion over the western TP, and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation. Through a zonal vertical circulation over the tropics and a Kelvin wave-type response, anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool, which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.
Evaluation of automated global mapping of Reference Soil Groups of WRB2015
NASA Astrophysics Data System (ADS)
Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria
2017-04-01
SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992
On the Surprising Salience of Curvature in Grouping by Proximity
ERIC Educational Resources Information Center
Strother, Lars; Kubovy, Michael
2006-01-01
The authors conducted 3 experiments to explore the roles of curvature, density, and relative proximity in the perceptual organization of ambiguous dot patterns. To this end, they developed a new family of regular dot patterns that tend to be perceptually grouped into parallel contours, dot-sampled structured grids (DSGs). DSGs are similar to the…
Soil Sampling Techniques For Alabama Grain Fields
NASA Technical Reports Server (NTRS)
Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.
2003-01-01
Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.
Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge
2012-01-01
One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.
NASA Technical Reports Server (NTRS)
Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven;
2017-01-01
Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
Evaluation of grid generation technologies from an applied perspective
NASA Technical Reports Server (NTRS)
Hufford, Gary S.; Harrand, Vincent J.; Patel, Bhavin C.; Mitchell, Curtis R.
1995-01-01
An analysis of the grid generation process from the point of view of an applied CFD engineer is given. Issues addressed include geometric modeling, structured grid generation, unstructured grid generation, hybrid grid generation and use of virtual parts libraries in large parametric analysis projects. The analysis is geared towards comparing the effective turn around time for specific grid generation and CFD projects. The conclusion was made that a single grid generation methodology is not universally suited for all CFD applications due to both limitations in grid generation and flow solver technology. A new geometric modeling and grid generation tool, CFD-GEOM, is introduced to effectively integrate the geometric modeling process to the various grid generation methodologies including structured, unstructured, and hybrid procedures. The full integration of the geometric modeling and grid generation allows implementation of extremely efficient updating procedures, a necessary requirement for large parametric analysis projects. The concept of using virtual parts libraries in conjunction with hybrid grids for large parametric analysis projects is also introduced to improve the efficiency of the applied CFD engineer.
Discovering amino acid patterns on binding sites in protein complexes
Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng
2011-01-01
Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape of binding sites between concave and convex further, we discover that patterns {arg, glu, asp} and {arg, ser, asp} on the concave shape of binding sites in a protein more frequently (i.e. higher probability) make contact with {lys} or {arg} on the convex shape of binding sites in another protein. Thus, we can confidently achieve a rate of at least 78%. On the other hand {val, gly, lys} on the convex surface of binding sites in proteins is more frequently in contact with {asp} on the concave site of another protein, and the confidence achieved is over 81%. Applying data mining in biology can reveal more facts that may otherwise be ignored or not easily discovered by the naked eye. Furthermore, we can discover more relationships among AAs on binding sites by appropriately rotating these residues on binding sites from a three-dimension to two-dimension perspective. We designed a circular grid to deposit the data, which total to 463 records consisting of AAs. Then we used the association rules to mine these records for discovering relationships. The proposed method in this paper provides an insight into the characteristics of binding sites for recognition complexes. PMID:21464838
Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien
2018-02-18
In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.
Novel grid-based optical Braille conversion: from scanning to wording
NASA Astrophysics Data System (ADS)
Yoosefi Babadi, Majid; Jafari, Shahram
2011-12-01
Grid-based optical Braille conversion (GOBCO) is explained in this article. The grid-fitting technique involves processing scanned images taken from old hard-copy Braille manuscripts, recognising and converting them into English ASCII text documents inside a computer. The resulted words are verified using the relevant dictionary to provide the final output. The algorithms employed in this article can be easily modified to be implemented on other visual pattern recognition systems and text extraction applications. This technique has several advantages including: simplicity of the algorithm, high speed of execution, ability to help visually impaired persons and blind people to work with fax machines and the like, and the ability to help sighted people with no prior knowledge of Braille to understand hard-copy Braille manuscripts.
The Amsterdam quintuplet nuclear microprobe
NASA Astrophysics Data System (ADS)
van den Putte, M. J. J.; van den Brand, J. F. J.; Jamieson, D. N.; Rout, B.; Szymanski, R.
2003-09-01
A new nuclear microprobe comprising of a quintuplet lens system is being constructed at the Ion Beam Facility of the "Vrije Universiteit" Amsterdam in collaboration with the Microanalytical Research Centre of the University of Melbourne. An overview of the Amsterdam set-up will be presented. Detailed characterisation of the individual lenses was performed with the grid shadow method using a 2000 mesh Cu grid mounted at a relative angle of 0.5° to the vertical lens line focus. The lenses were found to have very low parasitic aberrations equal or below the minimum detectable limit for the method, which was approximately 0.1% for the sextupole component and 0.2% for the octupole component. We present experimental and theoretical grid shadow patterns, showing results for all five lenses.
Adaptive grid generation in a patient-specific cerebral aneurysm
NASA Astrophysics Data System (ADS)
Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan
2013-11-01
Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce computational time for patient-specific hemodynamics simulations, which are used to help assess the likelihood of aneurysm rupture using CFD calculated flow patterns.
Two variants of minimum discarded fill ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, E.F.; Forsyth, P.A.; Tang, Wei-Pai
1991-01-01
It is well known that the ordering of the unknowns can have a significant effect on the convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been considerable experimental work on the effects of ordering for regular finite difference problems. In many cases, good results have been obtained with preconditioners based on diagonal, spiral or natural row orderings. However, for finite element problems having unstructured grids or grids generated by a local refinement approach, it is difficult to define many of the orderings for more regular problems. A recently proposed Minimum Discarded Fill (MDF) ordering technique is effective in findingmore » high quality Incomplete LU (ILU) preconditioners, especially for problems arising from unstructured finite element grids. Testing indicates this algorithm can identify a rather complicated physical structure in an anisotropic problem and orders the unknowns in the preferred'' direction. The MDF technique may be viewed as the numerical analogue of the minimum deficiency algorithm in sparse matrix technology. At any stage of the partial elimination, the MDF technique chooses the next pivot node so as to minimize the amount of discarded fill. In this work, two efficient variants of the MDF technique are explored to produce cost-effective high-order ILU preconditioners. The Threshold MDF orderings combine MDF ideas with drop tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These techniques identify an ordering that encourages fast decay of the entries in the ILU factorization. The Minimum Update Matrix (MUM) ordering technique is a simplification of the MDF ordering and is closely related to the minimum degree algorithm. The MUM ordering is especially for large problems arising from Navier-Stokes problems. Some interesting pictures of the orderings are presented using a visualization tool. 22 refs., 4 figs., 7 tabs.« less
GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases
NASA Astrophysics Data System (ADS)
Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz
2015-07-01
Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from
Wang, Jingang; Gao, Can; Yang, Jie
2014-07-17
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling
NASA Astrophysics Data System (ADS)
Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.
Metal nano-grids for transparent conduction in solar cells
Muzzillo, Christopher P.
2017-05-11
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Metal nano-grids for transparent conduction in solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Composite isogrid structures for parabolic surfaces
NASA Technical Reports Server (NTRS)
Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)
2000-01-01
The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.
NASA Astrophysics Data System (ADS)
Yoshida, N.; Oki, T.
2016-12-01
Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.
Improved mask-based CD uniformity for gridded-design-rule lithography
NASA Astrophysics Data System (ADS)
Faivishevsky, Lev; Khristo, Sergey; Sagiv, Amir; Mangan, Shmoolik
2009-03-01
The difficulties encountered during lithography of state-of-the-art 2D patterns are formidable, and originate from the fact that deep sub-wavelength features are being printed. This results in a practical limit of k1 >=0.4 as well as a multitude of complex restrictive design rules, in order to mitigate or minimize lithographic hot spots. An alternative approach, that is gradually attracting the lithographic community's attention, restricts the design of critical layers to straight, dense lines (a 1D grid), that can be relatively easily printed using current lithographic technology. This is then followed by subsequent, less critical trimming stages to obtain circuit functionality. Thus, the 1D gridded approach allows hotspot-free, proximity-effect free lithography of ultra low- k1 features. These advantages must be supported by a stable CD control mechanism. One of the overriding parameters impacting CDU performance is photo mask quality. Previous publications have demonstrated that IntenCDTM - a novel, mask-based CDU mapping technology running on Applied Materials' Aera2TM aerial imaging mask inspection tool - is ideally fit for detecting mask-based CDU issues in 1D (L&S) patterned masks for memory production. Owing to the aerial nature of image formation, IntenCD directly probes the CD as it is printed on the wafer. In this paper we suggest that IntenCD is naturally fit for detecting mask-based CDU issues in 1D GDR masks. We then study a novel method of recovering and quantifying the physical source of printed CDU, using a novel implementation of the IntenCD technology. We demonstrate that additional, simple measurements, which can be readily performed on board the Aera2TM platform with minimal throughput penalty, may complement IntenCD and allow a robust estimation of the specific nature and strength of mask error source, such as pattern width variation or phase variation, which leads to CDU issues on the printed wafer. We finally discuss the roles played by IntenCD in advanced GDR mask production, starting with tight control over mask production process, continuing to mask qualification at mask shop and ending at in-line wafer CDU correction in fabs.
Performance of a process-based hydrodynamic model in predicting shoreline change
NASA Astrophysics Data System (ADS)
Safak, I.; Warner, J. C.; List, J. H.
2012-12-01
Shoreline change is controlled by a complex combination of processes that include waves, currents, sediment characteristics and availability, geologic framework, human interventions, and sea level rise. A comprehensive data set of shoreline position (14 shorelines between 1978-2002) along the continuous and relatively non-interrupted North Carolina Coast from Oregon Inlet to Cape Hatteras (65 km) reveals a spatial pattern of alternating erosion and accretion, with an erosional average shoreline change rate of -1.6 m/yr and up to -8 m/yr in some locations. This data set gives a unique opportunity to study long-term shoreline change in an area hit by frequent storm events while relatively uninfluenced by human interventions and the effects of tidal inlets. Accurate predictions of long-term shoreline change may require a model that accurately resolves surf zone processes and sediment transport patterns. Conventional methods for predicting shoreline change such as one-line models and regression of shoreline positions have been designed for computational efficiency. These methods, however, not only have several underlying restrictions (validity for small angle of wave approach, assuming bottom contours and shoreline to be parallel, depth of closure, etc.) but also their empirical estimates of sediment transport rates in the surf zone have been shown to vary greatly from the calculations of process-based hydrodynamic models. We focus on hind-casting long-term shoreline change using components of the process-based, three-dimensional coupled-ocean-atmosphere-wave-sediment transport modeling system (COAWST). COAWST is forced with historical predictions of atmospheric and oceanographic data from public-domain global models. Through a method of coupled concurrent grid-refinement approach in COAWST, the finest grid with resolution of O(10 m) that covers the surf zone along the section of interest is forced at its spatial boundaries with waves and currents computed on the grids that cover the U.S. East Coast with resolutions as low as O(1 km). The computed patterns of the gradients of surf-zone integrated longshore sediment transport rates are compared with the observed shoreline change.
Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem
2016-01-01
With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10–14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children. PMID:29546188
Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics
NASA Technical Reports Server (NTRS)
Soulas, George C.; Shastry, Rohit
2016-01-01
A Long Duration Test (LDT) was initiated in June 2005 as a part of NASA's Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. The post-test inspection objectives for the ion optics were derived from the original NEXT LDT test objectives, such as service life model validation, and expanded to encompass other goals that included verification of in situ measurements, test issue root causes, and past design changes. The ion optics cold grid gap had decreased only by an average of 7% of pretest center grid gap, so efforts to stabilize NEXT grid gap were largely successful. The upstream screen grid surface exhibited a chamfered erosion pattern. Screen grid thicknesses were = 86% of the estimated pretest thickness, indicating that the screen grid has substantial service life remaining. Deposition was found on the screen aperture walls and downstream surfaces that was primarily composed of grid material and back-sputtered carbon, and this deposition likely caused the minor decreases in screen grid ion transparency during the test. Groove depths had eroded through up to 35% of the accelerator grid thickness. Minimum accelerator aperture diameters increased only by about 5-7% of the pretest values and downstream surface diameters increased by about 24-33% of the pretest diameters. These results suggest that increasing the accelerator aperture diameters, improving manufacturing tolerances, and masking down the perforated diameter to 36 cm were successful in reducing the degree of accelerator aperture erosion at larger radii.
Is the straddle effect in contrast perception limited to second-order spatial vision?
Graham, Norma V.; Wolfson, S. Sabina
2018-01-01
Previous work on the straddle effect in contrast perception (Foley, 2011; Graham & Wolfson, 2007; Wolfson & Graham, 2007, 2009) has used visual patterns and observer tasks of the type known as spatially second-order. After adaptation of about 1 s to a grid of Gabor patches all at one contrast, a second-order test pattern composed of two different test contrasts can be easy or difficult to perceive correctly. When the two test contrasts are both a bit less (or both a bit greater) than the adapt contrast, observers perform very well. However, when the two test contrasts straddle the adapt contrast (i.e., one of the test contrasts is greater than the adapt contrast and the other is less), performance drops dramatically. To explain this drop in performance—the straddle effect—we have suggested a contrast-comparison process. We began to wonder: Are second-order patterns necessary for the straddle effect? Here we show that the answer is “no”. We demonstrate the straddle effect using spatially first-order visual patterns and several different observer tasks. We also see the effect of contrast normalization using first-order visual patterns here, analogous to our prior findings with second-order visual patterns. We did find one difference between first- and second-order tasks: Performance in the first-order tasks was slightly lower. This slightly lower performance may be due to slightly greater memory load. For many visual scenes, the important quantity in human contrast processing may not be monotonic with physical contrast but may be something more like the unsigned difference between current contrast and recent average contrast. PMID:29904790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, R; Bednarek, D; Rudin, S
2015-06-15
Purpose: Anti-scatter grid-line artifacts are more prominent for high-resolution x-ray detectors since the fraction of a pixel blocked by the grid septa is large. Direct logarithmic subtraction of the artifact pattern is limited by residual scattered radiation and we investigate an iterative method for scatter correction. Methods: A stationary Smit-Rοntgen anti-scatter grid was used with a high resolution Dexela 1207 CMOS X-ray detector (75 µm pixel size) to image an artery block (Nuclear Associates, Model 76-705) placed within a uniform head equivalent phantom as the scattering source. The image of the phantom was divided by a flat-field image obtained withoutmore » scatter but with the grid to eliminate grid-line artifacts. Constant scatter values were subtracted from the phantom image before dividing by the averaged flat-field-with-grid image. The standard deviation of pixel values for a fixed region of the resultant images with different subtracted scatter values provided a measure of the remaining grid-line artifacts. Results: A plot of the standard deviation of image pixel values versus the subtracted scatter value shows that the image structure noise reaches a minimum before going up again as the scatter value is increased. This minimum corresponds to a minimization of the grid-line artifacts as demonstrated in line profile plots obtained through each of the images perpendicular to the grid lines. Artifact-free images of the artery block were obtained with the optimal scatter value obtained by this iterative approach. Conclusion: Residual scatter subtraction can provide improved grid-line artifact elimination when using the flat-field with grid “subtraction” technique. The standard deviation of image pixel values can be used to determine the optimal scatter value to subtract to obtain a minimization of grid line artifacts with high resolution x-ray imaging detectors. This study was supported by NIH Grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less
NASA Technical Reports Server (NTRS)
Finley, Dennis B.; Karman, Steve L., Jr.
1996-01-01
The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.
1999-01-01
The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.
Using Grid Cells for Navigation.
Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil
2015-08-05
Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this "vector navigation" relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots
NASA Technical Reports Server (NTRS)
Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.
1993-01-01
A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Astrophysics Data System (ADS)
Azarova, Valeriya; Engel, Dominik; Ferner, Cornelia; Kollmann, Andrea; Reichl, Johannes
2018-04-01
Growing self-generation and storage are expected to cause significant changes in residential electricity utilization patterns. Commonly applied volumetric network tariffs may induce imbalance between different groups of households and their respective contribution to recovering the operating costs of the grid. Understanding consumer behaviour and appliance usage together with socio-economic factors can help regulatory authorities to adapt network tariffs to new circumstances in a fair way. Here, we assess the effects of 11 network tariff scenarios on household budgets using real load profiles from 765 households. Thus we explore the possibly disruptive impact of applying peak-load-based tariffs on the budgets of households when they have been mainly charged for consumed volumes before. Our analysis estimates the change in household network expenditure for different combinations of energy, peak and fixed charges, and can help to design tariffs that recover the costs needed for the sustainable operation of the grid.
The Use of Proxy Caches for File Access in a Multi-Tier Grid Environment
NASA Astrophysics Data System (ADS)
Brun, R.; Duellmann, D.; Ganis, G.; Hanushevsky, A.; Janyst, L.; Peters, A. J.; Rademakers, F.; Sindrilaru, E.
2011-12-01
The use of proxy caches has been extensively studied in the HEP environment for efficient access of database data and showed significant performance with only very moderate operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the same concept to the area of file access and analyse the possible performance gains, operational impact on site services and applicability to different HEP use cases. Base on a proof-of-concept studies with a modified XROOT proxy server we review the cache efficiency and overheads for access patterns of typical ROOT based analysis programs. We conclude with a discussion of the potential role of this new component at the different tiers of a distributed computing grid.
The Use of Proxy Caches for File Access in a Multi-Tier Grid Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, R.; Dullmann, D.; Ganis, G.
2012-04-19
The use of proxy caches has been extensively studied in the HEP environment for efficient access of database data and showed significant performance with only very moderate operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the same concept to the area of file access and analyze the possible performance gains, operational impact on site services and applicability to different HEP use cases. Base on a proof-of-concept studies with a modified XROOT proxy server we review the cache efficiency and overheads for access patterns of typical ROOT based analysis programs. We conclude with amore » discussion of the potential role of this new component at the different tiers of a distributed computing grid.« less
CdS thin film solar cells for terrestrial power
NASA Technical Reports Server (NTRS)
Shirland, F. A.
1975-01-01
The development of very low cost long lived Cu2S/CdS thin film solar cells for large scale energy conversion is reported. Excellent evaporated metal grid patterns were obtained using a specially designed aperture mask. Vacuum evaporated gold and copper grids of 50 lines per inch and 1 micron thickness were adequate electrically for the fine mesh contacting grid. Real time roof top sunlight exposure tests of encapsulated CdS cells showed no loss in output after 5 months. Accelerated life testing of encapsulated cells showed no loss of output power after 6 months of 12 hour dark-12 hour AMI illumination cycles at 40 C, 60 C, 80 C and 100 C temperatures. However, the cells changed their basic parameters, such as series and shunt resistance and junction capacitance.
76 FR 22719 - Cape Wind Energy Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... with a maximum blade height of 440 feet (ft), to be constructed in a grid pattern on the OCS in.... The proposed submarine transmission cable system (115 kilovolt) running from the ESP to the landfall...
2004-04-15
Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
A wavefront orientation method for precise numerical determination of tsunami travel time
NASA Astrophysics Data System (ADS)
Fine, I. V.; Thomson, R. E.
2013-04-01
We present a highly accurate and computationally efficient method (herein, the "wavefront orientation method") for determining the travel time of oceanic tsunamis. Based on Huygens principle, the method uses an eight-point grid-point pattern and the most recent information on the orientation of the advancing wave front to determine the time for a tsunami to travel to a specific oceanic location. The method is shown to provide improved accuracy and reduced anisotropy compared with the conventional multiple grid-point method presently in widespread use.
Method for producing solar energy panels by automation
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A solar cell panel was fabricated by photoetching a pattern of collector grid systems with appropriate interconnections and bus bar tabs into a glass or plastic sheet. These regions were then filled with a first, thin conductive metal film followed by a layer of a mixed metal oxide, such as InAsO or InSnO. The multiplicity of solar cells were bonded between the protective sheet at the sites of the collector grid systems and a back electrode substrate by conductive metal filled epoxy to complete the fabrication of an integrated solar panel.
HPC AND GRID COMPUTING FOR INTEGRATIVE BIOMEDICAL RESEARCH
Kurc, Tahsin; Hastings, Shannon; Kumar, Vijay; Langella, Stephen; Sharma, Ashish; Pan, Tony; Oster, Scott; Ervin, David; Permar, Justin; Narayanan, Sivaramakrishnan; Gil, Yolanda; Deelman, Ewa; Hall, Mary; Saltz, Joel
2010-01-01
Integrative biomedical research projects query, analyze, and integrate many different data types and make use of datasets obtained from measurements or simulations of structure and function at multiple biological scales. With the increasing availability of high-throughput and high-resolution instruments, the integrative biomedical research imposes many challenging requirements on software middleware systems. In this paper, we look at some of these requirements using example research pattern templates. We then discuss how middleware systems, which incorporate Grid and high-performance computing, could be employed to address the requirements. PMID:20107625
Wafer-scale aluminum nano-plasmonics
NASA Astrophysics Data System (ADS)
George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric
2014-09-01
The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Wang, Cong; Winterfeld, Philip
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less
Graphical Contingency Analysis for the Nation's Electric Grid
Zhenyu (Henry) Huang
2017-12-09
PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.
Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions
Shipston‐Sharman, Oliver; Solanka, Lukas
2016-01-01
Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120
Multiresolution comparison of precipitation datasets for large-scale models
NASA Astrophysics Data System (ADS)
Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.
2014-12-01
Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.
Modelling the spatial distribution of SO2 and NOx emissions in Ireland.
de Kluizenaar, Y; Aherne, J; Farrell, E P
2001-01-01
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.
WE-EF-207-10: Striped Ratio Grids: A New Concept for Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S
2015-06-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. We propose the “striped ratio grid,” an anti-scatter grid with alternating stripes of high scatter rejection (attained, for example, by high grid ratio) and low scatter rejection. To minimize artifacts, stripes are oriented parallel to the direction of the ramp filter. Signal discontinuities at the boundaries between stripes provide information on local scatter content, although these discontinuities are contaminated by variation in primary radiation. Methods: We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid, andmore » processed them together to mimic a striped ratio grid. Two phantoms were scanned with the emulated striped ratio grid and compared with a conventional anti-scatter grid and a fan-beam acquisition, which served as ground truth. A nonlinear image processing algorithm was developed to mitigate the problem of primary variation. Results: The emulated striped ratio grid reduced scatter more effectively than the conventional grid alone. Contrast is thereby improved in projection imaging. In CT imaging, cupping is markedly reduced. Artifacts introduced by the striped ratio grid appear to be minimal. Conclusion: Striped ratio grids could be a simple and effective evolution of conventional anti-scatter grids. Unlike several other approaches currently under investigation for scatter management, striped ratio grids require minimal computation, little new hardware (at least for systems which already use removable grids) and impose few assumptions on the nature of the object being scanned.« less
Spatial and Temporal Uncertainty of Crop Yield Aggregations
NASA Technical Reports Server (NTRS)
Porwollik, Vera; Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Iizumi, Toshichika; Ray, Deepak K.; Ruane, Alex C.; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe;
2016-01-01
The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Inter-comparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty. The quantity and spatial patterns of harvested areas differ for individual crops among the four datasets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics. Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).For the majority of countries, mean relative differences of nationally aggregated yields account for10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia).Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05*Corresponding (wheat, Russia), r = 0.13 (rice, Vietnam), and r = -0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with large harvested areas per crop type. We conclude that the aggregation uncertainty can be substantial for crop productivity and production estimations in the context of food security, impact assessment, and model evaluation exercises.
High performance wire grid polarizers using jet and flashTM imprint lithography
NASA Astrophysics Data System (ADS)
Ahn, Sean; Yang, Jack; Miller, Mike; Ganapathisubramanian, Maha; Menezes, Marlon; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.
2013-03-01
The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area roll to roll (R2R) manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we have developed a roll based J-FIL process and applied it to technology demonstrator tool, the LithoFlex 100, to fabricate large area flexible bilayer wire grid polarizers (WGP) and high performance WGPs on rigid glass substrates. Extinction ratios of better than 10000 were obtained for the glass-based WGPs. Two simulation packages were also employed to understand the effects of pitch, aluminum thickness and pattern defectivity on the optical performance of the WGP devices. It was determined that the WGPs can be influenced by both clear and opaque defects in the gratings, however the defect densities are relaxed relative to the requirements of a high density semiconductor device.
GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows
NASA Technical Reports Server (NTRS)
2003-01-01
With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Structural adjustment for accurate conditioning in large-scale subsurface systems
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman
2017-03-01
Most of the current subsurface simulation approaches consider a priority list for honoring the well and any other auxiliary data, and eventually adopt a middle ground between the quality of the model and conditioning it to hard data. However, as the number of datasets increases, such methods often produce undesirable features in the subsurface model. Due to their high flexibility, subsurface modeling based on training images (TIs) is becoming popular. Providing comprehensive TIs remains, however, an outstanding problem. In addition, identifying a pattern similar to those in the TI that honors the well and other conditioning data is often difficult. Moreover, the current subsurface modeling approaches do not account for small perturbations that may occur in a subsurface system. Such perturbations are active in most of the depositional systems. In this paper, a new methodology is presented that is based on an irregular gridding scheme that accounts for incomplete TIs and minor offsets. Use of the methodology enables one to use a small or incomplete TI and adaptively change the patterns in the simulation grid in order to simultaneously honor the well data and take into account the effect of the local offsets. Furthermore, the proposed method was used on various complex process-based models and their structures are deformed for matching with the conditioning point data. The accuracy and robustness of the proposed algorithm are successfully demonstrated by applying it to models of several complex examples.
Technologies for Protein Analysis and Tissue Engineering, with Applications in Cancer
NASA Astrophysics Data System (ADS)
Vermesh, Udi Benjamin
The first part of this thesis describes electrolyte transport through an array of 20 nm wide, 20 mum long SiO2 nanofluidic transistors. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source-drain biases > 5 V, the current exhibits a sharp, nonlinear increase, with a 20 - 50-fold conductance enhancement. This behavior is attributed to a breakdown of the zero-slip condition. Implications for peptide sequencing as well as energy conversion devices are discussed. The next part describes a technology for the detection of the highly aggressive brain cancer glioblastoma multiforme (GBM). In this study, we used an antibody-based microarray to compare plasma samples from glioblastoma patients and healthy controls with respect to the plasma levels of 35 different proteins known to be generally associated with tumor growth, survival, invasion, migration, and immune regulation. Average-linkage hierarchical clustering of the patient data stratified the two groups effectively, permitting accurate assignment of test samples into either GBM or healthy control groups with a sensitivity and specificity as high as 90 % and 94 %, respectively. Using the same 35-protein panel, we then analyzed plasma samples from GBM patients who were treated with the chemotherapeutic drug Avastin (Bevacizumab) and were able to effectively stratify patients based on treatment-responsiveness. Finally, single-cell resolution patterning of tissue engineered structures is demonstrated. The proper functioning of engineered constructs for tissue and organ transplantation requires positioning different cell types in anatomically precise arrangements that mimic their configurations in native tissues. Toward this end, we have developed a technique that involves two microfluidic-patterning steps run perpendicularly to each other using "anchor" and "bridge" DNA oligomers to create dense arrays of DNA grids which can then be converted into cell arrays. As a proof-of-concept, both a neuron-astrocyte construct and a pancreatic islet construct containing 2 distinct islet cell types were patterned separately as a dense array of cell grids. Once fixed in a hydrogel matrix, layers of patterned cells were then stacked to form 3-D tissue engineered constructs.
A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers
NASA Astrophysics Data System (ADS)
Bassett, Gene Marcel
1993-01-01
Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.
Evaluation of a commercially‐available block for spatially fractionated radiation therapy
Buckey, Courtney; Cashon, Ken; Gutierrez, Alonso; Esquivel, Carlos; Shi, Chengyu; Papanikolaou, Nikos
2010-01-01
In this paper, we present the dosimetric characteristics of a commercially‐produced universal GRID block for spatially fractioned radiation therapy. The dosimetric properties of the GRID block were evaluated. Ionization chamber and film measurements using both Kodak EDR2 and Gafchromic EBT film were performed in a solid water phantom to determine the relative output of the GRID block as well as its spatial dosimetric characteristics. The surface dose under the block and at the openings was measured using ultra thin TLDs. After introducing the GRID block into the treatment planning system, a treatment plan was created using the GRID block and also by creating a GRID pattern using the multi‐leaf collimator. The percent depth doses measured with film showed that there is a shift of the dmax towards shallower depths for both energies (6 MV and 18 MV) under investigation. It was observed that the skin dose at the GRID openings was higher than the corresponding open field by a factor as high as 50% for both photon energies. The profiles showed the transmission under the block was in the order of 15–20% for 6 MV and 30% for 18 MV. The MUs calculated for a real patient using the block were about 80% less than the corresponding MUs for the same plan using the multileaf collimator to define the GRID. Based on this investigation, this brass GRID compensator is a viable alternative to other solid compensators or MLC‐based fields currently in use. Its ease of creation and use give it decided advantages. Its ability to be created once and used for multiple patients (by varying the collimation of the linear accelerator jaws) makes it attractive from a cost perspective. We believe this compensator can be put to clinical use, and will allow more centers to offer GRID therapy to their patients. PACS number: 87.53.Mr
NASA Astrophysics Data System (ADS)
Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel
2014-05-01
We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present numerous application of the STAMMEX grids spanning from case studies of the major Central European floods to long-term changes in different precipitation statistics, including those accounting for the alternation of dry and wet periods and precipitation intensities associated with prolonged rainy episodes.
Food Self-Sufficiency across scales: How local can we go?
NASA Astrophysics Data System (ADS)
Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.
2013-04-01
"Think global, act local" is a phrase often used in sustainability debates. Here, we explore the potential of regions to go for local supply in context of sustainable food consumption considering both the present state and the plausible future scenarios. We analyze data on the gridded crop calories production, the gridded livestock calories production, the gridded feed calories use and the gridded food calories consumption in 5' resolution. We derived these gridded data from various sources: Global Agro-ecological Zone (GAEZ v3.0), Gridded Livestock of the World (GLW), FAOSTAT, and Global Rural-Urban Mapping Project (GRUMP). For scenarios analysis, we considered changes in population, dietary patterns and possibility of obtaining the maximum potential yield. We investigate the food self-sufficiency multiple spatial scales. We start from the 5' resolution (i.e. around 10 km x 10 km in the equator) and look at 8 levels of aggregation ranging from the plausible lowest administrative level to the continental level. Results for the different spatial scales show that about 1.9 billion people live in the area of 5' resolution where enough calories can be produced to sustain their food consumption and the feed used. On the country level, about 4.4 billion population can be sustained without international food trade. For about 1 billion population from Asia and Africa, there is a need for cross-continental food trade. However, if we were able to achieve the maximum potential crop yield, about 2.6 billion population can be sustained within their living area of 5' resolution. Furthermore, Africa and Asia could be food self-sufficient by achieving their maximum potential crop yield and only round 630 million populations would be dependent on the international food trade. However, the food self-sufficiency status might differ under consideration of the future change in population, dietary patterns and climatic conditions. We provide an initial approach for investigating the regional and the local potential to address food security across multiple spatial scales. We identify the areas where one can depend more on local/regional products as a transition path towards sustainable consumption and production.
The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei
2007-01-01
We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.
NASA Astrophysics Data System (ADS)
Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.
2016-09-01
Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped areas). These results demonstrate that the decision to use one DEM conditioning technique over another, and the constraints of available DEM data resolution and source, can greatly impact the modeled surface drainage patterns at the scale of individual fields. This work has significance for applications that attempt to optimize best-management practices (BMPs) for reducing soil erosion and runoff contamination within agricultural watersheds.
NASA Astrophysics Data System (ADS)
Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.
2017-12-01
Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.
Yuksel, Tugce; Michalek, Jeremy J
2015-03-17
We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives.
Effect of Message Type on the Visual Attention of Adults With Traumatic Brain Injury.
Thiessen, Amber; Brown, Jessica; Beukelman, David; Hux, Karen; Myers, Angela
2017-05-17
The purpose of this investigation was to measure the effect of message type (i.e., action, naming) on the visual attention patterns of individuals with and without traumatic brain injury (TBI) when viewing grids composed of 3 types of images (i.e., icons, decontextualized photographs, and contextualized photographs). Fourteen adults with TBI and 14 without TBI-assigned either to an action or naming message condition-viewed grids composed of 3 different image types. Participants' task was to select/sustain visual fixation on the image they felt best represented a stated message (i.e., action or naming). With final fixation location serving as a proxy for selection, participants in the naming message condition selected decontextualized photographs significantly more often than the other 2 image types. Participants in the action message condition selected contextualized photographs significantly more frequently than the other 2 image types. Minimal differences were noted between participant groups. This investigation provides preliminary evidence of the relationship between image and message type. Clinicians involved in the selection of images used for message representation should consider the message being represented when designing supports for people with TBI. Further research is necessary to fully understand the relationship between images and message type.
Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229
Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages
NASA Technical Reports Server (NTRS)
Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.
1993-01-01
When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, R; Bednarek, D; Rudin, S
Purpose: Demonstrate the effectiveness of an anti-scatter grid artifact minimization method by removing the grid-line artifacts for three different grids when used with a high resolution CMOS detector. Method: Three different stationary x-ray grids were used with a high resolution CMOS x-ray detector (Dexela 1207, 75 µm pixels, sensitivity area 11.5cm × 6.5cm) to image a simulated artery block phantom (Nuclear Associates, Stenosis/Aneurysm Artery Block 76–705) combined with a frontal head phantom used as the scattering source. The x-ray parameters were 98kVp, 200mA, and 16ms for all grids. With all the three grids, two images were acquired: the first formore » a scatter-less flat field including the grid and the second of the object with the grid which may still have some scatter transmission. Because scatter has a low spatial frequency distribution, it was represented by an estimated constant value as an initial approximation and subtracted from the image of the object with grid before dividing by an average frame of the grid flat-field with no scatter. The constant value was iteratively changed to minimize residual grid-line artifact. This artifact minimization process was used for all the three grids. Results: Anti-scatter grid lines artifacts were successfully eliminated in all the three final images taken with the three different grids. The image contrast and CNR were also compared before and after the correction, and also compared with those from the image of the object when no grid was used. The corrected images showed an increase in CNR of approximately 28%, 33% and 25% for the three grids, as compared to the images when no grid at all was used. Conclusion: Anti-scatter grid-artifact minimization works effectively irrespective of the specifications of the grid when it is used with a high spatial resolution detector. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
NASA Astrophysics Data System (ADS)
Anishkumar, A. R.; Sreejaya, P.
2016-12-01
Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.
RXIO: Design and implementation of high performance RDMA-capable GridFTP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Yu, Weikuan; Vetter, Jeffrey S.
2011-12-21
For its low-latency, high bandwidth, and low CPU utilization, Remote Direct Memory Access (RDMA) has established itself as an effective data movement technology in many networking environments. However, the transport protocols of grid run-time systems, such as GridFTP in Globus, are not yet capable of utilizing RDMA. In this study, we examine the architecture of GridFTP for the feasibility of enabling RDMA. An RDMA-capable XIO (RXIO) framework is designed and implemented to extend its XIO system and match the characteristics of RDMA. Our experimental results demonstrate that RDMA can significantly improve the performance of GridFTP, reducing the latency by 32%more » and increasing the bandwidth by more than three times. In achieving such performance improvements, RDMA dramatically cuts down CPU utilization of GridFTP clients and servers. In conclusion, these results demonstrate that RXIO can effectively exploit the benefits of RDMA for GridFTP. It offers a good prototype to further leverage GridFTP on wide-area RDMA networks.« less
High-resolution field shaping utilizing a masked multileaf collimator.
Williams, P C; Cooper, P
2000-08-01
Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm grids, and still further by the use of 4 x 2.5 mm grids, as would be expected. This was also achieved with a small or negligible broadening of the beam penumbra as measured at Dmax.
Optimization of sampling pattern and the design of Fourier ptychographic illuminator.
Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan
2015-03-09
Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.
Analysis of the World Experience of Smart Grid Deployment: Economic Effectiveness Issues
NASA Astrophysics Data System (ADS)
Ratner, S. V.; Nizhegorodtsev, R. M.
2018-06-01
Despite the positive dynamics in the growth of RES-based power production in electric power systems of many countries, the further development of commercially mature technologies of wind and solar generation is often constrained by the existing grid infrastructure and conventional energy supply practices. The integration of large wind and solar power plants into a single power grid and the development of microgeneration require the widespread introduction of a new smart grid technology cluster (smart power grids), whose technical advantages over the conventional ones have been fairly well studied, while issues of their economic effectiveness remain open. Estimation and forecasting potential economic effects from the introduction of innovative technologies in the power sector during the stage preceding commercial development is a methodologically difficult task that requires the use of knowledge from different sciences. This paper contains the analysis of smart grid project implementation in Europe and the United States. Interval estimates are obtained for their basic economic parameters. It was revealed that the majority of smart grid implemented projects are not yet commercially effective, since their positive externalities are usually not recognized on the revenue side due to the lack of universal methods for public benefits monetization. The results of the research can be used in modernization and development planning for the existing grid infrastructure both at the federal level and at the level of certain regions and territories.
Wang, Jingang; Gao, Can; Yang, Jie
2014-01-01
Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333
NASA Astrophysics Data System (ADS)
Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.
2018-02-01
The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.
1992-07-09
This sharp, cloud free view of San Antonio, Texas (29.5N, 98.5W) illustrates the classic pattern of western cities. The city has a late nineteenth century Anglo grid pattern overlaid onto an earlier, less regular Hispanic settlement. A well marked central business district having streets laid out north/south and east/west is surrounded by blocks of suburban homes and small businesses set between the older colonial radial transportation routes.
Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models
Phillips, D.L.; Marks, D.G.
1996-01-01
In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.
Earth Observations taken by the Expedition 35 Crew
2013-03-16
ISS035-E-005438 (16 March 2013) --- One of the Expedition 35 crew members on the International Space Station used a still camera with a 400 millimeter lens to record this nocturnal image of the Phoenix, Arizona area. Like many large urban areas of the central and western United States, the Phoenix metropolitan area is laid out along a regular grid of city blocks and streets. While visible during the day, this grid is most evident at night, when the pattern of street lighting is clearly visible from above – in the case of this photograph, from the low Earth orbit vantage point of the International Space Station. The urban grid form encourages growth of a city outwards along its borders, by providing optimal access to new real estate. Fueled by the adoption of widespread personal automobile use during the 20th century, the Phoenix metropolitan area today includes 25 other municipalities (many of them largely suburban and residential in character) linked by a network of surface streets and freeways. The image area includes parts of several cities in the metropolitan area including Phoenix proper (right), Glendale (center), and Peoria (left). While the major street grid is oriented north-south, the northwest-southeast oriented Grand Avenue cuts across it at image center. Grand Avenue is a major transportation corridor through the western metropolitan area; the lighting patterns of large industrial and commercial properties are visible along its length. Other brightly lit properties include large shopping centers, strip centers, and gas stations which tend to be located at the intersections of north-south and east-west trending streets. While much of the land area highlighted in this image is urbanized, there are several noticeably dark areas. The Phoenix Mountains at upper right are largely public park and recreational land. To the west (image lower left), agricultural fields provide a sharp contrast to the lit streets of neighboring residential developments. The Salt River channel appears as a dark ribbon within the urban grid at lower right.
USA National Phenology Network gridded products documentation
Crimmins, Theresa M.; Marsh, R. Lee; Switzer, Jeff R.; Crimmins, Michael A.; Gerst, Katharine L.; Rosemartin, Alyssa H.; Weltzin, Jake F.
2017-02-23
The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to facilitate informed ecosystem stewardship and management by providing phenological information freely and openly. One way the USA-NPN is endeavoring to accomplish these goals is by providing data and data products in a wide range of formats, including gridded real-time, short-term forecasted, and historical maps of phenological events, patterns and trends. This document describes the suite of gridded phenologically relevant data products produced and provided by the USA National Phenology Network, which can be accessed at www.usanpn.org/data/phenology_maps and also through web services at geoserver.usanpn.org/geoserver/wms?request=GetCapabilities.
NASA Astrophysics Data System (ADS)
Sorteberg, Hilleborg K.
2010-05-01
In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.
Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki
2017-03-01
In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc
2018-02-01
Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Short articles describe preparation of clean iron sheet for corrosion experiments, models of crystalline structures using glass marbles, photographic production of diffraction grids for producing analogies of X-ray diffraction patterns, and a simple method of determining a reactivity series for the common metals. (AL)
NASA Astrophysics Data System (ADS)
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
Overlay metrology for double patterning processes
NASA Astrophysics Data System (ADS)
Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej
2009-03-01
The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double patterning processes.
Grid infrastructure for automatic processing of SAR data for flood applications
NASA Astrophysics Data System (ADS)
Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii
2010-05-01
More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be executed by different resources of the Grid system. The resulting geospatial services are available in various OGC standards such as KML and WMS. Currently, the Grid infrastructure integrates the resources of several geographically distributed organizations, in particular: Space Research Institute NASU-NSAU (Ukraine) with deployed computational and storage nodes based on Globus Toolkit 4 (htpp://www.globus.org) and gLite 3 (http://glite.web.cern.ch) middleware, access to geospatial data and a Grid portal; Institute of Cybernetics of NASU (Ukraine) with deployed computational and storage nodes (SCIT-1/2/3 clusters) based on Globus Toolkit 4 middleware and access to computational resources (approximately 500 processors); Center of Earth Observation and Digital Earth Chinese Academy of Sciences (CEODE-CAS, China) with deployed computational nodes based on Globus Toolkit 4 middleware and access to geospatial data (approximately 16 processors). We are currently adding new geospatial services based on optical satellite data, namely MODIS. This work is carried out jointly with the CEODE-CAS. Using workflow patterns that were developed for SAR data processing we are building new workflows for optical data processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
Post, R.F.
1960-08-01
An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.
On the benefit of high resolution and low aberrations for in-die mask registration metrology
NASA Astrophysics Data System (ADS)
Beyer, Dirk; Seidel, Dirk; Heisig, Sven; Steinert, Steffen; Töpfer, Susanne; Scherübl, Thomas; Hetzler, Jochen
2014-10-01
With the introduction of complex lithography schemes like double and multi - patterning and new design principles like gridded designs with cut masks the requirements for mask to mask overlay have increased dramatically. Still, there are some good news too for the mask industry since more mask are needed and qualified. Although always confronted with throughput demands, latest writing tool developments are able to keep pace with ever increasing pattern placement specs not only for global signatures but for in-die features within the active area. Placement specs less than 3nm (max. 3 Sigma) are expected and needed in all cases in order to keep the mask contribution to the overall overlay budget at an accepted level. The qualification of these masks relies on high precision metrology tools which have to fulfill stringent metrology as well as resolution constrains at the same time. Furthermore, multi-patterning and gridded designs with pinhole type cut masks are drivers for a paradigm shift in registration metrology from classical registration crosses to in-die registration metrology on production features. These requirements result in several challenges for registration metrology tools. The resolution of the system must be sufficiently high to resolve small production features. At the same time tighter repeatability is required. Furthermore, tool induced shift (TIS) limit the accuracy of in-die measurements. This paper discusses and demonstrates the importance of low illumination wavelength together with low aberrations for best contrast imaging for in-die registration metrology. Typical effects like tool induced shift are analyzed and evaluated using the ZEISS PROVE® registration metrology tool. Additionally, we will address performance gains when going to higher resolution. The direct impact on repeatability for small features by registration measurements will be discussed as well.
Discovering Structural Regularity in 3D Geometry
Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.
2010-01-01
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292
Lin, Chung Hsun; Guan, Jingjiao; Chau, Shiu Wu; Chen, Shia Chung; Lee, L James
2010-08-04
DNA molecules in a solution can be immobilized and stretched into a highly ordered array on a solid surface containing micropillars by molecular combing technique. However, the mechanism of this process is not well understood. In this study, we demonstrated the generation of DNA nanostrand array with linear, zigzag, and fork-zigzag patterns and the microfluidic processes are modeled based on a deforming body-fitted grid approach. The simulation results provide insights for explaining the stretching, immobilizing, and patterning of DNA molecules observed in the experiments.
Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields
NASA Astrophysics Data System (ADS)
Monsalve-Mercado, Mauro M.; Leibold, Christian
2017-07-01
Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.
Pastoll, Hugh; Ramsden, Helen L.; Nolan, Matthew F.
2012-01-01
The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields. PMID:22536175
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
Pan, Chengfeng; Kumar, Kitty; Li, Jianzhao; Markvicka, Eric J; Herman, Peter R; Majidi, Carmel
2018-03-01
A material architecture and laser-based microfabrication technique is introduced to produce electrically conductive films (sheet resistance = 2.95 Ω sq -1 ; resistivity = 1.77 × 10 -6 Ω m) that are soft, elastic (strain limit >100%), and optically transparent. The films are composed of a grid-like array of visually imperceptible liquid-metal (LM) lines on a clear elastomer. Unlike previous efforts in transparent LM circuitry, the current approach enables fully imperceptible electronics that have not only high optical transmittance (>85% at 550 nm) but are also invisible under typical lighting conditions and reading distances. This unique combination of properties is enabled with a laser writing technique that results in LM grid patterns with a line width and pitch as small as 4.5 and 100 µm, respectively-yielding grid-like wiring that has adequate conductivity for digital functionality but is also well below the threshold for visual perception. The electrical, mechanical, electromechanical, and optomechanical properties of the films are characterized and it is found that high conductivity and transparency are preserved at tensile strains of ≈100%. To demonstrate their effectiveness for emerging applications in transparent displays and sensing electronics, the material architecture is incorporated into a couple of illustrative use cases related to chemical hazard warning. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)
2009-11-01
flow patterns for a) experiments of Mitchell et. al ., b) grid G9A4 fully 15-12 turbulent, c) grid G9A4 laminar to turbulent transition at 30% root...tourbillonnaires et en particulier les tourbillons de bord d’attaque subissent une désorganisation soudaine connue sous le nom de rupture du vortex. Ce...attack in the range of –10° to 36°, an amplitude of 5° to 26° and an oscillation frequency of 0.2 to 1.5 Hz. 8) TPI Test Case De Luca et al . tested a
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.
Reconstructing the spatial pattern of historical forest land in China in the past 300 years
NASA Astrophysics Data System (ADS)
Yang, Xuhong; Jin, Xiaobin; Xiang, Xiaomin; Fan, Yeting; Shan, Wei; Zhou, Yinkang
2018-06-01
The reconstruction of the historical forest spatial distribution is of a great significance to understanding land surface cover in historical periods as well as its climate and ecological effects. Based on the maximum scope of historical forest land before human intervention, the characteristics of human behaviors in farmland reclamation and deforestation for heating and timber, we create a spatial evolution model to reconstruct the spatial pattern of historical forest land. The model integrates the land suitability for reclamation, the difficulty of deforestation, the attractiveness of timber trading markets and the abundance of forest resources to calibrate the potential scope of historical forest land with the rationale that the higher the probability of deforestation for reclamation and wood, the greater the likelihood that the forest land will be deforested. Compared to the satellite-based forest land distribution in 2000, about 78.5% of our reconstructed historical forest grids are of the absolute error between 25% and -25% while as many as 95.85% of those grids are of the absolute error between 50% and -50%, which indirectly validates the feasibility of our reconstructed model. Then, we simulate the spatial distribution of forest land in China in 1661, 1724, 1820, 1887, 1933 and 1952 with the grid resolution of 1 km × 1 km. Our result shows that (1) the reconstructed historical forest land in China in the past 300 years concentrates in DaXingAnLing, XiaoXingAnLing, ChangBaiShan, HengDuanShan, DaBaShan, WuYiShan, DaBieShan, XueFengShang and etc.; (2) in terms of the spatial evolution, historical forest land shrank gradually in LiaoHe plains, SongHuaJiang-NenJiang plains and SanJiang plains of eastnorth of China, Sichuan basins and YunNan-GuiZhou Plateaus; and (3) these observations are consistent to the proceeding of agriculture reclamation in China in past 300 years towards Northeast China and Southwest China.
NASA Astrophysics Data System (ADS)
Toyokuni, G.; Takenaka, H.
2007-12-01
We propose a method to obtain effective grid parameters for the finite-difference (FD) method with standard Earth models using analytical ways. In spite of the broad use of the heterogeneous FD formulation for seismic waveform modeling, accurate treatment of material discontinuities inside the grid cells has been a serious problem for many years. One possible way to solve this problem is to introduce effective grid elastic moduli and densities (effective parameters) calculated by the volume harmonic averaging of elastic moduli and volume arithmetic averaging of density in grid cells. This scheme enables us to put a material discontinuity into an arbitrary position in the spatial grids. Most of the methods used for synthetic seismogram calculation today receives the blessing of the standard Earth models, such as the PREM, IASP91, SP6, and AK135, represented as functions of normalized radius. For the FD computation of seismic waveform with such models, we first need accurate treatment of material discontinuities in radius. This study provides a numerical scheme for analytical calculations of the effective parameters for an arbitrary spatial grids in radial direction as to these major four standard Earth models making the best use of their functional features. This scheme can analytically obtain the integral volume averages through partial fraction decompositions (PFDs) and integral formulae. We have developed a FORTRAN subroutine to perform the computations, which is opened to utilization in a large variety of FD schemes ranging from 1-D to 3-D, with conventional- and staggered-grids. In the presentation, we show some numerical examples displaying the accuracy of the FD synthetics simulated with the analytical effective parameters.
NASA Astrophysics Data System (ADS)
Ye, Zhou; Ellis, Michael W.; Nain, Amrinder S.; Behkam, Bahareh
2017-04-01
Microbial fuel cells (MFCs) are envisioned to serve as compact and sustainable sources of energy; however, low current and power density have hindered their widespread use. Introduction of 3D micro/nanostructures on the MFC anode is known to improve its performance by increasing the surface area available for bacteria attachment; however, the role of the feature size remains poorly understood. To delineate the role of feature size from the ensuing surface area increase, nanostructures with feature heights of 115 nm and 300 nm, both at a height to width aspect ratio of 0.3, are fabricated in a grid pattern on glassy carbon electrodes (GCEs). Areal current densities and bacteria attachment densities of the patterned and unpatterned GCEs are compared using Shewanella oneidensis Δbfe in a three-electrode bioreactor. The 115 nm features elicit a remarkable 40% increase in current density and a 78% increase in bacterial attachment density, whereas the GCE with 300 nm pattern does not exhibit significant change in current density or bacterial attachment density. The current density dependency on feature size is maintained over the entire 160 h experiment. Thus, optimally sized surface features have a substantial effect on current production that is independent of their effect on surface area.
Multiscale Approach to Small River Plumes off California
NASA Astrophysics Data System (ADS)
Basdurak, N. B.; Largier, J. L.; Nidzieko, N.
2012-12-01
While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.
Observations of solar-cell metallization corrosion
NASA Technical Reports Server (NTRS)
Mon, G. R.
1983-01-01
The Engineering Sciences Area of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project is performing long term environmental tests on photovoltaic modules at Wyle Laboratories in Huntsville, Alabama. Some modules have been exposed to 85 C/85% RH and 40 C/93% RH for up to 280 days. Other modules undergoing temperature-only exposures ( 3% RH) at 85 C and 100 C have been tested for more than 180 days. At least two modules of each design type are exposed to each environment - one with, and the other without a 100-mA forward bias. Degradation is both visually observed and electrically monitored. Visual observations of changes in appearance are recorded at each inspection time. Significant visual observations relating to metallization corrosion (and/or metallization-induced corrosion) include discoloration (yellowing and browning) of grid lines, migration of grid line material into the encapsulation (blossoming), the appearance of rainbow-like diffraction patterns on the grid lines, and brown spots on collectors and grid lines. All of these observations were recorded for electrically biased modules in the 280-day tests with humidity.
Electrification of the transportation sector offers limited country-wide greenhouse gas reductions
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2014-03-01
Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.
Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation
NASA Astrophysics Data System (ADS)
Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi
In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.
Mechanics of Granular Materials (MGM) Test Cell
NASA Technical Reports Server (NTRS)
2004-01-01
Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Miller, John; O'Shaughnessy, Eric
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less
Schwalm, C.; Huntzinger, Deborah N.; Cook, Robert B.; ...
2015-03-11
Significant changes in the water cycle are expected under current global environmental change. Robust assessment of present-day water cycle dynamics at continental to global scales is confounded by shortcomings in the observed record. Modeled assessments also yield conflicting results which are linked to differences in model structure and simulation protocol. Here we compare simulated gridded (1 spatial resolution) runoff from six terrestrial biosphere models (TBMs), seven reanalysis products, and one gridded surface station product in the contiguous United States (CONUS) from 2001 to 2005. We evaluate the consistency of these 14 estimates with stream gauge data, both as depleted flowmore » and corrected for net withdrawals (2005 only), at the CONUS and water resource region scale, as well as examining similarity across TBMs and reanalysis products at the grid cell scale. Mean runoff across all simulated products and regions varies widely (range: 71 to 356 mm yr(-1)) relative to observed continental-scale runoff (209 or 280 mm yr(-1) when corrected for net withdrawals). Across all 14 products 8 exhibit Nash-Sutcliffe efficiency values in excess of 0.8 and three are within 10% of the observed value. Region-level mismatch exhibits a weak pattern of overestimation in western and underestimation in eastern regions although two products are systematically biased across all regions and largely scales with water use. Although gridded composite TBM and reanalysis runoff show some regional similarities, individual product values are highly variable. At the coarse scales used here we find that progress in better constraining simulated runoff requires standardized forcing data and the explicit incorporation of human effects (e.g., water withdrawals by source, fire, and land use change). (C) 2015 Elsevier B.V. All rights reserved.« less
Multiprocessor computer overset grid method and apparatus
Barnette, Daniel W.; Ober, Curtis C.
2003-01-01
A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.
NASA Astrophysics Data System (ADS)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; Tang, Qiuhong; Vernon, Chris; Leng, Guoyong; Liu, Yaling; Döll, Petra; Eisner, Stephanie; Gerten, Dieter; Hanasaki, Naota; Wada, Yoshihide
2018-04-01
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, K.D.
1961-06-01
A method which gives quantitative data is presented which allows for characterization of the grid blackout effect and is applicable to calculation of circuit degradation. Data are presented for several tube types which show developed bias and discharge time constants as a function of pulse input conditions. Blackout can seriously change the performance of any vacuum tube circuit which utilizes the tube in positive grid operation. The effects on CW oscillators and UHF mixers are discussed. An equivalent circuit which simulates some portions of the blackout phenomenon is presented and used to calculate effective capacitance and resistance associated with themore » grid surface. (auth)« less
Coupling mechanism of electric vehicle and grid under the background of smart grid
NASA Astrophysics Data System (ADS)
Dong, Mingyu; Li, Dezhi; Chen, Rongjun; Shu, Han; He, Yongxiu
2018-02-01
With the development of smart distribution technology in the future, electric vehicle users can not only charge reasonably based on peak-valley price, they can also discharge electricity into the power grid to realize their economic benefit when it’s necessary and thus promote peak load shifting. According to the characteristic that future electric vehicles can discharge, this paper studies the interaction effect between electric vehicles and the grid based on TOU (time of use) Price Strategy. In this paper, four scenarios are used to compare the change of grid load after implementing TOU Price Strategy. The results show that the wide access of electric vehicles can effectively reduce peak and valley difference.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar
Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
SMART Grid Evaluation Using Fuzzy Numbers and TOPSIS
NASA Astrophysics Data System (ADS)
El Alaoui, Mohammed
2018-05-01
In recent advent of smart grids, the end-users aims to satisfy simultaneously low electricity bills, with a reasonable level of comfort. While cost evaluation appears to be an easy task, capturing human preferences seems to be more challenging. Here we propose the use of fuzzy logic and a modified version of the TOPSIS method, to quantify end-users’ preferences in a smart grid. While classical smart grid focus only on the technological side, it is proven that smart grid effectiveness is hugely linked to end-users’ behaviours. The main objective here, is to involve smart grid users in order to get maximum satisfaction, preserving classical smart grid objectives.
Influence of topographic heterogeneity on the abandance of larch forest in eastern Siberia
NASA Astrophysics Data System (ADS)
Sato, H.; Kobayashi, H.
2016-12-01
In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. We have conducted simulation studies for this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 * 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. We, therefore, analyzed patterns of within-grid-scale heterogeneity of larch LAI as a function of topographic condition, and examined its underlying reason. For this analysis, larch LAI was estimated for each 1/112 degree from the SPOT-VEGETATION data, and topographic properties such as angularity and aspect direction were estimated form the ASTER-GDEM data. Through this analysis, we found that, for example, sign of correlation between angularity and larch LAI depends on hydrological condition on the grid cell. We then refined the hydrological sub-model of our vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct these patterns, and examined its impact on the estimation of biomass and vegetation productivity of entire larch region. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311.2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution
NASA Astrophysics Data System (ADS)
Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.
2015-12-01
The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.
A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back
NASA Technical Reports Server (NTRS)
Morstadt, Robert A.
2003-01-01
In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.
Lalonde, R; Hayzoun, K; Selimi, F; Mariani, J; Strazielle, C
2003-11-01
Grid2(ho/ho) is a loss of function gene mutation resulting in abnormal dendritic arborizations of Purkinje cells. These mutants were compared in a series of motor coordination tests requiring balance and equilibrium to nonataxic controls (Grid2(ho/+)) and to a double mutant (Grid2(ho/Lc)) with an inserted Lc mutation. The performance of Grid2(ho/ho) mutant mice was poorer than that of controls on stationary beam, coat hanger, unsteady platform, and rotorod tests. Grid2(ho/Lc) did not differ from Grid2(Lc/+) mice. However, the insertion of the Lc mutation in Grid2(ho/Lc) potentiated the deficits found in Grid2(ho/ho) in stationary beam, unsteady platform, and rotorod tests. These results indicate a deleterious effect of the Lc mutation on Grid2-deficient mice.
Construction and application research of Three-dimensional digital power grid in Southwest China
NASA Astrophysics Data System (ADS)
Zhou, Yang; Zhou, Hong; You, Chuan; Jiang, Li; Xin, Weidong
2018-01-01
With the rapid development of Three-dimensional (3D) digital design technology in the field of power grid construction, the data foundation and technical means of 3D digital power grid construction approaches perfection. 3D digital power grid has gradually developed into an important part of power grid construction and management. In view of the complicated geological conditions in Southwest China and the difficulty in power grid construction and management, this paper is based on the data assets of Southwest power grid, and it aims at establishing a 3D digital power grid in Southwest China to provide effective support for power grid construction and operation management. This paper discusses the data architecture, technical architecture and system design and implementation process of the 3D digital power grid construction through teasing the key technology of 3D digital power grid. The application of power grid data assets management, transmission line corridor planning, geological hazards risk assessment, environmental impact assessment in 3D digital power grid are also discussed and analysed.
Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.
2011-01-01
Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.
The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques
NASA Technical Reports Server (NTRS)
Smith, William L.; Ebert, Elizabeth
1990-01-01
The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.
Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu
2017-07-03
The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.
NASA Astrophysics Data System (ADS)
Elliott, David
2017-07-01
As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2017-07-01
Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.
NASA Astrophysics Data System (ADS)
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.
Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik; Madeleine, Pascal
2017-02-01
The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived exertion reached 8 on Borg's CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.
Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Homa, J. M.
1984-01-01
An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.
Effect of stiffness characteristics on the response of composite grid-stiffened structures
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Rehfield, Lawrence W.
1991-01-01
A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.
Online Optimization Method for Operation of Generators in a Micro Grid
NASA Astrophysics Data System (ADS)
Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi
Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.
An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less
Simulation of an Isolated Tiltrotor in Hover with an Unstructured Overset-Grid RANS Solver
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Biedron, Robert T.
2009-01-01
An unstructured overset-grid Reynolds Averaged Navier-Stokes (RANS) solver, FUN3D, is used to simulate an isolated tiltrotor in hover. An overview of the computational method is presented as well as the details of the overset-grid systems. Steady-state computations within a noninertial reference frame define the performance trends of the rotor across a range of the experimental collective settings. Results are presented to show the effects of off-body grid refinement and blade grid refinement. The computed performance and blade loading trends show good agreement with experimental results and previously published structured overset-grid computations. Off-body flow features indicate a significant improvement in the resolution of the first perpendicular blade vortex interaction with background grid refinement across the collective range. Considering experimental data uncertainty and effects of transition, the prediction of figure of merit on the baseline and refined grid is reasonable at the higher collective range- within 3 percent of the measured values. At the lower collective settings, the computed figure of merit is approximately 6 percent lower than the experimental data. A comparison of steady and unsteady results show that with temporal refinement, the dynamic results closely match the steady-state noninertial results which gives confidence in the accuracy of the dynamic overset-grid approach.
Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jiahui; Zhang, Ye; Liu, Yilu
2014-01-01
Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection methodmore » is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.« less
NASA Astrophysics Data System (ADS)
Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen
2015-04-01
Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.
Nuclear core and fuel assemblies
Downs, Robert E.
1981-01-01
A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.
Radiation pattern synthesis of planar antennas using the iterative sampling method
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1975-01-01
A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.
Unstable bidimensional grids of liquid filaments: Drop pattern after breakups
NASA Astrophysics Data System (ADS)
Diez, Javier; Cuellar, Ingrith; Ravazzoli, Pablo; Gonzalez, Alejandro
2017-11-01
A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops. We acknowledge support from CONICET-Argentina (Grant PIP 844/2012) and ANPCyT-Argentina (Grant PICT 931/2012).
Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F
2008-11-10
Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.
NASA Astrophysics Data System (ADS)
Feng, Peilei; Xu, Tianqi; Liu, Xiaoxin; Jan, Lisheng; Dai, Xiaozhong; Cai, Pengcheng
2018-01-01
Nujiang power grid is at the end of the Yunnan power grid, which is the side of power supply. Due to the regional restrictions and the lag of economic development and other factors, the structure of the power grid in Nujiang is relatively weak, and the voltage of the regional power grid is more prominent. Based on analysis on voltage exceeding limits of Nujiang different power grid, combined with the operating characteristics of regional power grid and reactive power compensation measures, this paper proposes measures for adjustment of Nujiang grid voltage, and analyses the result of adjustment of voltage exceeding limits, which can effectively improve the voltage and power quality.
Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong
2012-05-01
Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.
Introducing Perception and Modelling of Spatial Randomness in Classroom
ERIC Educational Resources Information Center
De Nóbrega, José Renato
2017-01-01
A strategy to facilitate understanding of spatial randomness is described, using student activities developed in sequence: looking at spatial patterns, simulating approximate spatial randomness using a grid of equally-likely squares, using binomial probabilities for approximations and predictions and then comparing with given Poisson…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, B.H.; Narasimhan, R.
1963-01-01
The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2008-01-01
Area array packages (AAPs) with 1.27 mm pitch have been the packages of choice for commercial applications; they are now starting to be implemented for use in military and aerospace applications. Thermal cycling characteristics of plastic ball grid array (PBGA) and chip scale package assemblies, because of their wide usage for commercial applications, have been extensively reported on in literature. Thermal cycling represents the on-off environmental condition for most electronic products and therefore is a key factor that defines reliability.However, very limited data is available for thermal cycling behavior of ceramic packages commonly used for the aerospace applications. For high reliability applications, numerous AAPs are available with an identical design pattern both in ceramic and plastic packages. This paper compares assembly reliability of ceramic and plastic packages with the identical inputs/outputs(I/Os) and pattern. The ceramic package was in the form of ceramic column grid array (CCGA) with 560 I/Os peripheral array with the identical pad design as its plastic counterpart.
An investigation of the RCS (radar cross section) computation of grid cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabihi, Ahmad
2014-12-10
In this paper, the aperture of a cavity is covered by a metallic grid net. This metallic grid is to reduce RCS deduced by impinging radar ray on the aperture. A radar ray incident on a grid net installed on a cavity may create six types of propagation. 1-Incident rays entering inside the cavity and backscattered from it.2-Incidebnt rays on the grid net and created reection rays as an array of scatterers. These rays may create a wave with phase difference of 180 degree with respect to the exiting rays from the cavity.3-Incident rays on the grid net create surfacemore » currents owing on the net and make travelling waves, which regenerate the magnetic and electric fields. These fields make again propagated waves against incident ones.4-Creeping waves.5-Diffracted rays due to leading edges of net’s elements.6-Mutual impedance among elements of the net could be effective on the resultant RCS. Therefore, the author compares the effects of three out of six properties to a cavity without grid net. This comparison shows that RCS prediction of cavity having a grid net is much more reduced than that of without one.« less
Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals
NASA Astrophysics Data System (ADS)
Deimert, C.; Potter, M. E.; Okoniewski, M.
2016-12-01
The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.
Scaling range sizes to threats for robust predictions of risks to biodiversity.
Keith, David A; Akçakaya, H Resit; Murray, Nicholas J
2018-04-01
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Cheng, Meng -Dawn; Kabela, Erik D.
2016-04-30
The Potential Source Contribution Function (PSCF) model has been successfully used for identifying regions of emission source at a long distance in this study, the PSCF model relies on backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In this study, we investigated the impacts of grid resolution and Planetary Boundary Layer (PBL) parameterization (e.g., turbulent transport of pollutants) on the PSCF analysis. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YUS) parameterization schemes were selected to model the turbulent transport in the PBL within the Weather Research and Forecasting (WRF version 3.6) model. Two separate domain grid sizesmore » (83 and 27 km) were chosen in the WRF downscaling in generating the wind data for driving the HYSPLIT calculation. The effects of grid size and PBL parameterization are important in incorporating the influ- ence of regional and local meteorological processes such as jet streaks, blocking patterns, Rossby waves, and terrain-induced convection on the transport of pollutants by a wind trajectory. We found high resolution PSCF did discover and locate source areas more precisely than that with lower resolution meteorological inputs. The lack of anticipated improvement could also be because a PBL scheme chosen to produce the WRF data was only a local parameterization and unable to faithfully duplicate the real atmosphere on a global scale. The MYJ scheme was able to replicate PSCF source identification by those using the Reanalysis and discover additional source areas that was not identified by the Reanalysis data. In conclusion, a potential benefit for using high-resolution wind data in the PSCF modeling is that it could discover new source location in addition to those identified by using the Reanalysis data input.« less
Study on the characteristics of multi-infeed HVDC
NASA Astrophysics Data System (ADS)
Li, Ming; Song, Xinli; Liu, Wenzhuo; Xiang, Yinxing; Zhao, Shutao; Su, Zhida; Meng, Hang
2017-09-01
China has built more than ten HVDC transmission projects in recent years [1]. Now, east China has formed a multi-HVDC feed pattern grid. It is imminent to study the interaction of the multi-HVDC and the characteristics of it. In this paper, an electromechanical-electromagnetic hybrid model is built with electromechanical data of a certain power network. We use electromagnetic models to simulate the HVDC section and electromechanical models simulate the AC power network [2]. In order to study the characteristics of the grid, this paper adds some faults to the line and analysed the fault characteristics. At last give analysis of the fault characteristics.
Time-partitioning simulation models for calculation on parallel computers
NASA Technical Reports Server (NTRS)
Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.
1987-01-01
A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.
Microwave Frequency Polarizers
NASA Technical Reports Server (NTRS)
Ha, Vien The; Mirel, Paul; Kogut, Alan J.
2013-01-01
This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.
2012-03-17
Texas at Austin, Austin, Texas, USA. g dq ’Departement de Physique and LPO, Universite de Bretagne V _ /" r5r’ Occidental, Brest ...grid points are used in the calculation, so that the grid spacing is 8 times larger than on the original grid. The 3-point stencil differences are sig...that the difference between narrow and wide stencil estimates increases over that found on the original higher resolution grid. Interpolation of the
Quantification of effective plant rooting depth: advancing global hydrological modelling
NASA Astrophysics Data System (ADS)
Yang, Y.; Donohue, R. J.; McVicar, T.
2017-12-01
Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.
Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya
2017-02-01
Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extended arrays for nonlinear susceptibility magnitude imaging
Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.
2016-01-01
This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2 > 0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.
Distributed data mining on grids: services, tools, and applications.
Cannataro, Mario; Congiusta, Antonio; Pugliese, Andrea; Talia, Domenico; Trunfio, Paolo
2004-12-01
Data mining algorithms are widely used today for the analysis of large corporate and scientific datasets stored in databases and data archives. Industry, science, and commerce fields often need to analyze very large datasets maintained over geographically distributed sites by using the computational power of distributed and parallel systems. The grid can play a significant role in providing an effective computational support for distributed knowledge discovery applications. For the development of data mining applications on grids we designed a system called Knowledge Grid. This paper describes the Knowledge Grid framework and presents the toolset provided by the Knowledge Grid for implementing distributed knowledge discovery. The paper discusses how to design and implement data mining applications by using the Knowledge Grid tools starting from searching grid resources, composing software and data components, and executing the resulting data mining process on a grid. Some performance results are also discussed.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Spatial-temporal travel pattern mining using massive taxi trajectory data
NASA Astrophysics Data System (ADS)
Zheng, Linjiang; Xia, Dong; Zhao, Xin; Tan, Longyou; Li, Hang; Chen, Li; Liu, Weining
2018-07-01
Deep understanding of residents' travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi trajectory data are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we use taxi trajectory data to study spatial-temporal characterization of urban residents' travel patterns from two aspects: attractive areas and hot paths. Firstly, a framework of trajectory preprocessing, including data cleaning and extracting the taxi passenger pick-up/drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Then, a grid density based clustering algorithm is proposed to discover travel attractive areas in different periods of a day. On this basis, we put forward a spatial-temporal trajectory clustering method to discover hot paths among travel attractive areas. Compared with previous algorithms, which only consider the spatial constraint between trajectories, temporal constraint is also considered in our method. Through the experiments, we discuss how to determine the optimal parameters of the two clustering algorithms and verify the effectiveness of the algorithms using real data. Furthermore, we analyze spatial-temporal characterization of Chongqing residents' travel pattern.
SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanikolaou, P; Watts, L; Kirby, N
2016-06-15
Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylicmore » phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.« less
Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun
2014-01-01
We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694
NASA Technical Reports Server (NTRS)
Jago, S.; Baty, D.; Oconnor, S.; Palmer, E.
1981-01-01
The concept of a cockpit display of traffic information (CDTI) includes the integration of air traffic, navigation, and other pertinent information in a single electronic display in the cockpit. Concise display symbology was developed for use in later full-mission simulator evaluations of the CDTI concept. Experimental variables used included the update interval motion of the aircraft, the update type, (that is, whether the two aircraft were updated at the same update interval or not), the background (grid pattern or no background), and encounter type (straight or curved). Only the type of encounter affected performance.
Power quality analysis based on spatial correlation
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli
2018-03-01
With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.
Separated flows receptivity for external disturbances
NASA Astrophysics Data System (ADS)
Zanin, B. Yu.
2017-10-01
Results of experimental investigations of the flow over a straight-wing model in a low-turbulence wind tunnel are reported. The influence of a turbulent wake due to a thin filament on the structure of boundary layer on the model surface was examined. Also the fishing line was installed in the test section of the wind tunnel and the effect of line on the boundary-layer flow structure is considered. Flow visualization in boundary layer and hot-wire measurements were performed. The wake and the grid substantially modified the boundary layer flow pattern: the separation disappeared from the wing surface, and the formation of longitudinal structures was observed.
NASA Astrophysics Data System (ADS)
Ross, Robin M.; Quetin, Langdon B.; Martinson, Douglas G.; Iannuzzi, Rich A.; Stammerjohn, Sharon E.; Smith, Raymond C.
2008-09-01
Variability in the temporal-spatial distribution and abundance of zooplankton was documented each summer on the Palmer Long-Term Ecological Research (LTER) grid west of the Antarctic Peninsula between Anvers and Adelaide Islands during a 12-yr time series. Oblique tows to 120 m with a 2×2 m fixed-frame net were made at about 50 stations each January/February between 1993 and 2004. The numerically dominant macro- and mesozooplanktonic species >2 mm included three species of euphausiids ( Euphausia superba, Antarctic krill; Thysanoëssa macrura; Euphausia crystallorophias, ice krill), a shelled pteropod ( Limacina helicina), and a salp ( Salpa thompsoni). Life cycles, life spans, and habitat varied among these species. Abundance data from each year were allocated to 100 km by 20 km (alongshore by on/offshore) grid cells centered on cardinal transect lines and stations within the Palmer LTER grid. The long-term mean or climatology and means for each year were used to calculate annual anomalies across the grid. Principal components analysis (PCA) was used to analyze for patterns and trends in the temporal-spatial variability of the five species. Questions included whether there are groups of species with similar patterns, and whether population cycles, species interactions or seasonal sea-ice parameters were correlated with detected patterns. Patterns in the climatology were distinct, and matched those of physical parameters. Common features included higher abundance in the north than in the south, independent of the cross-shelf gradients, and cross-shelf gradients with higher abundance either inshore ( E. crystallorophias) or offshore ( S. thompsoni). Anomalies revealed either cycles in the population, as episodic recruitment in Antarctic krill, or changes in anomaly pattern between the first and second half of the sampling period. The 1998 year, which coincided with a rapid change from a negative to a positive phase in the SOI, emerged as a year with either significant anomalies or that marked a change in anomaly patterns for different species. PCA analysis showed that the pattern of cumulative variance with increasing number of modes was distinctly different for shorter-lived versus longer-lived species; the first mode accounted for nearly 50% of the variance in the shorter-lived species and less than 25% in the longer-lived species. This suggested that the mechanisms driving variability in the temporal-spatial distribution of the shorter-lived, more oceanic species were less complex and more direct than those for the longer-lived euphausiids. Evidence from both the anomaly plots and the trend analysis suggested that salps have been more consistently present across the shelf from 1999 to present, and that the range of L. helicina has been expanding. With shorter life spans, these two species can respond more quickly to the increasing heat content on the shelf in this region. The cross-correlation analysis illustrated the negative correlation between salps and ice retreat and the number of ice days, and the positive correlation between the presence of ice krill and the day of ice retreat. These results suggest that for these species, several environmental controls on distribution and abundance were linked to seasonal sea-ice dynamics.
Some effects of horizontal discretization on linear baroclinic and symmetric instabilities
NASA Astrophysics Data System (ADS)
Barham, William; Bachman, Scott; Grooms, Ian
2018-05-01
The effects of horizontal discretization on linear baroclinic and symmetric instabilities are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean models on the B and C grids. On the C grid a spurious baroclinic instability appears at small wavelengths. This instability does not disappear as the grid scale decreases; instead, it simply moves to smaller horizontal scales. The peak growth rate of the spurious instability is independent of the grid scale as the latter decreases. It is equal to cf /√{Ri} where Ri is the balanced Richardson number, f is the Coriolis parameter, and c is a nondimensional constant that depends on the Richardson number. As the Richardson number increases c increases towards an upper bound of approximately 1/2; for large Richardson numbers the spurious instability is faster than the Eady instability. To suppress the spurious instability it is recommended to use fourth-order centered tracer advection along with biharmonic viscosity and diffusion with coefficients (Δx) 4 f /(32√{Ri}) or larger where Δx is the grid scale. On the B grid, the growth rates of baroclinic and symmetric instabilities are too small, and converge upwards towards the correct values as the grid scale decreases; no spurious instabilities are observed. In B grid models at eddy-permitting resolution, the reduced growth rate of baroclinic instability may contribute to partially-resolved eddies being too weak. On the C grid the growth rate of symmetric instability is better (larger) than on the B grid, and converges upwards towards the correct value as the grid scale decreases.
A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars
NASA Astrophysics Data System (ADS)
Lanz, Thierry; Hubeny, Ivan
2007-03-01
We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K<=Teff<=30,000 K with 1000 K steps, 13 surface gravities, 1.75<=logg<=4.75 with 0.25 dex steps, six chemical compositions, and a microturbulent velocity of 2 km s-1. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions range from twice to one-tenth of the solar metallicity and metal-free. Additional model atmospheres for B supergiants (logg<=3.0) have been calculated with a higher microturbulent velocity (10 km s-1) and a surface composition that is enriched in helium and nitrogen and depleted in carbon. This new grid complements our earlier OSTAR2002 grid of O-type stars (our Paper I). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY Web site.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.
2005-01-01
We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, Jeff; Brooker, Aaron; Burton, Evan
Presentation given at an 'Expert Workshop on V2X Enabled Electric Vehicles' hosted at NREL on behalf of the International Energy Agency (IEA) Hybrid and Electric Vehicle Implementing Agreement for Task 28: Home Grids and V2X Technologies.
A Global Precipitation Perspective on Persistent Extratropical Flow Anomalies
NASA Technical Reports Server (NTRS)
Huffman, George J.; Adler, Robert F.; Bolvin, David T.
1999-01-01
Two globally-complete, observation-only precipitation datasets have recently been developed for the Global Precipitation Climatology Project (GPCP). Both depend heavily on a variety of satellite input, as well as gauge data over land. The first, Version 2 x 79, provides monthly estimates on a 2.5 deg x 2.5 deg lat/long grid for the period 1979 through late 1999 (by the time of the conference). The second, the One-Degree Daily (1DD), provides daily estimates on a 1 deg x 1 deg grid for the period 1997 through late 1999 (by the time of the conference). Both are in beta test preparatory to release as official GPCP products. These datasets provide a unique perspective on the hydrological effects of the various atmospheric flow anomalies that have been identified by meteorologists. In this paper we discuss the regional precipitation effects that result from persistent extratropical flow anomalies. We will focus on the Pacific-North America (PNA) and North Atlantic Oscillation (NAO) patterns. Each characteristically becomes established on synoptic time scales, but then persists for periods that can exceed a month. The onset phase of each appears to have systematic mobile features, while the mature phase tend to be more stationary. Accordingly, composites of monthly data for outstanding positive and negative events (separately) contained in the 20-year record reveal the climatological structure of the precipitation during the mature phase. The climatological anomalies of the positive, negative, and (positive-negative) composites show the expected storm-track-related shifts in precipitation, and provide the advantage of putting the known precipitation effects over land in the context of the total pattern over land and ocean. As well, this global perspective points out some unexpected areas of correlation. Day-by-day composites of daily data anchored to the onset date demonstrate the systematic features during the onset. Although the 1DD has a fairly short record, some preliminary results are shown and compared to previous work with numerical weather prediction models.
Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul
2015-08-01
In biology, hemocytometers such as Malassez slides are widely used and are effective tools for counting cells manually. In a previous work, a robust algorithm was developed for grid extraction in Malassez slide images. This algorithm was evaluated on a set of 135 images and grids were accurately detected in most cases, but there remained failures for the most difficult images. In this work, we present an optimization of this algorithm that allows for 100% grid detection and a 25% improvement in grid positioning accuracy. These improvements make the algorithm fully reliable for grid detection. This optimization also allows complete erasing of the grid without altering the cells, which eases their segmentation.
Evidences of Significant Nonstationarity in Precipitation Extremes over Urbanizing Areas in India
NASA Astrophysics Data System (ADS)
Singh, J.; H, V.; Karmakar, S.; Ghosh, S.
2014-12-01
The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the analytically perceivable impacts of climate change, urbanization and concomitant land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which inturn effects the policy and decision-making. Past studies provided sufficient evidences on changes in the characteristics of Indian monsoon rainfall extremes and further it has been attributed to climate change and urbanization, which indicates the presence of significant nonstationary in the Indian monsoon extremes. Therefore, a comprehensive nonstationary frequency analysis must be conducted all over India to obtain realistic return periods. The present study aims to conduct a nonstationary frequency analysis of the precipitation extremes over India at 1o resolution for a period of 1901-2004, with the implementation of the Generalized Additive Model for Location, Scale and Shape (GAMLSS) parameters. A cluster of 74 GAMLSS models has been developed by considering nonstationary in different combinations of distribution parameters and regression techniques (families of parametric polynomials and nonparametric/smoothing cubic spline), which overcomes the limitations of the previous studies. Further, for identification of urban, urbanizing and rural grids, an population density data has been utilized. The results showed the significant differences in the stationary and nonstationary return periods for the urbanizing grids, when compared to urbanized and rural grids. The results give implications of presence of nonstationary in the precipitation extremes more prominently in urbanizing areas compare to urbanized and rural areas.
Numerical study of three-dimensional separation and flow control at a wing/body junction
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Lakshmanan, Balakrishnan
1989-01-01
The problem of three-dimensional separation and flow control at a wing/body junction has been investigated numerically using a three-dimensional Navier-Stokes code. The numerical code employs an algebraic grid generation technique for generating the grid for unmodified junction and an elliptic grid generation technique for filleted fin junction. The results for laminar flow past a blunt fin/flat plate junction demonstrate that after grid refinement, the computations agree with experiment and reveal a strong dependency of the number of vortices at the junction on Mach number and Reynolds number. The numerical results for pressure distribution, particle paths and limiting streamlines for turbulent flow past a swept fin show a decrease in the peak pressure and in the extent of the separated flow region compared to the laminar case. The results for a filleted juncture indicate that the streamline patterns lose much of their vortical character with proper filleting. Fillets with a radius of three and one-half times the fin leading edge diameter or two times the incoming boundary layer thickness, significantly weaken the usual necklace interaction vortex for the Mach number and Reynolds number considered in the present study.
NASA Astrophysics Data System (ADS)
Manikandan, M.; Tamilmani, D.
2015-09-01
The present study aims to investigate the spatial and temporal variation of meteorological drought in the Parambikulam-Aliyar basin, Tamil Nadu using the Standardized Precipitation Index (SPI) as an indicator of drought severity. The basin was divided into 97 grid-cells of 5 × 5 km with each grid correspondence to approximately 1.03 % of total area. Monthly rainfall data for the period of 40 years (1972-2011) from 28 rain gauge stations in the basin was spatially interpolated and gridded monthly rainfall was created. Regional representative of SPI values calculated from mean areal rainfall were used to analyse the temporal variation of drought at multiple time scales. Spatial variation of drought was analysed based on highest drought severity derived from the monthly gridded SPI values. Frequency analyse was applied to assess the recurrence pattern of drought severity. The temporal analysis of SPI indicated that moderate, severe and extreme droughts are common in the basin and spatial analysis of drought severity identified the areas most frequently affected by drought. The results of this study can be used for developing drought preparedness plan and formulating mitigation strategies for sustainable water resource management within the basin.
Virtual reality and the unfolding of higher dimensions
NASA Astrophysics Data System (ADS)
Aguilera, Julieta C.
2006-02-01
As virtual/augmented reality evolves, the need for spaces that are responsive to structures independent from three dimensional spatial constraints, become apparent. The visual medium of computer graphics may also challenge these self imposed constraints. If one can get used to how projections affect 3D objects in two dimensions, it may also be possible to compose a situation in which to get used to the variations that occur while moving through higher dimensions. The presented application is an enveloping landscape of concave and convex forms, which are determined by the orientation and displacement of the user in relation to a grid made of tesseracts (cubes in four dimensions). The interface accepts input from tridimensional and four-dimensional transformations, and smoothly displays such interactions in real-time. The motion of the user becomes the graphic element whereas the higher dimensional grid references to his/her position relative to it. The user learns how motion inputs affect the grid, recognizing a correlation between the input and the transformations. Mapping information to complex grids in virtual reality is valuable for engineers, artists and users in general because navigation can be internalized like a dance pattern, and further engage us to maneuver space in order to know and experience.
GIS characterization of spatially distributed lifeline damage
Toprak, Selcuk; O'Rourke, Thomas; Tutuncu, Ilker
1999-01-01
This paper describes the visualization of spatially distributed water pipeline damage following an earthquake using geographical information systems (GIS). Pipeline damage is expressed as a repair rate (RR). Repair rate contours are developed with GIS by dividing the study area into grid cells (n ?? n), determining the number of particular pipeline repairs in each grid cell, and dividing the number of repairs by the length of that pipeline in each cell area. The resulting contour plot is a two-dimensional visualization of point source damage. High damage zones are defined herein as areas with an RR value greater than the mean RR for the entire study area of interest. A hyperbolic relationship between visual display of high pipeline damage zones and grid size, n, was developed. The relationship is expressed in terms of two dimensionless parameters, threshold area coverage (TAC) and dimensionless grid size (DGS). The relationship is valid over a wide range of different map scales spanning approximately 1,200 km2 for the largest portion of the Los Angeles water distribution system to 1 km2 for the Marina in San Francisco. This relationship can aid GIS users to get sufficiently refined, but easily visualized, maps of damage patterns.
Study of Swept Angle Effects on Grid Fins Aerodynamics Performance
NASA Astrophysics Data System (ADS)
Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad
2018-04-01
Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
Resolution characteristics of optical coherence tomography for dental use.
Watanabe, Hiroshi; Kuribayashi, Ami; Sumi, Yasunori; Kurabayashi, Tohru
2017-03-01
The purpose of this study was to clarify the resolution characteristics of optical coherence tomography (OCT) for dental use. Two types of swept-source optical coherence tomography machines were employed in this study. To clarify their resolution characteristics, we newly developed a glass chart device with a ladder pattern of wavelengths, which ranged from 4 × 2 μm to 1024 × 2 μm, as well as a star-target pattern, a grid pattern and a spatial frequency response pattern. The resolving powers and characteristics of the OCTs were subjectively evaluated. The Santec OCT-2000 ™ (Santec Co., Komaki, Japan) had a resolving power of 64 μm in both the horizontal X and vertical Y directions, while the OCT from Yoshida had a resolving power of 64 μm in the horizontal X direction and 128 µm in the vertical Y direction. The resolving power of the depth Z direction could not be obtained from this study. With the Yoshida OCT, the star-target pattern seemed to be non-symmetrical, owing to an edge enhancement effect, which was revealed when the ladder patterns were placed in a horizontal direction. This study successfully clarified the resolution characteristics of two types of OCTs. The obtained data may be useful for diagnostic purposes, and the glass chart device used in this study may be useful for OCT quality assurance programmes.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.
Spatial Variability of Snowpack Properties On Small Slopes
NASA Astrophysics Data System (ADS)
Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.
The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.
From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact
Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael
2005-01-01
General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096
Stability of synchrony against local intermittent fluctuations in tree-like power grids
NASA Astrophysics Data System (ADS)
Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen
2017-12-01
90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects.
Su, Daniel; Greenberg, Andrew; Simonson, Joseph L; Teng, Christopher C; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul
2016-04-01
To investigate the efficacy of the Amsler grid test in detecting central visual field (VF) defects in glaucoma. Prospective, cross-sectional study. Patients with glaucoma with reliable Humphrey 10-2 Swedish Interactive Threshold Algorithm standard VF on the date of enrollment or within the previous 3 months. Amsler grid tests were performed for each eye and were considered "abnormal" if there was any perceived scotoma with missing or blurry grid lines within the central 10 degrees ("Amsler grid scotoma"). An abnormal 10-2 VF was defined as ≥3 adjacent points at P < 0.01 with at least 1 point at P < 0.005 in the same hemifield on the pattern deviation plot. Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area were calculated with the 10-2 VF as the clinical reference standard. Among eyes with an abnormal 10-2 VF, regression analyses were performed between the Amsler grid scotoma area and the 10-2 VF parameters (mean deviation [MD], scotoma extent [number of test points with P < 0.01 in total deviation map] and scotoma mean depth [mean sensitivity of test points with P < 0.01 in total deviation map]). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area. A total of 106 eyes (53 patients) were included (mean ± standard deviation age, 24-2 MD and 10-2 MD = 66±12 years, -9.61±8.64 decibels [dB] and -9.75±9.00 dB, respectively). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid test were 68%, 92%, 97%, and 46%, respectively. Sensitivity was 40% in eyes with 10-2 MD better than -6 dB, 58% in eyes with 10-2 MD between -12 and -6 dB, and 92% in eyes with 10-2 MD worse than -12 dB. The area under the receiver operating characteristic curve of the Amsler grid scotoma area was 0.810 (95% confidence interval, 0.723-0.880, P < 0.001). The Amsler grid scotoma area had the strongest relationship with 10-2 MD (quadratic R(2)=0.681), followed by 10-2 scotoma extent (quadratic R(2)=0.611) and 10-2 scotoma mean depth (quadratic R(2)=0.299) (all P < 0.001). The Amsler grid can be used to screen for moderate to severe central vision loss from glaucoma. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Sonic Boom Prediction and Minimization of the Douglas Reference OPT5 Configuration
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
Conventional CFD methods and grids do not yield adequate resolution of the complex shock flow pattern generated by a real aircraft geometry. As a result, a unique grid topology and supersonic flow solver was developed at Northrop Grumman based on the characteristic behavior of supersonic wave patterns emanating from the aircraft. Using this approach, it was possible to compute flow fields with adequate resolution several body lengths below the aircraft. In this region, three-dimensional effects are diminished and conventional two-dimensional modified linear theory (MLT) can be applied to estimate ground pressure signatures or sonic booms. To accommodate real aircraft geometries and alleviate the burdensome grid generation task, an implicit marching multi-block, multi-grid finite-volume Euler code was developed as the basis for the sonic boom prediction methodology. The Thomas two-dimensional extrapolation method is built into the Euler code so that ground signatures can be obtained quickly and efficiently with minimum computational effort suitable to the aircraft design environment. The loudness levels of these signatures can then be determined using a NASA generated noise code. Since the Euler code is a three-dimensional flow field solver, the complete circumferential region below the aircraft is computed. The extrapolation of all this field data from a cylinder of constant radius leads to the definition of the entire boom corridor occurring directly below and off to the side of the aircraft's flight path yielding an estimate for the entire noise "annoyance" corridor in miles as well as its magnitude. An automated multidisciplinary sonic boom design optimization software system was developed during the latter part of HSR Phase 1. Using this system, it was found that sonic boom signatures could be reduced through optimization of a variety of geometric aircraft parameters. This system uses a gradient based nonlinear optimizer as the driver in conjunction with a computationally efficient Euler CFD solver (NIIM3DSB) for computing the three-dimensional near-field characteristics of the aircraft. The intent of the design system is to identify and optimize geometric design variables that have a beneficial impact on the ground sonic boom. The system uses a simple wave drag data format to specify the aircraft geometry. The geometry is internally enhanced and analytic methods are used to generate marching grids suitable for the multi-block Euler solver. The Thomas extrapolation method is integrated into this system, and hence, the aircraft's centerline ground sonic boom signature is also automatically computed for a specified cruise altitude and yields the parameters necessary to evaluate the design function. The entire design system has been automated since the gradient based optimization software requires many flow analyses in order to obtain the required sensitivity derivatives for each design variable in order to converge on an optimal solution. Hence, once the problem is defined which includes defining the objective function and geometric and aerodynamic constraints, the system will automatically regenerate the perturbed geometry, the necessary grids, the Euler solution, and finally the ground sonic boom signature at the request of the optimizer.
Estimating scatter in cone beam CT with striped ratio grids: A preliminary investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Scott, E-mail: sshsieh@stanford.edu
2016-09-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. Conventional antiscatter grids reject scatter at an efficiency that is constant or slowly varying over the surface of the grid. A striped ratio antiscatter grid, composed of stripes that alternate between high and low grid ratio, could be used instead. Such a striped ratio grid would reduce scatter-to-primary ratio as a conventional grid would, but more importantly, the signal discontinuities at the boundaries of stripes can be used to estimate local scatter content. Methods: Signal discontinuities provide information on scatter, but are contaminated by variation in primary radiation.more » A nonlinear image processing algorithm is used to estimate the scatter content in the presence of primary variation. We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid. These two scans are processed together to mimic a striped ratio grid. This represents a best case limit of the striped ratio grid, in that the extent of grid ratio modulation is very high and the scatter contrast is maximized. Results: In a uniform cylinder, the striped ratio grid virtually eliminates cupping. Artifacts from scatter are improved in an anthropomorphic phantom. Some banding artifacts are induced by the striped ratio grid. Conclusions: Striped ratio grids could be a simple and effective evolution of conventional antiscatter grids. Construction and validation of a physical prototype remains an important future step.« less
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
System design and implementation of digital-image processing using computational grids
NASA Astrophysics Data System (ADS)
Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping
2005-06-01
As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.
1995-01-01
This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
NASA Astrophysics Data System (ADS)
Yalcin, A.; Olgar, T.
2018-07-01
The aim of this study was to assess the performance of a digital radiography system in terms of effective detective quantum efficiency (eDQE) for different tube voltages, polymethyl methacrylate (PMMA) phantom thicknesses and different grid types. The image performance of the digital radiography system was also evaluated by using CDRAD measurements at the same conditions and the correlation of CDRAD results with eDQE was compared. The eDQE was calculated via measurement of effective modulation transfer function (eMTF), effective normalized noise power spectra (eNNPS), scatter fraction (SF) and transmission factors (TF). SFs and TFs were also calculated for different beam qualities by using MCNP4C Monte Carlo simulation code. The integrated eDQE (IeDQE) over the frequency range was used to find the correlation with the inverse image quality figure (IQFinv) obtained from CDRAD measurements. The highest eDQE was obtained with 60 lp/cm grid frequency and 10:1 grid ratio. No remarkable effect was observed on eDQE with different grid frequency, but eDQE decreased with increasing grid ratio. A significant correlation was found between IeDQE and IQFinv.
Improved Forecasting of Next Day Ozone Concentrations in the Eastern U.S.
There is an urgent need to provide accurate air quality information and forecasts to the general public. A hierarchical space-time model is used to forecast next day spatial patterns of daily maximum 8-hr ozone concentrations. The model combines ozone monitoring data and gridded...
Residential expansion as a continental threat to U.S. coastal ecosystems
J.G. Bartlett; D.M. Mageean; R.J. O' Connor
2000-01-01
Spatially extensive analysis of satellite, climate, and census data reveals human-environment interactions of regional or continental concern in the United States. A grid-based principal components analysis of Bureau of Census variables revealed two independent demographic phenomena, a-settlement reflecting traditional human settlement patterns and p-settlement...
Geospatial Video Monitoring of Benthic Habitats Using the Shallow-Water Positioning System (SWaPS)
2007-01-01
established from the video frames collected using SWaPS. C) Cover contours for the seagrass Thalassia testudinum. A B C surveyed using a spatial grid...distributions of seagrass species within this area are clearly influenced by their tolerance to salinity patterns. Thalassia testudinum, a species
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
2-dimensional implicit hydrodynamics on adaptive grids
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2007-12-01
We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.
Multiscale deformation behavior for multilayered steel by in-situ FE-SEM
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.
2010-03-01
The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.
Earth Observations taken by the Expedition 14 crew
2007-12-30
ISS014-E-10547 (30 Dec. 2006) --- Barcelona, Spain is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Barcelona occupies a low plateau along the Mediterranean coastal plain. The city is the second largest in Spain (after the capital of Madrid), and hosts the country's largest seaport (portions of which are visible at lower right). This detailed view captures several notable features of the Barcelona urban landscape. The architectural design of the Eixample district (center) displays a grid pattern distinctive for Barcelona. Built during the 19th and 20th centuries, the district was built with octagonal city blocks -- originally intended to be open structures of only two or three sides surrounding gardens and open space. While the original street grid pattern remains, today many of the octagonal blocks are completely built up. The adjacent Cuitat Vella, or old city, presents a much denser building pattern which dates from Roman times. Also visible at lower right is the 173-meter high Montjuic Mountain -- historically the location of fortresses due to its strategic position overlooking the city's harbor. Light tan and orange structures visible at the crest of the mountain include the stadium and other buildings used in the 1992 Summer Olympic Games at Barcelona.
NASA Astrophysics Data System (ADS)
Tsumori, K.; Takeiri, Y.; Ikeda, K.; Nakano, H.; Geng, S.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Wada, M.; Sasaki, K.; Nishiyama, S.; Goto, M.; Osakabe, M.
2017-08-01
Total power of 16 MW has been successfully delivered to the plasma confined in the Large Helical Device (LHD) from three Neutral Beam Injectors (NBIs) equipped with negative hydrogen (H-) ion sources. However, the detailed mechanisms from production through extraction of H- ions are still yet to be clarified and a similar size ion source on an independent acceleration test bench called Research and development Negative Ion Source (RNIS) serves as the facility to study physics related to H- production and transport for further improvement of NBI. The production of negative-ion-rich plasma and the H- ions behavior in the beam extraction region in RNIS is being investigated by employing an integrated diagnostic system. Flow patterns of electrons, positive ions and H- ions in the extraction region are described in a two-dimensional map. The measured flow patterns indicate the existence a stagnation region, where the H- flow changes the direction at a distance about 20 mm from the plasma grid. The pattern also suggested the H- flow originated from plasma grid (PG) surface that turned back toward extraction apertures. The turning region seems formed by a layer of combined magnetic field produced by the magnetic filter field and the Electron-Deflection Magnetic (EDM) field created by magnets installed in the extraction electrode.
SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.
2008-01-01
The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.
2004-01-01
A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not significantly changed by specifying transition. Although the sources of code-to-code variation in force and moment predictions for the three unstructured grid codes have not yet been identified, the current study reinforces the necessity of applying multiple codes to the same application to assess uncertainty.
Framing the grid: effect of boundaries on grid cells and navigation.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2016-11-15
Cells in the mammalian hippocampal formation subserve neuronal representations of environmental location and support navigation in familiar environments. Grid cells constitute one of the main cell types in the hippocampal formation and are widely believed to represent a universal metric of space independent of external stimuli. Recent evidence showing that grid symmetry is distorted in non-symmetrical environments suggests that a re-examination of this hypothesis is warranted. In this review we will discuss behavioural and physiological evidence for how environmental shape and in particular enclosure boundaries influence grid cell firing properties. We propose that grid cells encode the geometric layout of enclosures. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
Khalafvand, S S; Ng, E Y K; Zhong, L; Hung, T K
2012-08-01
Pulsating blood flow patterns in the left ventricular (LV) were computed for three normal subjects and three patients after myocardial infarction (MI). Cardiac magnetic resonance (MR) images were obtained, segmented and transformed into 25 frames of LV for a computational fluid dynamics (CFD) study. Multi-block structure meshes were generated for 25 frames and 75 intermediate grids. The complete LV cycle was modelled by using ANSYS-CFX 12. The flow patterns and pressure drops in the LV chamber of this study provided some useful information on intra-LV flow patterns with heart diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.; Gold, D. P.
1974-01-01
Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.
NASA Astrophysics Data System (ADS)
Tian, Zhang; Yanfeng, Gong
2017-05-01
In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Feng, Shuo
2014-01-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns. PMID:24834420
Feng, Shuo; Ji, Jim
2014-04-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.
Benchmarking Data for the Proposed Signature of Used Fuel Casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
2016-09-23
A set of benchmarking measurements to test facets of the proposed extended storage signature was conducted on May 17, 2016. The measurements were designed to test the overall concept of how the proposed signature can be used to identify a used fuel cask based only on the distribution of neutron sources within the cask. To simulate the distribution, 4 Cf-252 sources were chosen and arranged on a 3x3 grid in 3 different patterns and raw neutron totals counts were taken at 6 locations around the grid. This is a very simplified test of the typical geometry studied previously in simulationmore » with simulated used nuclear fuel.« less
Williams, Ben D; Harter, Stephanie Lewis
2010-01-01
Socioemotional selectivity theory (Carstensen, 1995) posits a "positivity effect" in older adults, describing an increasing tendency to attend to, process, interpret, and remember events and others in life in a positive fashion as one ages. Drawing on personal construct theory, Viney (1993) observes increasing integration of constructions of self with others across the lifespan. The current study extends assessment of the positivity effect, integrating it with personal construct theory, by use of Repertory Grid (RepGrid) analysis. Consistent with the positivity effect, older adults (ages 54-86) described others more positively on RepGrid measures in comparison to younger adults (ages 18-25). Older adults also described the self as more similar to others and tended to describe the self more positively. The age groups did not differ in measures of psychological distress or well being with the exception of older adults describing more autonomy.
Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.
1979-08-01
The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.
Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.
2017-01-01
In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
First Gridded Spatial Field Reconstructions of Snow from Tree Rings
NASA Astrophysics Data System (ADS)
Coulthard, B. L.; Anchukaitis, K. J.; Pederson, G. T.; Alder, J. R.; Hostetler, S. W.; Gray, S. T.
2017-12-01
Western North America's mountain snowpacks provide critical water resources for human populations and ecosystems. Warmer temperatures and changing precipitation patterns will increasingly alter the quantity, extent, and persistence of snow in coming decades. A comprehensive understanding of the causes and range of long-term variability in this system is required for forecasting future anomalies, but snowpack observations are limited and sparse. While individual tree ring-based annual snowpack reconstructions have been developed for specific regions and mountain ranges, we present here the first collection of spatially-explicit gridded field reconstructions of seasonal snowpack within the American Rocky Mountains. Capitalizing on a new western North American snow-sensitive network of over 700 tree-ring chronologies, as well as recent advances in PRISM-based snow modeling, our gridded reconstructions offer a full space-time characterization of snow and associated water resource fluctuations over several centuries. The quality of reconstructions is evaluated against existing observations, proxy-records, and an independently-developed first-order monthly snow model.
Perrin, Maxine; Robillard, Manon; Roy-Charland, Annie
2017-12-01
This study examined eye movements during a visual search task as well as cognitive abilities within three age groups. The aim was to explore scanning patterns across symbol grids and to better understand the impact of symbol location in AAC displays on speed and accuracy of symbol selection. For the study, 60 students were asked to locate a series of symbols on 16 cell grids. The EyeLink 1000 was used to measure eye movements, accuracy, and response time. Accuracy was high across all cells. Participants had faster response times, longer fixations, and more frequent fixations on symbols located in the middle of the grid. Group comparisons revealed significant differences for accuracy and reaction times. The Leiter-R was used to evaluate cognitive abilities. Sustained attention and cognitive flexibility scores predicted the participants' reaction time and accuracy in symbol selection. Findings suggest that symbol location within AAC devices and individuals' cognitive abilities influence the speed and accuracy of retrieving symbols.
Improving mobile robot localization: grid-based approach
NASA Astrophysics Data System (ADS)
Yan, Junchi
2012-02-01
Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.
NASA Technical Reports Server (NTRS)
Low, Scott L.
1993-01-01
The Baldwin-Barth turbulence model was implemented into Zeta, a time-accurate, zonal, integro-differential code for incompressible laminar and turbulent flows. The implementation procedure is patterned after the model subroutine in ARC2D. The results of ZETA with the Baldwin-Barth turbulence model were compared with experimental data, with ZETA using Baldwin-Lomax model, and with ARC2D using the Baldwin-Barth model. The Baldwin-Barth model subroutine was tested by inputting an ARC2D velocity solution of an NACA-0012 airfoil at R(sub e) = 3.9 x 10(exp 6) and alpha = 5 deg. The resultant turbulent viscosity and Reynolds stresses compared favorably with the original data. For the same grid having grid points inside the laminar sublayer, which is necessary due to the one-equation nature of the model, ZETA however predicts early separation. It was found that the current ZETA has problem with such a fine grid. Further work is in progress to solve this problem.
An Object-Oriented Serial DSMC Simulation Package
NASA Astrophysics Data System (ADS)
Liu, Hongli; Cai, Chunpei
2011-05-01
A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.
Kim, Bumsoo; Koh, Jong Kwan; Park, Junyong; Ahn, Changui; Ahn, Joonmo; Kim, Jong Hak; Jeon, Seokwoo
2015-01-01
This paper reports a new type of transmitting mode electrochromic device that uses the high-contrast electrochromism of poly(3,4-ethylenedioxythiophene) (PEDOT) and operates at long-wavelength infrared (8-12 μm) . To maximize the transmittance contrast and transmittance contrast ratio of the device for thermal camouflage, we control the thickness of the thin PEDOT layer from 25 nm to 400 nm and develop a design of grid-type counter electrodes. The cyclability can be greatly improved by selective deposition of the PEDOT film on grid electrodes as an ion storage layer without any loss of overall transmittance. The device with optimized architectures shows a high transmittance contrast ratio of 83 % at a wavelength of 10 μm with a response rate under 1.4 s when alternating voltage is applied. Captured images of an LED lamp behind the device prove the possibility of active, film-type camouflage against thermal detection.
Testing a model of intonation in a tone language.
Lindau, M
1986-09-01
Schematic fundamental frequency curves of simple statements and questions are generated for Hausa, a two-tone language of Nigeria, using a modified version of an intonational model developed by Gårding and Bruce [Nordic Prosody II, edited by T. Fretheim (Tapir, Trondheim, 1981), pp. 33-39]. In this model, rules for intonation and tones are separated. Intonation is represented as sloping grids of (near) parallel lines, inside which tones are placed. The tones are associated with turning points of the fundamental frequency contour. Local rules may also modify the exact placement of a tone within the grid. The continuous fundamental frequency contour is modeled by concatenating the tonal points using polynomial equations. Thus the final pitch contour is modeled as an interaction between global and local factors. The slope of the intonational grid lines depends at least on sentence type (statement or question), sentence length, and tone pattern. The model is tested by reference to data from nine speakers of Kano Hausa.
Friedenreich, Christine; McLaren, Lindsay; Potestio, Melissa; Sandalack, Beverly; Csizmadi, Ilona
2017-01-01
Neighbourhood-level socioeconomic composition and built context are correlates of weight-related behaviours. We investigated the relations between objective measures of neighbourhood design and socioeconomic status (SES) and their interaction, in relation to self-reported waist circumference (WC), waist-to-hip ratio, and body mass index (BMI) in a sample of Canadian adults (n = 851 from 12 Calgary neighbourhoods). WC and BMI were higher among residents of disadvantaged neighbourhoods, independent of neighbourhood design (grid, warped grid, and curvilinear street patterns) and individual-level characteristics (sex, age, education, income, dog ownership, marital status, number of dependents, motor vehicle access, smoking, sleep, mental health, physical health, and past attempts to modify bodyweight). The association between neighbourhood-level SES and WC was modified by neighbourhood design; WC was higher in disadvantaged-curvilinear neighbourhoods and lower in advantaged-grid neighbourhoods. Policies making less obesogenic neighbourhoods affordable to low socioeconomic households and that improve the supportiveness for behaviours leading to healthy weight in low socioeconomic neighbourhoods are necessary. PMID:29056976
Fast Grid Frequency Support from Distributed Inverter-Based Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson F
This presentation summarizes power hardware-in-the-loop testing performed to evaluate the ability of distributed inverter-coupled generation to support grid frequency on the fastest time scales. The research found that distributed PV inverters and other DERs can effectively support the grid on sub-second time scales.
Kelly, Shaina A; Torres-Verdín, Carlos; Balhoff, Matthew T
2016-08-07
Micro/nanofluidic experiments in synthetic representations of tight porous media, often referred to as "reservoir-on-a-chip" devices, are an emerging approach to researching anomalous fluid transport trends in energy-bearing and fluid-sequestering geologic porous media. We detail, for the first time, the construction of dual-scale micro/nanofluidic devices that are relatively large-scale, two-dimensional network representations of granular and fractured nanoporous media. The fabrication scheme used in the development of the networks on quartz substrates (master patterns) is facile and replicable: transmission electron microscopy (TEM) grids with lacey carbon support film were used as shadow masks in thermal evaporation/deposition and reactive ion etch (RIE) was used for hardmask pattern transfer. The reported nanoscale network geometries are heterogeneous and composed of hydraulically resistive paths (throats) meeting at junctures (pores) to mimic the low topological connectivity of nanoporous sedimentary rocks such as shale. The geometry also includes homogenous microscale grid patterns that border the nanoscale networks and represent microfracture pathways. Master patterns were successfully replicated with a sequence of polydimethylsiloxane (PDMS) and Norland Optical Adhesive (NOA) 63 polymers. The functionality of the fabricated quartz and polymer nanofluidic devices was validated with aqueous imbibition experiments and differential interference contrast microscopy. These dual-scale fluidic devices are promising predictive tools for hypothesis testing and calibration against bulk fluid measurements in tight geologic, biologic, and synthetic porous material of similar dual-scale pore structure. Applications to shale/mudrock transport studies in particular are focused on herein.
Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners.
Ozernov-Palchik, Ola; Wolf, Maryanne; Patel, Aniruddh D
2018-03-01
A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners' phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenkert, A.L.; Andres, R.J.; Marland, G.
1997-03-01
Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well asmore » energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.« less
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; ...
2018-04-06
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. Here, the reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.
2017-12-01
Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.
Sedimentation and bathymetry changes in Suisun Bay: 1867-1990
Cappiella, Karen; Malzone, Chris; Smith, Richard; Jaffe, Bruce
1999-01-01
Understanding patterns of historical erosion and deposition in San Francisco Bay is crucial in managing such issues as locating deposits of sediment-associated contaminants, and the restoration of wetland areas. These problems were addressed by quantitatively examining historical hydrographic surveys. The data from five hydrographic surveys, made from 1867 to 1990, were analyzed using surface modeling software to determine long-term changes in the sediment system of Suisun Bay and surrounding areas. A surface grid displaying the bathymetry was created for each survey period, and the bathymetric change between survey periods was computed by differencing these grids. Patterns and volumes of erosion and deposition, sedimentation rates, and shoreline changes were derived from the resulting change grids. Approximately 115 million cubic meters of sediment were deposited in the Suisun Bay area from 1867 to 1887, the majority of which was debris from hydraulic gold mining in the Sierra Nevada. Just under two-thirds of the area of the study site was depositional during this time period, while less than one-third of it was erosional. However, over the entire study period, the Suisun Bay area lost sediment, indicating that a large amount of erosion occurred from1887 to 1990. In fact, this area lost sediment during each of the change periods between 1887 and 1990. Because erosion and deposition are processes that may vary over space and time, further analyses of more specific areas were done to examine spatial and temporal patterns. The change in the Suisun Bay area from being a largely depositional environment to an erosional one is the result of a combination of several factors. These factors include the regulation and subsequent cessation of hydraulic mining practices, and the increase in flood control and water distribution projects that have decreased sediment supply to the bay by reducing the frequency and duration of peak flow conditions. Another pattern shown by the changing bathymetry is the substantial decrease in the area of tidal flat (defined in this study as the area between mean lower low water and the shoreline), particularly in Grizzly Bay and Honker Bay. These tidal flats are important to the bay ecosystem, providing stability and biologic diversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. Here, the reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less
Pearce, John L; Waller, Lance A; Sarnat, Stefanie E; Chang, Howard H; Klein, Mitch; Mulholland, James A; Tolbert, Paige E
2016-08-01
Exposure metrics that identify spatial contrasts in multipollutant air quality are needed to better understand multipollutant geographies and health effects from air pollution. Our aim is to improve understanding of: (1) long-term spatial distributions of multiple pollutants; and (2) demographic characteristics of populations residing within areas of differing air quality. We obtained average concentrations for ten air pollutants (p=10) across a 12 km grid (n=253) covering Atlanta, Georgia for 2002-2008. We apply a self-organizing map (SOM) to our data to derive multipollutant patterns observed across our grid and classify locations under their most similar pattern (i.e, multipollutant spatial type (MST)). Finally, we geographically map classifications to delineate regions of similar multipollutant characteristics and characterize associated demographics. We found six MSTs well describe our data, with profiles highlighting a range of combinations, from locations experiencing generally clean air to locations experiencing conditions that were relatively dirty. Mapping MSTs highlighted that downtown areas were dominated by primary pollution and that suburban areas experienced relatively higher levels of secondary pollution. Demographics show the largest proportion of the overall population resided in downtown locations experiencing higher levels of primary pollution. Moreover, higher proportions of nonwhites and children in poverty reside in these areas when compared to suburban populations that resided in areas exhibiting relatively lower pollution. Our approach reveals the nature and spatial distribution of differential pollutant combinations across urban environments and provides helpful insights for identifying spatial exposure and demographic contrasts for future health studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Graphical User Interface Development for Representing Air Flow Patterns
NASA Technical Reports Server (NTRS)
Chaudhary, Nilika
2004-01-01
In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in Java, a language that is portable among platforms, because it can run on different operating systems such as Windows and Unix without having to be rewritten. I had no prior experience of programming in Java at the start of my internship; I am continuously learning as I create the program. I have written the part of the program that enables a user to draw several zones, edit them, and store their locations. The next phase of my project is to allow the user to click on the side of a zone and create a boundary condition for it. A previous intern wrote a program that allows the user to input boundary conditions. I can integrate the two programs to create a larger, more usable program. After that, I will develop a way for the user to save the graph for future reference. Another eventual goal is to make the GUI capable of creating three-dimensional zones as well. Researchers such as my mentor, Dr. David Ashpis, need a quick, user-friendly
NASA Astrophysics Data System (ADS)
Raju, R. Srinivasa; Ramesh, K.
2018-05-01
The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.