A nodal triangle-based spectral element method for the shallow water equations on the sphere
NASA Astrophysics Data System (ADS)
Giraldo, F. X.; Warburton, T.
2005-07-01
A nodal triangle-based spectral element (SE) method for the shallow water equations on the sphere is presented. The original SE method uses quadrilateral elements and high-order nodal Lagrange polynomials, constructed from a tensor-product of the Legendre-Gauss-Lobatto points. In this work, we construct the high-order Lagrange polynomials directly on the triangle using nodal sets obtained from the electrostatics principle [J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM Journal on Numerical Analysis 35 (1998) 655-676] and Fekete points [M.A. Taylor, B.A. Wingate, R.E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM Journal on Numerical Analysis 38 (2000) 1707-1720]. These points have good approximation properties and far better Lebesgue constants than any other nodal set derived for the triangle. By employing triangular elements as the basic building-blocks of the SE method and the Cartesian coordinate form of the equations, we can use any grid imaginable including adaptive unstructured grids. Results for six test cases are presented to confirm the accuracy and stability of the method. The results show that the triangle-based SE method yields the expected exponential convergence and that it can be more accurate than the quadrilateral-based SE method even while using 30-60% fewer grid points especially when adaptive grids are used to align the grid with the flow direction. However, at the moment, the quadrilateral-based SE method is twice as fast as the triangle-based SE method because the latter does not yield a diagonal mass matrix.
Numerical aspects of spectral segmentation on polygonal grids
Matsekh, Anna; Skurikhin, Alexei; Prasad, Lakshman; Rosten, Edward
2010-01-01
The authors analyze numerical behavior of the spectral graph partitioning problem arising in the Normalized Cuts formulation of the image segmentation problem on polygonal grids. They make an observation that in the presence of rounding errors the eigenvector corresponding to the k-th smallest eigenvalue of the generalized graph Laplacian should contain more than k nodal domains that represent coherent segments in the image. As the result, the eigenvector corresponding to the trivial solution carries a wealth of information about the nodal domains in the image and can be used as an initial guess for the Krylov subspace eigensolver, while the computed eigenvector subspace, corresponding to just a few of the lowest eigenvalues of the graph Laplacian, will contain sufficient information for obtaining meaningful segmentation.
Spectral Topography Generation for Arbitrary Grids
NASA Astrophysics Data System (ADS)
Oh, T. J.
2015-12-01
A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell, C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cutting of potato (Solanum tuberosum) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamp (LPS/CWF). Results suggested that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
SLGRID: spectral synthesis software in the grid
NASA Astrophysics Data System (ADS)
Sabater, J.; Sánchez, S.; Verdes-Montenegro, L.
2011-11-01
SLGRID (http://www.e-ciencia.es/wiki/index.php/Slgrid) is a pilot project proposed by the e-Science Initiative of Andalusia (eCA) and supported by the Spanish e-Science Network in the frame of the European Grid Initiative (EGI). The aim of the project was to adapt the spectral synthesis software Starlight (Cid-Fernandes et al. 2005) to the Grid infrastructure. Starlight is used to estimate the underlying stellar populations (their ages and metallicities) using an optical spectrum, hence, it is possible to obtain a clean nebular spectrum that can be used for the diagnostic of the presence of an Active Galactic Nucleus (Sabater et al. 2008, 2009). The typical serial execution of the code for big samples of galaxies made it ideal to be integrated into the Grid. We obtain an improvement on the computational time of order N, being N the number of nodes available in the Grid. In a real case we obtained our results in 3 hours with SLGRID instead of the 60 days spent using Starlight in a PC. The code has already been ported to the Grid. The first tests were made within the e-CA infrastrusture and, later, itwas tested and improved with the colaboration of the CETA-CIEMAT. The SLGRID project has been recently renewed. In a future it is planned to adapt the code for the reduction of data from Integral Field Units where each dataset is composed of hundreds of spectra. Electronic version of the poster at http://www.iaa.es/~jsm/SEA2010
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
2004-01-01
A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
A stabilised nodal spectral element method for fully nonlinear water waves
NASA Astrophysics Data System (ADS)
Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.
2016-08-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. A discussion on the Discontinuous Spectral Difference (SD) Method, locations of the unknowns and flux points and numerical results are also presented.
Guba, O.; Taylor, M. A.; Ullrich, P. A.; ...
2014-06-25
We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity ismore » constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less
Guba, O.; Taylor, M. A.; Ullrich, P. A.; ...
2014-11-27
We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less
Time-Spectral Rotorcraft Simulations on Overset Grids
NASA Technical Reports Server (NTRS)
Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.
2014-01-01
The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.
A conservative multi-tracer transport scheme for spectral-element spherical grids
NASA Astrophysics Data System (ADS)
Erath, Christoph; Nair, Ramachandran D.
2014-01-01
Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.
Reprint of: A conservative multi-tracer transport scheme for spectral-element spherical grids
NASA Astrophysics Data System (ADS)
Erath, Christoph; Nair, Ramachandran D.
2014-08-01
Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.
Pseudo spectral Chebyshev representation of few-group cross sections on sparse grids
Bokov, P. M.; Botes, D.; Zimin, V. G.
2012-07-01
This paper presents a pseudo spectral method for representing few-group homogenised cross sections, based on hierarchical polynomial interpolation. The interpolation is performed on a multi-dimensional sparse grid built from Chebyshev nodes. The representation is assembled directly from the samples using basis functions that are constructed as tensor products of the classical one-dimensional Lagrangian interpolation functions. The advantage of this representation is that it combines the accuracy of Chebyshev interpolation with the efficiency of sparse grid methods. As an initial test, this interpolation method was used to construct a representation for the two-group macroscopic cross sections of a VVER pin cell. (authors)
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.
2016-10-01
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical system due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
NASA Astrophysics Data System (ADS)
Huang, C.-K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.
2016-10-01
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. It is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical system due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; ...
2016-10-01
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
Single-grid spectral collocation for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Canuto, Claudio; Maday, Yvon; Metivet, Brigitte
1988-01-01
The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
Menezes, W. A.; Filho, H. A.; Barros, R. C.
2013-07-01
A generalization of the spectral Green's function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S{sub N}) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup slab-geometry S{sub N} problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, presented here is a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method's accuracy. (authors)
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)
2002-01-01
Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of
NASA Astrophysics Data System (ADS)
Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.
2016-05-01
We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2-870 μm and sample the peak of the protostellar envelope emission at ˜100 μm. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.
NASA Astrophysics Data System (ADS)
Schrittwieser, R. W.; Ionita, C.; Teodorescu-Soare, C. T.; Vasilovici, O.; Gurlui, S.; Irimiciuc, S. A.; Dimitriu, D. G.
2017-04-01
Optical emission spectroscopy and Langmuir probes were used to diagnose complex space-charge structures that appear inside and around a spherical grid with orifice applying a negative voltage below a critical value to it. Measurements (through the orifice) delivered the axial profiles of plasma potential, electron temperature and density, and of the densities of excited atoms and ions. Thereby the formation of a double layer was found in the region near the orifice with a potential drop close to the ionisation potential of the applied gas, confirming the presence of a fireball in that region (also evidenced by visual observation), i.e. of a quasi-spherical bright plasma region consisting of a positive core (an ion-rich plasma) confined by a double layer. Spectral investigations confirmed the presence of high ion density inside the spherical grid (due to the hollow cathode effect), while outside the grid a transition region with a strong rate of ionisation and excitation processes appears. Information on the nonlinear dynamics of this space-charge structure was obtained from the analysis of the oscillations of the discharge current, as well as of the floating potential inside and outside the spherical grid. Dedicated to Hans Pécseli at the occasion of his 70th birthday, an extraordinary plasma physicist and a wonderful, noble and warm-hearted friend for more than 40 years.
NASA Astrophysics Data System (ADS)
Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.
2016-10-01
The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2002-01-01
The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
Topological nodal line semimetals
NASA Astrophysics Data System (ADS)
Fang, Chen; Weng, Hongming; Dai, Xi; Fang, Zhong
2016-11-01
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone, and any perturbation that preserves a certain symmetry group (generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands. The nodal line(s) is hence topologically protected by the symmetry group, and can be associated with a topological invariant. In this review, (i) we enumerate the symmetry groups that may protect a topological nodal line; (ii) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface, establishing a topological classification; (iii) for certain classes, we review the proposals for the realization of these semimetals in real materials; (iv) we discuss different scenarios that when the protecting symmetry is broken, how a topological nodal line semimetal becomes Weyl semimetals, Dirac semimetals, and other topological phases; and (v) we discuss the possible physical effects accessible to experimental probes in these materials. Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400 and 2016YFA0300604), partially by the National Natural Science Foundation of China (Grant Nos. 11274359 and 11422428), the National Basic Research Program of China (Grant No. 2013CB921700), and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB07020100).
NASA Astrophysics Data System (ADS)
Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.
2009-04-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.
Smith, B.B.; Mullen, S.L. Arizona Univ., Tucson )
1993-03-01
An analysis of the 24- and 48-h sea level cyclone errors occurring in the NMC's Nested-Grid Model (NGM) and the Aviation Run of the Global Spectral Model (AVN) during the 1987/1988 and 1989/1990 winter seasons is presented. Central pressure, 1000-500-mb thickness, and displacement errors for cyclone center are compared, and the circumstances under which one model performs better than the other are documented. Overall, the NGM slightly overdeepens cyclones and the T80 AVN underdeepens cyclones when both models are verified against the NGM initial panel. Both models underdevelop oceanic and deep cyclones. The pressure error variance tends to be smaller for the AVN, particularly at 48 h. It is inferred that the variability of individual central pressure forecasts is smaller for the AVN. Mean absolute displacement errors are smaller for the T80 AVN than the NGM. 35 refs.
NASA Astrophysics Data System (ADS)
Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.
2013-12-01
Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are
High-Order Moving Overlapping Grid Methodology in a Spectral Element Method
NASA Astrophysics Data System (ADS)
Merrill, Brandon E.
A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies
NASA Astrophysics Data System (ADS)
Clay, M. P.; Yeung, P. K.; Gotoh, T.
2016-11-01
Turbulent mixing at high Schmidt number (Sc) (low molecular diffusivity) is characterized by fluctuations that arise at sub-Kolmogorov scales and are hence difficult to resolve or measure. Simulations in the recent past have provided some basic results but were still limited in either the Reynolds number or the Schmidt number. We have developed a massively parallel implementation of a hybrid pseudo-spectral and combined compact finite difference technique where the velocity and scalar fields are computed at different grid resolutions (the latter up to 81923). A specific target is the scalar field maintained by a uniform mean gradient at Taylor-scale Reynolds number 140 and Sc = 512 , which is comparable to the value (700) for salinity in the ocean. Preliminary results at moderately high Sc are in support of Batchelor (k-1) scaling for the spectrum in the viscous-convective range, followed by exponential fall-off in the viscous-diffusive range. Data over a wide range of Reynolds and Schmidt numbers are used to examine the approach to local isotropy and a saturation of intermittency suggested by previous work. Supported by NSF Grant ACI-1036170 and a subaward via UIUC.
Polymorphic nodal elements and their application in discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Gassner, Gregor J.; Lörcher, Frieder; Munz, Claus-Dieter; Hesthaven, Jan S.
2009-03-01
In this work, we discuss two different but related aspects of the development of efficient discontinuous Galerkin methods on hybrid element grids for the computational modeling of gas dynamics in complex geometries or with adapted grids. In the first part, a recursive construction of different nodal sets for hp finite elements is presented. They share the property that the nodes along the sides of the two-dimensional elements and along the edges of the three-dimensional elements are the Legendre-Gauss-Lobatto points. The different nodal elements are evaluated by computing the Lebesgue constants of the corresponding Vandermonde matrix. In the second part, these nodal elements are applied within the modal discontinuous Galerkin framework. We still use a modal based formulation, but introduce a nodal based integration technique to reduce computational cost in the spirit of pseudospectral methods. We illustrate the performance of the scheme on several large scale applications and discuss its use in a recently developed space-time expansion discontinuous Galerkin scheme.
Solving incompressible flow problems with parallel spectral element methods
Ma, Hong
1994-10-01
Parallel spectral element models are built for the Navier-Stokes equations and the shallow water equations with nonstaggered grid formulations. The optimized computational efficiency of these parallel spectral element models comes not only from the exponential convergence of their numerical solutions, but also from their efficient usage of the powerful vector-processing units of the latest parallel architectures. Furthermore, the communication cost of the spectral element model is lower than that of the h-type finite element model, partly because many fewer redundant nodal values have to be stored. The nonstaggered grid formulations perform well in iterative procedures which are highly in parallel. Implementations of these models are carried out on the Connection Machine systems. The present work shows that the high-order domain decomposition methods can be efficiently applied in a data parallel programming environment.
On the Nodal Lines of Eisenstein Series on Schottky Surfaces
NASA Astrophysics Data System (ADS)
Jakobson, Dmitry; Naud, Frédéric
2017-04-01
On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.
Variational multiscale turbulence modelling in a high order spectral element method
Wasberg, Carl Erik Gjesdal, Thor Reif, Bjorn Anders Pettersson Andreassen, Oyvind
2009-10-20
In the variational multiscale (VMS) approach to large eddy simulation (LES), the governing equations are projected onto an a priori scale partitioning of the solution space. This gives an alternative framework for designing and analyzing turbulence models. We describe the implementation of the VMS LES methodology in a high order spectral element method with a nodal basis, and discuss the properties of the proposed scale partitioning. The spectral element code is first validated by doing a direct numerical simulation of fully developed plane channel flow. The performance of the turbulence model is then assessed by several coarse grid simulations of channel flow at different Reynolds numbers.
Wang, Z J
2012-12-06
The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equations for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives.
Heterogeneous treatment in the variational nodal method
Fanning, T.H.; Palmiotti, G.
1995-06-01
The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations.
Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes
2003-08-04
OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.
Optical conductivity of nodal metals
Homes, C. C.; Tu, J. J.; Li, J.; Gu, G. D.; Akrap, A.
2013-01-01
Fermi liquid theory is remarkably successful in describing the transport and optical properties of metals; at frequencies higher than the scattering rate, the optical conductivity adopts the well-known power law behavior σ1(ω) ∝ ω−2. We have observed an unusual non-Fermi liquid response σ1(ω) ∝ ω−1±0.2 in the ground states of several cuprate and iron-based materials which undergo electronic or magnetic phase transitions resulting in dramatically reduced or nodal Fermi surfaces. The identification of an inverse (or fractional) power-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing the direct transitions across the gap and allowing the nature of the electron-boson coupling to be probed. The non-Fermi liquid behavior in these systems may be the result of a common Fermi surface topology of Dirac cone-like features in the electronic dispersion. PMID:24336241
Distributions of Nodal Prices in PJM Market
NASA Astrophysics Data System (ADS)
Kunio, Matsumoto; Yoshio, Ichida; Michiko, Makino; Hiroaki, Tanaka
As the deregulation of electric business proceeds, it is important to analyze the distributions of prices in the power market. In this paper, we analyze the nodal prices of the PJM market, which is representative of power markets in the US. First, we verify Weibull’s property of the distribution of nodal prices. Then we verify Poisson’s property of the interval of loss process.
Nodal network generator for CAVE3
NASA Technical Reports Server (NTRS)
Palmieri, J. V.; Rathjen, K. A.
1982-01-01
A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.
Voltage collapse in complex power grids
Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco
2016-01-01
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284
Voltage collapse in complex power grids.
Simpson-Porco, John W; Dörfler, Florian; Bullo, Francesco
2016-02-18
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins.
Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites
Mannella, N.
2010-06-02
A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.
MURR nodal analysis with simple interactive simulation
NASA Astrophysics Data System (ADS)
Enani, Mohammad Abdulsamad
The main goal of this research is to design and produce computer codes that should do a NODAL analysis of the core of Missouri University Research Reactor 'MURR' with a simple neutron transient simulation. These codes should be executed on any of the family of the widely used modern IBM/PC (or IBM/PS) microcomputers (or compatibles). The nodal analysis code should find the power (or flux) distribution inside the reactor core and calculate fuel burnup for each of the fuel elements by using the nodal analysis technique described in chapter 3. The simulator code is a relatively simple, educational aid of MURR reactor kinetics simulation that uses one group point reactor model.
Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission
Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra
2011-06-03
High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly
Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature
Brito, K. D.; Sprague, M. A.
2012-10-01
Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for a given model size or total computation time.
Fuerer, Christophe; Nostro, M. Cristina; Constam, Daniel B.
2014-01-01
The TGFβ family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation. PMID:24798330
Pathology of extra-nodal non Hodgkin lymphomas.
Wright, D H
2012-06-01
In the management of extra-nodal lymphomas it is important to determine whether the tumour has disseminated and whether lymph nodes are involved. Some extra-nodal lymphomas may be the result of random spread of nodal lymphoma. Specific homing, however, determines the site of many extra-nodal lymphomas, as exemplified by cutaneous T-cell lymphomas, which seem to be derived from skin-homing T-cells and mucosa-associated lymphoid tissue lymphomas that show features of the mucosal immune system. Enteropathy-associated T-cell lymphoma is derived from mucosal T-cells in patients with coeliac disease. Immunological sanctuary accounts for the localisation of primary brain, eye and testicular lymphoma. Mantle cell lymphoma frequently causes tumours in the gastrointestinal tract. Random biopsies have shown that a high proportion of patients with this lymphoma have extensive occult involvement of the gastrointestinal tract at the time of first diagnosis. Follicular lymphoma occurs at both nodal and extra-nodal sites, but uncommonly at both sites at the same time. Extra-nodal follicular lymphomas frequently lack t(14;18)(q32;q21) and do not express bcl-2, which are characteristics of the nodal disease. At extra-nodal sites, follicular lymphoma is more likely to be curable than nodal follicular lymphoma. The behaviour of extra-nodal lymphomas cannot be assumed to follow that of their nodal counterparts.
Nodal resonance in a strong standing wave
NASA Astrophysics Data System (ADS)
Fernández C., David J.; Mielnik, Bogdan
1990-06-01
The motion of charged particles in a standing electromagnetic wave is considered. For amplitudes that are not too high, the wave causes an effect of attraction of particles to the nodal points, resembling the channeling effect reported by Salomon, Dalibard, Aspect, Metcalf, and Cohen-Tannoudji [Phys. Rev. Lett. 59, 1659 (1987)] consistent with the ``high-frequency potential'' of Kapitza [Zh. Eksp. Teor. Fiz. 21, 588 (1951)]. For high-field intensities, however, the nodal points undergo a qualitative metamorphosis, converting themselves from particle attractors into resonant centers. Some chaotic phenomena arise and the description of the oscillating field in terms of an ``effective potential'' becomes inappropriate. The question of a correct Floquet Hamiltonian that could describe the standing wave within this amplitude and frequency regime is open.
Arbitrarily high order nodal and characteristic methods
Azmy, Y.Y.
1994-09-01
The quest for higher computational efficiency initially led researchers in the neutron transport area to develop and implement high-order approximations for solving the linear Boltzmann equational. This drive aimed at achieving higher accuracy on coarse meshes, thereby resulting in a net savings of computational resources represented by execution time and memory. Many endeavors succeeded in reaching this goal, producing a variety of elegent, albeit complicated, formalisms, that proved extremely accurate and efficient in solving test, as well as practical applications, problems. The two main classes of high order transport methods that recieved the most attention are the Nodal and Characteristic methods. A de facto linear order standard for the spatial approximation (even though Quadratic Nodal Methods were also considered) was dictated by the algebraic complexity of the derivation of the discrete variable equations, the programming complexity of implementing and verifying them in codes, and limitations on computational resources available to run such codes. The significant advances in computational resources in terms of hardware capacity and speed, as well as architectural innovations such as vector and parallel processing, all but eliminated the third (above) obstacle towards the development and implementation of even higher order methods. The algebraic and programming complexities, on the other hand, were alleviated to some extent by the development of Arbitrarily High Order Transport methods of the Nodal and the Characteristic types, which are discussed in this report.
Multiple nodal locoregional recurrence of pheochromocytoma
Ramírez-Plaza, César Pablo; Cárdenas, Elena Margarita Sanchiz; Humanes, Rocío Soler
2015-01-01
Introduction Malignancy is present in 10% of pheochromocytomas (PCC) and is defined as local/vascular infiltration of surrounding tissues or the presence of chromaffin cells deposits in distant organs. The presence of isolated nodal recurrence is very rare and only 7 cases have been reported in the medical literature. Presentation of the case The case of a 32-y male with a symptomatic recurrence of a previously operated (2-years ago) PCC is presented. Radiological and functional imaging studies confirmed the presence of multiple nodules in the surgical site. A radical left nephrectomy with extensive lymphatic clearance in order to get an R0 resection was performed. The pathologist confirmed the diagnosis of massive locoregional nodal invasion. Discussion A detailed histological report and a thorough genetic study must be considered in every operated PCC in order to identify mutations and profiles of risk for malignancy. When recurrence or metastastic disease is suspected, imaging and functional exams are done in order to obtain a proper staging. Radical surgery for the metastatic disease is the only treatment that may provide prolonged survival. If an R0 resection is not possible, then a debulking surgery is a good option when the benefit/risk ratio is acceptable. Conclusion Isolated lymph nodal recurrence is very rare in malignant PCC, with only 7 cases previously published. The role of surgery is essential to get long-term survival because provides clinical and functional control of the disease. PMID:26117450
Self-energy of a nodal fermion in a d -wave superconductor
NASA Astrophysics Data System (ADS)
Chubukov, A. V.; Tsvelik, A. M.
2006-06-01
We reconsider the self-energy of a nodal (Dirac) fermion in a two-dimensional d -wave superconductor. A conventional belief is that ImΣ(ω,T)˜max(ω3,T3) . We show that Σ(ω,k,T) for k along the nodal direction is actually a complex function of ω,T , and the deviation from the mass shell. In particular, the second-order self-energy diverges at a finite T when either ω or k-kF vanish. We show that the full summation of infinite diagrammatic series recovers a finite result for Σ , but the full angle-resolved photoemission spectroscopy spectral function is nonmonotonic and has a kink whose location compared to the mass shell differs qualitatively for spin-and charge-mediated interactions.
Small renal tumor with lymph nodal enlargement: A histopathological surprise
Thottathil, Mujeeburahiman; Verma, Ashish; D’souza, Nischith; Khan, Altaf
2016-01-01
Renal cancer with lymph nodal mass on the investigation is clinically suggestive of an advanced tumor. Small renal cancers are not commonly associated with lymph nodal metastasis. Association of renal cell carcinoma with renal tuberculosis (TB) in the same kidney is also rare. We report here a case of small renal cancer with multiple hilar and paraaortic lymph nodes who underwent radical nephrectomy, and histopathology report showed renal and lymph nodal TB too. PMID:27453671
Plasticity underlies tumor progression: Role of Nodal signaling
Bodenstine, Thomas M.; Chandler, Grace S.; Seftor, Richard E. B.; Seftor, Elisabeth A.; Hendrix, Mary J. C.
2016-01-01
The transforming growth factor beta (TGFβ) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry and primitive streak formation. Nodal signals through TGFβ family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its re-expression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition. PMID:26951550
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors
NASA Astrophysics Data System (ADS)
Micklitz, T.; Norman, M. R.
2017-01-01
We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3.
A composite nodal finite element for hexagons
Hennart, J.P.; Mund, E.H. |; Valle, E. Del
1997-10-01
A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.
New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding
Focà, Annalia; Sanguigno, Luca; Focà, Giuseppina; Strizzi, Luigi; Iannitti, Roberta; Palumbo, Rosanna; Hendrix, Mary J. C.; Leonardi, Antonio; Ruvo, Menotti; Sandomenico, Annamaria
2015-01-01
Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44–67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention. PMID:26370966
Multidimensional spectral load balancing
Hendrickson, B.; Leland, R.
1993-01-01
We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.
NASA Technical Reports Server (NTRS)
1998-01-01
Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.
2011-10-01
1 4 (28) The time stepping method used in this work is the low-storage, third-order, Runge - Kutta scheme presented by Williamson [6]. The...developing, reacting mixing layer, the governing equations are solved using 4th order spatial compact scheme with 3rd order Runge - Kutta method for time...solution away from the shock. Explicit (spectral) filtering is used to model the filtered small scales in LES. This method has a negligible
Nodal signaling and the evolution of deuterostome gastrulation.
Chea, Helen K; Wright, Christopher V; Swalla, Billie J
2005-10-01
Chordates, including vertebrates, evolved within a group of animals called the deuterostomes. All holoblastic deuterostomes gastrulate at the vegetal pole and the blastopore becomes the anus, while a mouth is formed at the anterior or to the oral side. Nodal is a member of the TGF-beta superfamily of signaling molecules that are important in signaling between cells during many embryonic processes in vertebrate embryos. Nodal has also been found in other invertebrate deuterostomes, such as ascidians and sea urchins, but, so far, is missing in protostomes. Nodal has been shown to be particularly important in determining left-right asymmetries in vertebrate embryos, but less information is available for its developmental role in the invertebrate deuterostomes. We review gastrulation in the deuterostomes, then examine nodal expression early during mesoderm formation and later during the establishment of asymmetries in both vertebrates and invertebrates. Nodal is expressed asymmetrically on the left side in chordates and on the presumptive oral side of the embryo in echinoid echinoderms. The expression of nodal is in different germ layers in embryos of different phyla. Expression is in the ectoderm in most of the invertebrate deuterostomes, and in the mesoderm in vertebrates. We summarize the work that has been published to date, especially nodal expression in the invertebrate deuterostomes, and suggest future experiments to better understand the evolution of nodal signaling and deuterostome gastrulation.
Market redesign and technology upgrade: a nodal implementation
Isemonger, Alan G.
2009-10-15
The California ISO and its market participants collectively cut over to a new nodal-based market on April 1, largely without incident and 11 years to the day from the initial startup in 1998. Thus far, the new nodal framework has proven robust, and the inevitable design and implementation issues that have emerged since cutover have been manageable. (author)
Ibarria, L; Lindstrom, P; Rossignac, J
2006-11-17
Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.
Post, R.F.
1960-08-01
An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.
Radar response from vegetation with nodal structure
NASA Technical Reports Server (NTRS)
Blanchard, B. J.; Oneill, P. E.
1984-01-01
Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties.
Experience with advanced nodal codes at YAEC
Cacciapouti, R.J.
1990-01-01
Yankee Atomic Electric Company (YAEC) has been performing reload licensing analysis since 1969. The basic pressurized water reactor (PWR) methodology involves the use of LEOPARD for cross-section generation, PDQ for radial power distributions and integral control rod worth, and SIMULATE for axial power distributions and differential control rod worth. In 1980, YAEC began performing reload licensing analysis for the Vermont Yankee boiling water reactor (BWR). The basic BWR methodology involves the use of CASMO for cross-section generation and SIMULATE for three-dimensional power distributions. In 1986, YAEC began investigating the use of CASMO-3 for cross-section generation and the advanced nodal code SIMULATE-3 for power distribution analysis. Based on the evaluation, the CASMO-3/SIMULATE-3 methodology satisfied all requirements. After careful consideration, the cost of implementing the new methodology is expected to be offset by reduced computing costs, improved engineering productivity, and fuel-cycle performance gains.
Santarelli, P; Sosa, E; Denes, P
1982-01-01
A case is described with clinical and electrocardiographic findings of incessant junctional reciprocating tachycardia. Electrophysiological study showed that longitudinal dissociation of the atrioventricular node into two pathways was responsible for the maintenance of the arrhythmia. The two intranodal pathways had different refractory periods but reciprocally related and overlapping conduction times (anterograde fast, retrograde slow, and vice versa). Induction and termination of the arrhythmia was related to the presence of a partial atrio-nodal bypass tract. Images PMID:7082510
Nodal quasiparticles and the onset of spin-density-wave order in cuprate superconductors.
Pelissetto, Andrea; Sachdev, Subir; Vicari, Ettore
2008-07-11
We present a theory for the onset of spin-density-wave order in the superconducting ground state of the cuprates. We compute the scaling dimensions of allowed perturbations of a "relativistic" fixed point with O4 x O(3) symmetry, including those associated with the fermionic nodal Bogoliubov quasiparticles. Analyses of up to six loops show that all perturbations with square lattice symmetry are likely irrelevant. We demonstrate that the fermion spectral functions are primarily damped by the coupling to fluctuations of a composite field with Ising nematic order. A number of other experimental implications are also discussed.
NASA Astrophysics Data System (ADS)
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon
2014-01-01
Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780
Brislawn, K.; Brown, D.; Chesshire, G.; Henshaw, W.
1997-01-01
Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collections of grids.
NASA Technical Reports Server (NTRS)
Swinbank, Richard; Purser, James
2006-01-01
Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.
Nodal Solutions for Supercritical Laplace Equations
NASA Astrophysics Data System (ADS)
Dalbono, Francesca; Franca, Matteo
2016-11-01
In this paper we study radial solutions for the following equation Δ u(x)+f (u(x), |x|) = 0, where {x in {Rn}}, n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent {2^{*} = 2n/n-2}. The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular ground states with fast decay and singular ground states with slow decay, all of them with exactly j zeroes. Our approach, based on Fowler transformation and invariant manifold theory, enables us to deal with a wide family of potentials allowing spatial inhomogeneity and a quite general dependence on u. In particular, for the Matukuma-type potential, we show a kind of structural stability.
The genetics of nodal marginal zone lymphoma
Spina, Valeria; Khiabanian, Hossein; Messina, Monica; Monti, Sara; Cascione, Luciano; Bruscaggin, Alessio; Spaccarotella, Elisa; Holmes, Antony B.; Arcaini, Luca; Lucioni, Marco; Tabbò, Fabrizio; Zairis, Sakellarios; Diop, Fary; Cerri, Michaela; Chiaretti, Sabina; Marasca, Roberto; Ponzoni, Maurilio; Deaglio, Silvia; Ramponi, Antonio; Tiacci, Enrico; Pasqualucci, Laura; Paulli, Marco; Falini, Brunangelo; Inghirami, Giorgio; Bertoni, Francesco; Foà, Robin; Rabadan, Raul; Gaidano, Gianluca
2016-01-01
Nodal marginal zone lymphoma (NMZL) is a rare, indolent B-cell tumor that is distinguished from splenic marginal zone lymphoma (SMZL) by the different pattern of dissemination. NMZL still lacks distinct markers and remains orphan of specific cancer gene lesions. By combining whole-exome sequencing, targeted sequencing of tumor-related genes, whole-transcriptome sequencing, and high-resolution single nucleotide polymorphism array analysis, we aimed at disclosing the pathways that are molecularly deregulated in NMZL and we compare the molecular profile of NMZL with that of SMZL. These analyses identified a distinctive pattern of nonsilent somatic lesions in NMZL. In 35 NMZL patients, 41 genes were found recurrently affected in ≥3 (9%) cases, including highly prevalent molecular lesions of MLL2 (also known as KMT2D; 34%), PTPRD (20%), NOTCH2 (20%), and KLF2 (17%). Mutations of PTPRD, a receptor-type protein tyrosine phosphatase regulating cell growth, were enriched in NMZL across mature B-cell tumors, functionally caused the loss of the phosphatase activity of PTPRD, and were associated with cell-cycle transcriptional program deregulation and increased proliferation index in NMZL. Although NMZL shared with SMZL a common mutation profile, NMZL harbored PTPRD lesions that were otherwise absent in SMZL. Collectively, these findings provide new insights into the genetics of NMZL, identify PTPRD lesions as a novel marker for this lymphoma across mature B-cell tumors, and support the distinction of NMZL as an independent clinicopathologic entity within the current lymphoma classification. PMID:27335277
Nodal aberration theory for wild-filed asymmetric optical systems
NASA Astrophysics Data System (ADS)
Chen, Yang; Cheng, Xuemin; Hao, Qun
2016-10-01
Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.
ERIC Educational Resources Information Center
Barrington, Linda; Carter, Jacky
2003-01-01
Proposes that narrow columns provide a flexible system of organization for designers. Notes that grids serve the content on the pages, help to develop a layout that will clearly direct the reader to information; and prevent visual monotony. Concludes when grid layouts are used, school publications look as good as professional ones. (PM)
Nodal signalling and asymmetry of the nervous system.
Signore, Iskra A; Palma, Karina; Concha, Miguel L
2016-12-19
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
NASA Technical Reports Server (NTRS)
Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.
1988-01-01
Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.
NASA Astrophysics Data System (ADS)
Foster, Ian
2001-08-01
The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.
Spin-Orbit Nodal Semimetals in the Layer Groups
NASA Astrophysics Data System (ADS)
Wieder, Benjamin; Kim, Youngkuk; Kane, Charles
Recent interest in point and line node semimetals has lead to the proposal and discovery of these phenomena in numerous systems. Frequently, though, these nodal systems are described in terms of individual properties reliant on specific space group intricacies or band-tuning conditions. Restricting ourselves to cases with strong spin-orbit interaction, we develop a more general framework which captures existing systems and predicts new examples of nodal materials. In many previously proposed systems, the three-dimensional nature of the space group has obscured key generalities. Therefore, we show how within our framework one can predict and characterize a diverse set of nodal phenomena even in two-dimensional systems constructed of three-dimensional sites, known as the ``Layer Groups''. Introducing a set of simple models, we characterize the allowed semimetallic structures in the layer groups and draw connections to analogous three-dimensional systems.
A computational study of nodal-based tetrahedral element behavior.
Gullerud, Arne S.
2010-09-01
This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.
Distant nodal metastasis: is it always an unresectable disease?
Celotti, Andrea; Molfino, Sarah; Baggi, Paolo; Tarasconi, Antonio; Baronio, Gianluca; Arru, Luca; Gheza, Federico; Tiberio, Guido; Portolani, Nazario
2017-01-01
This article aims at analyzing the published literature concerning the treatment of patients with gastric cancer and distant nodal metastases, actually considered metastatic disease. A systematic search was undertaken using Medline, Embase, Cochrane and Web-of-Science libraries. No specific restriction on year of publication was used; preference was given to English papers. Both clinical series and literature reviews were selected. Only 11 papers address the issue of surgery for nodal basins outside the D2 dissection area. From these papers, in selected cases extended surgery may prove useful in prolonging survival, when a comprehensive therapeutic pathway including chemotherapy is scheduled. In conclusion, in presence of nodal metastases outside the loco-regional nodes, surgery may be considered for metastatic nodes in stations 13 and 16, in selected cases. PMID:28217751
A transient, quadratic nodal method for triangular-Z geometry
DeLorey, T.F.
1993-06-01
Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.
Chiral Spin-Orbital Liquids with Nodal Lines
NASA Astrophysics Data System (ADS)
Natori, W. M. H.; Andrade, E. C.; Miranda, E.; Pereira, R. G.
2016-07-01
Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba2YMoO6.
Nodal metastases in thyroid cancer: prognostic implications and management.
Wang, Laura Y; Ganly, Ian
2016-04-01
The significance of cervical lymph node metastases in differentiated thyroid cancer has been controversial and continues to evolve. Current staging systems consider nodal metastases to confer a poorer prognosis, particularly in older patients. Increasingly, the literature suggests that characteristics of the metastatic lymph nodes such as size and number are also prognostic. There is a growing trend toward less aggressive treatment of low-volume nodal disease. The aim of this review is to summarize the current literature and discuss prognostic and management implications of lymph node metastases in differentiated thyroid cancer.
Preoperative staging of nodal status in gastric cancer
Berlth, Felix; Chon, Seung-Hun; Chevallay, Mickael; Jung, Minoa Karin
2017-01-01
An accurate preoperative staging of nodal status is crucial in gastric cancer, because it has a great impact on prognosis and therapeutic decision-making. Different staging methods have been evaluated for gastric cancer in order to predict nodal involvement. So far, no technique could meet the necessary requirements, which include a high detection rate of infiltrated lymph nodes and a low frequency of false-positive results. This article summarizes different staging methods used to assess lymph node status in patients with gastric cancer, evaluates the evidence, and proposes to establish new methods. PMID:28217758
Long period nodal motion of sun synchronous orbits
NASA Technical Reports Server (NTRS)
Duck, K. I.
1975-01-01
An approximative model is formulated for assessing these perturbations that significantly affect long term modal motion of sun synchronous orbits. Computer simulations with several independent computer programs consider zonal and tesseral gravitational harmonics, third body gravitational disturbances induced by the sun and the moon, and atmospheric drag. A pendulum model consisting of evenzonal harmonics through order 4 and solar gravity dominated nodal motion approximation. This pendulum motion results from solar gravity inducing an inclination oscillation which couples into the nodal precession induced by the earth's oblateness. The pendulum model correlated well with simulations observed flight data.
Nodal discontinuous Galerkin methods on graphics processors
NASA Astrophysics Data System (ADS)
Klöckner, A.; Warburton, T.; Bridge, J.; Hesthaven, J. S.
2009-11-01
Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in an element-local way, with weak penalty-based element-to-element coupling. The resulting locality in memory access is one of the factors that enables DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG's high-order nature lets it require fewer data points per represented wavelength and hence fewer memory accesses, in exchange for higher arithmetic intensity. Both of these factors work significantly in favor of a GPU implementation of DG. Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell's equations on a general 3D unstructured grid by a factor of around 50 relative to a serial computation on a current-generation CPU. In many cases, our algorithms exhibit full use of the device's available memory bandwidth. Example computations achieve and surpass 200 gigaflops/s of net application-level floating point work. In this article, we describe and derive the techniques used to reach this level of performance. In addition, we present comprehensive data on the accuracy and runtime behavior of the method.
PoroTomo Subtask 6.3 Nodal Seismometers Metadata
Lesley Parker
2016-03-28
Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.
Nodal Structure and the Partitioning of Equivalence Classes
ERIC Educational Resources Information Center
Fields, Lanny; Watanabe-Rose, Mari
2008-01-01
By definition, all of the stimuli in an equivalence class have to be functionally interchangeable with each other. The present experiment, however, demonstrated that this was not the case when using post-class-formation dual-option response transfer tests. With college students, two 4-node 6-member equivalence classes with nodal structures of…
Silicon wire grid polarizer for ultraviolet applications.
Weber, Thomas; Kroker, Stefanie; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas
2014-12-01
We present a silicon wire grid polarizer operating down to a wavelength of 300 nm. Besides metallic grating materials, semiconductors also offer appropriate material properties to realize wire grid polarizers in the ultraviolet (UV) spectral range. The presented polarizer with a period of 140 nm was realized by means of electron beam lithography and dry etching using amorphous silicon as the grating material. At a wavelength of 365 nm, a transmission of 42% and an extinction ratio of 90 (19.5 dB) are measured. The spectral bandwidth of these polarizers in the UV-spectral range is about 100 nm.
The Penn State Nodal Expansion Transient Analysis Technique with thermal-hydraulic feedback
Borkowski, J.; Bandini, B.; Baratta, A. )
1989-11-01
The nuclear engineering department of the Pennsylvania State University has under development a nodal neutron kinetics code. The PEnn State Nodal Expansion TRansient Analysis TEchnique (PENETRATE) performs two-group, three-dimensional nodal kinetics calculations using the nodal expansion method (NEM). The focus of this discussion is its performance in the solution of the Langenbuch-Maurer-Werner light water rector (LMW LWR) problem. This transient requires an accurate model of both control rod motion and coupled thermal-hydraulic feedback.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.
2014-06-01
In this paper, we present a dynamical core for the atmospheric primitive hydrostatic equations using a unified formulation of spectral element (SE) and discontinuous Galerkin (DG) methods in the horizontal direction with a finite difference (FD) method in the radial direction. The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points, which define the common machinery. The atmospheric primitive hydrostatic equations are solved on the cubed-sphere grid using the flux form governing equations in a three-dimensional (3-D) Cartesian space. By using Cartesian space, we can avoid the pole singularity problem due to spherical coordinates and this also allows us to use any quadrilateral-based grid naturally. In order to consider an easy way for coupling the dynamics with existing physics packages, we use a FD in the radial direction. The models are verified by conducting conventional benchmark test cases: the Rossby-Haurwitz wavenumber 4, Jablonowski-Williamson tests for balanced initial state and baroclinic instability, and Held-Suarez tests. The results from those tests demonstrate that the present dynamical core can produce numerical solutions of good quality comparable to other models.
Functional mathematical model of dual pathway AV nodal conduction.
Climent, A M; Guillem, M S; Zhang, Y; Millet, J; Mazgalev, T N
2011-04-01
Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)
2003-01-01
The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote
Mitra, Nandita; Alonso-Basanta, Michelle; Adappa, Nithin D; Palmer, James N; O'Malley, Bert W; Rassekh, Christopher H; Chalian, Ara; Cohen, Roger B; Lin, Alexander
2016-01-01
Objective: Risk of nodal involvement in patients with sinonasal small-cell carcinoma and sinonasal undifferentiated carcinoma (SNUC) has not been well defined because of their rarity. We describe a population-based assessment of specific nodal level involvement in this group of rare neuroectodermal tumours. Methods: The Surveillance, Epidemiology and End Results (SEER) database from 2004 to 2011 identified patients with SNUC and sinonasal small-cell carcinoma. Overall neck involvement and individual nodal level involvement at presentation were assessed, and comparison was made with a contemporaneous cohort of patients with a borderline clinically significant risk of nodal involvement and recurrence. Results: Of 141 patients, 31 (22%) had gross nodal involvement at presentation (range 14–33% by site and histology). Non-nasal, non-ethmoid site with SNUC histology has the highest rates of initial nodal involvement, whereas higher stage and size do not predict for higher nodal involvement rates. Bilateral Levels 2–3 for all sinonasal small cell; Levels 2–3 for nasal or ethmoid SNUC; and bilateral Levels 1–3 in non-nasal/non-ethmoid SNUC have the highest rates of involvement compared with a clinical reference standard. Conclusion: We found high rates of initial nodal involvement in all SNUC and sinonasal small-cell carcinoma. We found higher initial involvement of Levels 2 and 3 and in certain cases to the Level 1 nodal levels, hypothesizing benefit for elective treatment to those levels. Advances in knowledge: With small single-institution series reporting conflicting nodal involvement rates, our data support high rates of nodal presentation at diagnosis, hypothesizing benefit for elective nodal treatment in this cohort. PMID:26559439
Datums, Ellipsoids, Grids, and Grid Reference Systems
1992-01-01
Tunisie Grid, Sud Algerie Grid, Sud Maroc Grid, and Sud Tunisie Grid. 4-1.1.8 The...REFERENCES ON THE SUD ALGERIE AND SUD TUNISIE GRIDS 6-8.5.2 When oil reference boxes cannot be accommodated in the margin, the excess is shown in expanses...GIVING REFERENCES ON THE SUD ALGERIE AND SUD TUNISIE GRIDS 6-21 DMA TM 8358.1 I CHAPTER 7 GRIDS ON MAPS AT 1:250,000 AND 1:500,000 SCALE 7.1 GENERAL.
Nodal failure index approach to groundwater remediation design
Lee, J.; Reeves, H.W.; Dowding, C.H.
2008-01-01
Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.
Anomalous contagion and renormalization in networks with nodal mobility
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Qi, Hong; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F.
2016-07-01
A common occurrence in everyday human activity is where people join, leave and possibly rejoin clusters of other individuals —whether this be online (e.g. social media communities) or in real space (e.g. popular meeting places such as cafes). In the steady state, the resulting interaction network would appear static over time if the identities of the nodes are ignored. Here we show that even in this static steady-state limit, a non-zero nodal mobility leads to a diverse set of outbreak profiles that is dramatically different from known forms, and yet matches well with recent real-world social outbreaks. We show how this complication of nodal mobility can be renormalized away for a particular class of networks.
Off-diagonal Jacobian support for Nodal BCs
Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.
2015-01-01
In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \
Radial nodalization effects on BWR (boiling water reactor) stability calculations
March-Leuba, J.
1990-01-01
Computer simulations have shown that stability calculations in boiling water reactors (BWRs) are very sensitive to a number of input parameters and modeling assumptions. In particular, the number of thermohydraulic regions (i.e., channels) used in the calculation can affect the results of decay ratio calculations by as much as 30%. This paper presents the background theory behind the observed effects of radial nodalization in BWR stability calculations. The theory of how a radial power distribution can be simulated in time or frequency domain codes by using representative'' regions is developed. The approximations involved in this method of solution are reviewed, and some examples of the effect of radial nodalization are presented based on LAPUR code solutions. 2 refs., 4 figs., 2 tabs.
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
Zika, M.; Downar, T. )
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.
NODAL PATHWAY GENES ARE DOWNREGULATED IN FACIAL ASYMMETRY
Nicot, Romain; Hottenstein, Molly; Raoul, Gwenael; Ferri, Joel; Horton, Michael; Tobias, John W.; Barton, Elisabeth; Gelé, Patrick; Sciote, James J.
2014-01-01
Purpose Facial asymmetry is a common comorbid condition in patients with jaw deformation malocclusion. Heritability of malocclusion is advancing rapidly, but very little is known regarding genetic contributions to asymmetry. This study identifies differences in expression of key asymmetry-producing genes which are down regulated in facial asymmetry patients. Material and Methods Masseter muscle samples were collected during BSSO orthognathic surgery to correct skeletal-based malocclusion. Patients were classified as Class II or III and open or deep bite malocclusion with or without facial asymmetry. Muscle samples were analyzed for gene expression differences on Affymetrix HT2.0 microarray global expression chips. Results Overall gene expression was different for asymmetric patients compared to other malocclusion classifications by principal component analysis (P<0.05). We identified differences in the nodal signaling pathway (NSP) which promotes development of mesoderm and endoderm and left-right patterning during embryogenesis. Nodal and Lefty expression was 1.39–1.84 fold greater (P<3.41×10−5) whereas integral membrane Nodal-modulators Nomo1,2,3 were −5.63 to −5.81 (P<3.05×10−4) less in asymmetry subjects. Fold differences among intracellular pathway members were negative in the range of −7.02 to −2.47 (P<0.003). Finally Pitx2, a upstream effector of Nodal known to influence the size of type II skeletal muscle fibers was also significantly decreased in facial asymmetry (P<0.05). Conclusions When facial asymmetry is part of skeletal malocclusion there are decreases of NSP genes in masseter muscle. This data suggests that the NSP is down regulated to help promote development of asymmetry. Pitx2 expression differences also contributed to both skeletal and muscle development in this condition. PMID:25364968
Topological phase transitions in line-nodal superconductors
NASA Astrophysics Data System (ADS)
Han, SangEun; Cho, Gil Young; Moon, Eun-Gook
2017-03-01
Fathoming interplay between symmetry and topology of many-electron wave functions has deepened our understanding of quantum many-body systems, particularly after the discovery of topological insulators. Topology of electron wave functions often enforces and protects emergent gapless excitation, and symmetry is intrinsically tied to the topological protection of the excitations. Namely, unless the symmetry is broken, the topological nature of the excitations is intact. We show intriguing phenomena of interplay between symmetry and topology in three-dimensional topological phase transitions associated with line-nodal superconductors. More specifically, we discover an exotic universality class out of topological line-nodal superconductors. The order parameter of broken symmetries is strongly correlated with underlying line-nodal fermions, and this gives rise to a large anomalous dimension in sharp contrast to that of the Landau-Ginzburg theory. Remarkably, hyperscaling violation and emergent relativistic scaling appear in spite of the presence of nonrelativistic fermionic excitation. We also propose characteristic experimental signatures around the phase transitions, for example, a linear phase boundary in a temperature-tuning parameter phase diagram, and discuss the implication of recent experiments in pnictides and heavy-fermion systems.
Anomalous scaling of the penetration depth in nodal superconductors
NASA Astrophysics Data System (ADS)
She, Jian-Huang; Lawler, Michael J.; Kim, Eun-Ah
2015-07-01
Recent findings of anomalous superlinear scaling of low-temperature (T ) penetration depth (PD) in several nodal superconductors near putative quantum critical points suggest that the low-temperature PD can be a useful probe of quantum critical fluctuations in a superconductor. On the other hand, cuprates, which are poster child nodal superconductors, have not shown any such anomalous scaling of PD, despite growing evidence of quantum critical points (QCP). Then it is natural to ask when and how can quantum critical fluctuations cause anomalous scaling of PD? Carrying out the renormalization group calculation for the problem of two-dimensional superconductors with point nodes, we show that quantum critical fluctuations associated with a point group symmetry reduction result in nonuniversal logarithmic corrections to the T dependence of the PD. The resulting apparent power law depends on the bare velocity anisotropy ratio. We then compare our results to data sets from two distinct nodal superconductors: YBa2Cu3O6.95 and CeCoIn5. Considering all symmetry-lowering possibilities of the point group of interest, C4 v, we find our results to be remarkably consistent with YBa2Cu3O6.95 being near a vertical nematic QCP and CeCoIn5 being near a diagonal nematic QCP. Our results motivate a search for diagonal nematic fluctuations in CeCoIn5.
A nodal domain theorem for integrable billiards in two dimensions
Samajdar, Rhine; Jain, Sudhir R.
2014-12-15
Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.
Histogenesis of metaplastic breast carcinoma and axillary nodal metastases.
Osako, Tomo; Horii, Rie; Ogiya, Akiko; Iijima, Kotaro; Iwase, Takuji; Akiyama, Futoshi
2009-02-01
A 40-year-old breast-feeding woman presented with left breast swelling. On physical examination a 7 cm mass was found in the breast. Because biopsy demonstrated malignant tissue, mastectomy with axillary nodal dissection was performed. Pathological findings were consistent with metaplastic breast carcinoma with nodal metastases. The primary tumor consisted of three types of invasion: ductal, squamous, and sarcomatous. Furthermore, three morphological transitions were observed: ductal-squamous, ductal-sarcomatous, and squamous-sarcomatous. Ductal-squamous (12/18 microscopy slides) and squamous-sarcomatous transitions (10/18) were more commonly observed than ductal-sarcomatous transition (3/18). Furthermore, immunohistochemistry showed loss of epithelial marker (cytokeratin) and acquisition of mesenchymal markers (vimentin and alpha-smooth muscle actin) in the sarcomatous component. These findings suggested that epithelial-mesenchymal transition had occurred in the tumor and that two pathways, ductal-squamous-sarcomatous and ductal-sarcomatous transition, were involved in progression of metaplastic breast carcinoma. The main pathway appeared to be ductal-squamous-sarcomatous transition. Regarding the nodal metastases, of 13 positive nodes, ductal, squamous, and sarcomatous components were observed in 13, seven, and two nodes, respectively. Moreover, as in the primary tumor, ductal-squamous and squamous-sarcomatous transitions were observed. This suggested that the ductal component metastasized to the nodes and that epithelial-mesenchymal transition subsequently occurred within the nodes.
Topological Phase Transitions in Line-nodal Superconductors
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook
Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.
NASA Astrophysics Data System (ADS)
Shukla, K.; Wang, Y.; Jaiswal, P.
2014-12-01
In a porous medium the seismic energy not only propagates through matrix but also through pore-fluids. The differential movement between sediment grains of the matrix and interstitial fluid generates a diffusive wave which is commonly referred to as the slow P-wave. A combined system of equation which includes both elastic and diffusive phases is known as the poroelasticity. Analyzing seismic data through poroelastic modeling results in accurate interpretation of amplitude and separation of wave modes, leading to more accurate estimation of geomehanical properties of rocks. Despite its obvious multi-scale application, from sedimentary reservoir characterization to deep-earth fractured crust, poroelasticity remains under-developed primarily due to the complex nature of its constituent equations. We present a detail formulation of poroleastic wave equations for isotropic media by combining the Biot's and Newtonian mechanics. System of poroelastic wave equation constitutes for eight time dependent hyperbolic PDEs in 2D whereas in case of 3D number goes up to thirteen. Eigen decomposition of Jacobian of these systems confirms the presence of an additional slow-P wave phase with velocity lower than shear wave, posing stability issues on numerical scheme. To circumvent the issue, we derived a numerical scheme using nodal discontinuous Galerkin approach by adopting the triangular meshes in 2D which is extended to tetrahedral for 3D problems. In our nodal DG approach the basis function over a triangular element is interpolated using Legendre-Gauss-Lobatto (LGL) function leading to a more accurate local solutions than in the case of simple DG. We have tested the numerical scheme for poroelastic media in 1D and 2D case, and solution obtained for the systems offers high accuracy in results over other methods such as finite difference , finite volume and pseudo-spectral. The nodal nature of our approach makes it easy to convert the application into a multi-threaded algorithm
Unsupervised spectral mesh segmentation driven by heterogeneous graphs.
Theologou, Panagiotis; Pratikakis, Ioannis; Theoharis, Theoharis
2016-03-21
A fully automatic mesh segmentation scheme using heterogeneous graphs is presented. We introduce a spectral framework where local geometry affinities are coupled with surface patch affinities. A heterogeneous graph is constructed combining two distinct graphs: a weighted graph based on adjacency of patches of an initial over-segmentation, and the weighted dual mesh graph. The partitioning relies on processing each eigenvector of the heterogeneous graph Laplacian individually, taking into account the nodal set and nodal domain theory. Experiments on standard datasets show that the proposed unsupervised approach outperforms the state-of-the-art unsupervised methodologies and is comparable to the best supervised approaches.
Unsupervised Spectral Mesh Segmentation Driven by Heterogeneous Graphs.
Theologou, Panagiotis; Pratikakis, Ioannis; Theoharis, Theoharis
2017-02-01
A fully automatic mesh segmentation scheme using heterogeneous graphs is presented. We introduce a spectral framework where local geometry affinities are coupled with surface patch affinities. A heterogeneous graph is constructed combining two distinct graphs: a weighted graph based on adjacency of patches of an initial over-segmentation, and the weighted dual mesh graph. The partitioning relies on processing each eigenvector of the heterogeneous graph Laplacian individually, taking into account the nodal set and nodal domain theory. Experiments on standard datasets show that the proposed unsupervised approach outperforms the state-of-the-art unsupervised methodologies and is comparable to the best supervised approaches.
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
Theory of the nematic quantum critical point in a nodal superconductor
NASA Astrophysics Data System (ADS)
Kim, Eun-Ah
2008-03-01
In the last several years, experimental evidence has accumulated in a variety of highly correlated electronic systems of new quantum phases which (for purely electronic reasons) spontaneously break the rotational (point group) symmetry of the underlying crystal. Such electron ``nematic'' phases have been seen in quantum Hall systems[1], in the metamagnetic metal Sr3Ru2O7[2], and more recently in magnetic neutron scattering studies of the high temperature superconductor, YBCO[3]. In the case of a high Tc superconductor, the quantum dynamics of nematic order parameter naturally couples strongly to quasiparticle (qp) excitations. In this talk, I will discuss our recent results on the effects of the coupling between quantum critical nematic fluctuations and the nodal qp's of a d-wave superconductor in the vicinity of a putative quantum critical point inside the superconducting phase. We solve a model system with N flavors of quasiparticles in the large N limit[4]. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle peaks in the spectral function, except in the vicinity of ``the tips of the banana,'' where the qp's remain sharp. We will discuss the possible implications of our results to ARPES and STM experiments. [1] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, PRL 83, 824 (1999). [2] R. A. Borzi and S. A. Grigera and J. Farrell and R. S. Perry and S. J. S. Lister and S. L. Lee and D. A. Tennant and Y. Maeno and A. P. Mackenzie, Science 315, 214 (2007). [3] V. Hinkov, D. Haug, B. Fauqu'e, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, unpublished. [4] E.-A. Kim, M. Lawler, P. Oreto, E. Fradkin, S. Kivelson, cond-mat/0705.4099.
Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation.
Blanchet, Marie-Hélène; Le Good, J Ann; Mesnard, Daniel; Oorschot, Viola; Baflast, Stéphane; Minchiotti, Gabriella; Klumperman, Judith; Constam, Daniel B
2008-10-08
The glycosylphosphatidylinositol (GPI)-anchored proteoglycan Cripto binds Nodal and its type I receptor Alk4 to activate Smad2,3 transcription factors, but a role during Nodal precursor processing has not been described. We show that Cripto also binds the proprotein convertases Furin and PACE4 and localizes Nodal processing at the cell surface. When coexpressed as in early embryonic cells, Cripto and uncleaved Nodal already associated during secretion, and a Cripto-interacting region in the Nodal propeptide potentiated the effect of proteolytic maturation on Nodal signalling. Disruption of the trans-Golgi network (TGN) by brefeldin A blocked secretion, but export of Cripto and Nodal to the cell surface was not inhibited, indicating that Nodal is exposed to extracellular convertases before entering the TGN/endosomal system. Density fractionation and antibody uptake experiments showed that Cripto guides the Nodal precursor in detergent-resistant membranes to endocytic microdomains marked by GFP-Flotillin. We conclude that Nodal processing and endocytosis are coupled in signal-receiving cells.
Guo, Qiang; Ning, Fen; Fang, Rui; Wang, Hong-Sheng; Zhang, Ge; Quan, Mei-Yu; Cai, Shao-Hui; Du, Jun
2015-01-01
Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey. PMID:26269769
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals.
Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi
2017-01-11
In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin-orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111).
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi
2017-01-01
In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin-orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111).
Topological nodal line semimetals with and without spin-orbital coupling
NASA Astrophysics Data System (ADS)
Fang, Chen; Chen, Yige; Kee, Hae-Young; Fu, Liang
2015-08-01
We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared to TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands touch at discrete points, in these TSMs the two bands cross at closed lines in the Brillouin zone. We propose two different classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by a combination of inversion symmetry and time-reversal symmetry, yet, unlike previously studied nodal lines in the same symmetry class, each nodal line has a Z2 monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.
Park, C B; Dufort, D
2011-03-01
Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth.
A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality
NASA Astrophysics Data System (ADS)
Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen
2013-11-01
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Moulton, J.D.; Ascher, U.M.; Morel, J.E.
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
Topological insulating phases from two-dimensional nodal loop semimetals
NASA Astrophysics Data System (ADS)
Li, Linhu; Araújo, Miguel A. N.
2016-10-01
Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.
Radiotherapy studies and extra-nodal non-Hodgkin lymphomas, progress and challenges.
Specht, L
2012-06-01
Extra-nodal lymphomas may arise in any organ, and different histological subtypes occur in distinct patterns. Prognosis and treatment depend not only on the histological subtype and disease extent, but also on the particular involved extra-nodal organ. The clinical course and response to treatment for the more common extra-nodal organs, e.g. stomach, Waldeyer's ring, skin and brain, are fairly well known and show significant variation. A few randomised trials have been carried out testing the role of radiotherapy in these lymphomas. However, for most extra-nodal lymphomas, randomised trials have not been carried out, and treatment decisions are made on small patient series and extrapolations from nodal lymphomas. Hopefully, wide international collaboration will make controlled clinical trials possible in the less common extra-nodal lymphomas. Modern highly conformal radiotherapy allows better coverage of extra-nodal lymphomatous involvement with better sparing of normal tissues. The necessary radiation doses and volumes need to be defined for the different extra-nodal lymphoma entities. The challenge is to optimise the use of radiotherapy in the modern multimodality treatment of extra-nodal lymphomas.
Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets
NASA Astrophysics Data System (ADS)
Mook, Alexander; Henk, Jürgen; Mertig, Ingrid
2017-01-01
We introduce a type of topological magnon matter: the magnonic pendant to electronic nodal-line semimetals. Magnon spectra of anisotropic pyrochlore ferromagnets feature twofold degeneracies of magnon bands along a closed loop in reciprocal space. These magnon nodal lines are topologically protected by the coexistence of inversion and time-reversal symmetry; they require the absence of spin-orbit interaction (no Dzyaloshinskii-Moriya interaction). We calculate the topological invariants of the nodal lines and show that details of the associated magnon drumhead surface states depend strongly on the termination of the surface. Magnon nodal-line semimetals complete the family of topological magnons in three-dimensional ferromagnetic materials.
Nodal line optimization and its application to violin top plate design
NASA Astrophysics Data System (ADS)
Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man
2010-10-01
In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.
Evaluation of the use of nodal methods for MTR neutronic analysis
Reitsma, F.; Mueller, E.Z.
1997-08-01
Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.
NASA Astrophysics Data System (ADS)
Taneja, Ankur; Higdon, Jonathan
2016-11-01
A spectral element method (SEM) is presented to simulate two-phase fluid flow (oil and water phase) in petroleum reservoirs. Petroleum reservoirs are porous media with heterogeneous geologic features, and the flow of two immiscible phases involves sharp, moving interfaces. The governing equations of motion are time-dependent, non-linear PDEs with strong hyperbolic nature. A fully-coupled numerical scheme using discontinuous Galerkin (DG) method with nodal spectral element basis functions for spatial discretization, and an implicit Runge-Kutta type time-stepping is developed to solve the PDEs in a robust, stable manner. Isoparameteric mapping is used to generate grids for reservoir and well geometry. We present the performance capabilities of the DG scheme with high-order basis functions to accurately resolve sharp fluid interfaces and a variety of heterogeneous geologic features. High-order convergence of SEM is demonstrated. Numerical results are presented for reservoir flows with various injection-production patterns. Typical reservoir heterogeneities like low-permeable regions, impermeable shale barriers, etc. are included in the numerical tests. Comparisons with commonly used finite volume methods and linear and quadratic finite element methods are presented. ExxonMobil Upstream Research Co.
Pseudospin Vortex Ring with a Nodal Line in Three Dimensions
NASA Astrophysics Data System (ADS)
Lim, Lih-King; Moessner, Roderich
2017-01-01
We present a model of a topological semimetal in three dimensions whose energy spectrum exhibits a nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke ring. Contrary to a Weyl point node spectrum, the vortex ring gives rise to Skyrmionic pseudospin patterns in cuts on both sides of the nodal ring plane; this pattern covers the full Brillouin zone, thus leading to a fully extended chiral Fermi arc and a new, "maximal," anomalous Hall effect in a 3D semimetal. Tuning a model parameter shrinks the vortex ring until it vanishes, giving way to a pair of Weyl nodes of opposite chirality. This establishes a connection between two distinct momentum-space topologies—that of a vortex ring (a circle of singularity) and a monopole-antimonopole pair (two point singularities). We present the model both as a low-energy continuum and a two-band tight-binding lattice model. Its simplicity permits an analytical computation of its Landau level spectrum.
Amyloid precursor protein at node of Ranvier modulates nodal formation
Xu, De-En; Zhang, Wen-Min; Yang, Zara Zhuyun; Zhu, Hong-Mei; Yan, Ke; Li, Shao; Bagnard, Dominique; Dawe, Gavin S; Ma, Quan-Hong; Xiao, Zhi-Cheng
2014-01-01
Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination. PMID:25482638
Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores
A. M. Ougouag; R. M. Ferrer
2010-10-01
The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.
Symmetry Breaking in a Model for Nodal Cilia
NASA Astrophysics Data System (ADS)
Brokaw, Charles J.
2005-03-01
Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.
Automatic partitioning of unstructured grids into connected components
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1993-01-01
This paper presents two partitioning schemes that guarantee connected components given a connected initial grid. Connected components are important for convergence of methods such as domain decomposition or multigrid. For many of the grids tested, the schemes produce partitions as good (in terms of number of cut edges) or better than spectral partitioning and require only modest computational resources. This paper describes the two schemes in detail and presents comparison results from a number of two and three dimensional unstructured grids.
Spectral and Spread Spectral Teleportation
Humble, Travis S
2010-01-01
We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.
High-latitude oceanic variability associated with the 18.6-year nodal tide
NASA Astrophysics Data System (ADS)
Royer, Thomas C.
1993-03-01
Ocean temperatures in the upper 250 m in the northern North Pacific (60°N, 149°W) increased by more than 1°C from 1972 to 1986 but are now decreasing. Subsurface temperature anomalies are well correlated (˜0.58) with the air temperature anomalies at Sitka, Alaska; hence the coastal air temperatures can be used as a proxy data set to extend the ocean temperature time series back to 1828. Up to 30% of the low-frequency variance can be accounted for with the 18.6-year nodal signal. Additionally, spectral analysis of these air temperature variations indicates a significant low-frequency peak in the range of the 18.6-year signal. Similar low-frequency signals have been reported for Hudson Bay air temperatures since 1700, for sea surface temperatures in the North Atlantic from 1876 to 1939, and for sea level in the high-latitude southern hemisphere. The water column temperature variations presented here are the first evidence that the upper ocean is responding to this very long period tidal forcing. An enhanced high-latitude response to the 18.6-year forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50°. These low-frequency ocean-atmosphere variations must be considered in high-latitude assessments of global climate change, since they are of the same magnitude as many of the predicted global changes.
Prevention of AV Nodal Reentry Tachycardia by Oral Amiodarone: An Alternative Mechanism of Action
Gold, Robert L.; Haffajee, Charles I.; Entes, Kenneth L.
1987-01-01
A 73-year-old man was noted to have atrioventricular (AV) nodal reentry tachycardia, which was induced during programmed electrical stimulation. After 1 month of oral amiodarone therapy, AV nodal reentry tachycardia was prevented by the prolongation of atrial refractoriness and not by direct action on the AV node itself. (Texas Heart Institute Journal 1987; 14:99-101) PMID:15227337
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Digital Electronic Message Service...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Digital Electronic Message Service...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Digital Electronic Message Service...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital Electronic Message Service...
Gale, Robert Peter; Wang, Li; Xu, Ji; Qu, Xiao-Yan; Fan, Lei; Li, Tian-Lv; Li, Jian-Yong; Xu, Wei
2017-01-01
We analyzed data from 54 newly-diagnosed persons with extra-nodal natural killer/T-cell (NK/T) lymphoma, who had a pretreatment 18F-FDG PET/CT study, to determine whether the sum of SUVmax of all the nodal and extra-nodal lesions predicted progression-free survival (PFS) and/or overall survival (OS). Three models (WB1SUVmax, WB2SUVmax, WB3SUVmax) based on the basis of the sum of SUVmax of the whole-body SUVmax of 11 nodal and 10 extra-nodal lesions were tested. The discrimination value of these models was evaluated using time-dependent receiver-operator characteristic (ROC) curves and corresponding areas under the curve (AUC) in training and validation cohorts. Findings were validated in an independent cohort of 15 subjects. ROC curve analysis showed the optimal cut-off values for WB1SUVmax, WB2SUVmax and WB3SUVmax were 15.8 (sensitivity 92%, specificity 67%, AUC 0.811; P<0.001), 12.7 (sensitivity 96%; specificity 57%; AUC 0.785; P<0.001) and 15.8 (sensitivity 88%; specificity 70%; AUC 0.793; P<0.001). Multivariate analyses indicated WB3SUVmax was independently associated with PFS (hazard ratio [HR]=3.67, 95% confidence interval [95% CI]=1.19, 11.29; P=0.023) and OS (HR= 4.51 [1.02, 19.91]; P=0.047). WB3SUVmax calculated based of the sum of the SUVmax of 3 nodal and 10 extra-nodal lesions was significantly associated with PFS and OS. PMID:27974685
Augmented weighted diamond form of the linear nodal scheme for Cartesian coordinate systems
Walters, W.F.
1985-01-01
The equations of the high order linear nodal numerical scheme are cast in an augmented weighted difference form for three-dimensional Cartesian nodes. The coupling exhibited by these equations indicate that this new algorithm is simpler and hence faster than previous nodal schemes of this degree of accuracy. A well-logging problem and a fast reactor problem are examined. The new scheme developed here is compared with the classical linear-linear nodal scheme and the diamond difference scheme. For the well-logging problem, it is found that the new scheme is both faster and simpler than the classical linear-linear nodal scheme while sacrificing little in accuracy. Even though the new scheme is more accurate than the diamond difference scheme for the reactor problem, the results indicate that state of the art acceleration methods are needed for nodal schemes.
Wald, Ingo; Ize, Santiago
2015-07-28
Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.
Magnetic susceptibility in three-dimensional nodal semimetals
NASA Astrophysics Data System (ADS)
Koshino, Mikito; Hizbullah, Intan Fatimah
2016-01-01
We study the magnetic susceptibility in various three-dimensional gapless systems, including Dirac and Weyl semimetals, and a line-node semimetal. The susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term, which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger δ -function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.
Magnetic response in three-dimensional nodal semimetals
NASA Astrophysics Data System (ADS)
Koshino, Mikito; Hizbullah, Intan Fatimah
We study the magnetic response in various three-dimensional gapless systems, including Dirac and Weyl semimetals and a line-node semimetal. We show that the susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger delta-function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.
CAISO flicks switch on nodal scheme and lights stay on
2009-06-15
In 2000-01, two years after introducing a competitive wholesale power auction in California - with a separate day-ahead zonal market operated by the California Power Exchange and a zonal market for ancillary services and balancing energy operated by the California Independent System Operator (CAISO) - the California market collapsed from exorbitant prices, flagrant gaming, and abuse of market power. Nine years later, CAISO introduced a nodal pricing auction for the wholesale market in April, replacing the zonal scheme, which was among many causes of the original market's demise. With nearly 3,000 nodes on the network, high prices in one region do not affect prices everywhere on the system. After investing some $200 million to upgrade the software, countless delays, and 18 months of market simulation and testing, the new auction was introduced and nothing unusual happened.
Improving the Accuracy of High-Order Nodal Transport Methods
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-09-27
This paper outlines some recent advances towards improving the accuracy of neutron transport calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering adverse effects from round-off error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one ordeq (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively refining the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.
Improving the Accuracy of High-Order Nodal Transport Methods
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-09-27
This paper outlines some recent advances towards improving the accuracy of neutron calculations using the Arbitrarily High Order Transport-Nodal (AHOT-N) Method. These transport advances consist of several contributions: (a) A formula for the spatial weights that allows for the polynomial order to be raised arbitrarily high without suffering from pollution from round-off, error; (b) A reconstruction technique for the angular flux, based upon a recursive formula, that reduces the pointwise error by one order; (c) An a posterior error indicator that estimates the true error and its distribution throughout the domain, so that it can be used for adaptively reftig the approximation. Present results are mainly for ID, extension to 2D-3D is in progress.
Nodal staging of colorectal carcinomas and sentinel nodes
Cserni, G
2003-01-01
This review surveys the staging systems used for the classification of colorectal carcinomas, including the TNM system, and focuses on the assessment of the nodal stage of the disease. It reviews the quantitative requirements for a regional metastatic work up, and some qualitative features of lymph nodes that may help in the selection of positive and negative lymph nodes. Identification of the sentinel lymph nodes (those lymph nodes that have direct drainage from the primary tumour site) is one such qualitative feature that is claimed to allow the upstaging of colorectal carcinomas via an oriented, enhanced pathological work up. Current evidence in favour of a change in the requisite of assessing as may lymph nodes as is possible, and concentrating the efforts on only a selected number of lymph nodes, is weak. PMID:12719450
Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma
Na’ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv
2016-01-01
Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC. PMID:26886954
Static benchmarking of the NESTLE advanced nodal code
Mosteller, R.D.
1997-05-01
Results from the NESTLE advanced nodal code are presented for multidimensional numerical benchmarks representing four different types of reactors, and predictions from NESTLE are compared with measured data from pressurized water reactors (PWRs). The numerical benchmarks include cases representative of PWRs, boiling water reactors (BWRs), CANDU heavy water reactors (HWRs), and high-temperature gas-cooled reactors (HTGRs). The measured PWR data include critical soluble boron concentrations and isothermal temperature coefficients of reactivity. The results demonstrate that NESTLE correctly solves the multigroup diffusion equations for both Cartesian and hexagonal geometries, that it reliably calculates k{sub eff} and reactivity coefficients for PWRs, and that--subsequent to the incorporation of additional thermal-hydraulic models--it will be able to perform accurate calculations for the corresponding parameters in BWRs, HWRs, and HTGRs as well.
On-line application of the PANTHER advanced nodal code
Hutt, P.K.; Knight, M.P. )
1992-01-01
Over the last few years, Nuclear Electric has developed an integrated core performance code package for both light water reactors (LWRs) and advanced gas-cooled reactors (AGRs) that can perform a comprehensive range of calculations for fuel cycle design, safety analysis, and on-line operational support for such plants. The package consists of the following codes: WIMS for lattice physics, PANTHER whole reactor nodal flux and AGR thermal hydraulics, VIPRE for LWR thermal hydraulics, and ENIGMA for fuel performance. These codes are integrated within a UNIX-based interactive system called the Reactor Physics Workbench (RPW), which provides an interactive graphic user interface and quality assurance records/data management. The RPW can also control calculational sequences and data flows. The package has been designed to run both off-line and on-line accessing plant data through the RPW.
Coveney, Peter V
2005-08-15
We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.
ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm
Ellis, Pamela S.; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M.; Constam, Daniel; Placzek, Marysia
2015-01-01
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. PMID:26417042
Consistent two-lifetime model for spectral functions of superconductors
NASA Astrophysics Data System (ADS)
Herman, František; Hlubina, Richard
2017-03-01
Recently it has been found that models with at least two lifetimes have to be considered when analyzing the angle-resolved photoemission data in the nodal region of the cuprates [Kondo et al., Nat. Commun. 6, 7699 (2015), 10.1038/ncomms8699]. In this paper we compare two such models. First we show that the phenomenological model used by Kondo et al. violates the sum rule for the occupation number. Next we consider the recently proposed model of the so-called Dynes superconductors, wherein the two lifetimes measure the strengths of pair-conserving and pair-breaking processes. We demonstrate that the model of the Dynes superconductors is fully consistent with known exact results, and we study in detail the resulting spectral functions. Finally, we show that the spectral functions in the nodal region of the cuprates can be fitted well by the model of the Dynes superconductors.
Top, Philip; Woodward, Carol; Smith, Steve; Banks, Lawrence; Kelley, Brian
2015-09-14
GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
Parallel unstructured grid generation
NASA Technical Reports Server (NTRS)
Loehner, Rainald; Camberos, Jose; Merriam, Marshal
1991-01-01
A parallel unstructured grid generation algorithm is presented and implemented on the Hypercube. Different processor hierarchies are discussed, and the appropraite hierarchies for mesh generation and mesh smoothing are selected. A domain-splitting algorithm for unstructured grids which tries to minimize the surface-to-volume ratio of each subdomain is described. This splitting algorithm is employed both for grid generation and grid smoothing. Results obtained on the Hypercube demonstrate the effectiveness of the algorithms developed.
NASA Technical Reports Server (NTRS)
Hinke, Thomas
2003-01-01
This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.
Liu, Xiuli; Ma, Yuanqing; Zhang, Congwei; Wei, Shi; Cao, Yu; Wang, Qiang
2013-10-20
Nodal, a member of the transforming growth factor β (TGF-β) superfamily, has been shown to play a role in mesendoderm induction and gastrulation movements. The activity of Nodal signaling can be modulated by microRNAs (miRNAs) as previously reported, but little is known about which miRNAs are regulated by Nodal during gastrulation. In the present study, we found that the expression of mir206, one of the most abundant miRNAs during zebrafish early embryo development, is regulated by Nodal signaling. Abrogation of Nodal signal activity results in defective convergence and extension (CE) movements, and these cell migration defects can be rescued by supplying an excess of mir206, suggesting that mir206 acts downstream of Nodal signaling to regulate CE movements. Furthermore, in mir206 morphants, the expression of cell adhesion molecule E-cadherin is significantly increased, while the key transcriptional repressor of E-cadherin, snail1a, is depressed. Our study uncovers a novel mechanism by which Nodal-regulated mir206 modulates gastrulation movements in connection with the Snail/E-cadherin pathway.
McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F
2010-04-01
Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.
Nicalin and its binding partner Nomo are novel Nodal signaling antagonists.
Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian
2004-08-04
Nodals are signaling factors of the transforming growth factor-beta (TGFbeta) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated gamma-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish.
Nicalin and its binding partner Nomo are novel Nodal signaling antagonists
Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian
2004-01-01
Nodals are signaling factors of the transforming growth factor-β (TGFβ) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated γ-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish. PMID:15257293
NASA Astrophysics Data System (ADS)
Stachowski, Greg; Kundera, Tomasz; Ciecielag, Paweł; AstroGridPL Team
2016-06-01
We summarise the achievements AstroGrid-PL project, which aims to provide an infrastructure grid computing, distributed storage and Virtual Observatory services to the Polish astronomical community. It was developed from 2011-2015 as a domain grid component within the large PLGrid Plus project for scientific computing in Poland.
Peles, Slaven
2016-11-06
GridKit is a software development kit for interfacing power systems and power grid application software with high performance computing (HPC) libraries developed at National Labs and academia. It is also intended as interoperability layer between different numerical libraries. GridKit is not a standalone application, but comes with a suite of test examples illustrating possible usage.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Generic polyhedron grid generation for solving partial differential equations on spherical surfaces
NASA Astrophysics Data System (ADS)
Oldham, D.; Davies, J. H.; Phillips, T. N.
2012-02-01
A new method for generating a numerical grid on a spherical surface is presented. This method allows the grid to be based on several different regular polyhedrons (including octahedron, cube, icosahedron, and rhombic dodecahedron). The type of polyhedron on which the grid is based can be changed by altering only a few input parameters. Each polygon face can then be subdivided using a mapping technique that is described. An advantage of this new grid is that it gives increased flexibility in terms of the total number of nodes in the system. It also makes comparison between different numerical grids easier and simplifies the transfer of code/data between numerical simulators with different grids. This generic grid is then used to solve Poisson's equation on a spherical surface using a spectral element implementation for a range of actual grids. The generic grid allows us to quickly compare the actual grids and illustrates its utility.
Mohapatra, Bhagyalaxmi; Casey, Brett; Li, Hua; Ho-Dawson, Trang; Smith, Liana; Fernbach, Susan D.; Molinari, Laura; Niesh, Stephen R.; Jefferies, John Lynn; Craigen, William J.; Towbin, Jeffrey A.; Belmont, John W.; Ware, Stephanie M.
2009-01-01
NODAL and its signaling pathway are known to play a key role in specification and patterning of vertebrate embryos. Mutations in several genes encoding components of the NODAL signaling pathway have previously been implicated in the pathogenesis of human left–right (LR) patterning defects. Therefore, NODAL, a member of TGF-β superfamily of developmental regulators, is a strong candidate to be functionally involved in congenital LR axis patterning defects or heterotaxy. Here we have investigated whether variants in NODAL are present in patients with heterotaxy and/or isolated cardiovascular malformations (CVM) thought to be caused by abnormal heart tube looping. Analysis of a large cohort of cases (n = 269) affected with either classic heterotaxy or looping CVM revealed four different missense variants, one in-frame insertion/deletion and two conserved splice site variants in 14 unrelated subjects (14/269, 5.2%). Although similar with regard to other associated defects, individuals with the NODAL mutations had a significantly higher occurrence of pulmonary valve atresia (P = 0.001) compared with cases without a detectable NODAL mutation. Functional analyses demonstrate that the missense variant forms of NODAL exhibit significant impairment of signaling as measured by decreased Cripto (TDGF-1) co-receptor-mediated activation of artificial reporters. Expression of these NODAL proteins also led to reduced induction of Smad2 phosphorylation and impaired Smad2 nuclear import. Taken together, these results support a role for mutations and rare deleterious variants in NODAL as a cause for sporadic human LR patterning defects. PMID:19064609
Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.
Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan
2017-04-04
Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus, Nodal, Lefty, and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal, Lefty, and Pitx, whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal, whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.
Calvanese, Luisa; Sandomenico, Annamaria; Caporale, Andrea; Focà, Annalia; Focà, Giuseppina; D'Auria, Gabriella; Falcigno, Lucia; Ruvo, Menotti
2015-04-01
Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.
Detection of 18.6 year nodal induced drought in the Patagonian Andes
NASA Astrophysics Data System (ADS)
Currie, Robert G.
1983-11-01
Analysis of tree-ring chronologies from the Patagonian Andes yields evidence for the 18.6 yr lunar nodal term in drought/flood. The mean discrepancy between epochs of drought/flood and the nodal tide since AD 1600 is 0.7 ± 2.2 yr, but the polarity of the signal is apparently bimodal. From nodal epoch 1750.0 through 1898.9 drought and tide were in phase, whereas prior to 1750.0 and subsequent to 1898.9 drought and tide were out of phase. There is evidence also for the solar cycle drought signal in the data.
Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab
2007-05-01
As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.
Taft, Jeffrey D.
2016-01-01
The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.
Hedetniemi, S. M.; Hedetniemi, S. T.; Slater, P. J.
1980-01-01
A complete grid G/sub m,n/ is a graph having m x n pertices that are connected to form a rectangular lattice in the plane, i.e., all edges of G/sub m,n/ connect vertices along horizontal or vertical lines. A grid is a subgraph of a complete grid. As an illustration, complete grids describe the basic pattern of streets in most cities. This paper examines the existence of Hamiltonian cycles in complete grids and complete grids with one or two vertices removed. It is determined for most values of m,n greater than or equal to 1, which grids G/sub m,n/ - (u) and G/sub m,n/ - (u,v) are Hamiltonian. 12 figures. (RWR)
2007-11-15
The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology
Coplanar interdigitated grid detector with single electrode readout
Luke, Paul N.
2001-01-01
The coplanar interdigitated grid technique with single electrode readout provides substantial spectral performance improvement over that of conventional full-area planar electrode detectors and over coplanar interdigitated grid detectors which measure the difference between the induced charge signals from two interdigitated coplanar grid electrodes. The signal from only one interdigitated grid electrode is read out. The signal response is optimized by changing the relative areas of the two grid electrodes and the bias applied across the detector. Only one preamplifier is needed and signal subtraction is not necessary. This eliminates the electronic noise contribution from the additional preamplifier used in the normal coplanar grid implementation, and conventional single-amplifier detector electronics can be used.
Navigation in Grid Space with the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.
Relation between finite element methods and nodal methods in transport theory
Walters, W.F.
1985-01-01
This paper examines the relationship between nodal methods and finite-element methods for solving the discrete-ordinates form of the transport equation in x-y geometry. Specifically, we will examine the relation of three finite-element schemes to the linear-linear (LL) and linear-nodal (LN) nodal schemes. The three finite-element schemes are the linear-continuous-diamond-difference (DD) scheme, the linear-discontinuous (LD) scheme, and the quadratic-discontinuous (QD) scheme. A brief derivation of the (LL) and (LN) nodal schemes is given in the third section of this paper. The approximations that cause the LL scheme to reduce to the DD, LD, and QD schemes are then indicated. An extremely simple method of deriving the finite-element schemes is then introduced.
Nodal Domain Statistics for Quantum Maps, Percolation, and Stochastic Loewner Evolution
Keating, J. P.; Marklof, J.; Williams, I. G.
2006-07-21
We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant {kappa} close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.
ANOVA-HDMR structure of the higher order nodal diffusion solution
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-07-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
Dose-dependent Nodal/Smad signals pattern the early mouse embryo.
Robertson, Elizabeth J
2014-08-01
Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo.
Grid enabled Service Support Environment - SSE Grid
NASA Astrophysics Data System (ADS)
Goor, Erwin; Paepen, Martine
2010-05-01
The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more
Securing smart grid technology
NASA Astrophysics Data System (ADS)
Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman
2013-03-01
In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.
Topological Dirac nodal lines and surface charges in fcc alkaline earth metals
Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi; Murakami, Shuichi
2017-01-01
In nodal-line semimetals, the gaps close along loops in k space, which are not at high-symmetry points. Typical mechanisms for the emergence of nodal lines involve mirror symmetry and the π Berry phase. Here we show via ab initio calculations that fcc calcium (Ca), strontium (Sr) and ytterbium (Yb) have topological nodal lines with the π Berry phase near the Fermi level, when spin–orbit interaction is neglected. In particular, Ca becomes a nodal-line semimetal at high pressure. Owing to nodal lines, the Zak phase becomes either π or 0, depending on the wavevector k, and the π Zak phase leads to surface polarization charge. Carriers eventually screen it, leaving behind large surface dipoles. In materials with nodal lines, both the large surface polarization charge and the emergent drumhead surface states enhance Rashba splitting when heavy adatoms are present, as we have shown to occur in Bi/Sr(111) and in Bi/Ag(111). PMID:28074835
The nodal inhibitor Coco is a critical target of leftward flow in Xenopus.
Schweickert, Axel; Vick, Philipp; Getwan, Maike; Weber, Thomas; Schneider, Isabelle; Eberhardt, Melanie; Beyer, Tina; Pachur, Anke; Blum, Martin
2010-04-27
Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.
A quasi-static polynomial nodal method for nuclear reactor analysis
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
2016-01-14
The electric power grid has been rightly celebrated as the single most important engineering feat of the 20th century. The grid powers our homes, offices, hospitals, and schools; and, increasingly, it powers our favorite devices from smartphones to HDTVs. With those and other modern innovations and challenges, our grid will need to evolve. Grid modernization efforts will help the grid make full use of today’s advanced technologies and serve our needs in the 21st century. While the vast majority of upgrades are implemented by private sector energy companies that own and operate the grid, DOE has been investing in technologies that are revolutionizing the way we generate, store and transmit power.
TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways
Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming
2014-01-17
Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.
Challenges facing production grids
Pordes, Ruth; /Fermilab
2007-06-01
Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.
Enhanced Elliptic Grid Generation
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2007-01-01
An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are
NASA Technical Reports Server (NTRS)
Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.
1991-01-01
A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.
Unstructured surface grid generation
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1993-01-01
Viewgraphs on unstructured surface grid generation are presented. Topics covered include: requirements for curves, surfaces, solids, and text; surface approximation; triangulation; advancing; projection; mapping; and parametric curves.
NASA Astrophysics Data System (ADS)
Ilas, Germina
In the first part, an accurate and fast computational method is presented as an alternative to the Monte Carlo or deterministic transport theory codes currently used to determine the subcriticality of spent fuel storage lattices. The method is capable of analyzing storage configurations with simple or complex lattice cell geometry. It is developed based on two-group nodal diffusion theory, with the nodal cross sections and discontinuity factors determined from continuous-energy Monte Carlo simulations of each unique node (spent fuel assembly type). Three different approaches are developed to estimate the node-averaged diffusion coefficient. The applicability and the accuracy of the nodal method are assessed in two-dimensional geometry through several benchmark configurations typical at Savannah River Site. It is shown that the multiplication constant of the analyzed configurations is within 1% of the MCNP results. In the second part, the high-order cross section homogenization method, recently developed by McKinley and Rahnema, is implemented in the context of two-group nodal diffusion theory. The method corrects the generalized equivalence theory homogenization parameters for the effect of the core environment. The reconstructed fine-mesh (fuel pin) flux and power distributions are a natural byproduct of this method. The method was not tested for multigroup problems, where it was assumed that the multigroup flux expansion in terms of the perturbation parameter is a convergent series. Here the applicability of the method to two-group problems is studied, and it is shown that the perturbation expansion series converges for the multigroup case. A two-group nodal diffusion code with a bilinear intra-nodal flux shape is developed for the implementation of the high-order homogenization method in the context of the generalized equivalence theory. The method is tested by using as a benchmark a core configuration typical of a BWR in slab geometry, which has large
Extra-nodal extension is a significant prognostic factor in lymph node positive breast cancer
Aziz, Sura; Wik, Elisabeth; Davidsen, Benedicte; Aas, Hans; Aas, Turid; Akslen, Lars A.
2017-01-01
Presence of lymph node (LN) metastasis is a strong prognostic factor in breast cancer, whereas the importance of extra-nodal extension and other nodal tumor features have not yet been fully recognized. Here, we examined microscopic features of lymph node metastases and their prognostic value in a population-based cohort of node positive breast cancer (n = 218), as part of the prospective Norwegian Breast Cancer Screening Program NBCSP (1996–2009). Sections were reviewed for the largest metastatic tumor diameter (TD-MET), nodal afferent and efferent vascular invasion (AVI and EVI), extra-nodal extension (ENE), number of ENE foci, as well as circumferential (CD-ENE) and perpendicular (PD-ENE) diameter of extra-nodal growth. Number of positive lymph nodes, EVI, and PD-ENE were significantly increased with larger primary tumor (PT) diameter. Univariate survival analysis showed that several features of nodal metastases were associated with disease-free (DFS) or breast cancer specific survival (BCSS). Multivariate analysis demonstrated an independent prognostic value of PD-ENE (with 3 mm as cut-off value) in predicting DFS and BCSS, along with number of positive nodes and histologic grade of the primary tumor (for DFS: P = 0.01, P = 0.02, P = 0.01, respectively; for BCSS: P = 0.02, P = 0.008, P = 0.02, respectively). To conclude, the extent of ENE by its perpendicular diameter was independently prognostic and should be considered in line with nodal tumor burden in treatment decisions of node positive breast cancer. PMID:28199370
An efficient 3D traveltime calculation using coarse-grid mesh for shallow-depth source
NASA Astrophysics Data System (ADS)
Son, Woohyun; Pyun, Sukjoon; Lee, Ho-Young; Koo, Nam-Hyung; Shin, Changsoo
2016-10-01
3D Kirchhoff pre-stack depth migration requires an efficient algorithm to compute first-arrival traveltimes. In this paper, we exploited a wave-equation-based traveltime calculation algorithm, which is called the suppressed wave equation estimation of traveltime (SWEET), and the equivalent source distribution (ESD) algorithm. The motivation of using the SWEET algorithm is to solve the Laplace-domain wave equation using coarse grid spacing to calculate first-arrival traveltimes. However, if a real source is located at shallow-depth close to free surface, we cannot accurately calculate the wavefield using coarse grid spacing. So, we need an additional algorithm to correctly simulate the shallow source even for the coarse grid mesh. The ESD algorithm is a method to define a set of distributed nodal sources that approximate a point source at the inter-nodal location in a velocity model with large grid spacing. Thanks to the ESD algorithm, we can efficiently calculate the first-arrival traveltimes of waves emitted from shallow source point even when we solve the Laplace-domain wave equation using a coarse-grid mesh. The proposed algorithm is applied to the SEG/EAGE 3D salt model. From the result, we note that the combination of SWEET and ESD algorithms can be successfully used for the traveltime calculation under the condition of a shallow-depth source. We also confirmed that our algorithm using coarse-grid mesh requires less computational time than the conventional SWEET algorithm using relatively fine-grid mesh.
Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.
2005-08-14
Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.
ERIC Educational Resources Information Center
Simco, Greg
2002-01-01
Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)
NASA Technical Reports Server (NTRS)
Ives, David
1995-01-01
This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.
Parallel computation with the spectral element method
Ma, Hong
1995-12-01
Spectral element models for the shallow water equations and the Navier-Stokes equations have been successfully implemented on a data parallel supercomputer, the Connection Machine model CM-5. The nonstaggered grid formulations for both models are described, which are shown to be especially efficient in data parallel computing environment.
Optimization Of A Computational Grid
NASA Technical Reports Server (NTRS)
Pearce, Daniel G.
1993-01-01
In improved method of generation of computational grid, grid-generation process decoupled from definition of geometry. Not necessary to redefine boundary. Instead, continuous boundaries in physical domain specified, and then grid points in computational domain mapped onto continuous boundaries.
High energy collimating fine grids for HESP program
NASA Technical Reports Server (NTRS)
Eberhard, Carol D.; Frazier, Edward
1993-01-01
There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.
Gong, Wenchen; Sun, Baocun; Sun, Huizhi; Zhao, Xiulan; Zhang, Danfang; Liu, Tieju; Zhao, Nan; Gu, Qiang; Dong, Xueyi; Liu, Fang
2017-01-01
Nodal signaling plays several vital roles in the embryogenesis process. However, its reexpression in breast cancer is correlated with cancer progression, metastasis and poor prognosis. Recently, Nodal has also been reported to regulate self-renewal capacity in pancreatic cancer. This study aimed to explore the role of Nodal in breast cancer stem cells (BCSCs) and the underlying mechanisms. Therefore, the immunohistochemistry staining of Nodal in 135 human breast cancer cases was performed to analyzed the relationship of Nodal signaling, clinical outcomes and BCSC marker. And the results showed that high Nodal expression was positively correlated with poor prognosis and BCSC marker expression in breast cancer samples. We further assessed the effects of Nodal in regulating the BCSC properties in breast cancer cell lines and xenografts. Then, SB431542 was administered in vitro and in vivo to explore the function of the Smad2/3 pathway. And we demonstrated that Nodal signaling up-regulated the expression of ALDH1, CD44, CD133, Sox2, Oct4 and Nanog by activating the Smad2/3 pathway, thereby enhancing the tumorigenicity and sphere-forming ability of breast cancer cells. Furthermore, treatment with SB431542 could inhibit the properties of BCSCs in vitro and in vivo. In conclusion, these findings indicate that Nodal signaling may play a vital role in maintaining the BCSC phenotype in breast cancer and serve as a potential target to explore BCSC-specific therapies.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-01-01
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889
Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy.
Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu
2014-06-01
Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe_{2} with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe_{2} are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterizedmore » by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less
The impact of surgical technique on neck dissection nodal yield: making a difference.
Lörincz, Balazs B; Langwieder, Felix; Möckelmann, Nikolaus; Sehner, Susanne; Knecht, Rainald
2016-05-01
The nodal yield of neck dissections is an independent prognostic factor in several types of head and neck cancer. The authors aimed to determine whether the applied dissection technique has a significant impact on nodal yield. This is a single-institution, prospective study with internal control group (level of evidence: 2A). Data of 150 patients undergoing 223 neck dissections between February 2011 and March 2013 have been collected in a comprehensive cancer centre. Eighty-two patients underwent neck dissection with unwrapping the cervical fascia from lateral to medial, while 68 patients were operated without specifically unwrapping the fascia, in a caudal to cranial fashion. The standardised, horizontal neck dissection technique along the fascial planes resulted in a significantly higher nodal count in Levels I, II, III and IV, as well as in terms of overall nodal yield (mean: n = 22.53) than that of the vertical dissection applied in the control group (mean: n = 15.00). This is the first publication showing a direct correlation between neck dissection nodal yield and surgical technique. Therefore, it is paramount to optimise the applied surgical concept to maximise the oncological benefit.
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk
2015-01-01
Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.
Pordes, R.; /Fermilab
2004-12-01
The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.
Trends in life science grid: from computing grid to knowledge grid
Konagaya, Akihiko
2006-01-01
Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294
Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte
2016-08-04
Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.
Hu, Haili; Liu, Jianjun; Fan, Zhigang
2013-07-29
In this paper we succeeded in deriving changes in the nodal positions of aberrations that belong to the fifth-order class in pupil dependence by applying a system level pupil decentration vector. Our treatment is specifically for rotationally symmetric multi-mirror optical designs that simply use an offset pupil as a means of creating an unobscured optical design. When the pupil is offset, only the vectors to determine the node locations are modified by the pupil decentration vector, while the nodal properties originally developed for titled/decentered optical systems are retained. In general, the modifications to the nodal vectors for any particular aberration type are contributed only by terms of higher order pupil dependence.
Topological nodal line semimetals in the CaP3 family of materials
NASA Astrophysics Data System (ADS)
Xu, Qiunan; Yu, Rui; Fang, Zhong; Dai, Xi; Weng, Hongming
2017-01-01
By using first-principles calculations and a k .p model analysis, we propose that the three-dimensional topological nodal line semimetal state can be realized in the CaP3 family of materials, which includes CaP3,CaAs3,SrP3,SrAs3, and BaAs3, when spin-orbit coupling (SOC) is ignored. The closed topological nodal line near the Fermi energy is protected by time reversal symmetry and spatial inversion symmetry. Moreover, drumheadlike two-dimensional surface states are also obtained on the c -direction surface of these materials. When SOC is included, the gaps open along the nodal line and these materials become strong topological insulators with Z2 indices as (1 ;010 ) .
Potential for Infra-Nodal Heart Block and Cardiogenic Shock With Propofol Administration
Olson, Nicholas; Lim, Michael J.; Ferreira, Scott W.; Mehdirad, Ali A.
2013-01-01
We report a case of infra-nodal complete heart block and cardiogenic shock in a previously healthy 64-year-old man after administration of 180 mg of intravenous Propofol. Although bradycardia, hypotension, and heart block are commonly seen with propofol administration, such findings are transient and respond quickly to administration of vagolytic or sympathomimetic agents suggesting an AV nodal mechanism of heart block. Sustained left ventricular systolic dysfunction and cardiogenic shock by an alternative, non-autonomic mechanism has also been described in the setting of Propofol administration. Our case is the first to note sustained complete infra-nodal heart block in this setting. Early recognition of such a complication, restoration of atrio-ventricular (A-V) synchrony with dual chamber pacing, and aggressive circulatory support is essential in bridging such patients to recovery.
Doping-Dependent Nodal Fermi Velocity in Bi-2212 Revealed by High-Resolution ARPES
Vishik, I. M.
2011-08-19
The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal dispersion of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212), which demonstrates the ubiquity and robustness of this kink in underdoped Bi-2212. The renormalization of the nodal velocity due to this kink becomes stronger with underdoping, revealing that the nodal Fermi velocity is non-universal, in contrast to assumed phenomenology. This is used together with laser-ARPES measurements of the gap velocity, v{sub 2}, to resolve discrepancies with thermal conductivity measurements.
The 18.6 yr nodal modulation in the tides of Southern European coasts
NASA Astrophysics Data System (ADS)
Shaw, A. G. P.; Tsimplis, M. N.
2010-02-01
The nodal modulation of the diurnal ( K1 and O1) and semi-diurnal ( M2 and K2) tidal constituents at the coasts of the Mediterranean Sea and the eastern Atlantic is estimated and its spatial variability mapped. Fourteen hourly tide gauge records each spanning more than 18 years are considered in this analysis. Ten tide gauges are located in the Mediterranean Sea and four in the Bay of Biscay. The nodal modulation of the most energetic tidal constituent ( M2) reaches up to 5 cm at the eastern Atlantic coasts, while within the Mediterranean Sea its modulation is in general less than 1.1 cm. The largest K2 nodal modulation found is 3.7 cm in the eastern Atlantic coasts. In the Mediterranean Sea, smaller modulation amplitudes, ranging between 0.4 and 1.4 cm are found. The K1 tide constituent has the largest amplitude nodal modulation within the Mediterranean Sea of 1.9 cm in the north Adriatic Sea, which is also larger than the modulation of this constituent at the eastern Atlantic coasts. The O1 tide constituent has the highest amplitude nodal modulation (1.4 cm) at the eastern Atlantic coasts. In the Mediterranean Sea the maximum value is 1 cm in the north Adriatic Sea. The derived nodal modulations of the diurnal and semi-diurnal constituents follow, in general, the equilibrium tidal theory. The tidal amplitudes for all four components do not indicate significant secular trends for most tide gauges. The tidal phases indicate significant negative trends for all four tidal constituents within the central and eastern Mediterranean Sea.
A predictive index of axillary nodal involvement in operable breast cancer.
De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.
1996-01-01
We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286
Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi
2016-03-22
Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro
Surface grid generation for multi-block structured grids
NASA Astrophysics Data System (ADS)
Spekreijse, S. P.; Boerstoel, J. W.; Kuyvenhoven, J. L.; van der Marel, M. J.
A new grid generation technique for the computation of a structured grid on a generally curved surface in 3D is discussed. The starting assumption is that the parameterization of the surface exists, i.e. a smooth geometrical shape function exists which maps the parametric space (the unit square) one-to-one on the surface. The grid generation system computes a grid on the surface with as boundary conditions the following data specified along the four edges of the surface: (1) the position of the boundary grid points, (2) the grid line slopes at the boundary grid points, (3) the first grid cell lengths at the boundary grid points. The fourth-order elliptic biharmonic equations are used to compute the two families of grid lines in the parametric space. After that, each grid point in the parametric space is found as the intersection point between two individual grid lines, one from each family. The grid points on the surface are finally found by mapping the grid points in the parametric space on the surface via the geometrical shape function. Results are shown for an O-type 2D Euler grid, a C-type 2D Navier-Stokes grid and on some curved surfaces in 3D space.
Grid Computing Education Support
Steven Crumb
2008-01-15
The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2004-01-01
This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.
On bistable phasing of 18.6 year nodal induced flood in India
NASA Astrophysics Data System (ADS)
Currie, Robert G.
1984-01-01
In agreement with Campbell (1983), Flood Area Indices (FAI) for India are interpreted as being modulated by tidal forcing at the 18.6 yr lunar nodal period. There is evidence maximum flood was approximately out of phase with nodal epoch 1898.9 whereas at epochs 1917.5, 1936,1, 1954.7, and 1973.3 maximum flood was approximately in phase. This interpretation implies that India should be experiencing widespread dryness in an interval ±2 to 3 years centered at mid-epoch 1982.6.
Nodal superconductivity in FeS: Evidence from quasiparticle heat transport
NASA Astrophysics Data System (ADS)
Ying, T. P.; Lai, X. F.; Hong, X. C.; Xu, Y.; He, L. P.; Zhang, J.; Wang, M. X.; Yu, Y. J.; Huang, F. Q.; Li, S. Y.
2016-09-01
We report low-temperature heat transport measurements on superconducting iron sulfide FeS with Tc≈5 K, which has the same crystal structure and similar electronic band structure to the superconducting iron selenide FeSe. In zero magnetic field, a significant residual linear term κ0/T is observed. At low field, κ0/T increases rapidly with increasing field. These results suggest a nodal superconducting gap in FeS. We compare it with the sister compound FeSe and other iron-based superconductors with nodal gaps.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Ziobarth, John (Technical Monitor)
2002-01-01
We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.
Fenimore, E.E.
1980-08-22
A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.
Near-Body Grid Adaption for Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2016-01-01
A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.
Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Kleb, Bill
2007-01-01
Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
NASA Astrophysics Data System (ADS)
Hoeft, B.; Epting, U.; Koenig, T.
2008-07-01
While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.
Grid generation strategies for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Lee, K. D.; Henderson, T. L.
1991-01-01
Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples.
Arc Length Based Grid Distribution For Surface and Volume Grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1996-01-01
Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.
ERIC Educational Resources Information Center
Tennant, Roy
2005-01-01
In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.
Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi
2010-06-01
Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.
Smart Grid Integration Laboratory
Troxell, Wade
2011-12-22
The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of
The 18.6 yr nodal cycle and its impact on tidal sedimentation
NASA Astrophysics Data System (ADS)
Oost, A. P.; de Haas, H.; Ijnsen, F.; van den Boogert, J. M.; de Boer, P. L.
1993-09-01
The 18.6 yr nodal cycle modulates tidal amplitudes and currents, and consequently sedimentation in tide-influenced sedimentary environments. Data are presented which show that such effects are obvious along the coast of the Dutch barrier islands and in the sedimentary fill of abandoned channels.
ERIC Educational Resources Information Center
Chatzarakis, G. E.
2009-01-01
This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…
Precision evaluation of lens systems using a nodal slide/MTF optical bench
NASA Astrophysics Data System (ADS)
Doherty, Victor J.; Chapnik, Philip D.
1992-01-01
A compact, self-contained production instrument designed to permit the rapid and precise performance characterization of a wide variety of lenses and optical systems has been developed by Eidolon Corporation. The Eidolon Production Nodal Slide/MTF Measurement System can be used to measure effective focal length (EFL), distortion, field curvature, chromatic aberration, spot size, and modulation transfer function (MTF).
Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces
NASA Astrophysics Data System (ADS)
Gandy, Paul J. F.; Bardhan, Sonny; Mackay, Alan L.; Klinowski, Jacek
2001-03-01
The cubic P, G, D and I-WP triply periodic minimal surfaces (TPMS) may be closely approximated using periodic nodal surfaces (PNS) with few Fourier terms, thus enabling easy generation of TPMS for use in various chemical and physical applications. The accuracy of such approximations is quantitatively discussed and represented visually using a colour coding.
Lee, Jonathan J; Granter, Scott R; Laga, Alvaro C; Saavedra, Arturo P; Zhan, Qian; Guo, Weimin; Xu, Shuyun; Murphy, George F; Lian, Christine G
2015-02-01
Sentinel lymph node biopsies are conducted to stage patients with newly diagnosed melanomas that have histopathological attributes conferring defined levels of metastatic potential. Because benign nevic cells may also form 'deposits' in lymph nodes (nodal nevus), the pathological evaluation for metastatic melanoma within sentinel lymph nodes can be challenging. Twenty-eight sentinel lymph node biopsy cases containing either metastatic melanoma (N=18) or nodal nevi (N=10) were retrieved from the archives of the Brigham and Women's Hospital, Department of Pathology (2011-2014). In addition, two sentinel lymph node cases that were favored to represent metastatic disease but whose histopathological features were viewed as equivocal, with melanoma favored, were also included. Dual labeling for the melanocyte lineage marker, MART-1, and the epigenetic marker, 5-hydroxymethylcytosine, a functionally significant indicator that has been shown to distinguish benign nevi from melanoma, was performed on all cases using immunohistochemistry and/or direct immunofluorescence. All (18 of 18) metastatic melanoma cases showed complete loss of 5-hydroxymethylcytosine nuclear staining in MART-1-positive cells, and all (10 of 10) nodal nevus cases demonstrated 5-hydroxymethylcytosine nuclear staining in MART-1-positive cells. In addition, 5-hydroxymethylcytosine staining confirmed the favored diagnoses of metastatic melanoma in the two 'equivocal' cases. Thus, 5-hydroxymethylcytosine may be a useful adjunctive marker to distinguish between benign nodal nevi and metastatic melanoma during the evaluation of sentinel lymph node biopsies for metastatic melanoma.
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry and cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.
NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method
NASA Astrophysics Data System (ADS)
Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto
2014-06-01
The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic...
A Developmentally Based Categorization of Branching in Trifolium repens L.: Influence of Nodal Roots
THOMAS, R. G.; HAY, M. J. M.; NEWTON, P. C. D.
2002-01-01
This study describes the successive stages of development of branches from axillary buds in fully rooted plants of Trifolium repens grown in near optimal conditions, and the way in which this developmental pathway differs when nodal root formation is prevented as plants grow out from a rooted base. Cuttings of a single genotype were established in a glasshouse with nodal root systems on the two basal phytomers and grown on so that nodal rooting was either permitted (+R) or prevented (–R). In +R plants, axillary tissues could be assigned to one of four developmental categories: unemerged buds, emerged buds, unbranched lateral branches or secondarily branched lateral branches. In –R plants, branch development was retarded, with the retardation becoming increasingly pronounced as the number of –R phytomers on the primary stolon increased. Retarded elongation of the internodes of lateral shoots on –R plants resulted in the formation of a distinct fifth developmental category: short shoots (defined as branches with two or more leaves but with mean internode length equal to, or less than, 10 % of that of the immediately proximal internode on the parent stolon) which had reduced phytomer appearance rates but retained the potential to develop into lateral branches. Transfer of +R plants to –R conditions, and vice versa, after 66 d demonstrated that subsequent branch development was wholly under the control of the youngest nodal root present, regardless of the age and number of root systems proximal to it. PMID:12234150
ERIC Educational Resources Information Center
Moss-Lourenco, Patricia; Fields, Lanny
2011-01-01
Three experiments used postclass formation within-class preference test performances to evaluate the effects of nodal distance on the relatedness of stimuli in equivalence classes. In Experiment 1, two 2-node four-member equivalence classes were established using the simultaneous protocol in which all of the baseline relations were trained…
NASA Astrophysics Data System (ADS)
Grootendorst, Diederik J.; Fratila, Raluca M.; Visscher, Martijn; Ten Haken, Bennie; van Wezel, Richard; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theo J. M.
2013-02-01
Detection of tumor metastases in the lymphatic system is essential for accurate staging of various malignancies, however fast, accurate and cost-effective intra-operative evaluation of the nodal status remains difficult to perform with common available medical imaging techniques. In recent years, numerous studies have confirmed the additional value of superparamagnetic iron oxide dispersions (SPIOs) for nodal staging purposes, prompting the clearance of different SPIO dispersions for clinical practice. We evaluate whether a combination of photoacoustic (PA) imaging and a clinically approved SPIO dispersion, could be applied for intra-operative nodal staging. Metastatic adenocarcinoma was inoculated in Copenhagen rats for 5 or 8 days. After SPIO injection, the lymph nodes were photoacoustically imaged both in vivo and ex vivo whereafter imaging results were correlated with MR and histology. Results were compared to a control group without tumor inoculation. In the tumor groups clear irregularities, as small as 1 mm, were observed in the PA contrast pattern of the nodes together with an decrease of PA response. These irregularities could be correlated to the absence of contrast in the MR images and could be linked to metastatic deposits seen in the histological slides. The PA and MR images of the control animals did not show these features. We conclude that the combination of photoacoustic imaging with a clinically approved iron oxide nanoparticle dispersion is able to detect lymph node metastases in an animal model. This approach opens up new possibilities for fast intra-operative nodal staging in a clinical setting.
Anomalous nodal count and singularities in the dispersion relation of honeycomb graphs
NASA Astrophysics Data System (ADS)
Band, Ram; Berkolaiko, Gregory; Weyand, Tracy
2015-12-01
We study the nodal count of the so-called bi-dendral graphs and show that it exhibits an anomaly: the nodal surplus is never equal to 0 or β, the first Betti number of the graph. According to the nodal-magnetic theorem, this means that bands of the magnetic spectrum (dispersion relation) of such graphs do not have maxima or minima at the "usual" symmetry points of the fundamental domain of the reciprocal space of magnetic parameters. In search of the missing extrema, we prove a necessary condition for a smooth critical point to happen inside the reciprocal fundamental domain. Using this condition, we identify the extrema as the singularities in the dispersion relation of the maximal Abelian cover of the graph (the honeycomb graph being an important example). In particular, our results show that the anomalous nodal count is an indication of the presence of conical points in the dispersion relation of the maximal universal cover. We also discover that the conical points are present in the dispersion relation of graphs with much less symmetry than was required in previous investigations.
Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan
2016-03-01
Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function.
Bohora, Shomu; Singh, Parvindar; Shah, Kaushal
2016-01-01
A 58 year old gentleman with complaints of palpitations and documented tachycardia was found to have a dilated right atrium, right ventricle and coronary sinus, which were due to partial unroofed coronary sinus without a left superior vena cava. He had upper septal ventricular tachycardia and atrio-ventricular nodal reentrant tachycardia, which was successfully treated by radiofrequency ablation. PMID:25852246
Analysis of nodal aberration properties in off-axis freeform system design.
Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao
2016-08-20
Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.
Complex Volume Grid Generation Through the Use of Grid Reusability
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.
Hambrick, J.
2012-01-01
Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
An approach to model reactor core nodalization for deterministic safety analysis
Salim, Mohd Faiz Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-22
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
ARPES Study of Nodal Quasiparticles Using Low-Energy Tunable Photons
NASA Astrophysics Data System (ADS)
Ino, Akihiro
2006-03-01
Low-energy quasiparticle excitations govern the thermodynamic properties of a superconductor both in the zero-field and vortex-mixed states. For a d-wave superconductor, nodal quasiparticles are crucial excitations starting from zero energy. So far, however, the nodal quasiparticle dynamics of high-Tc cuprates has been controversial. For example, it has been reported by an angle-resolved-photoemission (ARPES) experiment that the marginal-Fermi-liquid behavior persists into the superconducting state without appreciable change in the scattering rate, while microwave conductivity increases upon the superconducting transition. Here, we show a new ARPES result that solves the controversies with unprecedented momentum-resolution. Low-energy tunable photons have enabled us to resolve a small nodal bilayer splitting clearly, and to reveal the detailed temperature- and energy-dependence of the scattering rate, indicating the behaviors unique to the nodal quasiparticles. Due to the opening of the d-wave gap, the nodal scattering rate is remarkably suppressed, and shows a linear energy dependence. The difference in the energy-linear term between the bilayer-resolved scattering rates hints the nature of impurities involved. This work was done in collaboration with T. Yamasaki, T. Kamo, K. Yamazaki, H. Anzai, M. Arita, H. Namatame, M. Taniguchi, Grad. Sch. of Science and Hiroshima Synchrotron Radiation Center, Hiroshima Univ., A. Fujimori, Dept. of Complexity Science and Engineering, Univ. of Tokyo, Z.-X. Shen, Dept. of Physics, Applied Physics and SSRL, Stanford Univ., M. Ishikado, K. Fujita, and S. Uchida, Dept. of Physics, Univ. of Tokyo.
Combined-modality therapy for patients with regional nodal metastases from melanoma
Ballo, Matthew T. . E-mail: mballo@mdanderson.org; Ross, Merrick I.; Cormier, Janice N.; Myers, Jeffrey N.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Hwu, Patrick; Zagars, Gunar K.
2006-01-01
Purpose: To evaluate the outcome and patterns of failure for patients with nodal metastases from melanoma treated with combined-modality therapy. Methods and Materials: Between 1983 and 2003, 466 patients with nodal metastases from melanoma were managed with lymphadenectomy and radiation, with or without systemic therapy. Surgery was a therapeutic procedure for clinically apparent nodal disease in 434 patients (regionally advanced nodal disease). Adjuvant radiation was generally delivered with a hypofractionated regimen. Adjuvant systemic therapy was delivered to 154 patients. Results: With a median follow-up of 4.2 years, 252 patients relapsed and 203 patients died of progressive disease. The actuarial 5-year disease-specific, disease-free, and distant metastasis-free survival rates were 49%, 42%, and 44%, respectively. By multivariate analysis, increasing number of involved lymph nodes and primary ulceration were associated with an inferior 5-year actuarial disease-specific and distant metastasis-free survival. Also, the number of involved lymph nodes was associated with the development of brain metastases, whereas thickness was associated with lung metastases, and primary ulceration was associated with liver metastases. The actuarial 5-year regional (in-basin) control rate for all patients was 89%, and on multivariate analysis there were no patient or disease characteristics associated with inferior regional control. The risk of lymphedema was highest for those patients with groin lymph node metastases. Conclusions: Although regional nodal disease can be satisfactorily controlled with lymphadenectomy and radiation, the risk of distant metastases and melanoma death remains high. A management approach to these patients that accounts for the competing risks of distant metastases, regional failure, and long-term toxicity is needed.
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do
2011-02-01
Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.
Correlation effects and quantum oscillations in topological nodal-loop semimetals
NASA Astrophysics Data System (ADS)
Liu, Jianpeng; Balents, Leon
2017-02-01
We study the unique physical properties of topological nodal-loop semimetals protected by the coexistence of time-reversal and inversion symmetries with negligible spin-orbit coupling. We argue that strong correlation effects occur at the surface of such systems for relatively small Hubbard interaction U , due to the narrow bandwidth of the "drumhead" surface states. In the Hartree-Fock approximation, at small U we obtain a surface ferromagnetic phase through a continuous quantum phase transition characterized by the surface-mode divergence of the spin susceptibility, while the bulk states remain very robust against local interactions and remain nonordered. At slightly increased interaction strength, the system quickly changes from a surface ferromagnetic phase to a surface charge-ordered phase through a first-order transition. When Rashba-type spin-orbit coupling is applied to the surface states, a canted ferromagnetic phase occurs at the surface for intermediate values of U . The quantum critical behavior of the surface ferromagnetic transition is nontrivial in the sense that the surface spin order parameter couples to Fermi-surface excitations from both surface and bulk states. This leads to unconventional Landau damping and consequently a naïve dynamical critical exponent z ≈1 when the Fermi level is close to the bulk nodal energy. We also show that, already without interactions, quantum oscillations arise due to bulk states, despite the absence of a Fermi surface when the chemical potential is tuned to the energy of the nodal loop. The bulk magnetic susceptibility diverges logarithmically whenever the nodal loop exactly overlaps with a quantized magnetic orbit in the bulk Brillouin zone. These correlation and transport phenomena are unique signatures of nodal-loop states.
Mammographic Density and Prediction of Nodal Status in Breast Cancer Patients
Hack, C. C.; Häberle, L.; Geisler, K.; Schulz-Wendtland, R.; Hartmann, A.; Fasching, P. A.; Uder, M.; Wachter, D. L.; Jud, S. M.; Loehberg, C. R.; Lux, M. P.; Rauh, C.; Beckmann, M. W.; Heusinger, K.
2013-01-01
Aim: Nodal status remains one of the most important prognostic factors in breast cancer. The cellular and molecular reasons for the spread of tumor cells to the lymph nodes are not well understood and there are only few predictors in addition to tumor size and multifocality that give an insight into additional mechanisms of lymphatic spread. Aim of our study was therefore to investigate whether breast characteristics such as mammographic density (MD) add to the predictive value of the presence of lymph node metastases in patients with primary breast cancer. Methods: In this retrospective study we analyzed primary, metastasis-free breast cancer patients from one breast center for whom data on MD and staging information were available. A total of 1831 patients were included into this study. MD was assessed as percentage MD (PMD) using a semiautomated method and two readers for every patient. Multiple logistic regression analyses with nodal status as outcome were used to investigate the predictive value of PMD in addition to age, tumor size, Ki-67, estrogen receptor (ER), progesterone receptor (PR), grading, histology, and multi-focality. Results: Multifocality, tumor size, Ki-67 and grading were relevant predictors for nodal status. Adding PMD to a prediction model which included these factors did not significantly improve the prediction of nodal status (p = 0.24, likelihood ratio test). Conclusion: Nodal status could be predicted quite well with the factors multifocality, tumor size, Ki-67 and grading. PMD does not seem to play a role in the lymphatic spread of tumor cells. It could be concluded that the amount of extracellular matrix and stromal cell content of the breast which is reflected by MD does not influence the probability of malignant breast cells spreading from the primary tumor to the lymph nodes. PMID:24771910
NASA Astrophysics Data System (ADS)
Shasharina, Svetlana; Wang, Nanbor
2004-11-01
Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
Model for nodal quasiparticle scattering in a disordered vortex lattice
NASA Astrophysics Data System (ADS)
Maltseva, Marianna; Coleman, Piers
2008-03-01
Recent experiments by T. Hanaguri et al. on underdoped Ca2-xNaxCuO2Cl2 [1] have observed quasiparticle interference effects [2], which are sensitive to the sign of the d-wave order parameter. In a magnetic field, they observe a sizable transfer of scattering spectral weight from scattering events between anti-nodes of opposite sign to scattering events between anti-nodes of the same sign. We interpret high momentum phase-coherent scattering in terms of the quasiparticle scattering off the vortex walls. The reduction of scattering at even-odd scattering points indicates that the vortices ``screen'' some of the underlying impurity scattering, as the impurities get trapped inside the vortex cores. [1] T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, H. Takagi, cond-mat/07083728. [2] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J. C. Davis, Science 315, 1380-1385 (2007).
Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle
2014-07-15
Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.
Ion Accelerator With Negatively Biased Decelerator Grid
NASA Technical Reports Server (NTRS)
Brophy, John R.
1994-01-01
Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.
Essential Grid Workflow Monitoring Elements
Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.
2005-07-01
Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.
Distributed Accounting on the Grid
NASA Technical Reports Server (NTRS)
Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.
2001-01-01
By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.
Enabling Campus Grids with Open Science Grid Technology
NASA Astrophysics Data System (ADS)
Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David
2011-12-01
The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.
Röttinger, Eric; DuBuc, Timothy Q.; Amiel, Aldine R.; Martindale, Mark Q.
2015-01-01
ABSTRACT Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms. PMID:25979707
Röttinger, Eric; DuBuc, Timothy Q; Amiel, Aldine R; Martindale, Mark Q
2015-05-15
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Rokach, Joshua Z.
2010-10-15
The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)
Rabari, Anil; Fadipe, Oloruntomi
2014-03-31
NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.
Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris
2014-07-01
Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to
Motté, G; Belhassen, B; Bodereau, P
1979-03-01
In a series of 48 patients undergoing electrophysiological investigation for attacks of reciprocating tachycardia related to concealed or overt Wolff-Parkinson-White syndrome in sinus rhythm, 4 patients were found to have duality of nodal conduction. This association was responsible for several tachycardia circuits: in 2 patients the activation passed constantly retrogradely through the accessory pathway and then either through the slow nodal pathway or the rapid nodal pathway in the anterograde direction. In the other two patients, in addition to classical orthodromic tachycardia, purely intranodal reciprocating rhythms giving rise to sustained tachycardia in one case and to simple echos in the other, were observed.
NASA Astrophysics Data System (ADS)
Hahn, Sebastian; Reimer, Christioph; Paulik, Christoph; Wagner, Wolfgang
2016-08-01
Geophysical parameters derived from space-borne Earth Observation Systems are either assigned to discrete points on a fixed Earth grid (e.g. regular lon/lat grid) or located on orbital point nodes with a customized arrangement, often in-line with the instrument's measurement geometry. The driving factors of the choice and structure of a spatial reference system (i.e. the grid) are typically spatial resolution, instrument geometry, measurement technique or application.In this study we propose a global grid system, the so- called Equil grid, and demonstrate its realization and structure. An exemplary Equil grid with a base sampling distance of 12.5 km is compared against two other grids commonly used in the domain of remote sensing of soil moisture. The simple nearly-equidistant grid design makes it interesting for a wide range of other geophysical parameters as well.
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place
Photofabricated Wire-Grid Polarizers
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Dengler, Robert J.
1992-01-01
Freestanding metallic grids for use as polarizers for electromagnetic radiation at millimeter and submillimeter wavelengths made by simple modification of designs of freestanding square- and nearly-square cell metallic grids, according to proposal. Cross wires provide mechanical support, but distance between cross wires made greater than one wavelength so cross wires have little effect on polarizing characteristics of grid. Possible to fabricate grids commercially for frequencies up to several terahertz.
Applications of algebraic grid generation
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Smith, Robert E.
1990-01-01
Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
NASA Technical Reports Server (NTRS)
Yu, Jr-Kai; Holland, Linda Z.; Holland, Nicholas D.
2002-01-01
The full-length sequence and zygotic expression of an amphioxus nodal gene are described. Expression is first detected in the early gastrula just within the dorsal lip of the blastopore in a region of hypoblast that is probably comparable with the vertebrate Spemann's organizer. In the late gastrula and early neurula, expression remains bilaterally symmetrical, limited to paraxial mesoderm and immediately overlying regions of the neural plate. Later in the neurula stage, all neural expression disappears, and mesodermal expression disappears from the right side. All along the left side of the neurula, mesodermal expression spreads into the left side of the gut endoderm. Soon thereafter, all expression is down-regulated except near the anterior and posterior ends of the animal, where transcripts are still found in the mesoderm and endoderm on the left side. At this time, expression also begins in the ectoderm on the left side of the head, in the region where the mouth later forms. These results suggest that amphioxus and vertebrate nodal genes play evolutionarily conserved roles in establishing Spemann's organizer, patterning the mesoderm rostrocaudally and setting up the asymmetrical left-right axis of the body.
Grid Interaction Technical Team Roadmap
2013-06-01
The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.
Spectral and spread-spectral teleportation
Humble, Travis S.
2010-06-15
We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain.
Lagadec, Ronan; Laguerre, Laurent; Menuet, Arnaud; Amara, Anis; Rocancourt, Claire; Péricard, Pierre; Godard, Benoît G; Rodicio, Maria Celina; Rodriguez-Moldes, Isabel; Mayeur, Hélène; Rougemont, Quentin; Mazan, Sylvie; Boutet, Agnès
2015-03-30
Left-right asymmetries in the epithalamic region of the brain are widespread across vertebrates, but their magnitude and laterality varies among species. Whether these differences reflect independent origins of forebrain asymmetries or taxa-specific diversifications of an ancient vertebrate feature remains unknown. Here we show that the catshark Scyliorhinus canicula and the lampreys Petromyzon marinus and Lampetra planeri exhibit conserved molecular asymmetries between the left and right developing habenulae. Long-term pharmacological treatments in these species show that nodal signalling is essential to their generation, rather than their directionality as in teleosts. Moreover, in contrast to zebrafish, habenular left-right differences are observed in the absence of overt asymmetry of the adjacent pineal field. These data support an ancient origin of epithalamic asymmetry, and suggest that a nodal-dependent asymmetry programme operated in the forebrain of ancestral vertebrates before evolving into a variable trait in bony fish.
The effect of viscosity on steady transonic flow with a nodal solution topology
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Zank, Gary P.
1991-01-01
The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
NASA Astrophysics Data System (ADS)
Vorontsov, Anton; Vekhter, Ilya
2006-03-01
We present a calculation of electronic specific heat and heat conductivity in a vortex state of quasi-two dimensional d-wave superconductors. We employ quasiclassical theory and use the Brand-Pesch-Tewordt approximation to model the superconducting state at moderate to high magnetic fields. Within this framework we investigate the dependence of heat capacity and heat conductivity on the angle of rotation of magnetic field with respect to the nodal directions. We find that the fourfold anisotropy due to nodal structure in both quantities changes sign in the temperature-field plane. This result helps resolve the apparent disagreement about the gap symmetry reached from the specific heat and the thermal conductivity measurements in CeCoIn5. We comment on the physics behind the difference between our results and those obtained in the Doppler shift approximation.
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
2012-02-08
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.
Caramana, E.J.; Shashkov, M.J.
1997-12-31
The bane of Lagrangian hydrodynamics calculations is premature breakdown of the grid topology that results in severe degradation of accuracy and run termination often long before the assumption of Lagrangian zonal mass ceased to be valid. At short spatial grid scales this is usually referred to by the terms hourglass mode or keystone motion associated in particular with underconstrained grids such as quadrilaterals and hexahedrons in two and three dimensions, respectively. At longer spatial scales relative to the grid spacing there is what is referred to ubiquitously as spurious vorticity, or the long-thin zone problem. In both cases the result is anomalous grid distortion and tangling that has nothing to do with the actual solution, as would be the case for turbulent flow. In this work the authors show how such motions can be eliminated by the proper use of subzonal Lagrangian masses, and associated densities and pressures. These subzonal masses arise in a natural way from the fact that they require the mass associated with the nodal grid point to be constant in time. This is addition to the usual assumption of constant, Lagrangian zonal mass in staggered grid hydrodynamics scheme. The authors show that with proper discretization of subzonal forces resulting from subzonal pressures, hourglass motion and spurious vorticity can be eliminated for a very large range of problems. Finally the authors are presenting results of calculations of many test problems.
Chen, Chuanben; Zhang, Mingwei; Xu, Yuanji; Yue, Qiuyuan; Bai, Penggang; Zhou, Lin; Xiao, Youping; Zheng, Dechun; Lin, Kongqi; Qiu, Sufang; Chen, Yunbin; Pan, Jianji
2016-01-01
Abstract The aim of the study was to evaluate whether short axis and long axis on axial and coronal magnetic resonance imaging planes would reflect the tumor burden or alteration in size after induction chemotherapy in nasopharyngeal carcinoma. Patients with pathologically confirmed nasopharyngeal carcinoma (n = 37) with at least 1 positive cervical lymph node (axial short axis ≥15 mm) were consecutively enrolled in this prospective study. Lymph nodal measurements were performed along its short axis and long axis in both axial and coronal magnetic resonance imaging planes at diagnosis and after 2 cycles of induction chemotherapy. In addition, lymph nodal volumes were automatically calculated in 3D treatment-planning system, which were used as reference standard. Student's t test or nonparametric Mann–Whitney U test was used to compare the continuous quantitative variables. Meanwhile, the κ statistic and McNemar's test were used to evaluate the degree of agreement and discordance in response categorization among different measurements. Axial short axis was significantly associated with volumes at diagnosis (P < 0.001). A good agreement (κ=0.583) was found between axial short axis and volumetric criteria. However, the inconsistent lymph nodal shrinkage in 4 directions was observed. Axial short-axis shrinking was more rapid than the other 3 parameters. Interestingly, when utilizing the alternative planes for unidimensional measurements to assess tumor response, coronal short-axis showed the best concordance (κ=0.792) to the volumes. Axial short axis may effectively reflect tumor burden or change in tumor size in the assessment of target lymph nodal response after induction chemotherapy for nasopharyngeal carcinoma. However, it should be noted that axial short axis may amplify the therapeutic response. In addition, the role of coronal short axis in the assessment of tumor response needs further evaluation. PMID:26945354
Masè, Michela; Glass, Leon; Disertori, Marcello; Ravelli, Flavia
2012-11-15
The genesis of complex ventricular rhythms during atrial tachyarrhythmias in humans is not fully understood. To clarify the dynamics of atrioventricular (AV) conduction in response to a regular high-rate atrial activation, 29 episodes of spontaneous or pacing-induced atrial flutter (AFL), covering a wide range of atrial rates (cycle lengths from 145 to 270 ms), were analyzed in 10 patients. AV patterns were identified by applying firing sequence and surrogate data analysis to atrial and ventricular activation series, whereas modular simulation with a difference-equation AV node model was used to correlate the patterns with specific nodal properties. AV node response at high atrial rate was characterized by 1) AV patterns of decreasing conduction ratios at the shortening of atrial cycle length (from 236.3 ± 32.4 to 172.6 ± 17.8 ms) according to a Farey sequence ordering (conduction ratio from 0.34 ± 0.12 to 0.23 ± 0.06; P < 0.01); 2) the appearance of high-order alternating Wenckebach rhythms, such as 6:2, 10:2, and 12:2, associated with ventricular interval oscillations of large amplitude (407.7 ± 150.4 ms); and 3) the deterioration of pattern stability at advanced levels of block, with the percentage of stable patterns decreasing from 64.3 ± 35.2% to 28.3 ± 34.5% (P < 0.01). Simulations suggested these patterns to originate from the combined effect of nodal recovery, dual pathway physiology, and concealed conduction. These results indicate that intrinsic nodal properties may account for the wide spectrum of AV block patterns occurring during regular atrial tachyarrhythmias. The characterization of AV nodal function during different AFL forms constitutes an intermediate step toward the understanding of complex ventricular rhythms during atrial fibrillation.
Numerical divergence effects of equivalence theory in the nodal expansion method
Zika, M.R.; Downar, T.J. )
1993-11-01
Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.
Gastroblastoma in a 28-year-old man with nodal metastasis: proof of the malignant potential.
Wey, Elizabeth A; Britton, Andrew J; Sferra, Joseph J; Kasunic, Tim; Pepe, Linda R; Appelman, Henry D
2012-08-01
Gastroblastoma is a newly defined neoplasm of children and young adults with only 4 reported cases to date. Morphologically, the tumor is a mixture of epithelial structures and stromal elements with minimal cytologic atypia. In these 4 reported cases, there were no metastases or postresection recurrences. We report a case of gastroblastoma in a 28-year-old man with a histologic nodal metastasis and clinical distant metastases.
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
NODAL in the uterus is necessary for proper placental development and maintenance of pregnancy.
Park, Craig B; DeMayo, Francesco J; Lydon, John P; Dufort, Daniel
2012-06-01
Preterm birth is the single leading cause of perinatal mortality in developed countries, affecting approximately 12% of pregnancies and accounting for 75% of neonatal loss in the United States. Despite the prevalence and severity of premature delivery, the causes and mechanisms that underlie spontaneous and idiopathic preterm birth remain unknown. Our inability to elucidate these fundamental causes has been attributed to a poor understanding of the signaling pathways associated with the premature induction of parturition and a lack of suitable animal models available for preterm birth research. In this study, we describe the generation and analysis of a novel conditional knockout of the transforming growth factor beta (TGFB) superfamily member, Nodal, from the maternal reproductive tract of mice. Strikingly, uterine Nodal knockout females exhibited a severe malformation of the maternal decidua basalis during placentation, leading to significant intrauterine growth restriction, and ultimately preterm birth and fetal loss on Day 17.5 of gestation. Using several approaches, we characterized aberrant placental development and demonstrated that reduced proliferation combined with increased apoptosis resulted in a diminished decidua basalis and compromised maternal-fetal interface. Last, we evaluated various components of the established parturition cascade and determined that preterm birth derived from the maternal Nodal knockout occurs prior to PTGS2 (COX-2) upregulation at the placental interface. Taken together, the results presented in this study highlight an in vivo role for maternal NODAL during placentation, present an interesting link between disrupted decidua basalis formation and premature parturition, and describe a potentially valuable model toward elucidating the complex processes that underlie preterm birth.
Nodal soliton solutions for generalized quasilinear Schrödinger equations
Deng, Yinbin Peng, Shuangjie; Wang, Jixiu
2014-05-15
This paper is concerned with constructing nodal radial solutions for generalized quasilinear Schrödinger equations in R{sup N} which arise from plasma physics, fluid mechanics, as well as high-power ultashort laser in matter. For any given integer k ⩾ 0, by using a change of variables and minimization argument, we obtain a sign-changing minimizer with k nodes of a minimization problem.
Zhao Kuaile; Ma Jinbo; Liu Guang; Wu Kailiang; Shi Xuehui; Jiang Guoliang
2010-02-01
Purpose: To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. Methods and Materials: A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. Results: All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. Conclusions: In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems.
Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson’s Disease
Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD. PMID:27891090
EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP
B. D. Ganapol; D. W. Nigg
2008-09-01
In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.
Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review
Barake, Walid; Caldwell, Jane; Baranchuk, Adrian
2013-01-01
This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided. PMID:23329875
Ionic mechanisms involved in the nodal swelling of myelinated axons caused by marine toxins.
Benoit, Evelyne; Mattei, Cesar; Ouanounou, Gilles; Meunier, Frederic A; Suput, Dusan; Le Gall, Frederic; Marquais, Michel; Dechraoui, Marie Y; Molgo, Jordi
2002-01-01
This review describes the ionic mechanisms involved in the nodal swelling of frog myelinated axons caused by specific marine neurotoxins (ciguatoxins, brevetoxins, Conus consors toxin and equinatoxin-II), analysed using confocal laser scanning microscopy. We have focussed on toxins that either target neuronal voltage-dependent Na+ channels, or that form cation-selective pores and indirectly affect the functioning of the Na(+)-Ca(++)exchanger.
Raya, Ángel; Kawakami, Yasuhiko; Rodríguez-Esteban, Concepción; Büscher, Dirk; Koth, Christopher M.; Itoh, Tohru; Morita, Masanobu; Raya, R. Marina; Dubova, Ilir; Bessa, Joaquín Grego; de la Pompa, José Luis; Belmonte, Juan Carlos Izpisúa
2003-01-01
Left-sided expression of Nodal in the lateral plate mesoderm is a conserved feature necessary for the establishment of normal left–right asymmetry during vertebrate embryogenesis. By using gain- and loss-of-function experiments in zebrafish and mouse, we show that the activity of the Notch pathway is necessary and sufficient for Nodal expression around the node, and for proper left–right determination. We identify Notch-responsive elements in the Nodal promoter, and unveil a direct relationship between Notch activity and Nodal expression around the node. Our findings provide evidence for a mechanism involving Notch activity that translates an initial symmetry-breaking event into asymmetric gene expression. PMID:12730123
Uehara, Masayuki; Yashiro, Kenta; Takaoka, Katsuyoshi; Yamamoto, Masamichi; Hamada, Hiroshi
2009-01-01
The abundance of retinoic acid (RA) is determined by the balance between its synthesis by retinaldehyde dehydrogenase (RALDH) and its degradation by CYP26. In particular, the dynamic expression of three CYP26 genes controls the regional level of RA within the body. Pregastrulation mouse embryos express CYP26 but not RALDH. We now show that mice lacking all three CYP26 genes manifest duplication of the body axis as a result of expansion of the Nodal expression domain throughout the epiblast. Mouse Nodal was found to contain an RA-responsive element in intron 1 that is highly conserved among mammals. In the absence of CYP26, maternally derived RA activates Nodal expression in the entire epiblast of pregastrulation embryos via this element. These observations suggest that maternal RA must be removed by embryonic CYP26 for correct Nodal expression during embryonic patterning. PMID:19605690
Gridded electron reversal ionizer
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor)
1993-01-01
A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.
Shuttle computational grid generation
NASA Technical Reports Server (NTRS)
Ing, Chang
1987-01-01
The well known Karman-Trefftz conformal transformation, consisting of repeated applications of the same basic formula, were found to be quite successful to body, wing, and wing-body cross sections. This grid generation technique is extended to cross sections of more complex forms, and also more automatic. Computer programs were written for the selection of hinge points on cross section with angular shapes, the Karman-Trefftz tranformation of arbitrary shapes, and the special transform of hinge point on the imaginary axis. A feasibility study is performed for the future application of conformal mapping grid generation to complex three dimensional configurations. Examples such as Orbiter vehicle section and a few others were used.
Smart Grid Demonstration Project
Miller, Craig; Carroll, Paul; Bell, Abigail
2015-03-11
The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and
A coarse-mesh nodal method-diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-05-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
NASA Astrophysics Data System (ADS)
Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige
2016-12-01
We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.
Measurement of the Nodal Precession of WASP-33 b via Doppler Tomography
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Cochran, William D.; Collier Cameron, Andrew; Bayliss, Daniel
2015-09-01
We have analyzed new and archival time series spectra taken six years apart during transits of the hot Jupiter WASP-33 b, and spectroscopically resolved the line profile perturbation caused by the Rossiter-McLaughlin effect. The motion of this line profile perturbation is determined by the path of the planet across the stellar disk, which we show to have changed between the two epochs due to nodal precession of the planetary orbit. We measured rates of change of the impact parameter and the sky-projected spin-orbit misalignment of {db}/{dt}={-0.0228}-0.0018+0.0050 {{yr}}-1 and dλ /{dt}={-0\\buildrel{\\circ}\\over{.} 487}-0.076+0.089 {{yr}}-1, respectively, corresponding to a rate of nodal precession of d{{Ω }}/{dt}=0\\buildrel{\\circ}\\over{.} {373}-0.083+0.031 {{yr}}-1. This is only the second measurement of nodal precession for a confirmed exoplanet transiting a single star. Finally, we used the rate of precession to set limits on the stellar gravitational quadrupole moment of 0.0054≤slant {J}2≤slant 0.035.
Anisotropic density fluctuations, plasmons, and Friedel oscillations in nodal line semimetal
NASA Astrophysics Data System (ADS)
Rhim, Jun-Won; Kim, Yong Baek
2016-04-01
Motivated by recent experimental efforts on three-dimensional semimetals, we investigate the static and dynamic density response of the nodal line semimetal by computing the polarizability for both undoped and doped cases. The nodal line semimetal in the absence of doping is characterized by a ring-shape zero energy contour in momentum space, which may be considered as a collection of Dirac points. In the doped case, the Fermi surface has a torus shape and two independent processes of the momentum transfer contribute to the singular features of the polarizability even though we only have a single Fermi surface. In the static limit, there exist two independent singularities in the second derivative of the static polarizability. This results in the highly anisotropic Friedel oscillations which show the angle-dependent algebraic power law and the beat phenomena in the oscillatory electron density near a charged impurity. Furthermore, the dynamical polarizability has two singular lines along {\\hslash }ω =γ p and {\\hslash }ω =γ p{sin}η , where η is the angle between the external momentum {p} and the plane where the nodal ring lies. From the dynamical polarizability, we obtain the plasmon modes in the doped case, which show anisotropic dispersions and angle-dependent plasma frequencies. Qualitative differences between the low and high doping regimes are discussed in light of future experiments.
Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J
2013-01-01
The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.
Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network
Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.
2016-01-01
A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153
Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P
2012-08-27
This paper introduces the path forward for the integration of freeform optical surfaces, particularly those related to φ-polynomial surfaces, including Zernike polynomial surfaces, with nodal aberration theory. With this formalism, the performance of an optical system throughout the field of view can be anticipated analytically accounting for figure error, mount-induced errors, and misalignment. Previously, only misalignments had been described by nodal aberration theory, with the exception of one special case for figure error. As an example of these new results, three point mounting error that results in a Zernike trefoil deformation is studied for the secondary mirror of a two mirror and three mirror telescope. It is demonstrated that for the case of trefoil deformation applied to a surface not at the stop, there is the anticipated field constant contribution to elliptical coma (also called trefoil) as well as a newly identified field dependent contribution to astigmatism: field linear, field conjugate astigmatism. The magnitude of this astigmatic contribution varies linearly with the field of view; however, it has a unique variation in orientation with field that is described mathematically by a concept that is unique to nodal aberration theory known as the field conjugate vector.
Haissaguerre, M; Warin, J F; Lemetayer, P; Saoudi, N; Guillem, J P; Blanchot, P
1989-02-16
We applied a new technique of catheter ablation to treat atrioventricular nodal reentrant tachycardia and preserve anterograde conduction, performing this procedure in 21 patients with repetitive episodes of tachycardia refractory to antiarrhythmic drugs. Using atrial activation in the His-bundle lead as a reference, we selected the optimal site of ablation by positioning an electrode catheter so that atrial activation occurred simultaneously with or earlier than the reference activation during tachycardia. At this site, the His-bundle deflection was completely absent or was present only at a low amplitude (less than 0.1 mV). In the majority of patients, these criteria could be met by withdrawing the catheter 5 to 10 mm from the site of the His-bundle recording (adjacent to the reference catheter). Shocks of 160 or 240 J were delivered at this site (cumulative energy [mean +/- SD], 689 +/- 442 J). Treatment resulted in preferential abolition or impairment of retrograde nodal conduction. Anterograde conduction, although modified, was preserved in 19 patients; complete heart block persisted in 2 patients. Sixteen patients remained free of arrhythmia, without medication or implantation of a pacemaker, for a mean follow-up period of 14 +/- 8 months (range, 7 to 42). Tachycardia was not inducible in 14 patients in a follow-up electrophysiologic study performed 3.6 +/- 6 months after the procedure. We conclude that catheter ablation is an effective alternative for the treatment of atrioventricular nodal tachycardia in patients with drug-resistant tachycardia.
Nguyen, Dinh Q.; Sobczak, Henrik; Brandts, Bodo
2017-01-01
Most tachycardias in the pulmonary venous atrium are inaccessible by direct means and require either a retrograde approach or a transseptal approach for ablation. We present a case in which successful radiofrequency ablation of common atrioventricular nodal reentrant tachycardia was accomplished via a retrograde transaortic approach guided by nonfluoroscopic mapping with use of the NavX™ mapping system. The patient was a 49-year-old woman who at the age of 4 years had undergone Mustard repair for complete dextrotransposition of the great arteries. Three-dimensional reconstructions of the ascending aorta, right ventricle, systemic venous atrium, left ventricle, and superior vena cava–inferior vena cava baffle complex were created, and the left-sided His bundle was marked. After a failed attempt at ablation from the systemic venous side, we eliminated the atrioventricular nodal reentrant tachycardia by ablation from the pulmonary venous side. This case is, to our knowledge, the first report of successful radiofrequency ablation of common atrioventricular nodal reentrant tachycardia after Mustard repair for this congenital cardiac malformation in which ablation was guided by 3-dimensional nonfluoroscopic imaging. This imaging technique enabled accurate anatomic location of the ablation catheters in relation to the His bundle marked from the systemic venous side. PMID:28265215
Reticulin and NM23 staining in the interpretation of lymph nodal nevus rests.
Kanner, William A; Barry, Catherine I; Smart, Chandra N; Frishberg, David P; Binder, Scott W; Wick, Mark R
2013-06-01
Melanocytic nevus rests in lymph nodes are a known diagnostic challenge, especially in patients with a history of melanoma. Reticulin and NM23 have been studied in this context. The pattern of reticulin staining in melanomas surrounds groups/nests of melanocytes but individual cells in benign nevi. NM23, a metastasis-suppressor gene, has an association with metastatic potential in melanomas and some carcinomas. Twenty-eight cases (14 cases of metastatic melanoma to lymph nodes and 14 cases of lymph node nevus rests, all confirmed with Melan-A staining) were stained with reticulin and NM23. The pattern of reticulin staining was reported as surrounding groups if staining was noted in approximately 5-10 melanocytes in greater than 50% of the lesion but was otherwise reported as surrounding individual melanocytes. Cytoplasmic staining was considered to represent reactivity for NM23. Reticulin staining around groups of melanocytes was identified in all 14 cases of metastatic melanoma. Regarding nodal nevus rest cases, 12 of 14 cases (86%) demonstrated staining around individual melanocytes, whereas in 2 cases, reticulin surrounded melanocytic groups. NM23 staining was equivocal in all cases. Reticulin staining reliably invests groups of melanocytes in cases of metastatic melanoma, whereas in nodal nevus rests, it predominantly surrounds individual melanocytes. NM23 demonstrated no discriminatory value in this analysis. In cases in which a collection of melanocytes is present within a lymph node, reticulin deposition around individual melanocytes supports a diagnosis of lymph nodal nevus rest.
RHALE: A 3-D MMALE code for unstructured grids
Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.
1993-08-01
This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Jani, S; Kishan, A; O'Connell, D; King, C; Steinberg, M; Low, D; Lamb, J
2014-06-01
Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as a ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2007-01-01
NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.
NASA Technical Reports Server (NTRS)
Banks, D. W.; Hafez, M. M.
1996-01-01
Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.
Constructing the ASCI computational grid
BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.
2000-06-01
The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.
Progress in Grid Generation: From Chimera to DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Kao, Kai-Hsiung
1994-01-01
Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are
GridTool: A surface modeling and grid generation tool
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1995-01-01
GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.
NASA Astrophysics Data System (ADS)
Abad Lopez, Carlos Adrian
Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility
Solution of acoustic workshop problems by a spectral multidomain method
NASA Technical Reports Server (NTRS)
Kopriva, Davis A.; Kolias, John H.
1995-01-01
We use a new staggered grid Chebyshev spectral multidomain method to solve three of the Workshop benchmark problems. The method defines solution unknowns at the nodes of the Chebyshev Gauss quadrature, and the fluxes at the nodes of the Chebyshev Gauss-Lobatto quadrature. The Chebyshev spectral method gives exponentially convergent phase and dissipation errors. The multidomain approximation gives the method flexibility. Using the method, we solve problems in Categories 1 and 5 of the benchmark problems.
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
The Spectral Element Method for Geophysical Flows
NASA Astrophysics Data System (ADS)
Taylor, Mark
1998-11-01
We will describe SEAM, a Spectral Element Atmospheric Model. SEAM solves the 3D primitive equations used in climate modeling and medium range forecasting. SEAM uses a spectral element discretization for the surface of the globe and finite differences in the vertical direction. The model is spectrally accurate, as demonstrated by a variety of test cases. It is well suited for modern distributed-shared memory computers, sustaining over 24 GFLOPS on a 240 processor HP Exemplar. This performance has allowed us to run several interesting simulations in full spherical geometry at high resolution (over 22 million grid points).
Grid crusher apparatus and method
McDaniels, J.D. Jr.
1994-01-11
A grid crusher apparatus and method are provided for a nuclear fuel rod consolidation system. Spacer grids are crushed within a basket which is then placed in a storage canister. The grid crusher apparatus has a ram assembly and a basket driving mechanism. The ram assembly has a sleeve ram and a central ram. The sleeve ram surrounds the central ram which is longitudinally movable within the sleeve ram. The central ram protrudes from the sleeve ram at a ram contact end and is retractable upon application of a preselected force to the central ram so that the central ram is flush with the sleeve ram at the ram contact end. The basket driving mechanism is configured to move the basket containing a spacer grid towards the ram contact end so that the spacer grid is crushed within the basket. The spacer grid is crushed by the combination of successive forces from the central ram and the sleeve ram, respectively. Essentially, the central portion of the spacer grid is crushed first, and then the remaining outer portion of the spacer grid is crushed to complete the crushing action of the spacer grid. The foregoing process is repeated for other spacer grids until the basket reaches a predetermined allowable capacity, and then the basket is stored in a storage canister. 11 figs.
Evaluating the Information Power Grid using the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
VanderWijngaartm Rob F.; Frumkin, Michael A.
2004-01-01
The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.
The Volume Grid Manipulator (VGM): A Grid Reusability Tool
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.
A staggered-grid convolutional differentiator for elastic wave modelling
NASA Astrophysics Data System (ADS)
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
Experience in grid optimization
NASA Technical Reports Server (NTRS)
Mastin, C. W.; Soni, B. K.; Mcclure, M. D.
1987-01-01
Two optimization methods for solving a variational problem in grid generation are described and evaluated. The smoothness, cell volumes, and orthogonality of the variational integrals are examined. The Jacobi-Newton iterative method is compared to the Fletcher-Reeves conjugate gradient method. It is observed that a combination of the Jacobi-Newton iteration and the direct solution of the variational problem produces an algorithm which is easy to program and requires less storage and computer time/iteration than the conjugate gradient method.
and Drayton Munster, Miroslav Stoyanov
2013-09-20
Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.
Adventures in Computational Grids
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.
Broadband iridium wire grid polarizer for UV applications.
Weber, Thomas; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas
2011-02-15
In this Letter, we present an iridium wire grid polarizer with a large spectral working range from IR down to the UV spectral region. The required grating period of 100 nm for an application below a wavelength of 300 nm was realized using a spatial frequency doubling technique based on ultrafast electron beam writing. The optical performance of the polarizer at a wavelength of 300 nm is a transmittance of almost 60% and an extinction ratio of about 30 (15 dB). Furthermore, the oxidation resistance is discussed.
Argañaraz, Martin Eduardo; Apichela, Silvana Andrea; Kenngott, Rebecca; Vermeheren, Margarethe; Rodler, Daniela; Palma, Gustavo Adolfo; Miceli, Dora Cristina; Sinowatz, Fred
2013-01-01
Members of TGF-β superfamily play a major role in the endometrial changes involved in the establishment and maintenance of pregnancy. Their deregulated expression and action could lead to absolute or partial failure of embryo implantation. Nonetheless, the precise function and mechanism of many of these cytokines remain unclear. Nodal, a transforming growth factor beta (TGF-β) superfamily member, was characterized in the human and rodent uterus and implicated in the tissue remodeling events during menstruation and embryo implantation. In order to study its possible role in the cattle reproductive process, we have analyzed Nodal expression pattern and localization in the oviduct and uterine horn during the oestrus cycle and early pregnancy (day 20). Nodal was detected both in oviduct and uterus during either the oestrus cycle or pregnancy; however, it shows a differential expression profile in the uterine horn at dioestrus and pregnancy, decreasing 1.5 and 1.4 folds in comparison with oestrus. Nodal immunostaining intensity was observed in stromal and in epithelial cells of the surface and the glandular epithelium. The staining pattern correlates with the RT-qPCR expression profile. This work is the first to evidence the presence of Nodal in the bovine reproductive tract; our data suggest that Nodal is a novel cytokine that would be involved in the remodelling occurring in the endometrium of cattle during the oestrus cycle and in the embryo implantation. The identification of new molecules that participate in endometrium cycling and/or pregnancy may be useful for predicting the ability of the uterine tissue to establish and maintain pregnancy or for detecting the infertility processes. These results highlight Nodal as a possible novel marker of the fertility process, nevertheless further studies should be done to determine its role in the reproductive system.
Empower your Smart Grid Transformation
2016-06-13
TWITTER: #seiwebinar © 2011 Carnegie Mellon University Empower your Smart Grid Transformation David White SGMM Project Manager 10 March 2011 Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Empower your Smart Grid Transformation 5a. CONTRACT NUMBER...and a core development team member for the SEI Smart Grid Maturity Model (SGMM), a business tool to assist utilities with planning and tracking
Wire grid polarizers fabricated by low angle deposition
NASA Astrophysics Data System (ADS)
Watts, M. P. C.; Little, M.; Egan, E.; Hochbaum, A.; Johns, C.; Stephansen, S.
2013-03-01
Oblique angle metal deposition has been combined with high aspect ratio imprinted structures to create wire grid polarizers (WGP's) for use as polarization recyclers in liquid crystal displays. The optical results for the oblique deposition WGP show contrast comparable to a conventionally etched WGP. In addition, the WGP showed improved spectral and spatial uniformity as compared to a multilayer reflective polarizer. The next steps to the fabrication of meter sized WGP are proposed.
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.
OGC and Grid Interoperability in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas
2010-05-01
EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and
Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework.
Billette, Jacques; Tadros, Rafik
2014-01-15
The atrioventricular (AV) node conducts slowly and has a long refractory period. These features sustain the filtering of atrial impulses and hence are often modulated to optimize ventricular rate during supraventricular tachyarrhythmias. The AV node is also the site of a clinically common reentrant arrhythmia. Its function is assessed for a variety of purposes from its responses to a premature protocol (S1S2, test beats introduced at different cycle lengths) repeatedly performed at different basic rates and/or to an incremental pacing protocol (increasingly faster rates). Puzzlingly, resulting data and interpretation differ with protocols as well as with chosen recovery and refractory indexes, and are further complicated by the presence of built-in fast and slow pathways. This problem applies to endocavitary investigations of arrhythmias as well as to many experimental functional studies. This review supports an integrated framework of rate-dependent and dual pathway AV nodal function that can account for these puzzling characteristics. The framework was established from AV nodal responses to S1S2S3 protocols that, compared with standard S1S2 protocols, allow for an orderly quantitative dissociation of the different factors involved in changes in AV nodal conduction and refractory indexes under rate-dependent and dual pathway function. Although largely based on data from experimental studies, the proposed framework may well apply to the human AV node. In conclusion, the rate-dependent and dual pathway properties of the AV node can be integrated within a common functional framework the contribution of which to individual responses can be quantitatively determined with properly designed protocols and analytic tools.
Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic
NASA Astrophysics Data System (ADS)
Hanin, Boris; Zelditch, Steve; Zhou, Peng
2017-03-01
We study the scaling asymptotics of the eigenspace projection kernels Π_{hbar, E}(x,y) of the isotropic Harmonic Oscillator {hat{H}_{hbar} = - hbar^2 Δ +|x|^2} of eigenvalue {E = hbar(N + d/2)} in the semi-classical limit {hbar to 0} . The principal result is an explicit formula for the scaling asymptotics of Π_{hbar, E}(x,y) for x, y in a {hbar^{2/3}} neighborhood of the caustic C_E as {hbar → 0.} The scaling asymptotics are applied to the distribution of nodal sets of Gaussian random eigenfunctions around the caustic as {hbar to 0} . In previous work we proved that the density of zeros of Gaussian random eigenfunctions of {hat{H}_{hbar}} have different orders in the Planck constant {hbar} in the allowed and forbidden regions: In the allowed region the density is of order {hbar^{-1}} while it is {hbar^{-1/2}} in the forbidden region. Our main result on nodal sets is that the density of zeros is of order {hbar^{-2/3}} in an {hbar^{2/3}} -tube around the caustic. This tube radius is the `critical radius'. For annuli of larger inner and outer radii {hbar^{α}} with {0 < α < 2/3} we obtain density results that interpolate between this critical radius result and our prior ones in the allowed and forbidden region. We also show that the Hausdorff ( d-2)-dimensional measure of the intersection of the nodal set with the caustic is of order {hbar^{- 2/3}}.
Mirk, Paoletta; Treglia, Giorgio; Salsano, Marco; Basile, Pietro; Giordano, Alessandro; Bonomo, Lorenzo
2011-01-01
Aim. to compare 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to sentinel lymph node biopsy (SLNB) for regional lymph nodal staging in patients with melanoma. Methods. We performed a literature review discussing original articles which compared FDG-PET to SLNB for regional lymph nodal staging in patients with melanoma. Results and Conclusions. There is consensus in the literature that FDG-PET cannot replace SLNB for regional lymph nodal staging in patients with melanoma. PMID:22242204
A topological investigation of phase transitions of cascading failures in power grids
NASA Astrophysics Data System (ADS)
Koç, Yakup; Warnier, Martijn; Van Mieghem, Piet; Kooij, Robert E.; Brazier, Frances M. T.
2014-12-01
Cascading failures are one of the main reasons for blackouts in electric power transmission grids. The economic cost of such failures is in the order of tens of billion dollars annually. The loading level of power system is a key aspect to determine the amount of the damage caused by cascading failures. Existing studies show that the blackout size exhibits phase transitions as the loading level increases. This paper investigates the impact of the topology of a power grid on phase transitions in its robustness. Three spectral graph metrics are considered: spectral radius, effective graph resistance and algebraic connectivity. Experimental results from a model of cascading failures in power grids on the IEEE power systems demonstrate the applicability of these metrics to design/optimise a power grid topology for an enhanced phase transition behaviour of the system.
From the grid to the smart grid, topologically
NASA Astrophysics Data System (ADS)
Pagani, Giuliano Andrea; Aiello, Marco
2016-05-01
In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.
NASA Technical Reports Server (NTRS)
Van Patten, R. A.; Everitt, C. W. F.
1975-01-01
In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.
Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code
Sullivan, T.J.
1986-05-01
In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve the engine thermal efficiency. The investigation was accomplished by using the Lewis nodal-analysis Stirling engine computer model. Bypassing the P-40 Stirling engine heater at full power resulted in a rise in the indicated thermal efficiency from 40.6 to 41.0 percent. For the idealized (some losses not included) heater bypass that was analyzed, this benefit is not considered significant.
Statistics of nodal points of in-plane random waves in elastic media.
Maksimov, Dmitrii N; Sadreev, Almas F
2008-05-01
We consider the nodal points (NPs) u=0 and v=0 of the in-plane vectorial displacements u=(u,v) which obey the Navier-Cauchy equation. Similar to the Berry conjecture of quantum chaos, we present the in-plane eigenstates of chaotic billiards as the real part of the superposition of longitudinal and transverse plane waves with random phases. By an average over random phases we derive the mean density and correlation function of NPs. Consequently we consider the distribution of the nearest distances between NPs.
PoroTomo Subtask 6.3 Nodal Seismometer Earthquake Data
Kurt Feigl
2016-03-21
90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml Â± 0.4 Location: 38.479Â°N 118.366Â°W Â± 0.7 km Depth: 9.9 km Â± 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC http://earthquake.usgs.gov/earthquakes/eventpage/nn00536374#executive
NAS Grid Benchmarks: A Tool for Grid Space Exploration
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)
2001-01-01
We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.
Gong, Yuehua; Guo, Ying; Hai, Yanan; Yang, Hao; Liu, Yang; Yang, Shi; Zhang, Zhenzhen; Ma, Meng; Liu, Linhong; Li, Zheng; He, Zuping
2014-01-01
Colorectal cancer is one of the most common and fatal tumors. However, molecular mechanisms underlying carcinogenesis of colorectal cancer remain largely undefined. Here, we explored the expression and function of Nodal in colon cancer stem cells (CCSCs). Nodal and its receptors were present in numerous human colorectal cancer cell lines. NODAL and ALK-4 were coexpressed in human colon cancerous tissues, and NODAL, CD24, and CD44, markers for CCSCs, were expressed at higher levels in human colon cancerous tissues than adjacent noncancerous colon tissues. Human CCSCs were isolated by magnetic activated cell sorting using anti-CD24 and anti-CD44. Nodal transcript and protein were hardly detectable in CD44- or CD24-negative human colorectal cancer cell lines, whereas Nodal and its receptors were present in CCSCs. Notably, Nodal facilitated spheroid formation of human CCSCs, and phosphorylation of Smad2 and Smad3 was activated by Nodal in cells of spheres derived from human CCSCs. Collectively, these results suggest that Nodal promotes the self-renewal of human CCSCs and mediate carcinogenesis of human colorectal cancer via an autocrine manner through Smad2/3 pathway. This study provides a novel insight into molecular mechanisms controlling fate of human CCSCs and offers new targets for gene therapy of human colorectal cancer.
Brown, Stephanie; Teo, Adrian; Pauklin, Siim; Hannan, Nicholas; Cho, Candy H-H; Lim, Bing; Vardy, Leah; Dunn, N Ray; Trotter, Matthew; Pedersen, Roger; Vallier, Ludovic
2011-08-01
Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions.
Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe
NASA Astrophysics Data System (ADS)
Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang
2016-07-01
A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe2 , PtSn4 , and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (˜1020 cm-3 ) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.
Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe.
Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang
2016-07-01
A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe_{2}, PtSn_{4}, and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (∼10^{20} cm^{-3}) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.
Castellanos, A; Agha, A S; Mendoza, I J; Sung, R J
1977-01-01
Invasive electrophysiological studies were performed in 2 symptomatic patients with recurrent arrhythmias in which impulse formation presumably occured within atrioventricular nodal bypass tracts. Case 1 had ectopic beats arising within, or close to, the upper end of a left-sided atrioventricular nodal bypass tract of the type described by Brechenmacher. In addition, this conduction was 'concealed' during sinus rhythm and right atrial pacing because the relatively prolonged right-to-left atrial conduction time allowed right atrial impulses to reach the His bundle via the atrioventricular node before they could do so through the atrioventricular nodal bypass tract. Case 2 had ectopic beats arising in a right-sided atrioventricular nodal bypass tract which did not conduct in either forward or retrograde directions, its presence being detected only when initiating impulses. However, it could not be determined whether this tract was an 'abnormal' atrio-His connection or a 'normal' transitional (atrio-atrioventricular nodal) tract. Though intracardiac studies complement body surface recordings, they should be interpreted with knowledge of their inherent limitations. PMID:884022
On spectral multigrid methods for the time-dependent Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
A splitting scheme is proposed for the numerical solution of the time-dependent, incompressible Navier-Stokes equations by spectral methods. A staggered grid is used for the pressure, improved intermediate boundary conditions are employed in the split step for the velocity, and spectral multigrid techniques are used for the solution of the implicit equations.
Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.
2007-06-01
The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.
Grid generation using classical techniques
NASA Technical Reports Server (NTRS)
Moretti, G.
1980-01-01
A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.
Some Observations on Grid Convergence
NASA Technical Reports Server (NTRS)
Salas, manuel D.
2006-01-01
It is claimed that current practices in grid convergence studies, particularly in the field of external aerodynamics, are flawed. The necessary conditions to properly establish grid convergence are presented. A theoretical model and a numerical example are used to demonstrate these ideas.
Intelligent automated surface grid generation
NASA Technical Reports Server (NTRS)
Yao, Ke-Thia; Gelsey, Andrew
1995-01-01
The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.
LAPS Grid generation and adaptation
NASA Astrophysics Data System (ADS)
Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis
2011-10-01
LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.
Software for the Spectral Analysis of Hot Stars
NASA Astrophysics Data System (ADS)
Rauch, T.; Nickelt, I.; Stampa, U.; Demleitner, M.; Koesterke, L.
2009-09-01
In a collaboration of the German Astrophysical Virtual Observatory (GAVO) and AstroGrid-D, the German Astronomy Community Grid (GACG), we provide a VO service for the access and the calculation of stellar synthetic energy distributions (SEDs) based on static as well as expanding non-LTE model atmospheres. At three levels, a VO user may directly compare observed and theoretical SEDs: The easiest and fastest way is to use pre-calculated SEDs from the GAVO database. For individual objects, grids of model atmospheres and SEDs can be calculated on the compute resources of AstroGrid-D within reasonable wallclock time. Experienced VO users may even create their own atomic data files for a more detailed analysis. This VO service also opens the perspective for a new approach to an automated spectral analysis of a large number of observations, e.g. provided by multi-object spectrographs.
NASA Astrophysics Data System (ADS)
Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.
2006-10-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed.
Inland waterway ports nodal attraction indices relevant in development strategies on regional level
NASA Astrophysics Data System (ADS)
Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.
2016-08-01
Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.
Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm
Yaguchi, Junko; Takeda, Noriyo; Inaba, Kazuo; Yaguchi, Shunsuke
2016-01-01
When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis. PMID:27101101
Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes.
Schmid, Tobias; Thompson, Kevin P; Rolland, Jannick P
2010-06-01
We present the effects of misalignments on the field dependence of the third-order aberration fields of traditional, two-mirror astronomical telescopes in the context of nodal aberration theory, which we believe is the most general and extensible framework for describing and improving on-station performance. While many of the advantages of nodal aberration theory, compared to other, often power series expansion-based descriptions of misalignment effects on aberrations, become particularly important when analyzing telescopes with more than two mirrors, or in the presence of figure errors; this paper aims to provide and demonstrate the fundamental concepts needed to fully describe the state of correction of misaligned two-mirror telescopes. Importantly, it is shown that the assumption that perfect performance on axis ensures a fully aligned telescope is false, and we demonstrate that if Ritchey-Chrétien telescopes are aligned for zero coma on axis as the sole criterion, formidable misalignments will likely remain, leading to image quality degradation, particularly beyond midfield caused by astigmatism with binodal field dependence (i.e., astigmatism goes to zero at two points in the field).
Reflector modelling of small high leakage cores making use of multi-group nodal equivalence theory
Theron, S. A.; Reitsma, F.
2012-07-01
This research focuses on modelling reflectors in typical material testing reactors (MTRs). Equivalence theory is used to homogenise and collapse detailed transport solutions to generate equivalent nodal parameters and albedo boundary conditions for reflectors, for subsequent use in full core nodal diffusion codes. This approach to reflector modelling has been shown to be accurate for two-group large commercial light water reactor (LWR) analysis, but has not been investigated for MTRs. MTRs are smaller, with much larger leakage, environment sensitivity and multi-group spectrum dependencies than LWRs. This study aims to determine if this approach to reflector modelling is an accurate and plausible homogenisation technique for the modelling of small MTR cores. The successful implementation will result in simplified core models, better accuracy and improved efficiency of computer simulations. Codes used in this study include SCALE 6.1, OSCAR-4 and EQUIVA (the last two codes are developed and used at Necsa). The results show a five times reduction in calculational time for the proposed reduced reactor model compared to the traditional explicit model. The calculated equivalent parameters however show some sensitivity to the environment used to generate them. Differences in the results compared to the current explicit model, require more careful investigation including comparisons with a reference result, before its implementation can be recommended. (authors)
Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van
2011-09-01
Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.
A generalized framework for nodal first derivative summation-by-parts operators
NASA Astrophysics Data System (ADS)
Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.
2014-06-01
A generalized framework is presented that extends the classical theory of finite-difference summation-by-parts (SBP) operators to include a wide range of operators, where the main extensions are (i) non-repeating interior point operators, (ii) nonuniform nodal distribution in the computational domain, (iii) operators that do not include one or both boundary nodes. Necessary and sufficient conditions are proven for the existence of nodal approximations to the first derivative with the SBP property. It is proven that the positive-definite norm matrix of each SBP operator must be associated with a quadrature rule; moreover, given a quadrature rule there exists a corresponding SBP operator, where for diagonal-norm SBP operators the weights of the quadrature rule must be positive. The generalized framework gives a straightforward means of posing many known approximations to the first derivative as SBP operators; several are surveyed, such as discontinuous Galerkin discretizations based on the Legendre-Gauss quadrature points, and shown to be SBP operators. Moreover, the new framework provides a method for constructing SBP operators by starting from quadrature rules; this is illustrated by constructing novel SBP operators from known quadrature rules. To demonstrate the utility of the generalization, the Legendre-Gauss and Legendre-Gauss-Radau quadrature points are used to construct SBP operators that do not include one or both boundary nodes.
Successful catheter ablation of a slow AV-nodal pathway from the left posteroseptal region.
Wieczorek, M; Höltgen, R; Djajadisastra, I
2005-08-01
We present the case of a 44 year old woman with recurrent episodes of supraventricular tachycardia due to AV-nodal reentry (AVNRT). She was refractory to conventional medical treatment and referred to our hospital with the view to catheter ablation of the slow AV-nodal pathway. AVNRT of the common type was easily induced performing stimulation from the high right atrium and proximal coronary sinus. Other forms of supraventricular tachycardia were definitely ruled out during further electrophysiologic study. Repetitive RF applications around the right posteroseptal region failed to cure the tachycardia which remained inducible with a typical jump in the AH interval. Extensive RF applications from posteroinferior to the midseptum including the area of the proximal coronary sinus and its os were ineffective as well.AVNRT was transiently but reproducibly eliminated while burns were applied to the high midseptum but AVNRT reoccured within 20 minutes. Finally after retrograde passage of the aortic valve with a 4 mm tip ablation catheter, RF was applied to the left postero to midseptal region. An accelerated junctional rhythm was immediately observed and AVNRT remained non-inducible from that time onwards. It is concluded that an atypical posterior extension of the AV node with predominant leftatrial course might be responsible for this unusual success of slow pathway elimination from left posteroseptal.
Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element
Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna
2011-01-01
RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265
The lunar nodal tide and the distance to tne Moon during the Precambrian era
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-01-01
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y PMID:26039222
2012-01-01
Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-06-03
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less
Observation of topological nodal fermion semimetal phase in ZrSiS
NASA Astrophysics Data System (ADS)
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; Sanchez, Daniel S.; Sankar, Raman; Szlawska, Maria; Xu, Su-Yang; Dimitri, Klauss; Dhakal, Nagendra; Maldonado, Pablo; Oppeneer, Peter M.; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz
2016-05-01
Unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ ) point, the M point, and the X point of the BZ, respectively. We experimentally establish the spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.
NASA Astrophysics Data System (ADS)
Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.
2015-09-01
NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.
NASA Astrophysics Data System (ADS)
Das, T.; Figueira de Morisson Faria, C.
2016-08-01
We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.
Development of a standing-wave fluorescence microscope with high nodal plane flatness.
Freimann, R; Pentz, S; Hörler, H
1997-09-01
This article reports about the development and application of a standing-wave fluorescence microscope (SWFM) with high nodal plane flatness. As opposed to the uniform excitation field in conventional fluorescence microscopes as SWFM uses a standing-wave pattern of laser light. This pattern consists of alternating planar nodes and antinodes. By shifting it along the axis of the microscope a set of different fluorescent structures can be distinguished. Their axial separation may just be a fraction of a wavelength so that an SWFM allows distinction of structures which would appear axially unresolved in a conventional or confocal fluorescence microscope. An SWFM is most powerful when the axial extension of the specimen is comparable to the wavelength of light. Otherwise several planes are illuminated simultaneously and their separation is hardly feasible. The objective of this work was to develop a new SWFM instrument which allows standing-wave fluorescence microscopy with controlled high nodal plane flatness. Earlier SWFMs did not allow such a controlled flatness, which impeded image interpretation and processing. Another design goal was to build a compact, easy-to-use instrument to foster a more widespread use of this new technique. The instrument developed uses a green-emitting helium-neon laser as the light source, a piezoelectric movable beamsplitter to generate two mutually coherent laser beams of variable relative phase and two single-mode fibres to transmit these beams to the microscope. Each beam is passed on to the specimen by a planoconvex lens and an objective lens. The only reflective surface whose residual curvature could cause wavefront deformations is a dichroic beamsplitter. Nodal plane flatness is controlled via interference fringes by a procedure which is similar to the interferometric test of optical surfaces. The performance of the instrument was tested using dried and fluorescently labelled cardiac muscle cells of rats. The SWFM enabled the
Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.
de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen
2016-01-01
The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.
Hydroacoustic propagation grids for the CTBT knowledge databaes BBN technical memorandum W1303
J. Angell
1998-05-01
The Hydroacoustic Coverage Assessment Model (HydroCAM) has been used to develop components of the hydroacoustic knowledge database required by operational monitoring systems, particularly the US National Data Center (NDC). The database, which consists of travel time, amplitude correction and travel time standard deviation grids, is planned to support source location, discrimination and estimation functions of the monitoring network. The grids will also be used under the current BBN subcontract to support an analysis of the performance of the International Monitoring System (IMS) and national sensor systems. This report describes the format and contents of the hydroacoustic knowledgebase grids, and the procedures and model parameters used to generate these grids. Comparisons between the knowledge grids, measured data and other modeled results are presented to illustrate the strengths and weaknesses of the current approach. A recommended approach for augmenting the knowledge database with a database of expected spectral/waveform characteristics is provided in the final section of the report.
Sensing and Measurement Architecture for Grid Modernization
Taft, Jeffrey D.; De Martini, Paul
2016-02-01
This paper addresses architecture for grid sensor networks, with primary emphasis on distribution grids. It describes a forward-looking view of sensor network architecture for advanced distribution grids, and discusses key regulatory, financial, and planning issues.
Single grid accelerator for an ion thrustor
NASA Technical Reports Server (NTRS)
Margosian, P. M.; Nakanishi, S. (Inventor)
1973-01-01
A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.
Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.
2011-03-01
Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target
Grid Integration Studies: Data Requirements, Greening the Grid
Katz, Jessica
2015-06-01
A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.
Zhou, Tao; Gao, Yi; Zhu, Jian -Xin
2015-03-07
Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d-wave nodal lines (nodal gap) contrasts the common understanding of the d-wave pairing symmetry, which challenges the present theories for the high-Tcsuperconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-Tcsuperconductors.« less
NASA Astrophysics Data System (ADS)
Hurd, O.; Zoback, M. D.
2011-12-01
In this study we revisit the question of slip on faults in the New Madrid seismic zone in the context of the regional stress field. Specifically, we utilize newly available data to investigate whether fault slip is compatible with the regional stress field and laboratory-determined coefficients of friction (as originally argued by M.D. Zoback and M.L. Zoback, Science, 1981) or if there is evidence for either local sources of stress or anomalously low fault strength. Ten new, well-constrained earthquake focal plane mechanisms from the New Madrid seismic zone are available to update regional stress data and two earthquake focal plane mechanisms originally published in the 1970's have recently been revised. Utilizing these data, we demonstrate that the earthquakes occur on nodal planes which are optimally-oriented for shear failure in the current stress field assuming hydrostatic pore pressure in the brittle crust and coefficients of friction (μ) of about 0.6. The average SHmax orientation inferred from P-axes of the 12 focal mechanisms is N84E +/- 21°, which is consistent with the overall trend of SHmax in the region. In a manner similar to the study by M.L. Zoback (JGR, 1992), which utilized a slightly smaller (and in two cases, less reliable) set of focal mechanisms in this area, we use the orientation of the focal mechanism nodal planes combined with independent stress data to investigate the compatibility of slip on both nodal planes in the current stress field. First, the relative magnitudes of the three principal stresses are calculated from the nodal plane and stress orientations. Next, we utilize Mohr-Coulomb failure criterion to calculate the theoretically-optimal orientation of a fault plane for different coefficients of friction. Lastly, we calculate the difference in orientation between the theoretically-optimal planes and the focal mechanism nodal planes and identify the nodal plane with the smaller difference as the preferred nodal plane. For μ = 0
NASA Technical Reports Server (NTRS)
Borsody, J.
1976-01-01
Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.
Filho, J. F. P.
2013-07-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
Beaulieu, R A
2009-07-13
The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US
High energy collimating fine grids
NASA Astrophysics Data System (ADS)
Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele
1995-02-01
The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.
High energy collimating fine grids
NASA Technical Reports Server (NTRS)
Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele
1995-01-01
The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.
von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science
2001-07-01
In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.
Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,
2014-02-24
GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: A platform to support future EMS development. A middleware that promotes interoperability between power grid applications. A distributed architecture that separates data sources from power grid applications. Support for data exchange with either one-to-one or publisher/subscriber interfaces. An authentication and authorization scheme for limiting the access to data between utilities.
Buildings-to-Grid Technical Opportunities: From the Grid Perspective
Kropski, Ben; Pratt, Rob
2014-03-28
This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.
Running medical image analysis on GridFactory desktop grid.
Orellana, Frederik; Niinimaki, Marko; Zhou, Xin; Rosendahl, Peter; Müller, Henning; Waananen, Anders
2009-01-01
At the Geneva University Hospitals work is in progress to establish a computing facility for medical image analysis, potentially using several hundreds of desktop computers. Typically, hospitals do not have a computer infrastructure dedicated to research, nor can the data leave the hospital network for the reasons of privacy. For this purpose, a novel batch system called GridFactory has been tested along-side with the well-known batch system Condor. GridFactory's main benefits, compared to other batch systems, lie in its virtualization support and firewall friendliness. The tests involved running visual feature extraction from 50,000 anonymized medical images on a small local grid of 20 desktop computers. A comparisons with a Condor based batch system in the same computers is then presented. The performance of GridFactory is found satisfactory.
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven
2005-01-01
The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.
National transmission grid study
Abraham, Spencer
2003-05-31
The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).
Grid flexibility and patching techniques
NASA Technical Reports Server (NTRS)
Keith, T. G.; Smith, L. W.; Yung, C. N.; Barthelson, S. H.; Dewitt, K. J.
1984-01-01
The numerical determination of combustor flowfields is of great value to the combustor designer. An a priori knowledge of the flow behavior can speed the combustor design process and reduce the number of experimental test rigs required to arrive at an optimal design. Even 2-D steady incompressible isothermal flow predictions are of use; many codes of this kind are available, each employing different techniques to surmount the difficulties arising from the nonlinearity of the governing equations and from typically irregular combustor geometries. Mapping techniques (algebraic and elliptic PDE), and adaptive grid methods (both multi-grid and grid embedding) as applied to axisymmetric combustors are discussed.
Grid technologies empowering drug discovery.
Chien, Andrew; Foster, Ian; Goddette, Dean
2002-10-15
Grid technologies enable flexible coupling and sharing of computers, instruments and storage. Grids can provide technical solutions to the volume of data and computational demands associated with drug discovery by delivering larger computing capability (flexible resource sharing), providing coordinated access to large data resources and enabling novel online exploration (coupling computing, data and instruments online). Here, we illustrate this potential by describing two applications: the use of desktop PC grid technologies for virtual screening, and distributed X-ray structure reconstruction and online visualization.
Hilbert, Sebastian; Kosiuk, Jedrzej; John, Silke; Hindricks, Gerhard; Bollmann, Andreas
2016-01-01
A 74-year old was considered for atrioventricular (AV) nodal ablation in view of atrial fibrillation (AF) with poorly controlled ventricular rate despite being on amiodarone. Targeted AV nodal ablation was successfully performed after identifying the target site for ablation by reviewing an ultra high-density map of the His region produced by automatic electrogram annotation. PMID:25852249
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.
Chapman-Fredricks, Jennifer; Sandoval-Sus, Jose; Vega, Francisco; Lossos, Izidore S
2014-08-01
Leukemic, non-nodal mantle cell lymphoma (MCL) is a relatively indolent disease characterized by asymptomatic leukemic presentation, non-nodal disease distribution, and slow disease progression, particularly in comparison to that of classic nodal MCL. We studied 3 cases of leukemic, non-nodal MCL in which TP53, ATM, and/or 13q14 deletions were identified. All three patients had disease progression leading to treatment requirements in two of the patients at 5 and 18 months after initial diagnosis. The third patient also clinically progressed 25 months after initial diagnosis but was lost to follow up despite recommendation for initiation of therapy. We present these cases as potential evidence that while leukemic non-nodal MCL is typically an indolent disease compared to classically defined mantle cell lymphoma, cytogenetic heterogeneity exists and cases with TP53, ATM, and/or 13q14 deletions may have a relatively aggressive clinical course.
Evaluating Spectral Signals to Identify Spectral Error
Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana
2016-01-01
Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541
Assistive Awareness in Smart Grids
NASA Astrophysics Data System (ADS)
Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite
The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions
Modal Analysis for Grid Operation
2011-03-03
MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signal stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.
Martz, Roger L.
2016-07-15
The Revised Eolus Grid Library (REGL) is a mesh-tracking library that was developed for use with the MCNP6TM computer code so that (radiation) particles can track on an unstructured mesh. The unstructured mesh is a finite element representation of any geometric solid model created with a state-of-the-art CAE/CAD tool. The mesh-tracking library is written using modern Fortran and programming standards; the library is Fortran 2003 compliant. The library was created with a defined application programmer interface (API) so that it could easily integrate with other particle tracking/transport codes. The library does not handle parallel processing via the message passing interface (mpi), but has been used successfully where the host code handles the mpi calls. The library is thread-safe and supports the OpenMP paradigm. As a library, all features are available through the API and overall a tight coupling between it and the host code is required. Features of the library are summarized with the following list: • can accommodate first and second order 4, 5, and 6-sided polyhedra • any combination of element types may appear in a single geometry model • parts may not contain tetrahedra mixed with other element types • pentahedra and hexahedra can be together in the same part • robust handling of overlaps and gaps • tracks element-to-element to produce path length results at the element level • finds element numbers for a given mesh location • finds intersection points on element faces for the particle tracks • produce a data file for post processing results analysis • reads Abaqus .inp input (ASCII) files to obtain information for the global mesh-model • supports parallel input processing via mpi • support parallel particle transport by both mpi and OpenMP
Smart Wire Grid: Resisting Expectations
Ramsay, Stewart; Lowe, DeJim
2014-03-03
Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.
Reinventing Batteries for Grid Storage
Banerjee, Sanjoy
2016-07-12
The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.
Smart Wire Grid: Resisting Expectations
Ramsay, Stewart; Lowe, DeJim
2016-07-12
Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.
Parallel Power Grid Simulation Toolkit
Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol
2015-09-14
ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.
High-latitude oceanic variability associated with the 18.6-year nodal tide
NASA Technical Reports Server (NTRS)
Royer, Thomas C.
1993-01-01
Water column temperature variations which indicate that the upper ocean is responding to 18.6-yr tidal forcing are presented. An enhanced high-latitude response to this forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50 deg. Critical information on regional climate variations might be found in the subsurface waters of the North Pacific and possibly other high-latitude oceans. The 18.6-yr nodal tidal cycle must be considered in circulation models of the ocean and atmosphere that examine time scales of decades or longer. Because the temperature range associated with the cycle is 0.5-1 C, short-term climate and biological populations could be affected.
Probing the Nodal Structure of Landau Level Wave Functions in Real Space.
Bindel, J R; Ulrich, J; Liebmann, M; Morgenstern, M
2017-01-06
The inversion layer of p-InSb(110) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.
Response to Nodal morphogen gradient is determined by the kinetics of target gene induction
Dubrulle, Julien; Jordan, Benjamin M; Akhmetova, Laila; Farrell, Jeffrey A; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Schier, Alexander F
2015-01-01
Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI: http://dx.doi.org/10.7554/eLife.05042.001 PMID:25869585
Majorana fermions in spin-singlet nodal superconductors with coexisting non-collinear magnetic order
NASA Astrophysics Data System (ADS)
Wang, Ziqiang; Lu, Yuan-Ming
2013-03-01
Realizations of Majorana fermions in solid state materials have attracted great interests recently in connection to topological order and quantum information processing. We propose a novel way to create Majorana fermions in superconductors. We show that an incipient non-collinear magnetic order turns a spin-singlet superconductor with nodes into a topological superconductor with a stable Majorana bound state (MBS) in the vortex core or on the edge. Moreover the topologically-stable point defect of non-collinear magnetic order also hosts a zero-energy MBS. We argue that such an exotic non-Abelian phase can be realized in extended t- J models on the triangular and square lattices. Our proposal suggests a new avenue for the search of Majorana fermions in correlated electron materials where nodal superconductivity and magnetism are two common caricatures.
Probing the Nodal Structure of Landau Level Wave Functions in Real Space
NASA Astrophysics Data System (ADS)
Bindel, J. R.; Ulrich, J.; Liebmann, M.; Morgenstern, M.
2017-01-01
The inversion layer of p -InSb (110 ) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.
Pseudodiffusive transmission of nodal Dirac fermions through a clean d -wave superconductor
NASA Astrophysics Data System (ADS)
Asbóth, J. K.; Akhmerov, A. R.; Berceanu, A. C.; Beenakker, C. W. J.
2009-12-01
We calculate the transmission of electrons and holes between two normal-metal (N) electrodes, separated over a distance L by an impurity-free superconductor (S) with d -wave symmetry of the order parameter. Nodal lines of vanishing excitation gap form ballistic conduction channels for coupled electron-hole excitations, described by an anisotropic two-dimensional Dirac equation. We find that the transmitted electrical and thermal currents both have the pseudodiffusive 1/L scaling characteristic of massless Dirac fermions—regardless of the presence of tunnel barriers at the NS interfaces. Tunnel barriers reduce the slope of the 1/L scaling in the case of the electrical current while leaving the thermal current unaffected.
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.
Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y
2010-02-26
The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.
NASA Astrophysics Data System (ADS)
Trani, F.; Campagnano, G.; Tagliacozzo, A.; Lucignano, P.
2016-10-01
We study possible applications of high critical temperature nodal superconductors for the search for Majorana bound states in the DIII class. We propose a microscopic analysis of the proximity effect induced by d -wave superconductors on a semiconductor wire with strong spin-orbit coupling. We characterize the induced superconductivity on the wire employing a numerical self-consistent tight-binding Bogoliubov-de Gennes approach, and analytical considerations on the Green's function. The order parameter induced on the wire, the pair correlation function, and the renormalization of the Fermi points are analyzed in detail, as well as the topological phase diagram in the case of weak coupling. We highlight optimal Hamiltonian parameters to access the nontrivial topological phase which could display time-reversal invariant Majorana doublets at the boundaries of the wire.
A study of the radiative transfer equation using a spherical harmonics-nodal collocation method
NASA Astrophysics Data System (ADS)
Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.
2017-03-01
Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.
Field-induced reentrant superconductivity in thin films of nodal superconductors
NASA Astrophysics Data System (ADS)
Hachiya, M.; Aoyama, K.; Ikeda, R.
2013-08-01
Previous work on nodal d-wave superconductors has shown that a Fulde-Ferrell-Larkin-Ovchinnikov- (FFLO-) like superconducting (SC) state, which is modulated along the film plane, can be realized with no magnetic field when quasiparticles acquire an additional linear term in the wave vector in their dispersion. In the present work, the stability of such a modulated SC state in an artificial film against an applied magnetic field is studied. As a reflection of the presence of two FFLO-like states of different origins, one close to zero field and the other at the high-field end, in a single field vs temperature phase diagram of thin films, the conventional SC state, which is uniform along the film plane, generally tends to appear as a reentrant ordered phase bounded by the normal phase in lower fields.
Lunar nodal tide and distance to the moon during the Precambrian
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The first direct determination of the lunar distance in the Precambrian is presented. A 23.3 + or - 0.3 yr periodicity preserved in 2500 Myr BP Australian banded iron formation is interpreted as reflecting the climatic influence of the lunar nodal tide, which has been detected with its modern 18.6-yr periodicity in some modern climate records. The lunar distance at 2500 Myr BP would then have been about 52 earth radii. The implied history of precambrian tidal friction is in accord with both the more recent paleontological evidence and the long-term stability of the lunar orbit. The length of the Milankovitch cycles that modulate the ice ages today also evolve with the earth-moon system. Their detection in the Precambrian sedimentary record would then permit an independent determination of the lunar distance.
Nodal Structure of Quasi-Two-Dimensional Superconductors Probed by a Magnetic Field
NASA Astrophysics Data System (ADS)
Vorontsov, A.; Vekhter, I.
2006-06-01
We consider a quasi-two-dimensional superconductor with line nodes in the presence of an in-plane magnetic field, and compute the dependence of the specific heat C and the in-plane heat conductivity κ on the angle between the field and the nodal direction in the vortex state. We use a variation of the microscopic Brandt-Pesch-Tewordt method that accounts for the scattering of quasiparticles off vortices, and analyze the signature of the nodes in C and κ. At low to moderate fields the specific heat anisotropy changes sign with increasing temperature. Comparison with measurements of C and κ in CeCoIn5 resolves the contradiction between the two in favor of the dx2-y2 gap.
Diagnosis of non-nodal paratracheobronchial lesions by linear endobronchial ultrasound.
Lourido, Tamara; Botana, Maribel; Leiro, Virginia; Núñez, Manuel; Fernández-Villar, Alberto
2013-08-01
Linear endobronchial ultrasound (EBUS) allows samples of lesions close to the airways to be obtained, as it enables aspiration to be performed under visual control in real time, opening new possibilities for minimally invasive examination of the mediastinum. While there are many publications on its usefulness in the study of mediastinal or hilar lymphadenopathies, there are few that analyse the role of EBUS-guided transbronchial needle aspiration for the diagnosis of other lesions adjacent to the airways or digestive tract. We describe the characteristics and results obtained in a series of 26 cases of non-nodal lesions of different aetiologies studied by EBUS- guided transbronchial needle aspiration through the airways or oesophagus, demonstrating the usefulness and safety of this technique in the diagnosis of these types of lesions.
Talipov, Marat R; Navale, Tushar S; Rathore, Rajendra
2015-11-23
Triptycenes spontaneously assemble into two-dimensional networks in which long-range charge transport is facilitated by the extensive electronic coupling through the triptycene framework (intramolecularly) and by cofacial π-stacking (intermolecularly). While designing and synthesizing next-generation triptycenes containing polyaromatic chromophores, the electronic coupling amongst the chromophores was observed to be highly dependent on the nature and position of the substituents. Herein, we demonstrate using hexaalkoxytriptycenes that the electronic coupling amongst the chromophores is switched on and off by a simple repositioning of the substituents, which alters the nodal arrangement of the HOMOs of the individual chromophores. A visual inspection of the HOMOs can thus provide a ready evaluation of the electronic coupling in polychromophoric molecules/assemblies, and will serve as an important tool for the rational design of modern charge-transport materials.
Tian, Ru-Hui; Yang, Shi; Zhu, Zi-Jue; Wang, Jun-Long; Liu, Yun; Yao, Chencheng; Ma, Meng; Guo, Ying; Yuan, Qingqing; Hai, Yanan; Huang, Yi-Ran; He, Zuping; Li, Zheng
2015-01-01
This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells. PMID:26289399
Theory of nodal s^{±}-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T_{c} superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less
Technology Transfer Automated Retrieval System (TEKTRAN)
The Smad proteins are essential components of the TGF-beta/activin/nodal family signaling pathway. We report the identification and characterization of transcripts representing 3 receptor Smads (Smad2a, Smad2b, Smad3), 2 common Smads (Smad4a, Smad4b) and one inhibitory Smad (Smad7). Phylogenetic an...
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.
2015-01-01
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s+− wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s+− wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375
Khori, Vahid; Alizadeh, Ali Mohammad; Moheimani, Hamid Reza; Zahedi, Mahdi; Aminolsharieh Najafi, Soroosh; Shakiba, Delaram; Nayebpour, Mohsen
2015-02-01
Simvastatin (SV) leads to reduction of ventricular rhythm during atrial fibrillation on rabbit atrioventricular (AV) nodes. The aim of our study was (i) to determine the frequency-dependent effects of SV in a functional model, and (ii) to assess the effects of SV to suppress experimental AV nodal reentrant tachycardia (AVNRT). Selective stimulation protocols were used with two different pacing protocols, His to atrial, and atrial to atrial (AA). An experimental AVNRT model with various cycle lengths was created in three groups of perfused rabbit AV nodal preparations (n = 24) including: SV 3 μm, SV 7 μm, and verapamil 0.1 μm. SV increased nodal conduction time and refractoriness by AA pacing. Different simulated models of slow/fast and fast/slow reentry were induced. SV caused inhibitory effects on the slow anterograde conduction (origin of refractoriness) more than on the fast anterograde conduction time, leading to an increase of tachycardia cycle length, tachycardia wavelength and termination of slow/fast reentrant tachyarrhythmia. Verapamil significantly suppressed the basic and frequency-dependent intrinsic nodal properties. In addition, SV decreased the incidence of gap and echo beats. The present study showed that SV in a concentration and rate-dependent manner increased the AV effective refractory period and reentrant tachycardia wavelength that lead to slowing or termination of experimental fast AVNRT. The direction-dependent inhibitory effect of SV on the anterograde and retrograde dual pathways explains its specific antireentrant actions.
Debunking the lunar nodal tide in sea level data from the Northwest European shelf
NASA Astrophysics Data System (ADS)
Schmith, Torben; Thejll, Peter; Nielsen, Jacob W.
2016-04-01
In a recent study (Hansen, et al, 2015. Sea-Level Forcing by Synchronization of 56- and 74-Year Oscillations with the Moon's Nodal Tide on the Northwest European Shelf (Eastern North Sea to Central Baltic Sea). Journal of Coastal Research, 31(5), 1041 - 1056, hereafter 'HAK'), the existence of an 18.6 year lunar nodal tide signal of considerable strength and other periodic signals in the North Sea -- Baltic Sea area is claimed. We criticize important aspects of the analysis presented in HAK and thereby cast doubt on their conclusions. HAK claim that 18.6 year variations in sea level are predicted by tidal theory, but this is not the case in general and therefore the existence of such variations must be explicitly shown. We calculate the amplitude spectrum of the annual sea level by harmonic analysis and find no significant peaks at the periods claimed by HAK. Next, we used the results given by HAK to reconstruct their decomposition, and formed the residuals by subtracting the decomposition from the original data. We found that a strong variability near 18.6 years in the residuals, showing that the decomposition by HAK overrepresents the variability at this period. This motivated us to redo HAK's analysis following their prescription and we found a seven times lower amplitude for the 18.6 year periodicity than claimed by HAK. Finally, we discuss HAK's mode selection-criteria, based on correlation coefficients of trending series and find them invalid. Therefore, we perform a significance test based on a Monte Carlo technique and conclude that none of the modes identified by HAK are statistically significant.
Wo, Jennifer Y.; Taghian, Alphonse G.; Nguyen, Paul L.; Raad, Rita Abi; Sreedhara, Meera B.A.; Bellon, Jennifer R.; Wong, Julia S.; Gadd, Michele A.; Smith, Barbara L.; Harris, Jay R.
2010-05-01
Purpose: To evaluate the risk of isolated regional nodal failure (RNF) among women with invasive breast cancer treated with breast-conserving surgery (BCS) and radiation therapy (RT) and to determine factors, including biological subtype, associated with RNF. Methods and Materials: We retrospectively studied 1,000 consecutive women with invasive breast cancer who received breast-conserving surgery and RT from 1997 through 2002. Ninety percent of patients received adjuvant systemic therapy; none received trastuzumab. Sentinel lymph node biopsy was done in 617 patients (62%). Of patients with one to three positive nodes, 34% received regional nodal irradiation (RNI). Biological subtype classification into luminal A, luminal B, HER-2, and basal subtypes was based on estrogen receptor status-, progesterone receptor status-, and HER-2-status of the primary tumor. Results: Median follow-up was 77 months. Isolated RNF occurred in 6 patients (0.6%). On univariate analysis, biological subtype (p = 0.0002), lymph node involvement (p = 0.008), lymphovascular invasion (p = 0.02), and Grade 3 histology (p = 0.01) were associated with significantly higher RNF rates. Compared with luminal A, the HER-2 (p = 0.01) and basal (p = 0.08) subtypes were associated with higher RNF rates. The 5-year RNF rate among patients with one to three positive nodes treated with tangents alone was 2.4%; we could not identify a subset of these patients with a substantial risk of RNF. Conclusions: Isolated RNF is a rare occurrence after breast-conserving therapy. Patients with the HER-2 (not treated with trastuzumab) and basal subtypes appear to be at higher risk of developing RNF although this risk is not high enough to justify the addition of RNI. Low rates of RNF in patients with one to three positive nodes suggest that tangential RT without RNI is reasonable in most patients.
Zhang Yujing; Oh, Julia L.; Whitman, Gary J.
2010-07-15
Purpose: To investigate the incidence and local control of internal mammary lymph node metastases (IMN+) in patients with clinical N2 or N3 locally advanced breast cancer. Methods and Materials: We retrospectively reviewed the records of 809 breast cancer patients diagnosed with advanced nodal disease (clinical N2-3) who received radiation treatment at our institution from January 2000 December 2006. Patients were considered IMN+ on the basis of imaging studies. Results: We identified 112 of 809 patients who presented with IMN+ disease (13.8%) detected on ultrasound, computed tomography (CT), positron emission tomography/CT (PET/CT), and/or magnetic resonance imaging (MRI) studies. All 112 patients with IMN+ disease received anthracycline and taxane-based chemotherapy. Neoadjuvant chemotherapy (NCT) resulted in a complete response (CR) on imaging studies of IMN disease in 72.1% of patients. Excluding 16 patients with progressive disease, 96 patients received adjuvant radiation to the breast or the chest wall and the regional lymphatics including the IMN chain with a median dose of 60 Gy if the internal mammary lymph nodes normalized after chemotherapy and 66 Gy if they did not. The median follow-up of surviving patients was 41 months (8-118 months). For the 96 patients able to complete curative therapy, the actuarial 5-year IMN control rate, locoregional control, overall survival, and disease-free survival were 89%, 80%, 76%, and 56%. Conclusion: Over ten percent of patients with advanced nodal disease will have IMN metastases on imaging studies. Multimodality therapy including IMN irradiation achieves excellent rates of control in the IMN region and a DFS of more than 50% after curative treatment.
The nodal count {0,1,2,3,…} implies the graph is a tree
Band, Ram
2014-01-01
Sturm's oscillation theorem states that the nth eigenfunction of a Sturm–Liouville operator on the interval has n−1 zeros (nodes) (Sturm 1836 J. Math. Pures Appl. 1, 106–186; 373–444). This result was generalized for all metric tree graphs (Pokornyĭ et al. 1996 Mat. Zametki 60, 468–470 (doi:10.1007/BF02320380); Schapotschnikow 2006 Waves Random Complex Media 16, 167–178 (doi:10.1080/1745530600702535)) and an analogous theorem was proved for discrete tree graphs (Berkolaiko 2007 Commun. Math. Phys. 278, 803–819 (doi:10.1007/S00220-007-0391-3); Dhar & Ramaswamy 1985 Phys. Rev. Lett. 54, 1346–1349 (doi:10.1103/PhysRevLett.54.1346); Fiedler 1975 Czechoslovak Math. J. 25, 607–618). We prove the converse theorems for both discrete and metric graphs. Namely if for all n, the nth eigenfunction of the graph has n−1 zeros, then the graph is a tree. Our proofs use a recently obtained connection between the graph's nodal count and the magnetic stability of its eigenvalues (Berkolaiko 2013 Anal. PDE 6, 1213–1233 (doi:10.2140/apde.2013.6.1213); Berkolaiko & Weyand 2014 Phil. Trans. R. Soc. A 372, 20120522 (doi:10.1098/rsta.2012.0522); Colin de Verdière 2013 Anal. PDE 6, 1235–1242 (doi:10.2140/apde.2013.6.1235)). In the course of the proof, we show that it is not possible for all (or even almost all, in the metric case) the eigenvalues to exhibit a diamagnetic behaviour. In addition, we develop a notion of ‘discretized’ versions of a metric graph and prove that their nodal counts are related to those of the metric graph. PMID:24344337
Majorana vortex-bound states in three-dimensional nodal noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Chang, Po-Yao; Matsuura, Shunji; Schnyder, Andreas P.; Ryu, Shinsei
2014-11-01
Noncentrosymmetric superconductors (NCSs), characterized by antisymmetric spin-orbit coupling and a mixture of spin-singlet and spin-triplet pairing components, are promising candidate materials for topological superconductivity. An important hallmark of topological superconductors is the existence of protected zero-energy states at surfaces or in vortex cores. Here we investigate Majorana vortex-bound states in three-dimensional nodal and fully gapped NCSs by combining analytical solutions of Bogoliubov-de Gennes (BdG) equations in the continuum with exact diagonalization of BdG Hamiltonians. We show that depending on the crystal point-group symmetries and the topological properties of the bulk Bogoliubov-quasiparticle wave functions, different types of zero-energy Majorana modes can appear inside the vortex core. We find that for nodal NCSs with tetragonal point group C4 v the vortex states are dispersionless along the vortex line, forming one-dimensional Majorana flat bands, while for NCSs with D4 point-group symmetry the vortex modes are helical Majorana states with a linear dispersion along the vortex line. NCSs with monoclinic point group C2, on the other hand, do not exhibit any zero-energy vortex-bound states. We show that in the case of the C4 v (D4) point group the stability of these Majorana zero modes is guaranteed by a combination of reflection (π rotation), time-reversal, and particle-hole symmetry. Considering continuous deformations of the quasiparticle spectrum in the presence of vortices, we show that the flat-band vortex-bound states of C4 v point-group NCSs can be adiabatically connected to the dispersionless vortex-bound states of time-reversal symmetric Weyl superconductors. Experimental implications of our results for thermal transport and tunneling measurements are discussed.
Wolff, Sebastian; Bucher, Christian
2013-01-01
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in
Nodal upstaging during lung cancer resection is associated with surgical approach
Martin, Jeremiah T.; Durbin, Eric B.; Chen, Li; Gal, Tamas; Mahan, Angela; Ferraris, Victor; Zwischenberger, Joseph
2015-01-01
Background Recent reports demonstrate that thoracoscopic lobectomy for lung cancer may be associated with lower rates of surgical upstaging. We queried a state-wide cancer registry for differences in upstaging rates and survival by surgical approach. Methods The Kentucky Cancer Registry (KCR) collects data, including centralized pathology reporting, on cancer patients treated statewide. We performed a retrospective review from 2010-2012 to examine clinical and pathologic stage. We assessed rates of upstaging and whether or not the surgical approach, thoracotomy (THOR) versus minimally invasive techniques (VATS), had an impact on final pathologic stage and survival. Results The KCR database from 2010 to 2012 contained information on 2830 lung cancer cases, 1964 having THOR and 500 having VATS resections. Preoperatively, 36.4% of THOR were clinically stage 1a vs. 47.4% % VATS (p=0.0002). Of these, final pathologic stage remained stage 1a in 30.5% of THOR and 38.0% of VATS (p=0.0002). The overall nodal upstaging rate for THOR was 9.9% and 4.8% for VATS (p=0.002). There was decreased nodal upstaging with VATS, independent of tumor size and extent of resection (OR 0.6, 95% CI 0.387-0.985, p=0.04). However there was improved survival with VATS compared with THOR (HR 0.733, 95% CI 0.592-0.907, p = 0.0042). Conclusions Consistent with other reports, we demonstrate a lower upstaging rate with VATS. Nevertheless, there is a survival advantage in VATS patients. Although selection bias may play a role in these observed differences, the improved quality of life measures associated with VATS, may explain survival improvement despite lower surgical upstaging. PMID:26428690
Risk factor analysis for central nodal metastasis in papillary thyroid carcinoma.
Mao, Ling-Na; Wang, Ping; Li, Zhi-Yu; Wang, Yong; Song, Zheng-Ya
2015-01-01
Lymph node involvement is associated with recurrence in papillary thyroid carcinoma (PTC). The central neck compartment (level VI) lymph nodes are at the greatest risk of metastases from PTC, but the role of central neck dissection (CND) remains controversial, particularly in PTC without clinical cervical lymph node metastasis (cN0). The present study aimed to identify risk factors of central cervical nodal metastasis and the safety of CND in patients with cN0 PTC. The current study retrospectively investigated 389 patients who had been followed up for 12.0-25.5 months after surgery, and were divided into positive or negative lymph node involvement groups according to the pathological results subsequent to this surgery. Univariate and multivariate analyses were used to study the risk factor of central node involvement. The mean tumor size was 0.71±0.35 cm (range, 0.1-2.0 cm). There was no significant difference in the rate of central lymph node involvement based on age (<45 or ≥45 years) or tumor focality (unifocal or multifocal). However, there were significant differences based on gender, extra-thyroid invasion and tumor size (P<0.05). The incidence of transient hypoparathyroidism and transient vocal cord paralysis following CND was 12.34 and 4.11%, respectively. No patient experienced permanent hypoparathyroidism or vocal cord paralysis. One patient (1/389; 0.23%) experienced disease recurrence during the follow-up. A larger tumor size and the male gender were significantly associated with the central nodal metastasis rate for cN0 PTC with a tumor size of <2.0 cm. CND for cN0 PTC patients was safe and the tumor-associated recurrence rate following CND plus total thyroidectomy was low. The present study suggests that CND should be conducted for male cN0 PTC patients with a larger tumor size (≥0.5 cm).
On Unified Mode in Grid Mounted Round Jets
NASA Astrophysics Data System (ADS)
Parimalanathan, Senthil Kumar; T, Sundararajan; v, Raghavan
2015-11-01
The turbulence evolution in a free round jet is strongly affected by its initial conditions. Since the transition to turbulence is moderated by instability modes, the initial conditions seem to play a major role in altering the dynamics of these modes. In the present investigation, grids of different configurations are placed at the jet nozzle exit and the flow field characterization is carried out using a bi-component hot-wire anemometer. The instability modes has been obtained by analyzing the velocity spectral data. Free jets are characterized by the presence of two instability modes, viz., the preferred mode and the shear mode. The preferred mode corresponds to the most amplified oscillations along the jet centerline, while the shear modes are due to the dynamic evolution of vortical structures in the jet shear layer. The presence of grid clearly alters the jet structure, and plays a major role in altering the shear layer mode in particular. In fact, it is observed that close to the nozzle exit, the presence of grids deviate the streamlines inwards around the edge due to the momentum difference between the jet central core and the boundary layer region near the wall. This result in a single unified mode, where there is no distinct preferred or shear mode. This phenomena is more dominant in case of the grids having higher blockage ratio with small grid opening. In the present study, investigation of the physics behind the evolution of unified mode and how the grids affect the overall turbulent flow field evolution has been reported. Experimental Fluid Mechanics.
AstroGrid-D: Grid technology for astronomical science
NASA Astrophysics Data System (ADS)
Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve
2011-02-01
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon
2014-01-01
Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic
Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon
2014-01-01
Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and
NASA Technical Reports Server (NTRS)
Zheng, H. Q.; Staehelin, L. A.
2001-01-01
The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.
Impact of FDG-PET/CT Imaging on Nodal Staging for Head-And-Neck Squamous Cell Carcinoma
Murakami, Ryuji . E-mail: murakami@kaiju.medic.kumamoto-u.ac.jp; Uozumi, Hideaki; Hirai, Toshinori; Nishimura, Ryuichi; Shiraishi, Shinya; Ota, Kazutoshi D.D.S.; Murakami, Daizo; Tomiguchi, Seiji; Oya, Natsuo; Katsuragawa, Shigehiko; Yamashita, Yasuyuki
2007-06-01
Purpose: To evaluate the impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging on nodal staging for head-and-neck squamous cell carcinoma (SCC). Methods and Materials: The study population consisted of 23 patients with head-and-neck SCC who were evaluated with FDG-PET/CT and went on to neck dissection. Two observers consensually determined the lesion size and maximum standardized uptake value (SUV{sub max}) and compared the results with pathologic findings on nodal-level involvement. Two different observers (A and B) independently performed three protocols for clinical nodal staging. Methods 1, 2, and 3 were based on conventional modalities, additional visual information from FDG-PET/CT images, and FDG-PET/CT imaging alone with SUV data, respectively. Results: All primary tumors were visualized with FDG-PET/CT. Pathologically, 19 positive and 93 negative nodal levels were identified. The SUV{sub max} overlapped in negative and positive nodes <15 mm in diameter. According to receiver operating characteristics analysis, the size-based SUV{sub max} cutoff values were 1.9, 2.5, and 3.0 for lymph nodes <10 mm, 10-15 mm, and >15 mm, respectively. These cutoff values yielded 79% sensitivity and 99% specificity for nodal-level staging. For Observer A, the sensitivity and specificity in Methods 1, 2, and 3 were 68% and 94%, 68% and 99%, and 84% and 99%, respectively, and Method 3 yielded significantly higher accuracy than Method 1 (p = 0.0269). For Observer B, Method 3 yielded the highest sensitivity (84%) and specificity (99%); however, the difference among the three protocols was not statistically significant. Conclusion: Imaging with FDG-PET/CT with size-based SUV{sub max} cutoff values is an important modality for radiation therapy planning.
Dirix, Piet; Vandecaveye, Vincent; De Keyzer, Frederik; Op de beeck, Katya; Poorten, Vincent Vander; Delaere, Pierre; Verbeken, Eric; Hermans, Robert; Nuyts, Sandra
2010-03-01
Purpose: To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. Methods and Materials: Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. Results: A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. Conclusions: These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.
Barbuti, Andrea; Robinson, Richard B
2015-01-01
Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents. All such applications require reasonably efficient methods for selecting or enriching the "nodal-like" cells, however, which in turn depends on first defining what constitutes a nodal-like cell since not all pacemaking cells are necessarily of nodal lineage. This review discusses the current state of the field in terms of characterizing sinoatrial-like cardiomyocytes derived from embryonic and induced pluripotent stem cells, markers that might be appropriate based on the current knowledge of the gene program leading to sinoatrial node development, what functional characteristics might be expected and desired based on studies of the sinoatrial node, and recent efforts at enrichment and selection of nodal-like cells.
Algebraic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1991-01-01
An efficient computer program called GRID2D/3D has been developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2D and 3D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation. The distribution of grid points within the spatial domain is controlled by stretching functions and grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For 2D spatial domains the boundary curves are constructed by using either cubic or tension spline interpolation. For 3D spatial domains the boundary surfaces are constructed by using a new technique, developed in this study, referred to as 3D bidirectional Hermite interpolation.
Ion beamlet vectoring by grid translation
NASA Technical Reports Server (NTRS)
Homa, J. M.; Wilbur, P. J.
1982-01-01
Ion beamlet vectoring is investigated by collecting deflection and divergence angle data for two-grid systems as a function of the relative displacement of these grids. Results show that at large displacements, accelerator grid impingement becomes a limiting factor and this determines the useful range of beamlet deflection. Beamlet deflection was shown to vary linearly with grid offset angle over this range. Values of deflection-to-offset angle ratio and useful range of deflection are presented as functions of grid-hole geometries, perveance levels, and accelerating voltages. It is found that the divergence of the beamlets is unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished-grid ion thruster are examined to determine where over the grid surface the grid offsets exceed the useful range, which indicates the regions on the surface where high accelerator grid impingment is probably occurring.
National Institute of Standards and Technology Data Gateway
SRD 114 Diatomic Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.
National Institute of Standards and Technology Data Gateway
SRD 115 Hydrocarbon Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.
1987-01-01
This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.
National Institute of Standards and Technology Data Gateway
SRD 117 Triatomic Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.
Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)
2016-04-01
This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.
Katz, Jessica; Cochran, Jaquelin
2015-05-27
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.
White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid
NASA Technical Reports Server (NTRS)
Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn
1996-01-01
A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.
The chain collocation method: A spectrally accurate calculus of forms
NASA Astrophysics Data System (ADS)
Rufat, Dzhelil; Mason, Gemma; Mullen, Patrick; Desbrun, Mathieu
2014-01-01
Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces of piecewise polynomial basis functions for differential forms. Yet, in many problems where solutions are smoothly varying in space, a spectral numerical treatment is called for. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectangular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus (DEC), with resulting computational tools extending well-known collocation-based spectral methods. Its efficient implementation using fast Fourier transforms is provided as well.
Recovering pointwise values of discontinuous data within spectral accuracy
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Tadmor, E.
1985-01-01
The pointwise values of a function, f(x), can be accurately recovered either from its spectral or pseudospectral approximations, so that the accuracy solely depends on the local smoothness of f in the neighborhood of the point x. Most notably, given the equidistant function grid values, its intermediate point values are recovered within spectral accuracy, despite the possible presence of discontinuities scattered in the domain. (Recall that the usual spectral convergence rate decelerates otherwise to first order, throughout). To this end, a highly oscillatory smoothing kernel is employed in contrast to the more standard positive unit-mass mollifiers. In particular, post-processing of a stable Fourier method applied to hyperbolic equations with discontinuous data, recovers the exact solution modulo a spectrally small error. Numerical examples are presented.
Smart Grid Information Clearinghouse (SGIC)
Rahman, Saifur
2014-08-31
Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects
Power grid reliability and security
Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid
2015-01-31
This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.
NASA Astrophysics Data System (ADS)
Quine, Brendan M.; Abrarov, Sanjar M.; Jagpal, Raj K.
2014-06-01
In our recent publication, we proposed the application of the spectrally integrated Voigt function (SIVF) to a line-by-line (LBL) radiative transfer modelling1. We applied the GENSPECT LBL radiative transfer model that utilizes the HITRAN database to generate synthetic spectral data due to thermal or solar radiation of the Earth or planetary atmosphere2. It has been shown that the SIVF methodology enables the computation of a LBL radiative transfer at reduced spectral resolution model without loss in accuracy. In contrast to the traditional method of computation, the SIVF implementation accounts for the area under the Voigt function between adjacent grid points resulting in well-preserved shape of a spectral radiance even at low spectral resolution. This significant advantage of the SIVF methodology can be applied in the rapid retrieval of the space observation data, required for real-time control and decision making in future generation of the Argus3 remote-sensing microspectrometers. The spectrally integrated methodology can be generalized to other linebroadening profiles, such as Galatry, Rautian-Sobelman or speed dependent profiles, to prevent underestimation of the spectral radiance that always occurs at reduced spectral resolution1 in any LBL radiative transfer model using a traditional method of computation.
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
Shaitelman, Simona F.; Tereffe, Welela; Dogan, Basak E.; Hess, Kenneth R.; Caudle, Abigail S.; Valero, Vicente; Stauder, Michael C.; Krishnamurthy, Savitri; Candelaria, Rosalind P.; Strom, Eric A.; Woodward, Wendy A.; Hunt, Kelly K.; Buchholz, Thomas A.; Whitman, Gary J.
2015-09-01
Purpose: We sought to determine the rate at which regional nodal ultrasonography would increase the nodal disease stage in patients with triple-negative breast cancer (TNBC) beyond the clinical stage determined by physical examination and mammography alone, and significantly affect the treatments delivered to these patients. Methods and Materials: We retrospectively reviewed the charts of women with stages I to III TNBC who underwent physical examination, mammography, breast and regional nodal ultrasonography with needle biopsy of abnormal nodes, and definitive local-regional treatment at our institution between 2004 and 2011. The stages of these patients' disease with and without ultrasonography of the regional nodal basins were compared using the Pearson χ{sup 2} test. Definitive treatments of patients whose nodal disease was upstaged on the basis of ultrasonographic findings were compared to those of patients whose disease stage remained the same. Results: A total of 572 women met the study requirements. In 111 (19.4%) of these patients, regional nodal ultrasonography with needle biopsy resulted in an increase in disease stage from the original stage by physical examination and mammography alone. Significantly higher percentages of patients whose nodal disease was upstaged by ultrasonographic findings compared to that in patients whose disease was not upstaged underwent neoadjuvant systemic therapy (91.9% and 51.2%, respectively; P<.0001), axillary lymph node dissection (99.1% and 34.5%, respectively; P<.0001), and radiation to the regional nodal basins (88.2% and 29.1%, respectively; P<.0001). Conclusions: Regional nodal ultrasonography in TNBC frequently changes the initial clinical stage and plays an important role in treatment planning.
NASA Astrophysics Data System (ADS)
Stiller, Jörg
2016-12-01
We present a polynomial multigrid method for nodal interior penalty and local discontinuous Galerkin formulations of the Poisson equation on Cartesian grids. For smoothing we propose two classes of overlapping Schwarz methods. The first class comprises element-centered and the second face-centered methods. Within both classes we identify methods that achieve superior convergence rates, prove robust with respect to the mesh spacing and the polynomial order, at least up to P = 32. Consequent structure exploitation yields a computational complexity of O (PN), where N is the number of unknowns. Further we demonstrate the suitability of the face-centered method for element aspect ratios up to 32.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Energy Regulatory Commission Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010. 1. The Energy Independence and Security Act of... interoperability of smart grid devices and systems, including protocols and model standards for...
TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide
NASA Technical Reports Server (NTRS)
Miller, David P.
1994-01-01
A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.
Schopf, Jennifer M.; Nitzberg, Bill
2002-01-01
The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less
Anisotropic grid adaptation in LES
NASA Astrophysics Data System (ADS)
Toosi, Siavash; Larsson, Johan
2016-11-01
The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.
TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION
NASA Technical Reports Server (NTRS)
Smith, R. E.
1994-01-01
TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.
Spectral Graph Theory Analysis of Software-Defined Networks to Improve Performance and Security
2015-09-01
networks for transmission operations in smart grids,” in the Proc. IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, 2013. [34] D...GRAPH THEORY ANALYSIS OF SOFTWARE-DEFINED NETWORKS TO IMPROVE PERFORMANCE AND SECURITY by Thomas C. Parker September 2015 Dissertation Co...September 2015 3. REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE SPECTRAL GRAPH THEORY ANALYSIS OF SOFTWARE-DEFINED NETWORKS
Grid for Earth Science Applications
NASA Astrophysics Data System (ADS)
Petitdidier, Monique; Schwichtenberg, Horst
2013-04-01
The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to
Scientific Computing on the Grid
Allen, Gabrielle; Seidel, Edward; Shalf, John
2001-12-12
Computer simulations are becoming increasingly important as the only means for studying and interpreting the complex processes of nature. Yet the scope and accuracy of these simulations are severely limited by available computational power, even using today's most powerful supercomputers. As we endeavor to simulate the true complexity of nature, we will require much larger scale calculations than are possible at present. Such dynamic and large scale applications will require computational grids and grids require development of new latency tolerant algorithms, and sophisticated code frameworks like Cactus to carry out more complex and high fidelity simulations with a massive degree of parallelism.
DARHT Radiographic Grid Scale Correction
Warthen, Barry J.
2015-02-13
Recently it became apparent that the radiographic grid which has been used to calibrate the dimensional scale of DARHT radiographs was not centered at the location where the objects have been centered. This offset produced an error of 0.188% in the dimensional scaling of the radiographic images processed using the assumption that the grid and objects had the same center. This paper will show the derivation of the scaling correction, explain how new radiographs are being processed to account for the difference in location, and provide the details of how to correct radiographic image processed with the erroneous scale factor.
GENI: Grid Hardware and Software
2012-01-09
GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.
IGB grid: User's manual (A turbomachinery grid generation code)
NASA Technical Reports Server (NTRS)
Beach, T. A.; Hoffman, G.
1992-01-01
A grid generation code called IGB is presented for use in computational investigations of turbomachinery flowfields. It contains a combination of algebraic and elliptic techniques coded for use on an interactive graphics workstation. The instructions for use and a test case are included.
Spectral element discontinuous Galerkin simulations for wake potential calculations : NEKCEM.
Min, M.; Fischer, P. F.; Chae, Y.-C.
2008-01-01
In this paper we present high-order spectral element discontinuous Galerkin simulations for wake field and wake potential calculations. Numerical discretizations are based on body-conforming hexagonal meshes on Gauss-Lobatto-Legendre grids. We demonstrate wake potential profiles for cylindrically symmetric cavity structures in 3D, including the cases for linear and quadratic transitions between two cross sections. Wake potential calculations are carried out on 2D surfaces for various bunch sizes.
Constructing Polynomial Spectral Models for Stars
NASA Astrophysics Data System (ADS)
Rix, Hans-Walter; Ting, Yuan-Sen; Conroy, Charlie; Hogg, David W.
2016-08-01
Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abundances. Simultaneous fitting of these { N } ˜ 10-40 model labels to observed spectra has been deemed unfeasible because the number of ab initio spectral model grid calculations scales exponentially with { N }. We suggest instead the construction of a polynomial spectral model (PSM) of order { O } for the model flux at each wavelength. Building this approximation requires a minimum of only ≤ft(≥nfrac{}{}{0em}{}{{ N }+{ O }}{{ O }}\\right) calculations: e.g., a quadratic spectral model ({ O }=2) to fit { N }=20 labels simultaneously can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat larger number (˜300-1000) of randomly chosen models lead to a better performing PSM. Such a PSM can be a good approximation only over a portion of label space, which will vary case-by-case. Yet, taking the APOGEE survey as an example, a single quadratic PSM provides a remarkably good approximation to the exact ab initio spectral models across much of this survey: for random labels within that survey the PSM approximates the flux to within 10-3 and recovers the abundances to within ˜0.02 dex rms of the exact models. This enormous speed-up enables the simultaneous many-label fitting of spectra with computationally expensive ab initio models for stellar spectra, such as non-LTE models. A PSM also enables the simultaneous fitting of observational parameters, such as the spectrum’s continuum or line-spread function.
Commission 45: Spectral Classification
NASA Astrophysics Data System (ADS)
Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta
This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.
Temporal Lorentzian spectral triples
NASA Astrophysics Data System (ADS)
Franco, Nicolas
2014-09-01
We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.
MrGrid: A Portable Grid Based Molecular Replacement Pipeline
Reboul, Cyril F.; Androulakis, Steve G.; Phan, Jennifer M. N.; Whisstock, James C.; Goscinski, Wojtek J.; Abramson, David; Buckle, Ashley M.
2010-01-01
Background The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. Methodology/Principal Findings MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. Conclusions MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success. PMID:20386612
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
Adaptive spectral doppler estimation.
Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt
2009-04-01
In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.
Thermophotovoltaic Spectral Control
DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman
2004-06-09
Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.
1998-08-01
Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.
Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.
Jeewajee, A; Barry, C; O'Keefe, J; Burgess, N
2008-01-01
The oscillatory interference model (Burgess et al. (2007) Hippocampus 17:801-812) explains the generation of spatially stable, regular firing patterns by medial entorhinal cortical (mEC) grid cells in terms of the interference between velocity-controlled oscillators (VCOs) with different preferred directions. This model predicts specific relationships between the intrinsic firing frequency and spatial scale of grid cell firing, the EEG theta frequency, and running speed (Burgess,2008). Here, we use spectral analyses of EEG and of spike autocorrelograms to estimate the intrinsic firing frequency of grid cells, and the concurrent theta frequency, in mEC Layer II in freely moving rats. The intrinsic firing frequency of grid cells increased with running speed and decreased with grid scale, according to the quantitative prediction of the model. Similarly, theta frequency increased with running speed, which was also predicted by the model. An alternative Moiré interference model (Blair et al.,2007) predicts a direction-dependent variation in intrinsic firing frequency, which was not found. Our results suggest that interference between VCOs generates the spatial firing patterns of entorhinal grid cells according to the oscillatory interference model. They also provide specific constraints on this model of grid cell firing and have more general implications for viewing neuronal processing in terms of interfering oscillatory processes.
Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors
NASA Astrophysics Data System (ADS)
Wachtel, Gideon; Kim, Yong Baek
2016-09-01
Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-05-06
Therapeutic approaches for "sick sinus syndrome" rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via "biological pacemakers" derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300-400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro.
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-01-01
Summary Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. PMID:24936448
FermiGrid - experience and future plans
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab
2007-09-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.
The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific
NASA Astrophysics Data System (ADS)
McKinnell, Stewart M.; Crawford, William R.
2007-02-01
The 18.6-year lunar nodal cycle (LNC) is a significant feature of winter (January) air and sea temperatures along the North American west coast over a 400-year period. Yet much of the recent temperature variation can also be explained by wind patterns associated with the PNA teleconnection. At Sitka, Alaska, (57°N) and nearby stations in northern British Columbia, the January PNA index accounts for over 70% of average January air temperatures in lengthy meteorological records. It appears that the LNC signal in January air temperatures in this region is not independent of the PNA, but is a component of it. The Sitka air temperature record, along with SSTs along the British Columbia coast and the PNA index have significant cross-correlations with the LNC that appear at a 2-year lag, LNC leading. The influence of the PNA pattern declines in winter with decreasing latitude but the LNC component does not. It appears as a significant feature of long-term SST variation at Scripps Pier and the California Current System. The LNC also appears over centennial-scales in proxy temperatures along western North America. The linkage of LNC-moderated surface temperatures to processes involving basin-scale teleconnections expands the possibility that the proximate mechanism may be located remotely from its expression in the northeast Pacific. Some of the largest potential sources of a diurnal tidal signal in the atmosphere are located in the western Pacific; the Sea of Okhotsk and the Indonesian archipelago.
CD20-Positive nodal natural killer/T-cell lymphoma with cutaneous involvement.
Tsai, Yi-Chiun; Chen, Chi-Kuan; Wu, Yu-Hung
2015-09-01
CD20-positive natural killer (NK)/T-cell lymphoma is extremely rare. We describe a case of a CD20-positive nodal NK/T-cell lymphoma with cutaneous involvement in a 32-year-old man. The patient presented with fever, night sweats, right inguinal lymphadenopathy and multiple violaceous to erythematous nodules and plaques on the back and bilateral legs. Immunohistochemical analysis showed diffusely and strongly positive staining for CD3, CD3 epsilon, CD43, CD56, TIA-1 and CD20 but negative staining for other B-cell markers, including CD79a and PAX-5 and T-cell markers CD5 and CD7. The tumor cell nuclei were diffusely positive for Epstein-Barr virus-encoded RNA in situ hybridization. A partial clinical response was observed after chemotherapy, indicated by the decreased size of the lymph nodes and skin lesions. It is a diagnostic challenge to deal with lymphoma cells that present with the surface proteins of both T- and B-cells.
Identification of cell-type-specific mutations in nodal T-cell lymphomas
Nguyen, T B; Sakata-Yanagimoto, M; Asabe, Y; Matsubara, D; Kano, J; Yoshida, K; Shiraishi, Y; Chiba, K; Tanaka, H; Miyano, S; Izutsu, K; Nakamura, N; Takeuchi, K; Miyoshi, H; Ohshima, K; Minowa, T; Ogawa, S; Noguchi, M; Chiba, S
2017-01-01
Recent genetic analysis has identified frequent mutations in ten-eleven translocation 2 (TET2), DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 2 (IDH2) and ras homolog family member A (RHOA) in nodal T-cell lymphomas, including angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. We examined the distribution of mutations in these subtypes of mature T-/natural killer cell neoplasms to determine their clonal architecture. Targeted sequencing was performed for 71 genes in tumor-derived DNA of 87 cases. The mutations were then analyzed in a programmed death-1 (PD1)-positive population enriched with tumor cells and CD20-positive B cells purified by laser microdissection from 19 cases. TET2 and DNMT3A mutations were identified in both the PD1+ cells and the CD20+ cells in 15/16 and 4/7 cases, respectively. All the RHOA and IDH2 mutations were confined to the PD1+ cells, indicating that some, including RHOA and IDH2 mutations, being specific events in tumor cells. Notably, we found that all NOTCH1 mutations were detected only in the CD20+ cells. In conclusion, we identified both B- as well as T-cell-specific mutations, and mutations common to both T and B cells. These findings indicate the expansion of a clone after multistep and multilineal acquisition of gene mutations. PMID:28157189