Spectral methods on arbitrary grids
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David
1995-01-01
Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.
A nodal triangle-based spectral element method for the shallow water equations on the sphere
NASA Astrophysics Data System (ADS)
Giraldo, F. X.; Warburton, T.
2005-07-01
A nodal triangle-based spectral element (SE) method for the shallow water equations on the sphere is presented. The original SE method uses quadrilateral elements and high-order nodal Lagrange polynomials, constructed from a tensor-product of the Legendre-Gauss-Lobatto points. In this work, we construct the high-order Lagrange polynomials directly on the triangle using nodal sets obtained from the electrostatics principle [J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM Journal on Numerical Analysis 35 (1998) 655-676] and Fekete points [M.A. Taylor, B.A. Wingate, R.E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM Journal on Numerical Analysis 38 (2000) 1707-1720]. These points have good approximation properties and far better Lebesgue constants than any other nodal set derived for the triangle. By employing triangular elements as the basic building-blocks of the SE method and the Cartesian coordinate form of the equations, we can use any grid imaginable including adaptive unstructured grids. Results for six test cases are presented to confirm the accuracy and stability of the method. The results show that the triangle-based SE method yields the expected exponential convergence and that it can be more accurate than the quadrilateral-based SE method even while using 30-60% fewer grid points especially when adaptive grids are used to align the grid with the flow direction. However, at the moment, the quadrilateral-based SE method is twice as fast as the triangle-based SE method because the latter does not yield a diagonal mass matrix.
Numerical aspects of spectral segmentation on polygonal grids
Matsekh, Anna; Skurikhin, Alexei; Prasad, Lakshman; Rosten, Edward
2010-01-01
The authors analyze numerical behavior of the spectral graph partitioning problem arising in the Normalized Cuts formulation of the image segmentation problem on polygonal grids. They make an observation that in the presence of rounding errors the eigenvector corresponding to the k-th smallest eigenvalue of the generalized graph Laplacian should contain more than k nodal domains that represent coherent segments in the image. As the result, the eigenvector corresponding to the trivial solution carries a wealth of information about the nodal domains in the image and can be used as an initial guess for the Krylov subspace eigensolver, while the computed eigenvector subspace, corresponding to just a few of the lowest eigenvalues of the graph Laplacian, will contain sufficient information for obtaining meaningful segmentation.
Spectral Topography Generation for Arbitrary Grids
NASA Astrophysics Data System (ADS)
Oh, T. J.
2015-12-01
A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell, C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cutting of potato (Solanum tuberosum) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamp (LPS/CWF). Results suggested that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
Normal State Spectral Lineshapes of Nodal Quasiparticles in Single Layer Bi2201 Superconductor
Lanzara, A.
2010-04-30
A detailed study of the normal state photoemission lineshapes and quasiparticle dispersion for the single layer Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}(Bi2201) superconductor is presented. We report the first experimental evidence of a double peak structure and a dip of spectral intensity in the energy distribution curves (EDCs) along the nodal direction. The double peak structure is well identified in the normal state, up to ten times the critical temperature. As a result of the same self-energy effect, a strong mass renormalization of the quasiparticle dispersion, i.e. kink, and an increase of the quasiparticle lifetime in the normal state are also observed. Our results provide unambiguous evidence on the existence of bosonic excitation in the normal state, and support a picture where nodal quasiparticles are strongly coupled to the lattice.
SLGRID: spectral synthesis software in the grid
NASA Astrophysics Data System (ADS)
Sabater, J.; Sánchez, S.; Verdes-Montenegro, L.
2011-11-01
SLGRID (http://www.e-ciencia.es/wiki/index.php/Slgrid) is a pilot project proposed by the e-Science Initiative of Andalusia (eCA) and supported by the Spanish e-Science Network in the frame of the European Grid Initiative (EGI). The aim of the project was to adapt the spectral synthesis software Starlight (Cid-Fernandes et al. 2005) to the Grid infrastructure. Starlight is used to estimate the underlying stellar populations (their ages and metallicities) using an optical spectrum, hence, it is possible to obtain a clean nebular spectrum that can be used for the diagnostic of the presence of an Active Galactic Nucleus (Sabater et al. 2008, 2009). The typical serial execution of the code for big samples of galaxies made it ideal to be integrated into the Grid. We obtain an improvement on the computational time of order N, being N the number of nodes available in the Grid. In a real case we obtained our results in 3 hours with SLGRID instead of the 60 days spent using Starlight in a PC. The code has already been ported to the Grid. The first tests were made within the e-CA infrastrusture and, later, itwas tested and improved with the colaboration of the CETA-CIEMAT. The SLGRID project has been recently renewed. In a future it is planned to adapt the code for the reduction of data from Integral Field Units where each dataset is composed of hundreds of spectra. Electronic version of the poster at http://www.iaa.es/~jsm/SEA2010
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
2004-01-01
A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
Wilson, D A; Weigel, R C; Wheeler, R M; Sager, J C
1993-01-01
The effect of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For all cultivars, stem lengths after 4 wk were longest under LPS, followed by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number of axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred with LPS or LPS/CWF lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality. PMID:11538010
A stabilised nodal spectral element method for fully nonlinear water waves
NASA Astrophysics Data System (ADS)
Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.
2016-08-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. A discussion on the Discontinuous Spectral Difference (SD) Method, locations of the unknowns and flux points and numerical results are also presented.
Multi-Dimensional Spectral Difference Method for Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
2005-01-01
A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. It combines the best features of structured and unstructured grid methods to attain computational efficiency and geometric flexibility; it utilizes the concept of discontinuous and high-order local representations to achieve conservation and high accuracy; and it is based on the finite-difference formulation for simplicity. Universal reconstructions are obtained by distributing unknowns in a geometrically similar manner for all unstructured cells. Placements of the unknown and flux points with various order of accuracy are given for the line, triangular and tetrahedral elements. The data structure of the new method permits an optimum use of cache memory, resulting in further computational efficiency on modern computers. A new pointer system is developed that reduces memory requirements and simplifies programming for any order of accuracy. Numerical solutions are presented and compared with the exact solutions for wave propagation problems in both two and three dimensions to demonstrate the capability of the method. Excellent agreement has been found. The method is simpler and more efficient than previous discontinuous Galerkin and spectral volume methods for unstructured grids.
A spectral element shallow water model on spherical geodesic grids
NASA Astrophysics Data System (ADS)
Giraldo, Francis X.
2001-04-01
The spectral element method for the two-dimensional shallow water equations on the sphere is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements obtained from the generalized icosahedral grid introduced previously (Giraldo FX. Lagrange-Galerkin methods on spherical geodesic grids: the shallow water equations. Journal of Computational Physics 2000; 160: 336-368). The equations are written in Cartesian co-ordinates that introduce an additional momentum equation, but the pole singularities disappear. This paper represents a departure from previously published work on solving the shallow water equations on the sphere in that the equations are all written, discretized, and solved in three-dimensional Cartesian space. Because the equations are written in a three-dimensional Cartesian co-ordinate system, the algorithm simplifies into the integration of surface elements on the sphere from the fully three-dimensional equations. A mapping (Song Ch, Wolf JP. The scaled boundary finite element method - alias consistent infinitesimal finite element cell method - for diffusion. International Journal for Numerical Methods in Engineering 1999; 45: 1403-1431) which simplifies these computations is described and is shown to contain the Eulerian version of the method introduced previously by Giraldo (Journal of Computational Physics 2000; 160: 336-368) for the special case of triangular elements. The significance of this mapping is that although the equations are written in Cartesian co-ordinates, the mapping takes into account the curvature of the high-order spectral elements, thereby allowing the elements to lie entirely on the surface of the sphere. In addition, using this mapping simplifies all of the three-dimensional spectral-type finite element surface integrals because any of the typical two-dimensional planar finite element or spectral element basis functions found in any textbook (for example, Huebner et al
Guba, O.; Taylor, M. A.; Ullrich, P. A.; Overfelt, J. R.; Levy, M. N.
2014-11-27
We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less
Guba, O.; Taylor, M. A.; Ullrich, P. A.; Overfelt, J. R.; Levy, M. N.
2014-06-25
We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity ismore » constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less
Harris, R.; Wang, Z.; Liu, Y.
2007-11-19
An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. For SV interfaces, a quadrature-free approach is compared with the Gauss quadrature approach to further evaluate the accuracy and efficiency. A simplified treatment of curved boundaries is also presented that avoids the need to store a separate reconstruction for each boundary cell. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and non-linear advection equations, and the Euler equations. Several well known inviscid flow test cases are utilized to show the effectiveness of the simplified curved boundary representation.
NASA Astrophysics Data System (ADS)
Harris, Rob; Wang, Z. J.; Liu, Yen
2008-01-01
An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. For SV interfaces, a quadrature-free approach is compared with the Gauss quadrature approach to further evaluate the accuracy and efficiency. A simplified treatment of curved boundaries is also presented that avoids the need to store a separate reconstruction for each boundary cell. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and non-linear advection equations, and the Euler equations. Several well known inviscid flow test cases are utilized to show the effectiveness of the simplified curved boundary representation.
Time-Spectral Rotorcraft Simulations on Overset Grids
NASA Technical Reports Server (NTRS)
Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.
2014-01-01
The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.
NASA Astrophysics Data System (ADS)
Harris, Robert Evan
2008-10-01
An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and nonlinear advection equations, and the Euler equations. The new quadrature-free approach is then extended to handle local adaptive hp-refinement (grid and order refinement). Efficient edge-based adaptation utilizing a binary tree search algorithm is employed. Several different adaptation criteria which focus computational effort near high gradient regions are presented. Both h- and p-refinements are presented in a general framework where it is possible to perform either or both on any grid cell at any time. Several well-known inviscid flow test cases, subjected to various levels of adaptation, are utilized to demonstrate the effectiveness of the method. An analysis of the accuracy and stability properties of the spectral volume (SV) method is then presented. The current work seeks to address the issue of stability, as well as polynomial quality, in the design of SV partitions. A new approach is presented, which efficiently locates stable partitions by means of constrained minimization. Once stable partitions are located, a
MGB and the new Galactic O-Star Spectroscopic Survey spectral classification standard grid
NASA Astrophysics Data System (ADS)
Maíz Apellániz, J.; Alfaro, E. J.; Arias, J. I.; Barbá, R. H.; Gamen, R. C.; Herrero, A.; Leão, J. R. S.; Marco, A.; Negueruela, I.; Simón-Díaz, S.; Sota, A.; Walborn, N. R.
2015-05-01
In this poster we present three developments related to the Galactic O-Star Spectroscopic Survey (http://adsabs.harvard.edu/abs/2011hsa6.conf..467M{GOSSS}). First, we are making public the first version of MGB, an IDL code that allows the user to compare oberved spectra to a grid of spectroscopic standards to measure spectral types, luminosity classes, rotation indexes, and spectral qualifiers. Second, we present the associated grid of standard stars for the spectral types O2 to O9.7, with several improvements over the original GOSSS grid of http://adsabs.harvard.edu/abs/2011ApJS..193...24S {Sota et al. (2011)}. Third, we present a list of egregious classification errors in http://simbad.u-strasbg.fr/simbad/{ SIMBAD}: stars that are or have been listed there as being of O type but that in reality are late-type stars.
A conservative multi-tracer transport scheme for spectral-element spherical grids
NASA Astrophysics Data System (ADS)
Erath, Christoph; Nair, Ramachandran D.
2014-01-01
Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.
Reprint of: A conservative multi-tracer transport scheme for spectral-element spherical grids
NASA Astrophysics Data System (ADS)
Erath, Christoph; Nair, Ramachandran D.
2014-08-01
Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.
2016-06-07
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
Single-grid spectral collocation for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Canuto, Claudio; Maday, Yvon; Metivet, Brigitte
1988-01-01
The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
A spectrally accurate method for overlapping grid solution of incompressible Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Merrill, Brandon E.; Peet, Yulia T.; Fischer, Paul F.; Lottes, James W.
2016-02-01
An overlapping mesh methodology that is spectrally accurate in space and up to third-order accurate in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The ability to decompose a global domain into separate, but overlapping, subdomains eases mesh generation procedures and increases flexibility of modeling flows with complex geometries. The methodology employs implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. The overlapping mesh methodology is thoroughly validated using two-dimensional and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal convergence is documented and is in agreement with the nominal order of accuracy of the solver. The influence of long integration times, as well as inflow-outflow global boundary conditions on the performance of the overlapping grid solver is assessed. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics with the overlapping grids is validated against published available experimental and other computation data. Scaling tests are presented that show near linear strong scaling, even for moderately large processor counts.
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
NASA Astrophysics Data System (ADS)
Fan, X.; Chen, L.; Ma, Z.
2010-12-01
Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.
Menezes, W. A.; Filho, H. A.; Barros, R. C.
2013-07-01
A generalization of the spectral Green's function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S{sub N}) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup slab-geometry S{sub N} problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, presented here is a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method's accuracy. (authors)
Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)
2002-01-01
Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
NASA Astrophysics Data System (ADS)
Su, C.; Seriani, G.
2012-04-01
Many physical problems require the modelling of wave phenomena in media having variable properties, while highly accurate algorithms are needed in order to avoid unphysical effects. Often the property fluctuations may be very high compared to the minimum wavelength, leading to an extremely large problem, since a grid resolution down to the finest scales is required and the much larger wavelength scale of interest cannot be exploited in order to reduce the computational burden. Here, like in multiscale methods, efficiency can be increased only by solving the macroscopic behavior without solving explicitly the microscopic one. Spectral element methods (SEM) have excellent properties of accuracy and flexibility in describing complex models and are used as well for wave modelling. In the standard SEM approach, the computational domain is discretized by using very coarse meshes and constant-property elements, which makes it inappropriate for solving the above mentioned problem. A convenient solution approach is provided by a poly-grid Chebyshev spectral element method, which allows to overcome this limitation. The domain decomposition is built by using composite elements having a set of local grids, or poly-grid. The main grid is used for wave propagation, whereas the remaining auxiliary grids are used for describing the physical parameters. As a consequence, SEM accuracy and efficiency is maintained in wave field computations while dealing with small scale property fluctuations. Moreover, interfaces between different materials can be easily handled internally to each element without the need of their edges be aligned with the interfaces.
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of
NASA Astrophysics Data System (ADS)
Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.
2016-05-01
We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2–870 μm and sample the peak of the protostellar envelope emission at ∼100 μm. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.
Nodal analysis of two-phase instabilities
Lahey, R.T. Jr.; Garea, V.P.
1995-10-01
Nodal models having moving nodal boundaries have been developed for the analysis of two-phase flow instabilities in a boiling channel. The first model, which was based on a Galerkin method for the discretization, has been found to be accurate in the prediction of the onset of instabilities as well as the frequency of oscillations. This model however, had some problems with the prediction of chaotic phenomena and did not allow for flow reversal in the channel. A second nodal model, based on a finite difference approach, has been found to perform better for the prediction of non-linear response and it also allows for flow reversal. Both models are numerically more efficient than the existing fixed grid models for instabilities analysis.
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2002-01-01
The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
NASA Astrophysics Data System (ADS)
Yang, Guoqiang; Xiao, Shali; Ma, Yuedong; Zhang, Liuqiang
2014-08-01
A capacitive Frisch-grid CdZnTe detector with different lengths of the Frisch rings has been fabricated, and the influence of infrared (IR) stimulation on the spectral performance of the detector has been investigated. IR stimulation at a wavelength (940 nm), close to the absorption edge of the CdZnTe, was found to improve the detector's spectral performance significantly. IR radiation was noted to influence the detector's sensitivity, changing the equilibrium between free and trapped carriers and improving the charge collection. The degree of improvement was different for detectors with different lengths of the Frisch rings and depended on the weighting potential distribution and the IR illumination intensity. For example, improvement was obtained in the energy resolution (FWHM) at 662 keV from 3.3% without illumination to 2.3% with a low intensity (120 μW) of IR illumination for the capacitive Frisch-grid CdZnTe detector with an 8-mm-long Frisch ring. Good energy resolution could be obtained even at low operating voltages.
Aykul, Senem; Ni, Wendi; Mutatu, Washington; Martinez-Hackert, Erik
2015-01-01
The Transforming Growth Factor-ß (TGFß) family ligand Nodal is an essential embryonic morphogen that is associated with progression of breast and other cancers. It has therefore been suggested that Nodal inhibitors could be used to treat breast cancers where Nodal plays a defined role. As secreted antagonists, such as Cerberus, tightly regulate Nodal signaling during embryonic development, we undertook to produce human Cerberus, characterize its biochemical activities, and determine its effect on human breast cancer cells. Using quantitative methods, we investigated the mechanism of Nodal signaling, we evaluated binding of human Cerberus to Nodal and other TGFß family ligands, and we characterized the mechanism of Nodal inhibition by Cerberus. Using cancer cell assays, we examined the ability of Cerberus to suppress aggressive breast cancer cell phenotypes. We found that human Cerberus binds Nodal with high affinity and specificity, blocks binding of Nodal to its signaling partners, and inhibits Nodal signaling. Moreover, we showed that Cerberus profoundly suppresses migration, invasion, and colony forming ability of Nodal expressing and Nodal supplemented breast cancer cells. Taken together, our studies provide mechanistic insights into Nodal signaling and Nodal inhibition with Cerberus and highlight the potential value of Cerberus as anti-Nodal therapeutic. PMID:25603319
Smith, B.B.; Mullen, S.L. Arizona Univ., Tucson )
1993-03-01
An analysis of the 24- and 48-h sea level cyclone errors occurring in the NMC's Nested-Grid Model (NGM) and the Aviation Run of the Global Spectral Model (AVN) during the 1987/1988 and 1989/1990 winter seasons is presented. Central pressure, 1000-500-mb thickness, and displacement errors for cyclone center are compared, and the circumstances under which one model performs better than the other are documented. Overall, the NGM slightly overdeepens cyclones and the T80 AVN underdeepens cyclones when both models are verified against the NGM initial panel. Both models underdevelop oceanic and deep cyclones. The pressure error variance tends to be smaller for the AVN, particularly at 48 h. It is inferred that the variability of individual central pressure forecasts is smaller for the AVN. Mean absolute displacement errors are smaller for the T80 AVN than the NGM. 35 refs.
A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid
NASA Astrophysics Data System (ADS)
Choi, Suk-Jin; Hong, Song-You
2016-06-01
A new global model with a non-hydrostatic (NH) dynamical core is developed. It employs the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization. The solver includes a time-split third-order Runge-Kutta (RK3) time-integration technique. Pursuing the quasi-uniform and pole singularity-free spherical geometry, a cubed-sphere grid is employed. To assess the performance of the developed dynamical solver, the results from a number of idealized benchmark tests for hydrostatic and non-hydrostatic flows are presented and compared. The results indicate that the non-hydrostatic dynamical solver is able to produce solutions with good accuracy and consistency comparable to reference solutions. Further evaluation of the model with a full-physics package demonstrates its capability in reproducing heavy rainfall over the Korean Peninsula, which confirms that coupling of the dynamical solver and full-physics package is robust.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.
2009-04-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.
High-Order Moving Overlapping Grid Methodology in a Spectral Element Method
NASA Astrophysics Data System (ADS)
Merrill, Brandon E.
A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies
NASA Astrophysics Data System (ADS)
Jeong, S.; Che, I.; Kim, I.; Kang, T.
2012-12-01
This study presents the improvements of seismic event discrimination between explosions and earthquakes. We tried to find optimal frequency range based on 2D grids of Pg/Lg spectral amplitude ratios. Seismic data from CHNAR, BRDAR and KSGAR arrays located in the middle of Korean Peninsula are used for the discrimination of events occurred at the Sangwon, North Korea, area. We have analyzed seismograms of 122 explosions and 21 earthquakes to obtain a linear discriminant function that optimally discriminates explosions from earthquakes. Before calculating Pg/Lg spectral ratios, residual spectrum is computed by subtracting Brune's source spectrum from the observed spectrum. By using the residual spectrum, difference of spectral characteristics between explosion and earthquake populations could be emphasized. Two-dimensional spectral ratios were calculated in all combinations of Pg and Lg residual spectra in frequency band of 1 ~ 15Hz with the expectation of much greater differences of spectral amplitude between explosion and earthquake populations. We have determined the optimal frequency range where Pg/Lg spectral ratios are larger than a certain threshold in 2D grids. In the optimal frequency range, we obtain a linear discriminant function of each array. We calculated the compound discriminant function with the addition of the linear discriminant function at each array to improve the discriminant power. The new compound method enhanced the results in discrimination.
Nodal Promotes Glioblastoma Cell Growth
De Silva, Tanya; Ye, Gang; Liang, Yao-Yun; Fu, Guodong; Xu, Guoxiong; Peng, Chun
2012-01-01
Nodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type. To further understand the role of Nodal in tumorigenesis, we examined the effect of Nodal in glioblastoma cell growth and spheroid formation using U87 cell line. Treatment of U87 with recombinant Nodal significantly increased U87 cell growth. In U87 cells stably transfected with the plasmid encoding Nodal, Smad2 phosphorylation was strongly induced and cell growth was significantly enhanced. Overexpression of Nodal also resulted in tight spheroid formation. On the other hand, the cells stably transfected with Nodal siRNA formed loose spheroids. Nodal is known to signal through activin receptor-like kinase 4 (ALK4) and ALK7 and the Smad2/3 pathway. To determine which receptor and Smad mediate the growth promoting effect of Nodal, we transfected siRNAs targeting ALK4, ALK7, Smad2, or Smad3 into Nodal-overexpressing cells and observed that cell growth was significantly inhibited by ALK4, ALK7, and Smad3 siRNAs. Taken together, these findings suggest that Nodal may have tumor-promoting effects on glioblastoma cells and these effects are mediated by ALK4, ALK7, and Smad3. PMID:22645523
NASA Astrophysics Data System (ADS)
Bolotnikov, A. E.; Babalola, S.; Camarda, G. S.; Cui, Y.; Egarievwe, S. U.; Fochuk, P. M.; Hawrami, R.; Hossain, A.; James, J. R.; Nakonechnyj, I. J.; Yang, Ge; James, R. B.
2008-08-01
Virtual Frisch-grid CdZnTe detectors potentially can provide energy resolution close to the statistical limit. However, in real detectors, the quality of the crystals used to fabricate the devices primarily determines energy resolution. In this paper, we report our findings on the spectral response of devices and their relation to material-characterization data obtained using IR microscopy and X-ray diffraction topography.
Topological semimetals and nodal superconductors
NASA Astrophysics Data System (ADS)
Chang, Po-Yao
Besides topological band insulators, which have a full bulk gap, there are also gapless phases of matter that belong to the broad class of topological materials, such as topological semimetals and nodal superconductors. We systematically study these gapless topological phases described by the Bloch and Bogoliubov-de Gennes Hamiltonians. We discuss a generalized bulk-boundary correspondence, which relates the topological properties in the bulk of gapless topological phases and the protected zero-energy states at the boundary. We study examples of gapless topological phases, focusing in particular on nodal superconductors, such as nodal noncentrosymmetric superconductors (NCSs). We compute the surface density of states of nodal NCSs and interpret experimental measurements of surface states. In addition, we investigate Majorana vortex-bound states in both nodal and fully gapped NCSs using numerical and analytical methods. We show that different topological properties of the bulk Bogoliubov-quasiparticle wave functions reflect themselves in different types of zero-energy vortex-bound states. In particular, in the case of NCSs with tetragonal point-group symmetry, we find that the stability of these Majorana zero modes is guaranteed by a combination of reflection, time-reversal, and particle-hole symmetries. Finally, by using K-theory arguments and a dimensional reduction procedure from higher-dimensional topological insulators and superconductors, we derive a classification of topologically stable Fermi surfaces in semimetals and nodal lines in superconductors.
Simulation of turbulent flows using nodal integral method
NASA Astrophysics Data System (ADS)
Singh, Suneet
dependencies. The speedup and efficiency of the PMNIM are analyzed for a laminar flow test problem. The efficiency, calculated based on Gustafson's law, is found to be more than 75% for a 20 x 20 x 20 mesh and remains almost constant as number of processors is increased. It can be concluded that the PMNIM is reliable, scalable and efficient. The PMNIM is then used to study the transition to turbulence in Arnold-Beltrami-Childress (ABC) flows. These flows display the interesting phenomenon of heteroclinic cycles. The results are obtained for two wavenumbers: k = 1 (also studied earlier by other researchers) and k = 2, respectively. The results for k = 1 are compared with those obtained using the pseudo spectral method. The comparison shows good agreement and also shows that results obtained with similar grid sizes and time steps match very well with those obtained using pseudo spectral method. New results are obtained for k = 2, and the heteroclinic cycles observed in this flow are discussed and contrasted with those obtained in the flow with k = 1. The results show that the flow becomes unstable for the k = 2 case at smaller Reynolds number than that for k = 1. The flow also shows some very interesting phenomena such as simultaneous existence of the two types of heteroclinic cycles.
Wang, Z J
2012-12-06
The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equations for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives.
A New Stabilized Nodal Integration Approach
Puso, M; Zywicz, E; Chen, J S
2006-02-08
A new stabilized nodal integration scheme is proposed and implemented. In this work, focus is on the natural neighbor meshless interpolation schemes. The approach is a modification of the stabilized conforming nodal integration (SCNI) scheme and is shown to perform well in several benchmark problems.
Heterogeneous treatment in the variational nodal method
Fanning, T.H.; Palmiotti, G.
1995-06-01
The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations.
Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes
2003-08-04
OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.
Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation
Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco
2002-07-01
In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S{sub N} equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS{sub N} method, which consists in the application of the Laplace transform to the set of nodal S{sub N} equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S{sub N} up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S{sub N} equations for N up to 16 and we begin the convergence of the S{sub N} nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)
Optical conductivity of nodal metals
NASA Astrophysics Data System (ADS)
Homes, C. C.; Gu, G. D.; Tu, J. J.; Li, J.; Akrap, A.
2014-03-01
Fermi liquid theory is remarkably successful in describing the transport and optical properties of metals; at frequencies higher than the scattering rate, the optical conductivity adopts the well-known power law behavior σ1(ω) ~ω-2 . We have observed an unusual non-Fermi liquid response σ1(ω) ~ω - 1 +/- 0 . 2 in the ground states of several quasi two-dimensional cuprate (optimally doped Bi2Sr2CaCu2O8+δ, optimally and underdoped YBa2Cu3O7-δ) and iron-based materials (AFe2As2, A = Ba, Ca) which undergo electronic or magnetic phase transitions resulting in dramatically reduced or nodal Fermi surfaces. The identification of an inverse (or fractional) power-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing the direct transitions across the gap and allowing the nature of the electron-boson coupling to be probed. The non-Fermi liquid behavior in these systems may be the result of a common Fermi surface topology of Dirac cone-like features in the electronic dispersion. Supported by the DOE under Contract No. DE-AC02-98CH10886.
Optical conductivity of nodal metals
Homes, C. C.; Tu, J. J.; Li, J.; Gu, G. D.; Akrap, A.
2013-01-01
Fermi liquid theory is remarkably successful in describing the transport and optical properties of metals; at frequencies higher than the scattering rate, the optical conductivity adopts the well-known power law behavior σ1(ω) ∝ ω−2. We have observed an unusual non-Fermi liquid response σ1(ω) ∝ ω−1±0.2 in the ground states of several cuprate and iron-based materials which undergo electronic or magnetic phase transitions resulting in dramatically reduced or nodal Fermi surfaces. The identification of an inverse (or fractional) power-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing the direct transitions across the gap and allowing the nature of the electron-boson coupling to be probed. The non-Fermi liquid behavior in these systems may be the result of a common Fermi surface topology of Dirac cone-like features in the electronic dispersion. PMID:24336241
Nodal network generator for CAVE3
NASA Technical Reports Server (NTRS)
Palmieri, J. V.; Rathjen, K. A.
1982-01-01
A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.
Nodal signalling determines biradial asymmetry in Hydra.
Watanabe, Hiroshi; Schmidt, Heiko A; Kuhn, Anne; Höger, Stefanie K; Kocagöz, Yigit; Laumann-Lipp, Nico; Ozbek, Suat; Holstein, Thomas W
2014-11-01
In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of β-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of β-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians. PMID:25156256
Voltage collapse in complex power grids
Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco
2016-01-01
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284
Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature
Brito, K. D.; Sprague, M. A.
2012-10-01
Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for a given model size or total computation time.
Harms, Paul W.; Chang, Chenbei
2003-01-01
Transforming growth factor β (TGF-β) signals regulate multiple processes during development and in adult. We recently showed that tomoregulin-1 (TMEFF1), a transmembrane protein, selectively inhibits nodal but not activin in early Xenopus embryos. Here we report that TMEFF1 binds to the nodal coreceptor Cripto, but does not associate with either nodal or the type I ALK (activin receptor-like kinase) 4 receptor in coimmunoprecipitation assays. The inhibition of the nodal signaling by TMEFF1 in Xenopus ectodermal explants is rescued with wild-type but not mutant forms of Cripto. Furthermore, we show that the Cripto-FRL1-Cryptic (CFC) domain in Cripto, which is essential for its binding to ALK4, is also important for its interaction with TMEFF1. Our results demonstrate for the first time that nodal signaling can be regulated by a novel mechanism of blocking the Cripto coreceptor. PMID:14563676
Keeping a lid on nodal: transcriptional and translational repression of nodal signalling
Robertson, Elizabeth J.
2016-01-01
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development. PMID:26791244
Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites
Mannella, N.
2010-06-02
A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.
Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission
Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra
2011-06-03
High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly
A lymph nodal capillary-cavernous hemangioma.
Dellachà, A; Fulcheri, E; Campisi, C
1999-09-01
A capillary-cavernous hemangioma in an obturator lymph node was found incidentally in a 64 year-old woman who had undergone unilateral salpingo-oophorectomy and lymphadenectomy for an ovarian neoplasm. Vascular tumors of lymph nodes are briefly reviewed including eight previously described nodal capillary-cavernous hemangiomas. The association with other splanchnic hemangiomas is pointed out and the likelihood that the lesion is a hamartoma rather than a true neoplasm is addressed. Despite its rarity, this entity needs to be recognized by lymphologists who image lymph nodes by lymphangiography as well as by lymph nodal pathologists. PMID:10494525
Fuerer, Christophe; Nostro, M. Cristina; Constam, Daniel B.
2014-01-01
The TGFβ family member Nodal is central to control pluripotent stem cell fate, but its use as a stem cell differentiation factor is limited by low specific activity. During development, Nodal depends on growth and differentiation factor (Gdf)-1 and on the shared co-receptor Cryptic to specify visceral left-right axis asymmetry. We therefore asked whether the functionality of Nodal can be augmented by Gdf1. Because Nodal and Gdf1 coimmunoprecipitate each other, they were predicted to form heterodimers, possibly to facilitate diffusion or to increase the affinity for signaling receptors. Here, we report that Gdf1 suppresses an unexpected dependence of Nodal on serum proteins and that it is critically required for non-autonomous signaling in cells expressing Cryptic. Nodal, Gdf1, and their cleaved propeptides copurified as a heterodimeric low molecular weight complex that stimulated Activin receptor (Acvr) signaling far more potently than Nodal alone. Although heterodimerization with Gdf1 did not increase binding of Nodal to Fc fusions of co-receptors or Acvr extracellular domains, it was essential for soluble Acvr2 to inhibit Nodal signaling. This implies that Gdf1 potentiates Nodal activity by stabilizing a low molecular weight fraction that is susceptible to neutralization by soluble Acvr2. Finally, in differentiating human ES cells, endodermal markers were more efficiently induced by Nodal·Gdf1 than by Nodal, suggesting that Nodal·Gdf1 is an attractive new reagent to direct stem cell differentiation. PMID:24798330
Network and Nodal Accessibility Teaching Exercise.
ERIC Educational Resources Information Center
Wheeler, James O.
1988-01-01
Presents an exercise, for use in college-level economic geography courses, which teaches the concept of nodal and network accessibility with an application to manufacturing locations. Intended to guide students to think spatially and to generalize from numeric data, this out-of-class activity teaches students to discover results, to do simple…
Multidimensional spectral load balancing
Hendrickson, B.; Leland, R.
1993-01-01
We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.
Nodal and Lefty signaling regulates the growth of pancreatic cells
Zhang, You-Qing; Sterling, Lori; Stotland, Aleksandr; Hua, Hong; Kritzik, Marcie; Sarvetnick, Nora
2014-01-01
Nodal and its antagonist, Lefty, are important mediators specifying the laterality of the organs during embryogenesis. Nodal signals through activin receptors in the presence of its co-receptor, Cripto. In the present study, we investigated the possible roles of Nodal and Lefty signaling during islet development and regeneration. We found that both Nodal and Lefty are expressed in the pancreas during embryogenesis and islet regeneration. In vitro studies demonstrated that Nodal inhibits, whereas Lefty enhances, the proliferation of a pancreatic cell line. In addition, we showed that Lefty-1 activates MAPK and Akt phosphorylation in these cells. In vivo blockade of endogenous Lefty using neutralizing Lefty-1 monoclonal antibody results in a significantly decreased proliferation of duct epithelial cells during islet regeneration. This is the first study to decipher the expression and function of Nodal and Lefty in pancreatic growth. Importantly, our results highlight a novel function of Nodal-Lefty signaling in the regulation of expansion of pancreatic cells. PMID:18393305
Ibarria, L; Lindstrom, P; Rossignac, J
2006-11-17
Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.
Nodal resonance in a strong standing wave
NASA Astrophysics Data System (ADS)
Fernández C., David J.; Mielnik, Bogdan
1990-06-01
The motion of charged particles in a standing electromagnetic wave is considered. For amplitudes that are not too high, the wave causes an effect of attraction of particles to the nodal points, resembling the channeling effect reported by Salomon, Dalibard, Aspect, Metcalf, and Cohen-Tannoudji [Phys. Rev. Lett. 59, 1659 (1987)] consistent with the ``high-frequency potential'' of Kapitza [Zh. Eksp. Teor. Fiz. 21, 588 (1951)]. For high-field intensities, however, the nodal points undergo a qualitative metamorphosis, converting themselves from particle attractors into resonant centers. Some chaotic phenomena arise and the description of the oscillating field in terms of an ``effective potential'' becomes inappropriate. The question of a correct Floquet Hamiltonian that could describe the standing wave within this amplitude and frequency regime is open.
NASA Astrophysics Data System (ADS)
Verrier, Isabelle; Kämpfe, Thomas; Celle, Frederic; Cazier, Anthony; Guttmann, Markus; Matthis, Barbara; Laukkanen, Janne; Lacour, Frédéric; Veillas, Colette; Reynaud, Stéphanie; Parriaux, Olivier; Jourlin, Yves
2015-04-01
Functional demonstration of a wide band, wide angular width wire-grid polarizer has been made in the framework of a user project of the European project ACTMOST (Access To Micro-Optics Expertise, Services and Technologies). The polarization function relies on linear polarizers using the wire-grid polarizer principle by means of a metal grating of unusually large period, exhibiting a large extinction of the transmission of the TE polarization in the 850-nm wavelength range. This grating achieves a broadband and especially high angular aperture reflection with low loss and permits resorting to very low cost incoherent light sources for the transmitted TM polarization. This paper will describe the design, the modeling and optimization, as well as the complete technological process chain, that has been used, starting with the photoresist grating printing using phase-mask UV-based lithography to the uniform galvanic growth of a very shallow gold grating on transparent conductive layer deposited on a glass substrate. Transmission curves for both polarizations performed on the first demonstrators will be presented.
An iterative KP1 method for solving the transport equation in 3D domains on unstructured grids
NASA Astrophysics Data System (ADS)
Kokonkov, N. I.; Nikolaeva, O. V.
2015-10-01
A two-step iterative KP1 method for solving systems of grid equations that approximate the integro-differential transport equation in 3D domains on unstructured grids using nodal SN methods is described. Results of testing the efficiency of the proposed method in solving benchmark problems of reactor protection on tetrahedral grids are presented.
NASA Astrophysics Data System (ADS)
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
Small renal tumor with lymph nodal enlargement: A histopathological surprise
Thottathil, Mujeeburahiman; Verma, Ashish; D’souza, Nischith; Khan, Altaf
2016-01-01
Renal cancer with lymph nodal mass on the investigation is clinically suggestive of an advanced tumor. Small renal cancers are not commonly associated with lymph nodal metastasis. Association of renal cell carcinoma with renal tuberculosis (TB) in the same kidney is also rare. We report here a case of small renal cancer with multiple hilar and paraaortic lymph nodes who underwent radical nephrectomy, and histopathology report showed renal and lymph nodal TB too. PMID:27453671
Plasticity underlies tumor progression: role of Nodal signaling.
Bodenstine, Thomas M; Chandler, Grace S; Seftor, Richard E B; Seftor, Elisabeth A; Hendrix, Mary J C
2016-03-01
The transforming growth factor beta (TGFβ) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry, and primitive streak formation. Nodal signals through TGFβ family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its reexpression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition. PMID:26951550
NASA Technical Reports Server (NTRS)
1998-01-01
Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.
A Computational Model of Dynein Activation Patterns that Can Explain Nodal Cilia Rotation
Chen, Duanduan; Zhong, Yi
2015-01-01
Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity. PMID:26153700
Phonon analogue of topological nodal semimetals
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin
2015-03-01
Recently, Kane and Lubensky proposed a mapping between bosonic phonon problems on isostatic lattices to chiral fermion systems based on factorization of the dynamical matrix [Nat. Phys. 10, 39 (2014)]. The existence of topologically protected zero modes in such mechanical problems is related to their presence in the fermionic system and is dictated by a local index theorem. Here we adopt the proposed mapping to construct a two-dimensional mechanical analogue of a fermionic topological nodal semimetal that hosts a robust bulk node in its linearized phonon spectrum. Such topologically protected soft modes with tunable wavevector may be useful in designing mechanical structures with fault-tolerant properties.
The AN neutron transport by nodal diffusion
Barbarino, A.; Tomatis, D.
2013-07-01
The two group diffusion model combined to a nodal approach in space is the preferred scheme for the industrial simulation of nuclear water reactors. The main selling point is the speed of computation, allowing a large number of parametric studies. Anyway, the drawbacks of the underlying diffusion equation may arise with highly heterogeneous interfaces, often encountered in modern UO{sub 2} and MO{sub x} fuel loading patterns, and boron less controlled systems. This paper aims at showing how the simplified AN transport model, equivalent to the well known SPN, can be implemented in standard diffusion codes with minor modifications. Some numerical results are illustrated. (authors)
NASA Technical Reports Server (NTRS)
Thompson, R. W.; Turnrose, B. E.; Bohlin, R. C.
1982-01-01
Improvements are made on IUE data reduction using corrected reseau positions and dispersion constants for temperature variations and secular effects. Models describing the motion of the high dispersion spectral format as a function of THDA alone reduce the scatter in the predicted position of a given wavelength, and scatter is further reduced when a linear dependence on time is also allowed. A correction technique is presented for early data which reduces errors in wavelength assignments from over 30 km/s to less than 3 km/s in high dispersion. The reseau temperature correction helps locate the minimum background signal, centered between the echelle orders. The residual uncertainty of 2 km/s for SWP and 2.7 km/s for LWR makes the wavelength accuracy of time and temperature corrected IUE spectra comparable to that of temperature corrected data from the Copernicus satellite.
Extracellular interactions and ligand degradation shape the nodal morphogen gradient
Wang, Yin; Wang, Xi; Wohland, Thorsten; Sampath, Karuna
2016-01-01
The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient. DOI: http://dx.doi.org/10.7554/eLife.13879.001 PMID:27101364
Zero-energy bound states in a nodal topological lattice
NASA Astrophysics Data System (ADS)
Lee, Soo-Yong; Han, Jung Hoon
2015-06-01
A nodal topological lattice is a form of magnetic crystal with topologically nontrivial spin texture, which further exhibits a periodic array of nodes with vanishing magnetization. An electronic structure for conduction electrons strongly Hund coupled to such a nodal topological lattice is examined. Our analysis shows that each node attracts two localized states which form narrow bands through internode hybridization within the mid-gap region. Nodal bands carry a Chern number under suitable perturbations, suggesting their potential role in the topological Hall effect. Enhancement of the density of states near zero energy observable in a tunneling experiment will provide a signature of the formation of a nodal topological lattice.
An essential role for maternal control of Nodal signaling
Kumari, Pooja; Gilligan, Patrick C; Lim, Shimin; Tran, Long Duc; Winkler, Sylke; Philp, Robin; Sampath, Karuna
2013-01-01
Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to be conserved. DOI: http://dx.doi.org/10.7554/eLife.00683.001 PMID:24040511
Post, R.F.
1960-08-01
An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.
NASA Astrophysics Data System (ADS)
Boyd, John P.
2011-02-01
Radial basis function (RBF) interpolants have become popular in computer graphics, neural networks and for solving partial differential equations in many fields of science and engineering. In this article, we compare five different species of RBFs: Gaussians, hyperbolic secant (sech's), inverse quadratics, multiquadrics and inverse multiquadrics. We show that the corresponding cardinal functions for a uniform, unbounded grid are all approximated by the same function: C(X) ∼ (1/(ρ)) sin (πX)/sinh (πX/ρ) for some constant ρ(α) which depends on the inverse width parameter (“shape parameter”) α of the RBF and also on the RBF species. The error in this approximation is exponentially small in 1/α for sech's and inverse quadratics and exponentially small in 1/α2 for Gaussians; the error is proportional to α4 for multiquadrics and inverse multiquadrics. The error in all cases is small even for α ∼ O(1). These results generalize to higher dimensions. The Gaussian RBF cardinal functions in any number of dimensions d are, without approximation, the tensor product of one dimensional Gaussian cardinal functions: Cd(x1,x2…,xd)=∏j=1dC(xj). For other RBF species, we show that the two-dimensional cardinal functions are well approximated by the products of one-dimensional cardinal functions; again the error goes to zero as α → 0. The near-identity of the cardinal functions implies that all five species of RBF interpolants are (almost) the same, despite the great differences in the RBF ϕ's themselves.
Market redesign and technology upgrade: a nodal implementation
Isemonger, Alan G.
2009-10-15
The California ISO and its market participants collectively cut over to a new nodal-based market on April 1, largely without incident and 11 years to the day from the initial startup in 1998. Thus far, the new nodal framework has proven robust, and the inevitable design and implementation issues that have emerged since cutover have been manageable. (author)
White, Vicky
2003-05-21
By now almost everyone has heard of 'The Grid', or 'Grid Computing' as it should more properly be described. There are frequent articles in both the popular and scientific press talking about 'The Grid' or about some specific Grid project. Run II Experiments, US-CMS, BTeV, the Sloane Digital Sky Survey and the Lattice QCD folks are all incorporating aspects of Grid Computing in their plans, and the Fermilab Computing Division is supporting and encouraging these efforts. Why are we doing this and what does it have to do with running a physics experiment or getting scientific results? I will explore some of these questions and try to give an overview, not so much of the technical aspects of Grid Computing, rather of what the phenomenon means for our field.
Radar response from vegetation with nodal structure
NASA Technical Reports Server (NTRS)
Blanchard, B. J.; Oneill, P. E.
1984-01-01
Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties.
Nodal aberration theory applied to freeform surfaces
NASA Astrophysics Data System (ADS)
Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.
2014-12-01
When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.
Experience with advanced nodal codes at YAEC
Cacciapouti, R.J.
1990-01-01
Yankee Atomic Electric Company (YAEC) has been performing reload licensing analysis since 1969. The basic pressurized water reactor (PWR) methodology involves the use of LEOPARD for cross-section generation, PDQ for radial power distributions and integral control rod worth, and SIMULATE for axial power distributions and differential control rod worth. In 1980, YAEC began performing reload licensing analysis for the Vermont Yankee boiling water reactor (BWR). The basic BWR methodology involves the use of CASMO for cross-section generation and SIMULATE for three-dimensional power distributions. In 1986, YAEC began investigating the use of CASMO-3 for cross-section generation and the advanced nodal code SIMULATE-3 for power distribution analysis. Based on the evaluation, the CASMO-3/SIMULATE-3 methodology satisfied all requirements. After careful consideration, the cost of implementing the new methodology is expected to be offset by reduced computing costs, improved engineering productivity, and fuel-cycle performance gains.
Loop-Nodal and Point-Nodal Semimetals in Three-Dimensional Honeycomb Lattices
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2016-03-01
A honeycomb structure has a natural extension to three dimensions. Simple examples are hyperhoneycomb and stripy-honeycomb lattices, which are realized in β -Li2IrO3 and γ -Li2IrO3 , respectively. We propose a wide class of three-dimensional (3D) honeycomb lattices which are loop-nodal semimetals. Their edge states have intriguing properties similar to the two-dimensional honeycomb lattice in spite of a dimensional difference. Partial flat bands emerge at the zigzag or bearded edge of the 3D honeycomb lattice, whose boundary is given by the Fermi loop in the bulk spectrum. On the other hand, perfect flat bands emerge in the zigzag-bearded edge or when the anisotropy is large. The loop-nodal structure is destroyed once staggered potential or antiferromagnetic order is introduced. All these 3D honeycomb lattices become strong topological insulators with the inclusion of the spin-orbit interaction (SOI). Furthermore, point-nodal semimetals may be realized in the presence of both antiferromagnetic order and the SOI. We construct the effective four-band theory with the SOI to understand the physics near the Fermi level, based upon which the density of states and the dc conductivity are calculated.
Loop-Nodal and Point-Nodal Semimetals in Three-Dimensional Honeycomb Lattices.
Ezawa, Motohiko
2016-03-25
A honeycomb structure has a natural extension to three dimensions. Simple examples are hyperhoneycomb and stripy-honeycomb lattices, which are realized in β-Li_{2}IrO_{3} and γ-Li_{2}IrO_{3}, respectively. We propose a wide class of three-dimensional (3D) honeycomb lattices which are loop-nodal semimetals. Their edge states have intriguing properties similar to the two-dimensional honeycomb lattice in spite of a dimensional difference. Partial flat bands emerge at the zigzag or bearded edge of the 3D honeycomb lattice, whose boundary is given by the Fermi loop in the bulk spectrum. On the other hand, perfect flat bands emerge in the zigzag-bearded edge or when the anisotropy is large. The loop-nodal structure is destroyed once staggered potential or antiferromagnetic order is introduced. All these 3D honeycomb lattices become strong topological insulators with the inclusion of the spin-orbit interaction (SOI). Furthermore, point-nodal semimetals may be realized in the presence of both antiferromagnetic order and the SOI. We construct the effective four-band theory with the SOI to understand the physics near the Fermi level, based upon which the density of states and the dc conductivity are calculated. PMID:27058097
NASA Technical Reports Server (NTRS)
Swinbank, Richard; Purser, James
2006-01-01
Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.
DNS of vibrating grid turbulence
NASA Astrophysics Data System (ADS)
Khujadze, G.; Oberlack, M.
Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left\\{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right\\}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.
DNS of vibrating grid turbulence
NASA Astrophysics Data System (ADS)
Khujadze, G.; Oberlack, M.
Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.
NASA Astrophysics Data System (ADS)
Dutta, Vimala
1993-07-01
An implicit finite volume nodal point scheme has been developed for solving the two-dimensional compressible Navier-Stokes equations. The numerical scheme is evolved by efficiently combining the basic ideas of the implicit finite-difference scheme of Beam and Warming (1978) with those of nodal point schemes due to Hall (1985) and Ni (1982). The 2-D Navier-Stokes solver is implemented for steady, laminar/turbulent flows past airfoils by using C-type grids. Turbulence closure is achieved by employing the algebraic eddy-viscosity model of Baldwin and Lomax (1978). Results are presented for the NACA-0012 and RAE-2822 airfoil sections. Comparison of the aerodynamic coefficients with experimental results for the different test cases presented here establishes the validity and efficiency of the method.
Optimal Hedge for Nodal Price Risk using FTR
NASA Astrophysics Data System (ADS)
Tanaka, Hiroaki; Makino, Michiko; Ichida, Yoshio; Akiyoshi, Masanori
As the deregulation of electric business proceeds, each company needs to construct a risk hedging system. So far many companies have not been taking much care of this suffciently. In this paper, we address the nodal price hedge issue. Most companies have risks for the nodal prices which tend to be highly volatile. There's almost no doubt that such a company actually needs hedge products to make profits stable. We suggest the usage of FTR for this purpose. First, we briefly note the mechanisms of nodal price in PJM market and FTR, and suggest the mathematical formulations. Then we show some numerical examples and discuss our findings.
NODAL — The second life of the accelerator control language
NASA Astrophysics Data System (ADS)
Cuisinier, G.; Perriollat, F.; Ribeiro, P.; Kagarmanov, A.; Kovaltsov, V.
1994-12-01
NODAL has been a popular interpreter language for accelerator controls since the beginning of the 1970s. NODAL has been rewritten in the C language to be easily portable to the different computer platforms which are in use in accelerator controls. The paper describes the major features of this new version of NODAL, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this is discussed, in particular in a view of the prevailing strong constraints in personnel and money resources.
Tunable Weyl Points in Periodically Driven Nodal Line Semimetals.
Yan, Zhongbo; Wang, Zhong
2016-08-19
Weyl semimetals and nodal line semimetals are characterized by linear band touching at zero-dimensional points and one-dimensional lines, respectively. We predict that a circularly polarized light drives nodal line semimetals into Weyl semimetals. The Floquet Weyl points thus obtained are tunable by the incident light, which enables investigations of them in a highly controllable manner. The transition from nodal line semimetals to Weyl semimetals is accompanied by the emergence of a large and tunable anomalous Hall conductivity. Our predictions are experimentally testable by transport measurement in film samples or by pump-probe angle-resolved photoemission spectroscopy. PMID:27588882
Present Status of GNF New Nodal Simulator
Iwamoto, T.; Tamitani, M.; Moore, B.
2001-06-17
This paper presents core simulator consolidation work done at Global Nuclear Fuel (GNF). The unified simulator needs to supercede the capabilities of past simulator packages from the original GNF partners: GE, Hitachi, and Toshiba. At the same time, an effort is being made to produce a simulation package that will be a state-of-the-art analysis tool when released, in terms of the physics solution methodology and functionality. The core simulator will be capable and qualified for (a) high-energy cycles in the U.S. markets, (b) mixed-oxide (MOX) introduction in Japan, and (c) high-power density plants in Europe, etc. The unification of the lattice physics code is also in progress based on a transport model with collision probability methods. The AETNA core simulator is built upon the PANAC11 software base. The goal is to essentially replace the 1.5-energy-group model with a higher-order multigroup nonlinear nodal solution capable of the required modeling fidelity, while keeping highly automated library generation as well as functionality. All required interfaces to PANAC11 will be preserved, which minimizes the impact on users and process automation. Preliminary results show statistical accuracy improvement over the 1.5-group model.
Nodal analysis for reactor kinetics and stability. [PWR; BWR
Park, J.K.; Becker, M.; Park, G.C.
1983-07-01
General space kinetics models have been developed for more accurate stability analysis utilizing nodal analysis, a commonly used technique for analyzing power distributions in large power reactors. Kinetics parameters for use in these kinetics models have been properly derived by utilizing self-consistent nodal data and power distributions. The procedure employed in the nodal code SIMULATE has been utilized for power distribution, since that methodology is general and includes various commonly used nodal methods as special cases. Cross sections are correlated as functions of void fraction and exposure. A computer program investigating thermo-hydrodynamic stability, NUFREQ has been modified to accommodate general spatial kinetics models with an improved thermal-hydraulics model. Stability analyses have been performed for density wave oscillations for a representative operating BWR system. Spatial coupling effects on the stability margins were found to be significant.
Josephson, Mark E
2016-01-01
Atrioventricular nodal reentrant tachycardia (AVNRT) should be classified as typical or atypical. The term ‘fast-slow AVNRT’ is rather misleading. Retrograde atrial activation during tachycardia should not be relied upon as a diagnostic criterion. Both typical and atypical atrioventricular nodal reentrant tachycardia are compatible with varying retrograde atrial activation patterns. Attempts at establishing the presence of a ‘lower common pathway’ are probably of no practical significance. When the diagnosis of AVNRT is established, ablation should be only directed towards the anatomic position of the slow pathway. If right septal attempts are unsuccessful, the left septal side should be tried. Ablation targeting earliest atrial activation sites during typical atrioventricular nodal reentrant tachycardia or the fast pathway in general for any kind of typical or atypical atrioventricular nodal reentrant tachycardia, are not justified. In this review we discuss current concepts about the tachycardia circuit, electrophysiologic diagnosis, and ablation of this arrhythmia.
BEACON: An application of nodal methods for operational support
Boyd, W.A.; Nguyen, T.Q. )
1992-01-01
A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology
NASA Technical Reports Server (NTRS)
Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.
1988-01-01
Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.
NASA Astrophysics Data System (ADS)
Foster, Ian
2001-08-01
The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.
Bilinear nodal transport method in weighted diamond difference form
Azmy, Y.Y.
1987-01-01
Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion.
NASA Astrophysics Data System (ADS)
Hudson, Nathanael Harrison
An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice
Advanced computational methods for nodal diffusion, Monte Carlo, and S[sub N] problems
Martin, W.R.
1993-01-01
This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.
Advanced computational methods for nodal diffusion, Monte Carlo, and S(sub N) problems
NASA Astrophysics Data System (ADS)
Martin, W. R.
1993-01-01
This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. An alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.
Nodal signaling promotes a tumorigenic phenotype in human breast cancer.
Kirsammer, Gina; Strizzi, Luigi; Margaryan, Naira V; Gilgur, Alina; Hyser, Matthew; Atkinson, Janis; Kirschmann, Dawn A; Seftor, Elisabeth A; Hendrix, Mary J C
2014-12-01
The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-β family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation. PMID:25073112
Nodal signaling promotes a tumorigenic phenotype in human breast cancer
Kirsammer, Gina; Strizzi, Luigi; Margaryan, Naira V.; Gilgur, Alina; Hyser, Matthew; Atkinson, Janis; Kirschmann, Dawn A.; Seftor, Elisabeth A.; Hendrix, Mary J.C.
2014-01-01
The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-β family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation. PMID:25073112
A computational study of nodal-based tetrahedral element behavior.
Gullerud, Arne S.
2010-09-01
This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.
Super-nodal methods for space-time kinetics
NASA Astrophysics Data System (ADS)
Mertyurek, Ugur
The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative
A transient, quadratic nodal method for triangular-Z geometry
DeLorey, T.F.
1993-06-01
Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.
Chiral Spin-Orbital Liquids with Nodal Lines
NASA Astrophysics Data System (ADS)
Natori, W. M. H.; Andrade, E. C.; Miranda, E.; Pereira, R. G.
2016-07-01
Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba2YMoO6.
Long period nodal motion of sun synchronous orbits
NASA Technical Reports Server (NTRS)
Duck, K. I.
1975-01-01
An approximative model is formulated for assessing these perturbations that significantly affect long term modal motion of sun synchronous orbits. Computer simulations with several independent computer programs consider zonal and tesseral gravitational harmonics, third body gravitational disturbances induced by the sun and the moon, and atmospheric drag. A pendulum model consisting of evenzonal harmonics through order 4 and solar gravity dominated nodal motion approximation. This pendulum motion results from solar gravity inducing an inclination oscillation which couples into the nodal precession induced by the earth's oblateness. The pendulum model correlated well with simulations observed flight data.
Shindoh, M; Takami, T; Arisue, M; Yamashita, T; Saito, T; Kohgo, T; Notani, K; Totsuka, Y; Amemiya, A
1997-07-01
Fifty-two cases of non-Hodgkin's lymphoma (NHL) in the oral and maxillofacial region, comprising 31 submucosal (extra-nodal) and 21 cervical node NHLs, were investigated. The patients' ages ranged from 5 to 86 years, with a bimodal age distribution among young people below 12 years of age (average 8 years) and in those aged 30 years or older (average 60.3 years). The male-to-female gender difference ratio was 1.3:1. Patients presented with swelling as the major symptom. Histologically, diffuse, large cell malignant lymphoma was the most frequent type and 67.9% of lymphomas were of intermediate malignancy as defined by the Working Formulation for Clinical Usage. All submucosal lymphomas showed diffuse proliferation patterns, although follicular proliferation was identified in 5 of the 21 nodal lymphomas. Immunohistochemistry showed that the B-cell type was predominant, especially in nodal lymphomas. PMID:9234189
Shatilla, Y.A.M.; Henry, A.F.
1993-12-31
This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called {open_quotes}discontinuity factors,{close_quotes} were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors.
Bud emergence and shoot growth from mature citrus nodal segments
Technology Transfer Automated Retrieval System (TEKTRAN)
Bud emergence and shoot growth from adult phase citrus nodal cultures were studied using Citrus mitis (calamondin), Citrus paradisi (grapefruit), and Citrus sinensis (sweet orange). The effects of 6-benzylaminopurine (BA), indole 3-acetic acid (IAA), and citrus type on shoot quality and growth fro...
PoroTomo Subtask 6.3 Nodal Seismometers Metadata
Lesley Parker
2016-03-28
Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.
Nodal-mediated epigenesis requires dynamin-mediated endocytosis
Ertl, Robin P.; Robertson, Anthony J.; Saunders, Diane; Coffman, James A.
2011-01-01
Nodal proteins are diffusible morphogens that drive pattern formation via short-range feedback activation coupled to long-range Lefty-mediated inhibition. In the sea urchin embryo, specification of the secondary (oral-aboral) axis occurs via zygotic expression of nodal, which is localized to the prospective oral ectoderm at early blastula stage. In mid-blastula stage embryos treated with low micromolar nickel or zinc, nodal expression expands progressively beyond the confines of this localized domain to encompass the entire equatorial circumference of the embryo, producing radialized embryos lacking an oral-aboral axis. RNAseq analysis of embryos treated with nickel, zinc or cadmium (which does not radialize embryos) showed that several genes involved in endocytosis were similarly perturbed by nickel and zinc but not cadmium. Inhibiting dynamin, a GTPase required for receptor-mediated endocytosis, phenocopies the effects of nickel and zinc, suggesting that dynamin-mediated endocytosis is required as a sink to limit the range of Nodal signaling. PMID:21337468
Nodal Structure and the Partitioning of Equivalence Classes
ERIC Educational Resources Information Center
Fields, Lanny; Watanabe-Rose, Mari
2008-01-01
By definition, all of the stimuli in an equivalence class have to be functionally interchangeable with each other. The present experiment, however, demonstrated that this was not the case when using post-class-formation dual-option response transfer tests. With college students, two 4-node 6-member equivalence classes with nodal structures of…
Topology and vulnerability of the Iranian power grid
NASA Astrophysics Data System (ADS)
Saniee Monfared, Momhammad Ali; Jalili, Mahdi; Alipour, Zohreh
2014-07-01
In this paper we investigated the structural properties of the ultra high voltage power transmission network of Iran. We modeled the power grid as a network with 105 nodes and 142 connection links. We found that the Iranian power grid displays a relatively moderate clustering coefficient-much larger than that of corresponding random networks-and small characteristics path length comparable to that of corresponding random networks; i.e. the power grid is a small-world network with exponential degree distribution. Global efficiency was considered as an indicator of grid’s performance and the influence of random and intentional nodal failures on the efficiency was investigated. We also studied the influence of cascaded failures on the largest connected component of the network. The power grid was vulnerable against cascaded failures, which should be considered serious in redesigning the network topology.
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital Electronic Message Service Nodal... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may...
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
Spectral multigrid methods for elliptic equations II
NASA Technical Reports Server (NTRS)
Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.
1984-01-01
A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.
Spectral multigrid methods for elliptic equations 2
NASA Technical Reports Server (NTRS)
Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.
1983-01-01
A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.
Spectral and Spread Spectral Teleportation
Humble, Travis S
2010-01-01
We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.
Thomas, Jonathan G.; Kashani, Rojano; Balter, James M.; Tatro, Daniel; Kong, F.-M.; Pan, Charlie C.
2009-07-01
The purpose of this study was to determine the intra and interfraction motion of mediastinal lymph node regions. Ten patients with nonsmall-cell lung cancer underwent controlled inhale and exhale computed tomography (CT) scans during two sessions (40 total datasets) and mediastinal nodal stations 1-8 were outlined. Corresponding CT scans from different sessions were registered to remove setup error and, in this reference frame, the centroid of each nodal station was compared for right-left (RL), anterior-posterior (AP), and superior-inferior (SI) displacement. In addition, an anisotropic volume expansion encompassing the change of the nodal region margins in all directions was used. Intrafraction displacement was determined by comparing same session inhale-exhale scans. Interfraction reproducibility of nodal regions was determined by comparing the same respiratory phase scans between two sessions. Intrafraction displacement of centroid varied between nodal stations. All nodal regions moved posteriorly and superiorly with exhalation, and inferior nodal stations showed the most motion. Based on anisotropic expansion, nodal regions expanded mostly in the RL direction from inhale to exhale. The interpatient variations in intrafraction displacement were large compared with the displacements themselves. Moreover, there was substantial interfractional displacement ({approx}5 mm). Mediastinal lymph node regions clearly move during breathing. In addition, deformation of nodal regions between inhale and exhale occurs. The degree of motion and deformation varies by station and by individual. This study indicates the potential advantage of characterizing individualized nodal region motion to safely maximize conformality of mediastinal nodal targets.
Wave pinning and spatial patterning in a mathematical model of Antivin/Lefty-Nodal signalling.
Middleton, A M; King, J R; Loose, M
2013-12-01
Nodal signals are key regulators of mesoderm and endoderm development in vertebrate embryos. It has been observed experimentally that in Xenopus embryos the spatial range of Nodal signals is restricted by the signal Antivin (also known as Lefty). Nodal signals can activate both Nodal and Antivin, whereas Antivin is thought to antagonise Nodal by binding either directly to it or to its receptor. In this paper we develop a mathematical model of this signalling network in a line of cells. We consider the heterodimer and receptor-mediated inhibition mechanisms separately and find that, in both cases, the restriction by Antivin to the range of Nodal signals corresponds to wave pinning in the model. Our analysis indicates that, provided Antivin diffuses faster than Nodal, either mechanism can robustly account for the experimental data. We argue that, in the case of Xenopus development, it is wave pinning, rather than Turing-type patterning, that is underlying Nodal-Antivin dynamics. This leads to several experimentally testable predictions, which are discussed. Furthermore, for heterodimer-mediated inhibition to prevent waves of Nodal expression from propagating, the Nodal-Antivin complex must be turned over, and diffusivity of the complex must be negligible. In the absence of molecular mechanisms regulating these, we suggest that Antivin restricts Nodal signals via receptor-mediated, and not heterodimer-mediated, inhibition. PMID:23070212
Nodal failure index approach to groundwater remediation design
Lee, J.; Reeves, H.W.; Dowding, C.H.
2008-01-01
Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.
Anomalous contagion and renormalization in networks with nodal mobility
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Qi, Hong; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F.
2016-07-01
A common occurrence in everyday human activity is where people join, leave and possibly rejoin clusters of other individuals —whether this be online (e.g. social media communities) or in real space (e.g. popular meeting places such as cafes). In the steady state, the resulting interaction network would appear static over time if the identities of the nodes are ignored. Here we show that even in this static steady-state limit, a non-zero nodal mobility leads to a diverse set of outbreak profiles that is dramatically different from known forms, and yet matches well with recent real-world social outbreaks. We show how this complication of nodal mobility can be renormalized away for a particular class of networks.
Off-diagonal Jacobian support for Nodal BCs
Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.
2015-01-01
In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \
Long-range Coulomb interaction in nodal-ring semimetals
NASA Astrophysics Data System (ADS)
Huh, Yejin; Moon, Eun-Gook; Kim, Yong Baek
2016-01-01
Recently there have been several proposals of materials predicted to be nodal-ring semimetals, where zero energy excitations are characterized by a nodal ring in the momentum space. This class of materials falls between the Dirac-like semimetals and the more conventional Fermi-surface systems. As a step towards understanding this unconventional system, we explore the effects of the long-range Coulomb interaction. Due to the vanishing density of states at the Fermi level, Coulomb interaction is only partially screened and remains long-ranged. Through renormalization group and large-Nf computations, we have identified a nontrivial interacting fixed point. The screened Coulomb interaction at the interacting fixed point is an irrelevant perturbation, allowing controlled perturbative evaluations of physical properties of quasiparticles. We discuss unique experimental consequences of such quasiparticles: acoustic wave propagation, anisotropic dc conductivity, and renormalized phonon dispersion as well as energy dependence of quasiparticle lifetime.
Nodal Basin Recurrence After Sentinel Lymph Node Biopsy for Melanoma
Kretschmer, Lutz; Bertsch, Hans Peter; Zapf, Antonia; Mitteldorf, Christina; Satzger, Imke; Thoms, Kai-Martin; Völker, Bernward; Schön, Michael Peter; Gutzmer, Ralf; Starz, Hans
2015-01-01
Abstract The objective of this study was to analyze different types of nodal basin recurrence after sentinel lymph node biopsy (SLNB) for melanoma. Patients and Methods: Kaplan–Meier estimates and the Cox proportional hazards model were used to study 2653 patients from 3 German melanoma centers retrospectively. The estimated 5-year negative predictive value of SLNB was 96.4%. The estimated false-negative (FN) rates after 1, 2, 3, 5, and 10 years were 2.5%, 4.6%, 6.4%, 8.7%, and 12.6%, respectively. Independent factors associated with false negativity were older age, fewer SLNs excised, and head or neck location of the primary tumor. Compared with SLN-positive patients, the FNs had a significantly lower survival. In SLN-positive patients undergoing completion lymphadenectomy (CLND), the 5-year nodal basin recurrence rate was 18.3%. The recurrence rates for axilla, groin, and neck were 17.2%, 15.5%, and 44.1%, respectively. Significant factors predicting local relapse after CLND were older age, head, or neck location of the primary tumor, ulceration, deeper penetration of the metastasis into the SLN, tumor-positive CLND, and >2 lymph node metastases. All kinds of nodal relapse were associated with a higher prevalence of in-transit metastases. The FN rate after SLNB steadily increases over the observation period and should, therefore, be estimated by the Kaplan–Meier method. False-negativity is associated with fewer SLNs excised. The beneficial effect of CLND on nodal basin disease control varies considerably across different risk groups. This should be kept in mind about SLN-positive patients when individual decisions on prophylactic CLND are taken. PMID:26356697
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
Zika, M.; Downar, T. )
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.
Concomitant nodal involvement by Langerhans cell histiocytosis and Hodgkin's lymphoma.
Geurten, Claire; Thiry, Albert; Jamblin, Paul; Demarche, Martine; Hoyoux, Claire
2015-12-01
A 10-year-old girl with a family history of Hodgkin's lymphoma presented with a 2 month history of cervical lymphadenopathy and weight loss. Biopsy indicated concomitant nodal involvement by Langerhans cell histiocytosis and Hodgkin's lymphoma. Such an association is rare, especially so in children, but is not an isolated phenomenon, thereby prompting the question of whether Langerhans cell histiocytosis is a reactive or a neoplastic process. PMID:26556799
NODAL PATHWAY GENES ARE DOWNREGULATED IN FACIAL ASYMMETRY
Nicot, Romain; Hottenstein, Molly; Raoul, Gwenael; Ferri, Joel; Horton, Michael; Tobias, John W.; Barton, Elisabeth; Gelé, Patrick; Sciote, James J.
2014-01-01
Purpose Facial asymmetry is a common comorbid condition in patients with jaw deformation malocclusion. Heritability of malocclusion is advancing rapidly, but very little is known regarding genetic contributions to asymmetry. This study identifies differences in expression of key asymmetry-producing genes which are down regulated in facial asymmetry patients. Material and Methods Masseter muscle samples were collected during BSSO orthognathic surgery to correct skeletal-based malocclusion. Patients were classified as Class II or III and open or deep bite malocclusion with or without facial asymmetry. Muscle samples were analyzed for gene expression differences on Affymetrix HT2.0 microarray global expression chips. Results Overall gene expression was different for asymmetric patients compared to other malocclusion classifications by principal component analysis (P<0.05). We identified differences in the nodal signaling pathway (NSP) which promotes development of mesoderm and endoderm and left-right patterning during embryogenesis. Nodal and Lefty expression was 1.39–1.84 fold greater (P<3.41×10−5) whereas integral membrane Nodal-modulators Nomo1,2,3 were −5.63 to −5.81 (P<3.05×10−4) less in asymmetry subjects. Fold differences among intracellular pathway members were negative in the range of −7.02 to −2.47 (P<0.003). Finally Pitx2, a upstream effector of Nodal known to influence the size of type II skeletal muscle fibers was also significantly decreased in facial asymmetry (P<0.05). Conclusions When facial asymmetry is part of skeletal malocclusion there are decreases of NSP genes in masseter muscle. This data suggests that the NSP is down regulated to help promote development of asymmetry. Pitx2 expression differences also contributed to both skeletal and muscle development in this condition. PMID:25364968
NASA Astrophysics Data System (ADS)
Shukla, K.; Wang, Y.; Jaiswal, P.
2014-12-01
In a porous medium the seismic energy not only propagates through matrix but also through pore-fluids. The differential movement between sediment grains of the matrix and interstitial fluid generates a diffusive wave which is commonly referred to as the slow P-wave. A combined system of equation which includes both elastic and diffusive phases is known as the poroelasticity. Analyzing seismic data through poroelastic modeling results in accurate interpretation of amplitude and separation of wave modes, leading to more accurate estimation of geomehanical properties of rocks. Despite its obvious multi-scale application, from sedimentary reservoir characterization to deep-earth fractured crust, poroelasticity remains under-developed primarily due to the complex nature of its constituent equations. We present a detail formulation of poroleastic wave equations for isotropic media by combining the Biot's and Newtonian mechanics. System of poroelastic wave equation constitutes for eight time dependent hyperbolic PDEs in 2D whereas in case of 3D number goes up to thirteen. Eigen decomposition of Jacobian of these systems confirms the presence of an additional slow-P wave phase with velocity lower than shear wave, posing stability issues on numerical scheme. To circumvent the issue, we derived a numerical scheme using nodal discontinuous Galerkin approach by adopting the triangular meshes in 2D which is extended to tetrahedral for 3D problems. In our nodal DG approach the basis function over a triangular element is interpolated using Legendre-Gauss-Lobatto (LGL) function leading to a more accurate local solutions than in the case of simple DG. We have tested the numerical scheme for poroelastic media in 1D and 2D case, and solution obtained for the systems offers high accuracy in results over other methods such as finite difference , finite volume and pseudo-spectral. The nodal nature of our approach makes it easy to convert the application into a multi-threaded algorithm
Barnhill, R.E.; Farin, G.; Hamann, B.
1995-12-31
This paper provides a basic overview of NURBS and their application to numerical grid generation. Curve/surface smoothing, accelerated grid generation, and the use of NURBS in a practical grid generation system are discussed.
A nodal domain theorem for integrable billiards in two dimensions
Samajdar, Rhine; Jain, Sudhir R.
2014-12-15
Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.
Anomalous scaling of the penetration depth in nodal superconductors
NASA Astrophysics Data System (ADS)
She, Jian-Huang; Lawler, Michael J.; Kim, Eun-Ah
2015-07-01
Recent findings of anomalous superlinear scaling of low-temperature (T ) penetration depth (PD) in several nodal superconductors near putative quantum critical points suggest that the low-temperature PD can be a useful probe of quantum critical fluctuations in a superconductor. On the other hand, cuprates, which are poster child nodal superconductors, have not shown any such anomalous scaling of PD, despite growing evidence of quantum critical points (QCP). Then it is natural to ask when and how can quantum critical fluctuations cause anomalous scaling of PD? Carrying out the renormalization group calculation for the problem of two-dimensional superconductors with point nodes, we show that quantum critical fluctuations associated with a point group symmetry reduction result in nonuniversal logarithmic corrections to the T dependence of the PD. The resulting apparent power law depends on the bare velocity anisotropy ratio. We then compare our results to data sets from two distinct nodal superconductors: YBa2Cu3O6.95 and CeCoIn5. Considering all symmetry-lowering possibilities of the point group of interest, C4 v, we find our results to be remarkably consistent with YBa2Cu3O6.95 being near a vertical nematic QCP and CeCoIn5 being near a diagonal nematic QCP. Our results motivate a search for diagonal nematic fluctuations in CeCoIn5.
Upper bound shakedown analysis with the nodal natural element method
NASA Astrophysics Data System (ADS)
Zhou, Shutao; Liu, Yinghua; Wang, Dongdong; Wang, Kai; Yu, Suyuan
2014-11-01
In this paper, a novel numerical solution procedure is developed for the upper bound shakedown analysis of elastic-perfectly plastic structures. The nodal natural element method (nodal-NEM) combines the advantages of the NEM and the stabilized conforming nodal integration scheme, and is used to discretize the established mathematical programming formulation of upper bound shakedown analysis based on Koiter's theorem. In this formulation, the displacement field is approximated by using the Sibson interpolation and the difficulty caused by the time integration is solved by König's technique. Meanwhile, the nonlinear and non-differentiable characteristic of objective function is overcome by distinguishing non-plastic areas from plastic areas and modifying associated constraint conditions and goal function at each iteration step. Finally, the objective function subjected to several equality constraints is linearized and the upper bound shakedown load multiplier is obtained. This direct iterative process can ensure the shakedown load to monotonically converge to the upper bound of true solution. Several typical numerical examples confirm the efficiency and accuracy of the proposed method.
Topological Phase Transitions in Line-nodal Superconductors
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook
Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.
LSST Telescope Alignment Plan Based on Nodal Aberration Theory
NASA Astrophysics Data System (ADS)
Sebag, J.; Gressler, W.; Schmid, T.; Rolland, J. P.; Thompson, K. P.
2012-04-01
The optical alignment of the Large Synoptic Survey Telescope (LSST) is potentially challenging, due to its fast three-mirror optical design and its large 3.5° field of view (FOV). It is highly advantageous to align the three-mirror optical system prior to the integration of the complex science camera on the telescope, which corrects the FOV via three refractive elements and includes the operational wavefront sensors. A telescope alignment method based on nodal aberration theory (NAT) is presented here to address this challenge. Without the science camera installed on the telescope, the on-axis imaging performance of the telescope is diffraction-limited, but the field of view is not corrected. The nodal properties of the three-mirror telescope design have been analyzed and an alignment approach has been developed using the intrinsically linear nodal behavior, which is linked via sensitivities to the misalignment parameters. Since mirror figure errors will exist in any real application, a methodology to introduce primary-mirror figure errors into the analysis has been developed and is also presented.
Theory of the nematic quantum critical point in a nodal superconductor
NASA Astrophysics Data System (ADS)
Kim, Eun-Ah
2008-03-01
In the last several years, experimental evidence has accumulated in a variety of highly correlated electronic systems of new quantum phases which (for purely electronic reasons) spontaneously break the rotational (point group) symmetry of the underlying crystal. Such electron ``nematic'' phases have been seen in quantum Hall systems[1], in the metamagnetic metal Sr3Ru2O7[2], and more recently in magnetic neutron scattering studies of the high temperature superconductor, YBCO[3]. In the case of a high Tc superconductor, the quantum dynamics of nematic order parameter naturally couples strongly to quasiparticle (qp) excitations. In this talk, I will discuss our recent results on the effects of the coupling between quantum critical nematic fluctuations and the nodal qp's of a d-wave superconductor in the vicinity of a putative quantum critical point inside the superconducting phase. We solve a model system with N flavors of quasiparticles in the large N limit[4]. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle peaks in the spectral function, except in the vicinity of ``the tips of the banana,'' where the qp's remain sharp. We will discuss the possible implications of our results to ARPES and STM experiments. [1] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, PRL 83, 824 (1999). [2] R. A. Borzi and S. A. Grigera and J. Farrell and R. S. Perry and S. J. S. Lister and S. L. Lee and D. A. Tennant and Y. Maeno and A. P. Mackenzie, Science 315, 214 (2007). [3] V. Hinkov, D. Haug, B. Fauqu'e, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, unpublished. [4] E.-A. Kim, M. Lawler, P. Oreto, E. Fradkin, S. Kivelson, cond-mat/0705.4099.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Response of millet and sorghum to a varying water supply around the primary and nodal roots
Rostamza, M.; Richards, R. A.; Watt, M.
2013-01-01
Background and Aims Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Methods Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. Key Results When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2
Blue-noise halftoning for hexagonal grids.
Lau, Daniel L; Ulichney, Robert
2006-05-01
In this paper, we closely scrutinize the spatial and spectral properties of aperiodic halftoning schemes on rectangular and hexagonal sampling grids. Traditionally, hexagonal sampling grids have been shunned due to their inability to preserve the high-frequency components of blue-noise dither patterns at gray-levels near one-half, but as will be shown, only through the introduction of diagonal correlations between dots can even rectangular sampling grids preserve these frequencies. And by allowing the sampling grid to constrain the placement of dots, a particular algorithm may introduce visual artifacts just as disturbing as excess energy below the principal frequency. If, instead, the algorithm maintains radial symmetry by introducing a minimum degree of clustering, then that algorithm can maintain its grid defiance illusion fundamental to the spirit of the blue-noise model. As such, this paper shows that hexagonal grids are preferrable because they can support gray-levels near one-half with less required clustering of minority pixels and a higher principal frequency. Along with a thorough Fourier analysis of blue-noise dither patterns on both rectangular and hexagonal sampling grids, this paper also demonstrates the construction of a blue-noise dither array for hexagonal grids. PMID:16671307
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
Park, C B; Dufort, D
2011-03-01
Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth. PMID:21195476
Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system
Müller, Patrick; Rogers, Katherine W.; Jordan, Ben M.; Lee, Joon S.; Robson, Drew; Ramanathan, Sharad; Schier, Alexander F.
2012-01-01
Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients reveals that Nodals have a shorter range than Lefty proteins. Pulse-labelinganalysis indicates that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays reveal that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning. PMID:22499809
NASA Technical Reports Server (NTRS)
Lang, Harold R.
1991-01-01
A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.
Approximate Schur complement preconditioning of the lowest order nodal discretizations
Moulton, J.D.; Ascher, U.M.; Morel, J.E.
1996-12-31
Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.
Evaluation of the use of nodal methods for MTR neutronic analysis
Reitsma, F.; Mueller, E.Z.
1997-08-01
Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.
Nodal systems with maximal domain of exactness for Gaussian quadrature formulas
NASA Astrophysics Data System (ADS)
Berriochoa, E.; Cachafeiro, A.
2008-03-01
The aim of this work is to study quadrature formulas for measures on the complex plane. The novelty of our contribution is to consider the exactness on subspaces of polynomials on the variables z and . Using this approach we characterize, in a unified way, the classical nodal systems for measures on the real line and the nodal systems for measures on the unit circle, which are based on para-orthogonal polynomials. We also characterize the nodal systems on the unit circle, which are not based on para-orthogonal polynomials (only for the case of nodal systems with 1 or 2 points).
Nodal line optimization and its application to violin top plate design
NASA Astrophysics Data System (ADS)
Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man
2010-10-01
In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.
Translational significance of Nodal, Cripto-1 and Notch4 in adult nevi
Strizzi, Luigi; Margaryan, Naira V.; Gerami, Pedram; Haghighat, Zahra; Harms, Paul W.; Madonna, Gabriele; Botti, Gerardo; Ascierto, Paolo A.; Hendrix, Mary J.C.
2016-01-01
The TGF-β associated growth factor Nodal is highly expressed in aggressive metastatic melanoma. Determining the risk for melanomagenesis from Nodal expression in nevi prior to the development of melanoma may be useful for both the screening and prevention of melanoma. Tissue sections of human adult nevi with or without a history of melanoma were stained by immunohistochemistry (IHC) for Nodal, the Nodal co-receptor Cripto-1, and Notch4, which have previously been shown to be associated with Nodal expression in melanoma. The degree of Nodal, Cripto-1 and Notch4 staining was scored and correlated with available clinical data. Median IHC scores for Nodal, Cripto-1 and Notch4 expression were significantly higher in nevi removed from patients who eventually developed melanoma compared with nevi from patients with no history of melanoma. In addition, the degree of Nodal expression in nevi from patients who eventually developed melanoma correlated significantly with the Breslow depth of the melanoma. Expression of Nodal and components of its signaling pathway in nevi may represent a biomarker for selecting a unique subset of patients requiring increased surveillance for screening and prevention of melanoma.
Hybrid Grid Generation Using NW Grid
Jones-Oliveira, Janet B.; Oliveira, Joseph S.; Trease, Lynn L.; Trease, Harold E.; B.K. Soni, J. Hauser, J.F. Thompson, P.R. Eiseman
2000-09-01
We describe the development and use of a hybrid n-dimensional grid generation system called NWGRID. The Applied Mathematics Group at Pacific Northwest National Laboratory (PNNL) is developing this tool to support the Laboratory's computational science efforts in chemistry, biology, engineering and environmental (subsurface and atmospheric) modeling. NWGRID is the grid generation system, which is designed for multi-scale, multi-material, multi-physics, time-dependent, 3-D, hybrid grids that are either statically adapted or evolved in time. NWGRID'S capabilities include static and dynamic grids, hybrid grids, managing colliding surfaces, and grid optimization[using reconnections, smoothing, and adaptive mesh refinement (AMR) algorithms]. NWGRID'S data structure can manage an arbitrary number of grid objects, each with an arbitrary number of grid attributes. NWGRID uses surface geometry to build volumes by using combinations of Boolean operators and order relations. Point distributions can be input, generated using either ray shooting techniques or defined point-by-point. Connectivity matrices are then generated automatically for all variations of hybrid grids.
Wald, Ingo; Ize, Santiago
2015-07-28
Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.
Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores
A. M. Ougouag; R. M. Ferrer
2010-10-01
The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.
Symmetry Breaking in a Model for Nodal Cilia
NASA Astrophysics Data System (ADS)
Brokaw, Charles J.
2005-03-01
Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.
Amyloid precursor protein at node of Ranvier modulates nodal formation.
Xu, De-En; Zhang, Wen-Min; Yang, Zara Zhuyun; Zhu, Hong-Mei; Yan, Ke; Li, Shao; Bagnard, Dominique; Dawe, Gavin S; Ma, Quan-Hong; Xiao, Zhi-Cheng
2014-01-01
Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination. PMID:25482638
NASA Astrophysics Data System (ADS)
Lang, Harold R.
1991-09-01
Stratigraphic and structural studies of the Wind River and Bighorn basins, Wyoming, and the Guerrero-Morelos basin, Mexico, have resulted in development of ''spectral stratigraphy.'' This approach to stratigraphic analysis uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. This paper reviews selected published examples that illustrate this new stratigraphic procedure. Visible to thermal infrared laboratory, spectral measurements of sedimentary rocks are the physical basis for spectral stratigraphy. Results show that laboratory, field, and remote spectroscopy can augment conventional laboratory and field methods for petrologic analysis, stratigraphic correlation, interpretation of depositional environments, and construction of facies models. Landsat thematic mapper data are used to map strata and construct stratigraphic columns and structural cross sections at 1:24,000 scale or less. Experimental multispectral thermal infrared aircraft data facilitate lithofacies/biofacies analyses. Visible short-wavelength infrared imaging spectrometer data allow remote determination of the stratigraphic distribution of iron oxides, quartz, calcite, dolomite, gypsum, specific clay species, and other minerals diagnostic of environments of deposition. Development of a desk-top, computer-based, geologic analysis system that provides for automated application of these approaches to coregistered digital image and topographic data portends major expansion in the use of spectral stratigraphy for purely scientific (lithospheric research) or practical (resource exploration) objectives.
Lin, J; Huang, S; Lai, L; Lin, L; Chen, J; Tseng, Y; Lien, W
2000-01-01
OBJECTIVE—To search for a reliable anatomical landmark within Koch's triangle to predict the risk of atrioventricular (AV) block during radiofrequency slow pathway catheter ablation of AV nodal re-entrant tachycardia (AVNRT). PATIENTS AND METHODS—To test the hypothesis that the distal end of the AV nodal artery represents the anatomical location of the AV node, and thus could be a useful landmark for predicting the risk of AV block, 128 consecutive patients with AVNRT receiving slow pathway catheter ablation were prospectively studied in two phases. In phase I (77 patients), angiographic demonstration of the AV nodal artery and its ending was performed at the end of the ablation procedure, whereas in the subsequent phase II study (51 patients), the angiography was performed immediately before catheter ablation to assess the value of identifying this new landmark in reducing the risk of AV block. Multiple electrophysiologic and anatomical parameters were analysed. The former included the atrial activation sequence between the His bundle recording site (HBE) and the coronary sinus orifice or the catheter ablation site, either during AVNRT or during sinus rhythm. The latter included the spatial distances between the distal end of the AV nodal artery and the HBE and the final catheter ablation site, and the distance between the HBE and the tricuspid border at the coronary sinus orifice floor. RESULTS—In phase I, nine of the 77 patients had complications of transient (seven patients) or permanent (two patients) complete AV block during stepwise, anatomy guided slow pathway catheter ablation. These nine patients had a wider distance between the HBE and the distal end of the AV nodal artery, and a closer approximation of the catheter ablation site to the distal end of the AV nodal artery, which independently predicted the risk of AV block. In contrast, none of the available electrophysiologic parameters were shown to be reliable. When the distance between
A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain
van Boxtel, Antonius L.; Chesebro, John E.; Heliot, Claire; Ramel, Marie-Christine; Stone, Richard K.; Hill, Caroline S.
2015-01-01
Summary Morphogen signaling is critical for the growth and patterning of tissues in embryos and adults, but how morphogen signaling gradients are generated in tissues remains controversial. The morphogen Nodal was proposed to form a long-range signaling gradient via a reaction-diffusion system, on the basis of differential diffusion rates of Nodal and its antagonist Lefty. Here we use a specific zebrafish Nodal biosensor combined with immunofluorescence for phosphorylated Smad2 to demonstrate that endogenous Nodal is unlikely to diffuse over a long range. Instead, short-range Nodal signaling activation in a temporal window is sufficient to determine the dimensions of the Nodal signaling domain. The size of this temporal window is set by the differentially timed production of Nodal and Lefty, which arises mainly from repression of Lefty translation by the microRNA miR-430. Thus, temporal information is transformed into spatial information to define the dimensions of the Nodal signaling domain and, consequently, to specify mesendoderm. PMID:26506307
A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain.
van Boxtel, Antonius L; Chesebro, John E; Heliot, Claire; Ramel, Marie-Christine; Stone, Richard K; Hill, Caroline S
2015-10-26
Morphogen signaling is critical for the growth and patterning of tissues in embryos and adults, but how morphogen signaling gradients are generated in tissues remains controversial. The morphogen Nodal was proposed to form a long-range signaling gradient via a reaction-diffusion system, on the basis of differential diffusion rates of Nodal and its antagonist Lefty. Here we use a specific zebrafish Nodal biosensor combined with immunofluorescence for phosphorylated Smad2 to demonstrate that endogenous Nodal is unlikely to diffuse over a long range. Instead, short-range Nodal signaling activation in a temporal window is sufficient to determine the dimensions of the Nodal signaling domain. The size of this temporal window is set by the differentially timed production of Nodal and Lefty, which arises mainly from repression of Lefty translation by the microRNA miR-430. Thus, temporal information is transformed into spatial information to define the dimensions of the Nodal signaling domain and, consequently, to specify mesendoderm. PMID:26506307
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
2015-09-14
GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.
NASA Technical Reports Server (NTRS)
Hinke, Thomas
2003-01-01
This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.
Carl, Matthias; Bianco, Isaac H.; Bajoghli, Baubak; Aghaallaei, Narges; Czerny, Thomas; Wilson, Stephen W.
2007-01-01
Summary Nodal activity in the left lateral plate mesoderm (LPM) is required to activate left-sided Nodal signaling in the epithalamic region of the zebrafish forebrain. Epithalamic Nodal signaling subsequently determines the laterality of neuroanatomical asymmetries. We show that overactivation of Wnt/Axin1/β-catenin signaling during late gastrulation leads to bilateral epithalamic expression of Nodal pathway genes independently of LPM Nodal signaling. This is consistent with a model whereby epithalamic Nodal signaling is normally bilaterally repressed, with Nodal signaling from the LPM unilaterally alleviating repression. We suggest that Wnt signaling regulates the establishment of the bilateral repression. We identify a second role for the Wnt pathway in the left/right regulation of LPM Nodal pathway gene expression, and finally, we show that at later stages Axin1 is required for the elaboration of concordant neuroanatomical asymmetries. PMID:17678853
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Less may be more: nodal treatment in neck positive head neck cancer patients.
Studer, Gabriela; Huber, Gerhard F; Holz, Edna; Glanzmann, Christoph
2016-06-01
Ongoing debates about the need and extent of planned neck dissection (PND), and required nodal radiation doses volumes lead to this evaluation. Aim was to assess nodal control after definitive intensity modulated radiation therapy (IMRT ± systemic therapy) followed by PND in our head neck cancer cohort with advanced nodal disease. Between 01/2005 and 12/2013, 99 squamous cell cancer HNC patients with pre-therapeutic nodal metastasis ≥3 cm were treated with definitive IMRT followed by PND. In addition, outcome in 103 patients with nodal relapse after IMRT and observation only (no-PND cohort) were analyzed. Prior to PND, PET-CT, fine needle aspirations, ultrasound and palpation were assessed regarding its predictive value. Patterns of nodal relapse were assessed in patients with isolated neck failure after definitive IMRT alone. 70/99 (70 %) PND specimens showed histopathological complete response (hCR), which translated into statistically significantly superior survival compared with partial response (hPR) with 4-year overall survival, disease specific survival and nodal control rates of 90/83/96 vs 67/60/78 % (p = 0.002/0.001/0.003). 1/99 patient developed isolated subsequent nodal disease. 64/2147 removed nodes contained viable tumor (3 %). Predictive information of the performed diagnostic investigations was not reliable. 17/70 hCR patients showed true negative findings in available three to four investigations (0/29 hPR). 27/103 no-PND patients developed isolated neck disease (26 %) with successful salvage in 21/24 [88 %, or 21/27 (78 %)]. Nearly all failures occurred in the prior nodal gross tumor volume area. A more restrictive approach regarding PND and/or nodal IMRT dose-volumes may be justified. PMID:25920604
Nodal promotes invasive phenotypes via a Mitogen Activated Protein Kinase-dependent pathway
Quail, DF; Zhang, G; Findlay, SD; Hess, DA; Postovit, LM
2016-01-01
The progression of cancer from localized to invasive disease is requisite for metastasis, and is often characterized by epithelial-to-mesenchymal transition (EMT) and alterations in cellular adhesion and migration. Studies have shown that this transition is associated with an up-regulation of embryonic stem cell-associated genes, resulting in a dedifferentiated phenotype and poor patient prognosis. Nodal is an embryonic factor that plays a critical role in promoting early invasive events during development. Nodal is silenced as stem cells differentiate; however, it re-emerges in adult life during placentation and mammary gland development, and is aberrantly expressed in many cancers. Here, we show that Nodal over-expression, in poorly-invasive breast cancer and choriocarcinoma cells, causes increased invasion and migration in vitro. Furthermore, we show that Nodal over-expression in these epithelial cancer types induces an EMT-like event concomitant with the internalization of E-Cadherin. This ability of Nodal to promote cellular invasion and EMT-like phenomena is dependent upon the phosphorylation of ERK1/2. Since Nodal normally signals through SMADs, these findings lend insight into an alternative pathway that is hijacked by this protein in cancer. To evaluate the clinical implications of our results, we show that Nodal inhibition reduces liver tumor burden in a model of spontaneous breast cancer metastasis in vivo, and that Nodal loss-of-function in aggressive breast cancer lines results in a decrease in invasive phenotypes. Our results demonstrate that Nodal is involved in promoting invasion in multiple cellular contexts, and that Nodal inhibition may be useful as a therapeutic target for patients with progressive disease. PMID:23334323
Nodal weighting factor method for ex-core fast neutron fluence evaluation
Chiang, R. T.
2012-07-01
The nodal weighting factor method is developed for evaluating ex-core fast neutron flux in a nuclear reactor by utilizing adjoint neutron flux, a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV, the unit fission source, and relative assembly nodal powers. The method determines each nodal weighting factor for ex-core neutron fast flux evaluation by solving the steady-state adjoint neutron transport equation with a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV as the adjoint source, by integrating the unit fission source with a typical fission spectrum to the solved adjoint flux over all energies, all angles and given nodal volume, and by dividing it with the sum of all nodal weighting factors, which is a normalization factor. Then, the fast neutron flux can be obtained by summing the various relative nodal powers times the corresponding nodal weighting factors of the adjacent significantly contributed peripheral assembly nodes and times a proper fast neutron attenuation coefficient over an operating period. A generic set of nodal weighting factors can be used to evaluate neutron fluence at the same location for similar core design and fuel cycles, but the set of nodal weighting factors needs to be re-calibrated for a transition-fuel-cycle. This newly developed nodal weighting factor method should be a useful and simplified tool for evaluating fast neutron fluence at selected locations of interest in ex-core components of contemporary nuclear power reactors. (authors)
Space-angle approximations in the variational nodal method.
Lewis, E. E.; Palmiotti, G.; Taiwo, T.
1999-03-12
The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared.
Typical nodal calcifications in the maxillofacial region: a case report
Wu, Guomin; Sun, Xiumei; Ni, Shilei; Zhang, Zhimin
2014-01-01
Multiple nodal calcifications in the maxillofacial region are very rare. This case report described a 49-year-old female patient diagnosed with calcified lymph nodes due to chronic inflammation of the lymphatic nodes, including the parotid lymphatic nodes, the posterior auricular lymphatic nodes and submandibular lymphatic nodes in the right maxillofacial region. In clinical practice, we conducted ultrasonography, three-dimensional reconstruction of CT and sialography make a preliminary diagnosis. Then we took surgery, while removing the calcified blocks within the lymphatic node and cleaning the wound cavity. After surgery, we used anti-inflammatory therapy for one week. Six months follow-up indicated no evidence of other calcified lymph nodes infection. PMID:25356188
CAISO flicks switch on nodal scheme and lights stay on
2009-06-15
In 2000-01, two years after introducing a competitive wholesale power auction in California - with a separate day-ahead zonal market operated by the California Power Exchange and a zonal market for ancillary services and balancing energy operated by the California Independent System Operator (CAISO) - the California market collapsed from exorbitant prices, flagrant gaming, and abuse of market power. Nine years later, CAISO introduced a nodal pricing auction for the wholesale market in April, replacing the zonal scheme, which was among many causes of the original market's demise. With nearly 3,000 nodes on the network, high prices in one region do not affect prices everywhere on the system. After investing some $200 million to upgrade the software, countless delays, and 18 months of market simulation and testing, the new auction was introduced and nothing unusual happened.
Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma.
Na'ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv
2016-01-01
Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC. PMID:26886954
Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma
Na’ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv
2016-01-01
Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC. PMID:26886954
ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm
Ellis, Pamela S.; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M.; Constam, Daniel; Placzek, Marysia
2015-01-01
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. PMID:26417042
ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm.
Ellis, Pamela S; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M; Constam, Daniel; Placzek, Marysia
2015-11-15
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. PMID:26417042
Taft, Jeffrey D.
2016-01-01
The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.
Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab
2007-05-01
As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.
Kim, Sangtae; Gupta, Nitin; Bandeira, Nuno; Pevzner, Pavel A.
2009-01-01
Database search tools identify peptides by matching tandem mass spectra against a protein database. We study an alternative approach when all plausible de novo interpretations of a spectrum (spectral dictionary) are generated and then quickly matched against the database. We present a new MS-Dictionary algorithm for efficiently generating spectral dictionaries and demonstrate that MS-Dictionary can identify spectra that are missed in the database search. We argue that MS-Dictionary enables proteogenomics searches in six-frame translation of genomic sequences that may be prohibitively time-consuming for existing database search approaches. We show that such searches allow one to correct sequencing errors and find programmed frameshifts. PMID:18703573
Coplanar interdigitated grid detector with single electrode readout
Luke, Paul N.
2001-01-01
The coplanar interdigitated grid technique with single electrode readout provides substantial spectral performance improvement over that of conventional full-area planar electrode detectors and over coplanar interdigitated grid detectors which measure the difference between the induced charge signals from two interdigitated coplanar grid electrodes. The signal from only one interdigitated grid electrode is read out. The signal response is optimized by changing the relative areas of the two grid electrodes and the bias applied across the detector. Only one preamplifier is needed and signal subtraction is not necessary. This eliminates the electronic noise contribution from the additional preamplifier used in the normal coplanar grid implementation, and conventional single-amplifier detector electronics can be used.
2007-11-15
The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology
Grid quality improvement by a grid adaptation technique
NASA Technical Reports Server (NTRS)
Lee, K. D.; Henderson, T. L.; Choo, Y. K.
1991-01-01
A grid adaptation technique is presented which improves grid quality. The method begins with an assessment of grid quality by defining an appropriate grid quality measure. Then, undesirable grid properties are eliminated by a grid-quality-adaptive grid generation procedure. The same concept has been used for geometry-adaptive and solution-adaptive grid generation. The difference lies in the definition of the grid control sources; here, they are extracted from the distribution of a particular grid property. Several examples are presented to demonstrate the versatility and effectiveness of the method.
Navigation in Grid Space with the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.
Drumhead surface states and topological nodal-line fermions in TlTaSe2
NASA Astrophysics Data System (ADS)
Bian, Guang; Chang, Tay-Rong; Zheng, Hao; Velury, Saavanth; Xu, Su-Yang; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Sanchez, Daniel S.; Belopolski, Ilya; Alidoust, Nasser; Chen, Peng-Jen; Chang, Guoqing; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid
2016-03-01
A topological nodal-line semimetal is a state of matter with one-dimensional bulk nodal lines and two-dimensional so-called drumhead surface bands. Based on first-principles calculations and an effective k .p model, we theoretically propose the existence of topological nodal-line fermions in the ternary transition-metal chalcogenide TlTaSe2. The noncentrosymmetric structure and strong spin-orbit coupling give rise to spinful nodal-line bulk states which are protected by a mirror reflection symmetry of this compound. This is remarkably distinguished from other proposed nodal-line semimetals such as Cu3NPb (Zn) in which the nodal line exists only in the limit of vanishing spin-orbit coupling and thus is not as robust. In addition, we show that the drumhead surface states in TlTaSe2, which are associated with the topological nodal lines, exhibit an unconventional chiral spin texture and an exotic Lifshitz transition as a consequence of the linkage among multiple drumhead surface-state pockets.
Xantivin suppresses the activity of EGF-CFC genes to regulate nodal signaling.
Tanegashima, Kousuke; Haramoto, Yoshikazu; Yokota, Chika; Takahashi, Shuji; Asashima, Makoto
2004-06-01
Lefty, antivin and related genes act in a feedback inhibition mechanism for nodal signaling at a number of stages of vertebrate embryogenesis. To analyze the function of the feedback inhibitor of nodal signaling, Xantivin in Xenopus embryos, we designed a morpholino antisense oligonucleotide (XatvMO) for this gene. XatvMO caused the expansion of mesodermal tissue and head defects. XatvMO-injected gastrulae showed up-regulated expression of the mesodermal markers Xbra, Xwnt8, Xnot, and Chordin, suggesting expansion of the trunk-tail organizer. As expected, depletion of Xantivin also up-regulated nodal signaling as confirmed by the enhanced ectopic expression of Xantivin mRNA, a known target gene of nodal signaling. Furthermore, we investigated the relationship between Xantivin and the EGF-CFC gene FRL-1, which is a component of the nodal receptor. In animal cap assays, FRL-1 could not induce expression of nodal-responsive genes, but could up-regulate expression of these genes when FRL-1 was coinjected with a low dose of Xnr1; coinjection of Xantivin suppressed this up-regulation by FRL-1. We also found that Xantivin can rescue the caudalized phenotype induced by overexpression of FRL-1. Co-immunoprecipitation assays showed that Xantivin interacted with the EGF-CFC proteins, FRL-1 and cripto. Taken together, these results suggest that Xantivin opposes the activity of EGF-CFC genes and thereby antagonizes nodal signaling. PMID:15300508
Grid enabled Service Support Environment - SSE Grid
NASA Astrophysics Data System (ADS)
Goor, Erwin; Paepen, Martine
2010-05-01
The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more
Bodenstine, Thomas M; Chandler, Grace S; Reed, David W; Margaryan, Naira V; Gilgur, Alina; Atkinson, Janis; Ahmed, Nida; Hyser, Matthew; Seftor, Elisabeth A; Strizzi, Luigi; Hendrix, Mary J C
2016-05-01
Triple-negative breast cancer (TNBC) represents an aggressive cancer subtype characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The independence of TNBC from these growth promoting factors eliminates the efficacy of therapies which specifically target them, and limits TNBC patients to traditional systemic neo/adjuvant chemotherapy. To better understand the growth advantage of TNBC - in the absence of ER, PR and HER2, we focused on the embryonic morphogen Nodal (associated with the cancer stem cell phenotype), which is re-expressed in aggressive breast cancers. Most notably, our previous data demonstrated that inhibition of Nodal signaling in breast cancer cells reduces their tumorigenic capacity. Furthermore, inhibiting Nodal in other cancers has resulted in improved effects of chemotherapy, although the mechanisms for this remain unknown. Thus, we hypothesized that targeting Nodal in TNBC cells in combination with conventional chemotherapy may improve efficacy and represent a potential new strategy. Our preliminary data demonstrate that Nodal is highly expressed in TNBC when compared to invasive hormone receptor positive samples. Treatment of Nodal expressing TNBC cell lines with a neutralizing anti-Nodal antibody reduces the viability of cells that had previously survived treatment with the anthracycline doxorubicin. We show that inhibiting Nodal may alter response mechanisms employed by cancer cells undergoing DNA damage. These data suggest that development of therapies which target Nodal in TNBC may lead to additional treatment options in conjunction with chemotherapy regimens - by altering signaling pathways critical to cellular survival. PMID:27007464
Nodal signaling is required for closure of the anterior neural tube in zebrafish
Aquilina-Beck, Allisan; Ilagan, Kristine; Liu, Qin; Liang, Jennifer O
2007-01-01
Background Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish. Results We find that the neural tube in the presumptive forebrain fails to close in zebrafish Nodal signaling mutants. For instance, the cells that will give rise to the pineal organ fail to move from the lateral edges of the neural plate to the midline of the diencephalon. The open neural tube in Nodal signaling mutants may be due in part to reduced function of N-cadherin, a cell adhesion molecule expressed in the neural tube and required for neural tube closure. N-cadherin expression and localization to the membrane are reduced in fish that lack Nodal signaling. Further, N-cadherin mutants and morphants have a pineal phenotype similar to that of mutants with deficiencies in the Nodal pathway. Overexpression of an activated form of the TGFβ Type I receptor Taram-A (Taram-A*) cell autonomously rescues mesendoderm formation in fish with a severe decrease in Nodal signaling. We find that overexpression of Taram-A* also corrects their open neural tube defect. This suggests that, as in mammals, the mesoderm and endoderm have an important role in regulating closure of the anterior neural tube of zebrafish. Conclusion This work helps establish a role for Nodal signals in neurulation, and suggests that defects in Nodal signaling could underlie human neural tube defects such as exencephaly, a fatal condition characterized by an open neural tube in the anterior brain. PMID:17996054
Birkeland, Andrew C.; Rosko, Andrew J.; Issa, Mohamad R.; Shuman, Andrew G.; Prince, Mark E.; Wolf, Gregory T.; Bradford, Carol R.; McHugh, Jonathan B.; Brenner, J. Chad; Spector, Matthew E.
2016-01-01
Objectives The indications for neck dissection concurrent with salvage laryngectomy in the clinically N0 setting remain unclear. Our goals were to determine the prevalence of occult nodal disease, analyze nodal disease distribution patterns, and identify predictors of occult nodal disease in a salvage laryngectomy cohort. Study Design Case series with planned data collection. Setting Tertiary academic center. Subjects Patients with persistent or recurrent laryngeal squamous cell carcinoma after radiation/chemoradiation failure undergoing salvage laryngectomy with neck dissection. Methods We analyzed a single-institution retrospective case series of patients between 1997–2014 and identified those who had clinically N0 necks (n = 203). Clinical and pathologic data, including nodal prevalence and distribution were collected, and statistical analyses were performed. Results Overall, cN0 necks had histologically positive occult nodes in 17% (n=35) of cases. Univariate predictors of occult nodal positivity included recurrent T4 stage (34% T4 vs. 12% non-T4; p=0.0003), and supraglottic subsite (28% supraglottic vs. 10% non-supraglottic; p=0.0006). Histologically positive nodes associated with supraglottic primaries were most frequently positive in ipsilateral level II and III (17% and 16%). Positive nodes for glottic SCC were most frequently positive in the ipsilateral and contralateral paratracheal nodes (11% and 9%). Conclusion Histologically positive occult nodes are identified in 17% of cN0 patients undergoing salvage laryngectomy with neck dissection. Occult nodal disease varies in frequency and distribution based upon tumor subsite. Predictors of high (>20%) occult nodal positivity include T4 tumors and supraglottic subsite. In glottic SCCs, the most frequent sites of occult nodal disease are the paratracheal nodal basins. PMID:26884365
Securing smart grid technology
NASA Astrophysics Data System (ADS)
Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman
2013-03-01
In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.
Dihge, Looket; Grabau, Dorthe A; Rasmussen, Rogvi W; Bendahl, Pär-Ola; Rydén, Lisa
2016-08-01
Background The outcome of axillary ultrasound (AUS) with fine-needle aspiration biopsy (FNAB) in the diagnostic work-up of primary breast cancer has an impact on therapy decisions. We hypothesize that the accuracy of AUS is modified by nodal metastatic burden and clinico-pathological characteristics. Material and methods The performance of AUS and AUS-guided FNAB for predicting nodal metastases was assessed in a prospective breast cancer cohort subjected for surgery during 2009-2012. Predictors of accuracy were included in multivariate analysis. Results AUS had a sensitivity of 23% and a specificity of 95%, while AUS-guided FNAB obtained 73% and 100%, respectively. AUS-FNAB exclusively detected macro-metastases (median four metastases) and identified patients with more extensive nodal metastatic burden in comparison with sentinel node biopsy. The accuracy of AUS was affected by metastatic size (OR 1.11), obesity (OR 2.46), histological grade (OR 4.43), and HER2-status (OR 3.66); metastatic size and histological grade were significant in the multivariate analysis. Conclusions The clinical utility of AUS in low-risk breast cancer deserves further evaluation as the accuracy decreased with a low nodal metastatic burden. The diagnostic performance is modified by tumor and clinical characteristics. Patients with nodal disease detected by AUS-FNAB represent a group for whom neoadjuvant therapy should be considered. PMID:27050668
Jia, Wei-Dong; Xu, Ge-Liang; Ma, Jin-Liang; Ren, Yun; Chen, Hao; Sun, Si-Nan; Huang, Mei; Li, Jian-Sheng
2014-01-01
Background Nodal, a TGF-β-related embryonic morphogen, is involved in multiple biologic processes. However, the expression of Nodal in hepatocellular carcinoma (HCC) and its correlation with tumor angiogenesis, epithelial-mesenchymal transition, and prognosis is unclear. Methods We used real-time PCR and Western blotting to investigate Nodal expression in 6 HCC cell lines and 1 normal liver cell line, 16 pairs of tumor and corresponding paracarcinomatous tissues from HCC patients. Immunohistochemistry was performed to examine Nodal expression in HCC and corresponding paracarcinomatous tissues from 96 patients. CD34 and Vimentin were only examined in HCC tissues of patients mentioned above. Nodal gene was silenced by shRNA in MHCC97H and HCCLM3 cell lines, and cell migration and invasion were detected. Statistical analyses were applied to evaluate the prognostic value and associations of Nodal expression with clinical parameters. Results Nodal expression was detected in HCC cell lines with high metastatic potential alone. Nodal expression is up-regulated in HCC tissues compared with paracarcinomatous and normal liver tissues. Nodal protein was expressed in 70 of the 96 (72.9%) HCC tumors, and was associated with vascular invasion (P = 0.000), status of metastasis (P = 0.004), AFP (P = 0.049), ICGR15 (indocyanine green retention rate at 15 min) (P = 0.010) and tumor size (P = 0.000). High Nodal expression was positively correlated with high MVD (microvessal density) (P = 0.006), but not with Vimentin expression (P = 0.053). Significantly fewer migrated and invaded cells were seen in shRNA group compared with blank group and negative control group (P<0.05). High Nodal expression was found to be an independent factor for predicting overall survival of HCC. Conclusions Our study demonstrated that Nodal expression is associated with aggressive characteristics of HCC. Its aberrant expression may be a predictive factor of unfavorable prognosis
NASA Technical Reports Server (NTRS)
Yasui, R. K.; Berman, P. A. (Inventor)
1976-01-01
A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.
Enhanced Elliptic Grid Generation
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2007-01-01
An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are
NASA Technical Reports Server (NTRS)
Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.
1991-01-01
A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.
Challenges facing production grids
Pordes, Ruth; /Fermilab
2007-06-01
Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.
Topological nodal Cooper pairing in doped Weyl metals
NASA Astrophysics Data System (ADS)
Li, Yi; Haldane, F. D. M.
We generalize the concept of Berry connection of the single-electron band structure to the two-particle Cooper pair states between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires non-trivial monopole structure. Consequently, pairing gap functions have the topologically-protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the monopole charge qp. The pairing nodes behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from theWeyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or anti-holomorphic functions on Fermi surfaces. F.D.M.H. acknowledges the support from MRSEC NSF-DMR-1420541 and the W. M. Keck Foundation.
Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments.
Silveira, S S; Cordeiro-Silva, R; Degenhardt-Goldbach, J; Quoirin, M
2016-05-01
Micropropagation of Calophyllum brasiliense Cambess. (Clusiaceae) is a way to overcome difficulties in achieving large-scale plant production, given the recalcitrant nature of the seeds, irregular fructification and absence of natural vegetative propagation of the species. Cultures were established using nodal segments 2 cm in length, obtained from 1-2 year old seedlings, maintained in a greenhouse. Mercury chloride and Plant Preservative Mixture™ were used in the surface sterilizing stage, better results being achieved with Plant Preservative Mixture™ incorporation in culture medium, at any concentration. Polyvinylpyrrolidone, activated charcoal, cysteine, ascorbic acid or citric acid were added to the culture medium to avoid oxidation. After 30 days of culture, polyvinylpirrolidone and ascorbic acid gave better results, eliminating oxidation in most explants. For shoot multiplication, benzylaminopurine was used in concentrations of 4.4 and 8.8 µM in Woody Plant Medium, resulting in an average of 4.43 and 4.68 shoots per explant, respectively, after 90 days. Indole-3-butyric acid and α-naphthalene acetic acid were used to induce root formation, reaching a maximum rooting rate of 24% with 20µM α-naphthalene acetic acid. For acclimatization. the rooted plants were transferred to Plantmax® substrate and cultured in a greenhouse, reaching 79% of survival after 30 days and 60% after one year. PMID:27143061
High-latitude oceanic variability associated with the 18. 6-year nodal tide
Royer, T.C. )
1993-03-15
Ocean temperatures in the upper 250 m in the northern North Pacific (60[degree]N, 149[degree]W) increased by more than 1[degree]C from 1972 to 1986 but are now decreasing. Subsurface temperature anomalies are well correlated ([approx] 0.58) with the air temperature anomalies at Sitka, Alaska; hence the coastal air temperatures can be used as a proxy data set to extend the ocean temperature time series back to 1828. Up to 30% of the low-frequency variance can be accounted for with the 18.6-year nodal signal. Additionally, spectral analysis of these air temperature variations indicates a significant low-frequency peak in the range of the 18.6-year signal. Similar low-frequency signals have been reported for Hudson Bay air temperatures since 1700, for sea surface temperatures in the North Atlantic from 1876 to 1939, and for sea level in the high-latitude southern hemisphere. The water column temperature variations presented here are the first evidence that the upper ocean is responding to this very long period tidal forcing. An enhanced high-latitude response to the 18.6-year forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50[degree]. These low-frequency ocean-atmosphere variations must be considered in high-latitude assessments of global climate change, since they are of the same magnitude as many of the predicted global changes. 29 refs., 5 figs., 2 tabs.
Topological Nodal-Line Superfluid in Spin-Orbit Coupled Cold Atomic Systems
NASA Astrophysics Data System (ADS)
He, Wen-Yu; Xu, Dong-Hui; Zhou, Tong; Law, K. T.; Hong Kong University of Science; Technology Collaboration
Topological nodal line superconductivity or superfluidity is a fascinating topological gapless phase which hosts bulk Weyl ring degeneracy in the quasiparticle excitation spectrum and supports Majorana zero bound modes with a large density of states at the edge. In this work, based on the experimental realized 1D spin orbit coupling, we show the emergence of topological nodal line superfluid phase in Fermionic atoms trapped in 3D cubic optical lattice when the s wave pairing field is introduced through Feshbach resonance between the two atomic hyperfine spin states. The nodal line degeneracy is further found to evolve into Weyl nodes once another component of spin orbit coupling field enters to break the chiral symmetry. The momentum resolved radio frequency spectroscopy is suggested to manifest the topological nodal line superfluid phase.
Dose-dependent Nodal/Smad signals pattern the early mouse embryo.
Robertson, Elizabeth J
2014-08-01
Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo. PMID:24704361
Relation between finite element methods and nodal methods in transport theory
Walters, W.F.
1985-01-01
This paper examines the relationship between nodal methods and finite-element methods for solving the discrete-ordinates form of the transport equation in x-y geometry. Specifically, we will examine the relation of three finite-element schemes to the linear-linear (LL) and linear-nodal (LN) nodal schemes. The three finite-element schemes are the linear-continuous-diamond-difference (DD) scheme, the linear-discontinuous (LD) scheme, and the quadratic-discontinuous (QD) scheme. A brief derivation of the (LL) and (LN) nodal schemes is given in the third section of this paper. The approximations that cause the LL scheme to reduce to the DD, LD, and QD schemes are then indicated. An extremely simple method of deriving the finite-element schemes is then introduced.
ANOVA-HDMR structure of the higher order nodal diffusion solution
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-07-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
Nodal signaling in Xenopus gastrulae is cell-autonomous and patterned by beta-catenin.
Hashimoto-Partyka, Minako K; Yuge, Masahiro; Cho, Ken W Y
2003-01-01
The classical three-signal model of amphibian mesoderm induction and more recent modifications together propose that an activin-like signaling activity is uniformly distributed across the vegetal half of the Xenopus blastula and that this activity contributes to mesoderm induction. In support of this, we have previously shown that the activin-response element (DE) of the goosecoid promoter is uniformly activated across the vegetal half of midgastrula-stage embryos. Here, we further examine the nature of this activity by measuring DE activation by endogenous signals over time. We find that the spatiotemporal pattern of DE activation is much more dynamic than was previously appreciated and also conclude that DE(6X)Luc activity reflects endogenous nodal signaling in the embryo. Using both the DE(6X)Luc construct and endogenous Xbra and Xgsc expression as read-outs for nodal activity, and the cleavage-mutant version of Xnr2 (CmXnr2) to regionally suppress endogenous nodal activity, we demonstrate that nodal signals act cell-autonomously in Xenopus gastrulae. Nodal-expressing cells are unable to rescue either reporter gene activation or target gene expression in distant nodal-deficient cells, suggesting that nodals function at short range in this context. Finally, we show that DE activation by endogenous signals occurs in the absence of dorsal beta-catenin-mediated signaling, but that the timing of dorsal initiation is altered. We conclude that nodal signals in Xenopus gastrulae function cell autonomously at short ranges and that the spatiotemporal pattern of this signaling along the dorsoventral axis is regulated by maternal Wnt-like signaling. PMID:12490202
Effects of a novel Nodal-targeting monoclonal antibody in melanoma
Margaryan, Naira V.; Focà, Annalia; Sanguigno, Luca; Bodenstine, Thomas M.; Chandler, Grace S.; Reed, David W.; Gilgur, Alina; Seftor, Elisabeth A.; Seftor, Richard E.B.; Khalkhali-Ellis, Zhila; Leonardi, Antonio; Ruvo, Menotti; Hendrix, Mary J.C.
2015-01-01
Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers. PMID:26460952
Disrupting Foxh1-Groucho Interaction Reveals Robustness of Nodal-Based Embryonic Patterning
Halstead, Angela M.; Wright, Christopher V. E.
2016-01-01
The winged-helix transcription factor Foxh1 is an essential regulator of Nodal signaling during the key developmental processes of gastrulation, anterior-posterior (A-P) patterning, and the derivation of left-right (L-R) asymmetry. Current models have Foxh1 bound to phospho-Smad2/3 (pSmad2/3) as a central transcriptional activator for genes targeted by Nodal signaling including Nodal itself, the feedback inhibitor Lefty2, and the positive transcriptional effector Pitx2. However, the conserved Engrailed homology-1 (EH1) motif present in Foxh1 suggests that modulated interaction with Groucho (Grg) co-repressors would allow Foxh1 to function as a transcriptional switch, toggling between transcriptional on and off states via pSmad2-Grg protein-switching, to ensure the properly timed initiation and suppression, and/or amplitude, of expression of Nodal and its target genes. We minimally mutated the Foxh1 EH1 motif, creating a novel Foxh1mEH1 allele to test directly the contribution of Foxh1-Grg–mediated repression on the transient, dynamic pattern of Nodal signaling in mice. All aspects of Nodal and its target gene expression in Foxh1mEH1/mEH1 embryos were equivalent to wild type. A-P patterning and organ situs in homozygous embryos and adult mice were also unaffected. The finding that Foxh1-Grg–mediated repression is not essential for Nodal expression during mouse embryogenesis suggests that other regulators compensate for the loss of repressive regulatory input that is mediated by Grg interactions. We suggest that the pervasive inductive properties of Nodal signaling exist within the context of a strongly buffered regulatory system that contributes to resilience and accuracy of its dynamic expression pattern. PMID:25511461
The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development
Deshwar, Ashish R; Chng, Serene C; Ho, Lena; Reversade, Bruno; Scott, Ian C
2016-01-01
The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFβ signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis. DOI: http://dx.doi.org/10.7554/eLife.13758.001 PMID:27077952
A quasi-static polynomial nodal method for nuclear reactor analysis
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
Mapping implicit spectral methods to distributed memory architectures
NASA Technical Reports Server (NTRS)
Overman, Andrea L.; Vanrosendale, John
1991-01-01
Spectral methods were proven invaluable in numerical simulation of PDEs (Partial Differential Equations), but the frequent global communication required raises a fundamental barrier to their use on highly parallel architectures. To explore this issue, a 3-D implicit spectral method was implemented on an Intel hypercube. Utilization of about 50 percent was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64 Fourier-spectral grid; finer grids yield higher utilizations. Chebyshev-spectral grids are more problematic, since plane-relaxation based multigrid is required. However, by using a semicoarsening multigrid algorithm, and by relaxing all multigrid levels concurrently, relatively high utilizations were also achieved in this harder case.
NASA Technical Reports Server (NTRS)
Ives, David
1995-01-01
This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.
ERIC Educational Resources Information Center
Simco, Greg
2002-01-01
Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)
Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.
2005-08-14
Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.
Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster
2002-02-27
Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.
NASA Technical Reports Server (NTRS)
Swartz, R.
2002-01-01
The Space Interferometry Mission (SIM) is fundamentally a one-dimensional instrument with a 15-degree field-of-regard. Mission objectives require a global reference grid of thousands of well-understood stars with positions known to 4 microarcseconds which will be used to establish the instrument baseline vector during scientific observations. This accuracy will be achieved by frequently observing a set of stars throughout the mission and performing a global fit of the observations to determine position, proper motion and parallax for each star. Each star will be observed approximately 200 times with about 6.5 stars per single instrument field on the sky. We describe the nature of the reference grid, the candidate objects, and the results of simulations demonstrating grid performance, including estimates of the grid robustness when including effects such as instrument drift and possible contamination of the grid star sample by undetected binaries.
TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways
Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming
2014-01-17
Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.
High energy collimating fine grids for HESP program
NASA Technical Reports Server (NTRS)
Eberhard, Carol D.; Frazier, Edward
1993-01-01
There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.
Martin, W.R.
1993-01-01
This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.
Mathematical embryology: the fluid mechanics of nodal cilia
NASA Astrophysics Data System (ADS)
Smith, D. J.; Smith, A. A.; Blake, J. R.
2011-07-01
Left-right symmetry breaking is critical to vertebrate embryonic development; in many species this process begins with cilia-driven flow in a structure termed the `node'. Primary `whirling' cilia, tilted towards the posterior, transport morphogen-containing vesicles towards the left, initiating left-right asymmetric development. We review recent theoretical models based on the point-force stokeslet and point-torque rotlet singularities, explaining how rotation and surface-tilt produce directional flow. Analysis of image singularity systems enforcing the no-slip condition shows how tilted rotation produces a far-field `stresslet' directional flow, and how time-dependent point-force and time-independent point-torque models are in this respect equivalent. Associated slender body theory analysis is reviewed; this approach enables efficient and accurate simulation of three-dimensional time-dependent flow, time-dependence being essential in predicting features of the flow such as chaotic advection, which have subsequently been determined experimentally. A new model for the nodal flow utilising the regularized stokeslet method is developed, to model the effect of the overlying Reichert's membrane. Velocity fields and particle paths within the enclosed domain are computed and compared with the flow profiles predicted by previous `membrane-less' models. Computations confirm that the presence of the membrane produces flow-reversal in the upper region, but no continuous region of reverse flow close to the epithelium. The stresslet far-field is no longer evident in the membrane model, due to the depth of the cavity being of similar magnitude to the cilium length. Simulations predict that vesicles released within one cilium length of the epithelium are generally transported to the left via a `loopy drift' motion, sometimes involving highly unpredictable detours around leftward cilia [truncated
Cluster analysis of contaminated sediment data: nodal analysis.
Hartwell, S Ian; Claflin, Larry W
2005-07-01
The objective of the present study was to explore the use of multivariate statistical methods as a means to discern relationships between contaminants and biological and/or toxicological effects in a representative data set from the National Status and Trends (NS&T) Program. Data from the National Oceanic and Atmospheric Administration, NS&T Program's Bioeffects Survey of Delaware Bay, USA, were examined using various univariate and multivariate statistical techniques, including cluster analysis. Each approach identified consistent patterns and relationships between the three types of triad data. The analyses also identified factors that bias the interpretation of the data, primarily the presence of rare and unique species and the dependence of species distributions on physical parameters. Sites and species were clustered with the unweighted pair-group method using arithmetic averages clustering with the Jaccard coefficient that clustered species and sites into mutually consistent groupings. Pearson product moment correlation coefficients, normalized for salinity, also were clustered. The most informative analysis, termed nodal analysis, was the intersection of species cluster analysis with site cluster analysis. This technique produced a visual representation of species association patterns among site clusters. Site characteristics, such as salinity and grain size, not contaminant concentrations, appeared to be the primary factors determining species distributions. This suggests the sediment-quality triad needs to use physical parameters as a distinct leg from chemical concentrations to improve sediment-quality assessments in large bodies of water. Because the Delaware Bay system has confounded gradients of contaminants and physical parameters, analyses were repeated with data from northern Chesapeake Bay, USA, with similar results. PMID:16050601
Optimization Of A Computational Grid
NASA Technical Reports Server (NTRS)
Pearce, Daniel G.
1993-01-01
In improved method of generation of computational grid, grid-generation process decoupled from definition of geometry. Not necessary to redefine boundary. Instead, continuous boundaries in physical domain specified, and then grid points in computational domain mapped onto continuous boundaries.
Service Oriented Gridded Atmospheric Radiances (SOAR)
NASA Astrophysics Data System (ADS)
Halem, M.; Goldberg, M. D.; Tilmes, C.; Zhou, L.; Shen, S.; Yesha, Y.
2005-12-01
We are developing a scalable web service tool that can provide complex griding services on-demand for atmospheric radiance data sets from multiple temperature and moisture sounding sensors on the NASA and NOAA polar orbiting satellites collected over the past three decades. This server-to-server middle ware tool will provide the framework for transforming user requests for an arbitrary spatial/temporal/spectral gridded radiance data set from one or more instruments into an action to invoke a griding process from a set of scientifically validated application programs that have been developed to perform such functions. The invoked web service agents will access, subset, concatenate, convolve, perform statistical and physically based griding operations and present the data as specified level 3 gridded fields for analysis and visualization in multiple formats. Examples of the griding operations consist of spatial-temporal radiance averaging accounting for the field of view instrument response function, first footprint in grid bin, selecting min/max brightness temperatures within a grid element, ratios of channels, filtering, convolving high resolution spectral radiances to match broader band spectral radiances, limb adjustments, calculating variances of radiances falling in grid box and creating visual displays of these fields. The gridded web services tool will support both human input through a WWW GUI as well as a direct computer request through a W3C SOAP/XML web service interface. It will generate regional and global gridded data sets on demand. A second effort will demonstrate the ability to locate, access, subset and grid radiance data for any time period and resolution from remote archives of NOAA and NASA data. The system will queue the work flow requests, stage processing and delivery of arbitrary gridded data sets in a data base and notify the users when the request is completed. This tool will greatly expand satellite sounding data utilization by
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk
2015-01-01
Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.
NASA Astrophysics Data System (ADS)
Haupt, A.; Gellrich, A.; Kemp, Y.; Leffhalm, K.; Ozerov, D.; Wegner, P.
2012-12-01
DESY is one of the world-wide leading centers for research with particle accelerators, synchrotron light and astroparticles. DESY participates in LHC as a Tier-2 center, supports on-going analyzes of HERA data, is a leading partner for ILC, and runs the National Analysis Facility (NAF) for LHC and ILC in the framework of the Helmholtz Alliance, Physics at the Terascale. For the research with synchrotron light major new facilities are operated and built (FLASH, PETRA-III, and XFEL). DESY furthermore acts as Data-Tier1 centre for the Neutrino detector IceCube. Established within the EGI-project DESY operates a grid infrastructure which supports a number of virtual Organizations (VO), incl. ATLAS, CMS, and LHCb. Furthermore, DESY hosts some of HEP and non-HEP VOs, such as the HERA experiments and ILC as well as photon science communities. The support of the new astroparticle physics VOs IceCube and CTA is currently set up. As the global structure of the grid offers huge resources which are perfect for batch-like computing, DESY has set up the National Analysis Facility (NAF) which complements the grid to allow German HEP users for efficient data analysis. The grid infrastructure and the NAF use the same physics data which is distributed via the grid. We call the conjunction of grid and NAF the DESY Grid Centre. In the contribution to CHEP2012 we will in depth discuss the conceptional and operational aspects of our multi-VO and multi-community Grid Centre and present the system setup. We will in particular focus on the interplay of Grid and NAF and present experiences of the operations.
Seol, Ki Ho
2016-01-01
Purpose To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Materials and Methods Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4–72 Gy (39.6–45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. Results The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. Conclusion No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC. PMID:27104162
Trends in life science grid: from computing grid to knowledge grid
Konagaya, Akihiko
2006-01-01
Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294
Grid Computing Education Support
Steven Crumb
2008-01-15
The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2004-01-01
This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.
Heavy fermions: From nodal metals to super-spins
NASA Astrophysics Data System (ADS)
Ramires Neves de Oliveira, Aline
Condensed matter physics is an area of research which lies at a sweet spot between two complementary perspectives: the atomistic point of view which takes into account all the details of the system of interest; and the framework of universality and emergent phenomena, which allows us to make drastic simplifications to the microscopic description of materials while still being able to explain much of the experimentally observed phenomena. This thesis addresses problems from both perspectives, focusing on heavy fermion systems. Heavy fermion systems are prototype materials for the study of strongly correlations and quantum criticality. Theoretical understanding of these systems is important for the design of new materials and for the fundamental understanding of quantum critical phenomena. This thesis is strongly motivated by recent experiments in an intrinsically quantum critical material, beta-YbAlB 4. This system shows anomalous critical exponents in transport and thermodynamics. In Chapter 2 we construct a phenomenological theory for the heavy fermion metal beta-YbAlB4 based on the Anderson model, taking into account the peculiarities of this specific material. We analyze the consequences of a non-trivial, momentum-dependent, hybridization matrix between f-electrons and conduction electrons, which gives rise to a nodal metal with unusual dispersion and singular thermodynamic properties, in accordance with experiments. In Chapter 3 we analyze the Electron Spin Resonance experiments in this same material and propose a theory including spin-orbit coupling, crystal electric fields and hyperfine coupling which can account for many of the features of the experimentally observed signal. Within a broader perspective on heavy fermion systems, the absence of a single unified theoretical description which can account for the plethora of phenomena observed in this class of materials also motivates us to consider new theoretical approaches. In Chapter 4 we generalize the
NASA Astrophysics Data System (ADS)
Massimino, P.; Costa, A.
2008-08-01
Image Data Language is a software for data analysis, visualization and cross-platform application development. The potentiality of IDL is well-known in the academic scientific world, especially in the astronomical environment where thousands of procedures are developed by using IDL. The typical use of IDL is the interactive mode but it is also possible to run IDL programs that do not require any interaction with the user, submitting them in batch or background modality. Through the interactive mode the user immediately receives images or other data produced in the running phase of the program; in batch or background mode, the user will have to wait for the end of the program, sometime for many hours or days to obtain images or data that IDL produced as output: in fact in Grid environment it is possible to access to or retrieve data only after completion of the program. The work that we present gives flexibility to IDL procedures submitted to the Grid computer infrastructure. For this purpose we have developed an IDL Grid Web Portal to allow the user to access the Grid and to submit IDL programs granting a full job control and the access to images and data generated during the running phase, without waiting for their completion. We have used the PHP technology and we have given the same level of security that Grid normally offers to its users. In this way, when the user notices that the intermediate program results are not those expected, he can stop the job, change the parameters to better satisfy the computational algorithm and resubmit the program, without consuming the CPU time and other Grid resources. The IDL Grid Web Portal allows you to obtain IDL generated images, graphics and data tables by using a normal browser. All conversations from the user and the Grid resources occur via Web, as well as authentication phases. The IDL user has not to change the program source much because the Portal will automatically introduce the appropriate modification before
NASA Technical Reports Server (NTRS)
Johnston, William E.; Ziobarth, John (Technical Monitor)
2002-01-01
We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.
Fenimore, E.E.
1980-08-22
A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.
Recognizing nodal marginal zone lymphoma: recent advances and pitfalls. A systematic review
van den Brand, Michiel; van Krieken, J. Han J.M.
2013-01-01
The diagnosis of nodal marginal zone lymphoma is one of the remaining problem areas in hematopathology. Because no established positive markers exist for this lymphoma, it is frequently a diagnosis of exclusion, making distinction from other low-grade B-cell lymphomas difficult or even impossible. This systematic review summarizes and discusses the current knowledge on nodal marginal zone lymphoma, including clinical features, epidemiology and etiology, histology, and cytogenetic and molecular features. In particular, recent advances in diagnostics and pathogenesis are discussed. New immunohistochemical markers have become available that could be used as positive markers for nodal marginal zone lymphoma. These markers could be used to ensure more homogeneous study groups in future research. Also, recent gene expression studies and studies describing specific gene mutations have provided clues to the pathogenesis of nodal marginal zone lymphoma, suggesting deregulation of the nuclear factor kappa B pathway. Nevertheless, nodal marginal zone lymphoma remains an enigmatic entity, requiring further study to define its pathogenesis to allow an accurate diagnosis and tailored treatment. However, recent data indicate that it is not related to splenic or extranodal lymphoma, and that it is also not related to lymphoplasmacytic lymphoma. Thus, even though the diagnosis is not always easy, it is clearly a separate entity. PMID:23813646
Zeeman Field-Induced Nodal Structures in Rashba-Type Noncentrosymmetric Superconductors
NASA Astrophysics Data System (ADS)
Chen, Chongju; Jin, Biao
2016-02-01
We study theoretically the effect of Zeeman field on the Bogoliubov-de Gennes quasiparticle excitation spectrum of a three-dimensional noncentrosymmetric (s+p)-wave model. The quasiparticle excitation spectrum may possess line nodes due to the mixing of s-wave and p-wave pairing in the absence of Zeeman field. Our calculations show that, depending on the magnitude and the orientation of an applied Zeeman field, a variety of nodal structures including nodal points, nodal lines, and nodal surfaces may be generated in the excitation spectrum. These results are corroborated by numerical computations of the low-temperature electronic specific heat. Specifically, we demonstrate rigorously that the zero-field nodal lines will be robust against a weak z-axis oriented Zeeman field. It is also found that the electronic specific heat calculated for a Zeeman field in the x- y plane may qualitatively account for the novel feature of specific heat observed experimentally in CePt_3Si.
The impact of surgical technique on neck dissection nodal yield: making a difference.
Lörincz, Balazs B; Langwieder, Felix; Möckelmann, Nikolaus; Sehner, Susanne; Knecht, Rainald
2016-05-01
The nodal yield of neck dissections is an independent prognostic factor in several types of head and neck cancer. The authors aimed to determine whether the applied dissection technique has a significant impact on nodal yield. This is a single-institution, prospective study with internal control group (level of evidence: 2A). Data of 150 patients undergoing 223 neck dissections between February 2011 and March 2013 have been collected in a comprehensive cancer centre. Eighty-two patients underwent neck dissection with unwrapping the cervical fascia from lateral to medial, while 68 patients were operated without specifically unwrapping the fascia, in a caudal to cranial fashion. The standardised, horizontal neck dissection technique along the fascial planes resulted in a significantly higher nodal count in Levels I, II, III and IV, as well as in terms of overall nodal yield (mean: n = 22.53) than that of the vertical dissection applied in the control group (mean: n = 15.00). This is the first publication showing a direct correlation between neck dissection nodal yield and surgical technique. Therefore, it is paramount to optimise the applied surgical concept to maximise the oncological benefit. PMID:25784183
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; et al
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterizedmore » by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less
Tumor microvessel density–associated mast cells in canine nodal lymphoma
Mann, Elizabeth; Whittington, Lisa
2014-01-01
Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752
Gonsar, Ngawang; Coughlin, Alicia; Clay-Wright, Jessica A; Borg, Bethanie R; Kindt, Lexy M; Liang, Jennifer O
2016-01-01
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation. PMID:26528772
Topological nodal-line fermions in spin-orbit metal PbTaSe2.
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M Zahid
2016-01-01
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-01-01
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889
Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance.
Tanaka, Mina; Takei, Kentaro; Kojima, Mikiko; Sakakibara, Hitoshi; Mori, Hitoshi
2006-03-01
In intact plants, the shoot apex grows predominantly and inhibits outgrowth of axillary buds. After decapitation of the shoot apex, outgrowth of axillary buds begins. This phenomenon is called an apical dominance. Although the involvement of auxin, which represses outgrowth of axillary buds, and cytokinin (CK), which promotes outgrowth of axillary buds, has been proposed, little is known about the underlying molecular mechanisms. In the present study, we demonstrated that auxin negatively regulates local CK biosynthesis in the nodal stem by controlling the expression level of the pea (Pisum sativum L.) gene adenosine phosphate-isopentenyltransferase (PsIPT), which encodes a key enzyme in CK biosynthesis. Before decapitation, PsIPT1 and PsIPT2 transcripts were undetectable; after decapitation, they were markedly induced in the nodal stem along with accumulation of CK. Expression of PsIPT was repressed by the application of indole-3-acetic acid (IAA). In excised nodal stem, PsIPT expression and CK levels also increased under IAA-free conditions. Furthermore, beta-glucuronidase expression, under the control of the PsIPT2 promoter region in transgenic Arabidopsis, was repressed by an IAA. Our results indicate that in apical dominance one role of auxin is to repress local biosynthesis of CK in the nodal stem and that, after decapitation, CKs, which are thought to be derived from the roots, are locally biosynthesized in the nodal stem rather than in the roots. PMID:16507092
Angle Resolved Thermal Conductivity of Superconducting CeCoIn5 along the Nodal Direction
NASA Astrophysics Data System (ADS)
Movshovich, Roman; Kim, Duk Y.; Lin, Shizeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.
The thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. The four-fold oscillation in thermal conductivity of CeCoIn5, with the heat current in the anti-nodal direction, has revealed the d-wave nature of its order parameter. We have measured the thermal conductivity with the heat current along the [110] (nodal) direction and the magnetic field rotating in the ab-plane. In contrast to the smooth oscillation found with the heat current along the anti-nodal direction, a sharp increase of thermal conductivity was observed when the magnetic field is also in the [110] direction, parallel to the heat current. This suggests that the scattering of the nodal quasiparticle is strongly suppressed along the magnetic field direction. In addition, a smaller increase of the thermal conductivity was observed when the magnetic field is approximately 30 degree away from the nodal direction, perhaps due to a Fermi surface anomaly. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
NASA Astrophysics Data System (ADS)
Hoeft, B.; Epting, U.; Koenig, T.
2008-07-01
While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Kleb, Bill
2007-01-01
Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.
Near-Body Grid Adaption for Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2016-01-01
A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.
Grid generation strategies for turbomachinery configurations
NASA Astrophysics Data System (ADS)
Lee, K. D.; Henderson, T. L.
1991-01-01
Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples.
GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage
2010-09-01
GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.
Reference installation for the German grid initiative D-Grid
NASA Astrophysics Data System (ADS)
Buehler, W.; Dulov, O.; Garcia, A.; Jejkal, T.; Jrad, F.; Marten, H.; Mol, X.; Nilsen, D.; Schneider, O.
2010-04-01
The D-Grid reference installation is a test platform for the German grid initiative. The main task is to create the grid prototype for software and hardware components needed in the D-Grid community. For each grid-related task field different alternative middleware is included. With respect to changing demands from the community, new versions of the reference installation are released every six months.
Arc Length Based Grid Distribution For Surface and Volume Grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1996-01-01
Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.
Haines, D E; Nath, S; DiMarco, J P; Lobban, J H
1997-10-01
The inferoposterior region of the triangle of Koch is hypothesized to be the location of the atrial insertion of the slow atrioventricular (AV) nodal pathway. However, the actual site of conduction slowing in the slow AV nodal pathway is unknown. Entrainment mapping during AV nodal reentry can localize the reentrant pathway as follows: the AH interval measured from the mapping catheter = A'H (where A' is the exit site of the reentrant circuit) minus A'A (the conduction time from A' to the site of mapping); the SH interval during entrainment = SA' (the conduction time from stimulus into the reentry circuit) plus A'H. Thus, in all cases, the SH interval should be greater than or equal to the AH interval, and the deltaAH-SH should increase as distance and conduction time (SA' and A'A) from the reentry circuit increases. Fourteen patients with typical AV nodal reentry (cycle length 346 +/- 62 ms) and 1 with fast-slow (cycle length 430 ms) underwent activation and entrainment mapping from 8 to 12 sites in the triangle of Koch and coronary sinus. Pacing was performed at 2 to 3 mA above threshold, at a cycle length 10 ms shorter than tachycardia. A mapping site was defined as being in close proximity to the circuit if the deltaAH-SH was within 120% of the shortest 20th percentile deltaAH-SH value from all measured sites. In the 14 typical cases, 45 of 83 sites (54%) in the anatomic slow pathway region fulfilled criteria for close proximity to the reentry circuit compared with 13 of 50 sites (26%) outside of this region (p = 0.005). For these patients, the shortest SH interval measured from any entrainment site was 294 +/- 58 ms (89 +/- 10% of tachycardia cycle length, range 70% to 119%), indicating that the site of slow conduction in the slow pathway during AV nodal reentrant tachycardia was distal to all mapped sites. Thus, during typical AV nodal reentry, the "slow" pathway does not conduct slowly, and its insertion is located at or within the inferoposterior or
Unstructured Grids on NURBS Surfaces
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1993-01-01
A simple and efficient computational method is presented for unstructured surface grid generation. This method is built upon an advancing front technique combined with grid projection. The projection technique is based on a Newton-Raphson method. This combined approach has been successfully implemented for structured and unstructured grids. In this paper, the implementation for unstructured grid is discussed.
ERIC Educational Resources Information Center
Tennant, Roy
2005-01-01
In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.
Smart Grid Integration Laboratory
Troxell, Wade
2011-12-22
The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of
Spectral and spread-spectral teleportation
Humble, Travis S.
2010-06-15
We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.
The role of nodal and internodal responses in gravitropism and autotropism in Galium aparine L
NASA Technical Reports Server (NTRS)
Heathcote, D. G.; Brown, A. H. (Principal Investigator)
1987-01-01
This time course and location of gravitropically induced curvatures in stems of goosegrass (Gallium aparine L.), a member of the Rubiaceae, have been investigated. In the early stages of the response (0-5 h), curvature develops throughout the growing region, and is followed by an autotropic straightening which affects the internodes only, leading to the production of essentially straight internodes some 15 h after the onset of gravistimulation. Curvatures developing in the nodal regions, however, continue to increase over this period, and are not subject to reversal by autotropism. The nodal curvatures are not entirely dependent on the presence of any other part of the plant, since marked curvatures can be induced in isolated nodal segments. This pattern of response leads ultimately to correction of the growth direction of the plant by means of curvature responses confined exclusively to the nodes, despite the initial participation of both nodes and internodes in the gravitropic reaction.
Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling
Kenyon, Emma J.; Campos, Isabel; Bull, James C.; Williams, P. Huw; Stemple, Derek L.; Clark, Matthew D.
2015-01-01
The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. PMID:25478908
RW Per - Nodal motion changes its amplitude by 1.4 mag
NASA Technical Reports Server (NTRS)
Schaefer, Bradley E.; Fried, Robert E.
1991-01-01
RW Per was found to have large secular changes in its eclipse amplitude. In blue light, for example, the amplitude was 3.2 mag in the early 1900s, 2.2 mag in the late 1960s, and 1.75 mag in 1990. Throughout this time, the brightness at maximum was constant in all colors. It is shown that the only possible explanation is nodal motion, where the inclination varies with a period of roughly 100,000 yr. The nodal motion is caused by a third star, for which the light curve, the colors, and the O - C curve already provide evidence. Thus, RW Per is only the fourth known star with large changes of eclipse amplitude and is only the second example of nodal motion.
An investigation of nodal structures and the construction of trial wave functions
NASA Astrophysics Data System (ADS)
Bressanini, Dario; Morosi, Gabriele; Tarasco, Silvia
2005-11-01
The factors influencing the quality of the nodal surfaces, namely, the atomic basis set, the single-particle orbitals, and the configurations included in the wave-function expansion, are examined for a few atomic and molecular systems. The following empirical rules are found: the atomic basis set must be fairly large, complete active space and natural orbitals are usually better than Hartree-Fock orbitals, multiconfiguration expansions perform better than single-determinant wave functions, but only few configurations are effective and their choice is suggested by symmetry considerations, while too long determinantal expansions spoil the nodal surfaces. These rules allow us to reduce the nodal error and to compute the best fixed node-diffusion Monte Carlo energies for a series of dimers of first-row atoms.
Errors associated with standard nodal diffusion methods as applied to mixed oxide fuel problems
Brantley, P. S., LLNL
1998-07-24
The evaluation of the disposition of plutonium using light water reactors is receiving increased attention. However, mixed-oxide (MOX) fuel assemblies possess much higher absorption and fission cross- sections when compared to standard UO2 assemblies. Those properties yield very high thermal flux gradients at the interfaces between MOX and UO2 assemblies. It has already been reported that standard flux reconstruction methods (that recover the homogeneous intranodal flux shape using the converged nodal solution) yield large errors in the presence of MOX assemblies. In an accompanying paper, we compare diffusion and simplified PN calculations of a mixed-oxide benchmark problem to a reference transport calculation. In this paper, we examine the errors associated with standard nodal diffusion methods when applied to the same benchmark problem. Our results show that a large portion of the error is associated with the quadratic leakage approximation (QLA) that is commonly used in the standard nodal codes.
Nonequilibrium electron dynamics in a solid with a changing nodal excitation gap
NASA Astrophysics Data System (ADS)
Smallwood, Christopher L.; Miller, Tristan L.; Zhang, Wentao; Kaindl, Robert A.; Lanzara, Alessandra
2016-06-01
We develop a computationally inexpensive model to examine the dynamics of boson-assisted electron relaxation in solids, studying nonequilibrium dynamics in a metal, in a nodal superconductor with a stationary density of states, and in a nodal superconductor where the gap dynamically opens. In the metallic system, the electron population resembles a thermal population at all times, but the presence of even a fixed nodal gap both invalidates a purely thermal treatment and sharply curtails relaxation rates. For a gap that is allowed to open as electron relaxation proceeds, effects are even more pronounced, and gap dynamics become coupled to the dynamics of the electron population. Comparisons to experiments reveal that phase-space restrictions in the presence of a gap are likely to play a significant role in the widespread observation of coexisting femtosecond and picosecond dynamics in the cuprate high-temperature superconductors.
Activin/Nodal signalling before implantation: setting the stage for embryo patterning
Papanayotou, Costis; Collignon, Jérôme
2014-01-01
Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression. PMID:25349448
Spectral differences in real-space electronic structure calculations
NASA Astrophysics Data System (ADS)
Jordan, D. K.; Mazziotti, D. A.
2004-01-01
Real-space grids for electronic structure calculations are efficient because the potential is diagonal while the second derivative in the kinetic energy may be sparsely evaluated with finite differences or finite elements. In applications to vibrational problems in chemical physics a family of methods known as spectral differences has improved finite differences by several orders of magnitude. In this paper the use of spectral differences for electronic structure is studied. Spectral differences are implemented in two electronic structure programs PARSEC and HARES which currently employ finite differences. Applications to silicon clusters and lattices indicate that spectral differences achieve the same accuracy as finite differences with less computational work.
2011-08-30
GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.
Margaryan, Naira V.; Gilgur, Alina; Seftor, Elisabeth A.; Purnell, Chad; Arva, Nicoleta C.; Gosain, Arun K.; Hendrix, Mary J. C.; Strizzi, Luigi
2016-01-01
Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro
Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi
2016-01-01
Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro
NASA Technical Reports Server (NTRS)
Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.
1994-01-01
An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.
Complex Volume Grid Generation Through the Use of Grid Reusability
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.
Wu, Y.; Xie, Z.; Fischer, U.
1999-11-01
A discrete ordinates nodal transport method has been developed for numerical solution of the one-dimensional neutron transport equation in curvilinear geometries. The nodal transport equation is solved by the Green's function method, using the Legendre polynomial expansion for spatial dependence and the discrete ordinates (S{sub N}) approximation for angular dependence. The calculation for various test problems has been performed to verify the method. The numerical results demonstrate that it has very high precision on coarse spatial meshes relative to the standard fine-mesh S{sub N} method with the spatial diamond-differencing scheme.
Primary extra nodal non-Hodgkin's lymphoma of the oral cavity in a young girl
Vinoth, Ponnurangam N.; Selvan, Sathyamoorthi Muthamil; Sahni, Latika; Krishnaratnam, Kannan; Rajendiran, Swaminathan; Anand, Chidambaram Vishwanath; Scott, Julius X.
2012-01-01
Primary Non Hodgkin s Lymphoma (NHL) usually arises within the lymphnodes, but 20-30% account for extra nodal sites. Oral cavity, as a primary extra nodal site for NHL, is relatively rare and diverse in presentation, response to therapy and prognosis. We report a 14 year old adolescent girl who presented with multiple gingival swellings, the most prominent one being in the right anterior maxilla. Gingival biopsy showed NHL- diffuse large B cell type. Child was completely cured with chemotherapy and now she is in complete remission and under regular follow up. PMID:23833495
Hambrick, J.
2012-01-01
Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.
Lao, Louis; Hope, Andrew J.; Maganti, Manjula; Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander; Cho, B. C. John
2014-09-01
Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
NASA Astrophysics Data System (ADS)
Govoni, P.
2009-12-01
Since the beginning of the millennium, High Energy Physics research institutions like CERN and INFN pioneered several projects aimed at exploiting the synergy among computing power, storage and network resources, and creating an infrastructure of distributed computing on a worldwide scale. In the year 2000, after the Monarch project [ http://monarc.web.cern.ch/MONARC/], DataGrid started [ http://eu-datagrid.web.cern.ch/eu-datagrid/] aimed at providing High Energy Physics with the computing power needed for the LHC enterprise. This program evolved into the EU DataGrid project, that implemented the first actual prototype of a Grid middleware running on a testbed environment. The next step consisted in the application to the LHC experiments, with the LCG project [ http://lcg.web.cern.ch/LCG/], in turn followed by the EGEE [ http://www.eu-egee.org/] and EGEE II programs.
Interactive surface grid generation
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David
1991-01-01
This paper describes a surface grid generation tool called S3D. It is the result of integrating a robust and widely applicable interpolation technique with the latest in workstation technology. Employing the use of a highly efficient and user-friendly graphical interface, S3D permits real-time interactive analyses of surface geometry data and facilitates the construction of surface grids for a wide range of applications in Computational Fluid Dynamics (CFD). The design objectives are for S3D to be stand-alone and easy to use so that CFD analysts can take a hands-on approach toward most if not all of their surface grid generation needs. Representative examples of S3D applications are presented in describing the various elements involved in the process.
Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi
2010-06-01
Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.
2014-07-15
Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less
Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle
2014-07-15
Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.
NASA Astrophysics Data System (ADS)
Pletzer, Alexander; Fillmore, David
2015-12-01
Interpolation methods for edge and face centered data are described, which preserve line and area integrals under regridding. These interpolation methods complement the multilinear nodal and conservative interpolation methods, which are widely used in climate data processing and other areas. The presented interpolation schemes ensure that curl-free and divergence-free fields remain so after regridding. These edge and face conservative interpolation methods are suitable for general curvilinear structured grids, including those with singular points (poles). Support for masked (invalid) regions is implicitly provided by attaching (partial) line/surface integral field values to cell edges/faces.
Essential Grid Workflow Monitoring Elements
Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.
2005-07-01
Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.
Distributed Accounting on the Grid
NASA Technical Reports Server (NTRS)
Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.
2001-01-01
By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.
Enabling Campus Grids with Open Science Grid Technology
NASA Astrophysics Data System (ADS)
Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David
2011-12-01
The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.
Three-Dimensional, Nodal, Neutron Diffusion Criticality Code System in Hex-Z Geometry.
1992-07-27
Version: 00 SIXTUS-3 is a 3D extention of SIXTUS-2 and is based on a response matrix nodal model. The code offers a fast and accurate analysis of critical systems in the regular hex-z geometry with the multigroup cross section representation including arbitrary upscattering.
Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1
Housley, Michael P.; Weiner, Orion D.
2012-01-01
Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions. PMID:22945937
NASA Astrophysics Data System (ADS)
Grootendorst, Diederik J.; Fratila, Raluca M.; Visscher, Martijn; Ten Haken, Bennie; van Wezel, Richard; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theo J. M.
2013-02-01
Detection of tumor metastases in the lymphatic system is essential for accurate staging of various malignancies, however fast, accurate and cost-effective intra-operative evaluation of the nodal status remains difficult to perform with common available medical imaging techniques. In recent years, numerous studies have confirmed the additional value of superparamagnetic iron oxide dispersions (SPIOs) for nodal staging purposes, prompting the clearance of different SPIO dispersions for clinical practice. We evaluate whether a combination of photoacoustic (PA) imaging and a clinically approved SPIO dispersion, could be applied for intra-operative nodal staging. Metastatic adenocarcinoma was inoculated in Copenhagen rats for 5 or 8 days. After SPIO injection, the lymph nodes were photoacoustically imaged both in vivo and ex vivo whereafter imaging results were correlated with MR and histology. Results were compared to a control group without tumor inoculation. In the tumor groups clear irregularities, as small as 1 mm, were observed in the PA contrast pattern of the nodes together with an decrease of PA response. These irregularities could be correlated to the absence of contrast in the MR images and could be linked to metastatic deposits seen in the histological slides. The PA and MR images of the control animals did not show these features. We conclude that the combination of photoacoustic imaging with a clinically approved iron oxide nanoparticle dispersion is able to detect lymph node metastases in an animal model. This approach opens up new possibilities for fast intra-operative nodal staging in a clinical setting.
Sensitivity analysis and optimization of nodal point placement for vibration reduction
NASA Technical Reports Server (NTRS)
Pritchard, J. I.; Adelman, H. M.; Haftka, R. T.
1987-01-01
A method is developed for sensitivity analysis and optimization of nodal point locations in connection with vibration reduction. A straightforward derivation of the expression for the derivative of nodal locations is given, and the role of the derivative in assessing design trends is demonstrated. An optimization process is developed which uses added lumped masses on the structure as design variables to move the node to a preselected location - for example, where low response amplitude is required or to a point which makes the mode shape nearly orthogonal to the force distribution, thereby minimizing the generalized force. The optimization formulation leads to values for added masses that adjust a nodal location while minimizing the total amount of added mass required to do so. As an example, the node of the second mode of a cantilever box beam is relocated to coincide with the centroid of a prescribed force distribution, thereby reducing the generalized force substantially without adding excessive mass. A comparison with an optimization formulation that directly minimizes the generalized force indicates that nodal placement gives essentially a minimum generalized force when the node is appropriately placed.
Sensitivity derivatives and optimization of nodal point locations for vibration reduction
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Haftka, Raphael T.
1987-01-01
A method is developed for sensitivity analysis and optimization of nodal point locations in connection with vibration reduction. A straightforward derivation of the expression for the derivative of nodal locations is given, and the role of the derivative in assessing design trends is demonstrated. An optimization process is developed which uses added lumped masses on the structure as design variables to move the node to a preselected location; for example, where low response amplitude is required or to a point which makes the mode shape nearly orthogonal to the force distribution, thereby minimizing the generalized force. The optimization formulation leads to values for added masses that adjust a nodal location while minimizing the total amount of added mass required to do so. As an example, the node of the second mode of a cantilever box beam is relocated to coincide with the centroid of a prescribed force distribution, thereby reducing the generalized force substantially without adding excessive mass. A comparison with an optimization formulation that directly minimizes the generalized force indicates that nodal placement gives essentially a minimum generalized force when the node is appropriately placed.
Senstitivty analysis and optimization of nodal point placement for vibration reduction
NASA Technical Reports Server (NTRS)
Pritchard, J. I.; Adelman, H. M.; Haftka, R. T.
1986-01-01
A method is developed for sensitivity analysis and optimization of nodal point locations in connection with vibration reduction. A straightforward derivation of the expression for the derivative of nodal locations is given, and the role of the derivative in assessing design trends is demonstrated. An optimization process is developed which uses added lumped masses on the structure as design variables to move the node to a preselected location - for example, where low response amplitude is required or to a point which makes the mode shape nearly orthogonal to the force distribution, thereby minimizing the generalized force. The optimization formulation leads to values for added masses that adjust a nodal location while minimizing the total amount of added mass required to do so. As an example, the node of the second mode of a cantilever box beam is relocated to coincide with the centroid of a prescribed force distribution, thereby reducing the generalized force substantially without adding excessive mass. A comparison with an optimization formulation that directly minimizes the generalized force indicates that nodal placement gives essentially a minimum generalized force when the node is appropriately placed.
NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method
NASA Astrophysics Data System (ADS)
Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto
2014-06-01
The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.
Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan
2016-03-01
Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function. PMID:25904156
Sarkar, Prasenjit; Randall, Shan M.; Collier, Timothy S.; Nero, Anthony; Russell, Teal A.; Muddiman, David C.; Rao, Balaji M.
2015-01-01
Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs. PMID:25670856
Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment
Cai, Wenqing; Albini, Sonia; Wei, Ke; Willems, Erik; Guzzo, Rosa M.; Tsuda, Masanao; Giordani, Lorenzo; Spiering, Sean; Kurian, Leo; Yeo, Gene W.; Puri, Pier Lorenzo; Mercola, Mark
2013-01-01
A critical but molecularly uncharacterized step in heart formation and regeneration is the process that commits progenitor cells to differentiate into cardiomyocytes. Here, we show that the endoderm-derived dual Nodal/bone morphogenetic protein (BMP) antagonist Cerberus-1 (Cer1) in embryonic stem cell cultures orchestrates two signaling pathways that direct the SWI/SNF chromatin remodeling complex to cardiomyogenic loci in multipotent (KDR/Flk1+) progenitors, activating lineage-specific transcription. Transient inhibition of Nodal by Cer1 induces Brahma-associated factor 60c (Baf60c), one of three Baf60 variants (a, b, and c) that are mutually exclusively assembled into SWI/SNF. Blocking Nodal and BMP also induces lineage-specific transcription factors Gata4 and Tbx5, which interact with Baf60c. siRNA to Cer1, Baf60c, or the catalytic SWI/SNF subunit Brg1 prevented the developmental opening of chromatin surrounding the Nkx2.5 early cardiac enhancer and cardiomyocyte differentiation. Overexpression of Baf60c fully rescued these deficits, positioning Baf60c and SWI/SNF function downstream from Cer1. Thus, antagonism of Nodal and BMP coordinates induction of the myogenic Baf60c variant and interacting transcription factors to program the developmental opening of cardiomyocyte-specific loci in chromatin. This is the first demonstration that cues from the progenitor cell environment direct the subunit variant composition of SWI/SNF to remodel the transcriptional landscape for lineage-specific differentiation. PMID:24186978
ERIC Educational Resources Information Center
Chatzarakis, G. E.
2009-01-01
This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…
Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides
NASA Astrophysics Data System (ADS)
Huang, Huaqing; Liu, Jianpeng; Vanderbilt, David; Duan, Wenhui
2016-05-01
Based on first-principles calculations and an effective Hamiltonian analysis, we systematically investigate the electronic and topological properties of alkaline-earth compounds A X2 (A =Ca , Sr, Ba; X =Si , Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a snakelike nodal loop in three-dimensional momentum space. Drumheadlike surface states emerge either inside or outside the loop circle on the (001) surface depending on surface termination, while complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit coupling is included, the nodal line is gapped and the system becomes a topological insulator with Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and silicides.
Analysis of nodal aberration properties in off-axis freeform system design.
Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao
2016-08-20
Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design. PMID:27557003
Radiation therapy for carcinoma of the hypopharynx with special reference to nodal control
Teshima, T.; Chatani, M.; Inoue, T.; Miyahara, H.; Sato, T.
1988-05-01
From October 1977 through December 1983, 61 patients with carcinoma of the hypopharynx were treated with radiation therapy (RT) and surgery or with RT alone. Five-year survival rates by N-stage, according to the TNM classification by UICC (1978), were 52% for N0 cases, 23% for N1, and 17% for N2-3 (N1 vs. N2-3, not significant). For N1-3 cases, corresponding figures by level of cervical nodal involvement by UICC (1978) were 29% for level 3 cases, 15% for level 2, and 8% for level 4 (level 3 vs. level 4, p less than 0.04). Therefore, the level of cervical nodal involvement was a more useful prognosticator for patients with nodal metastasis than the N-stage. Effective nodal control for patients with clinically positive nodes (N1-3) was obtained with a combination of neck node dissection and RT of 50 Gy or more. For N0 cases, elective RT of 50 Gy or more, encompassing an adequate field, was required.
Bohora, Shomu; Singh, Parvindar; Shah, Kaushal
2016-01-01
A 58 year old gentleman with complaints of palpitations and documented tachycardia was found to have a dilated right atrium, right ventricle and coronary sinus, which were due to partial unroofed coronary sinus without a left superior vena cava. He had upper septal ventricular tachycardia and atrio-ventricular nodal reentrant tachycardia, which was successfully treated by radiofrequency ablation. PMID:25852246
A difference-equation formalism for the nodal domains of separable billiards
NASA Astrophysics Data System (ADS)
Manjunath, Naren; Samajdar, Rhine; Jain, Sudhir R.
2016-09-01
Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.
Sarkar, Prasenjit; Randall, Shan M; Collier, Timothy S; Nero, Anthony; Russell, Teal A; Muddiman, David C; Rao, Balaji M
2015-04-01
Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs. PMID:25670856
Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J
2015-01-01
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s(±) wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface "hot-spots" in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s(±) wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry and cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.
Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center.
Takahashi, S; Yokota, C; Takano, K; Tanegashima, K; Onuma, Y; Goto, J; Asashima, M
2000-12-01
In vertebrates, Nodal-related protein plays crucial roles in mesoderm and endoderm induction. Here we describe two novel Xenopus nodal-related genes, Xnr5 and Xnr6, which are first zygotically expressed at the mid-blastula transition, in the dorsal-vegetal region including the Nieuwkoop center. Xnr5 and Xnr6 were isolated by expression screening of a library enriched with immediate-early-type transcripts, and are strong inducers of both mesoderm and endoderm. They also induce the other nodal-related genes in the animal cap. In embryos, cerberus-short (nodal-specific inhibitor) can inhibit Xnr1 and Xnr2 express to the same extent goosecoid, but not Xnr5 and Xnr6 transcription. Xnr5 and Xnr6 are regulated completely cell autonomously, differently from other Xnrs in the cell-dissociated embryos. The expression of Xnr5 and Xnr6 is regulated by maternal VegT and (beta)-catenin, but does not require TGF-(beta) signaling. Therefore, expression of Xnr5 and Xnr6 is controlled by different mechanisms from other Xnr family genes. PMID:11076754
Minimizing the caliber of myelinated axons by means of nodal constrictions.
Johnson, Christopher; Holmes, William R; Brown, Anthony; Jung, Peter
2015-09-01
In myelinated axons, most of the voltage-gated ion channels are concentrated at the nodes of Ranvier, which are short gaps in the myelin sheath. This arrangement leads to saltatory conduction and a larger conduction velocity than in nonmyelinated axons. Intriguingly, axons in the peripheral nervous system that exceed about 2 μm in diameter exhibit a characteristic narrowing of the axon at nodes that results in a local reduction of the axonal cross-sectional area. The extent of constriction increases with increasing internodal axonal caliber, reaching a threefold reduction in diameter for the largest axons. In this paper, we use computational modeling to investigate the effect of nodal constrictions on axonal conduction velocity. For a fixed number of ion channels, we find that there is an optimal extent of nodal constriction which minimizes the internodal axon caliber that is required to achieve a given target conduction velocity, and we show that this is sensitive to the precise geometry of the axon and myelin sheath in the flanking paranodal regions. Thus axonal constrictions at nodes of Ranvier appear to be a biological adaptation to minimize axonal volume, thereby maximizing the spatial and metabolic efficiency of these processes, which can be a significant evolutionary constraint. We show that the optimal nodal morphologies are relatively insensitive to changes in the number of nodal sodium channels. PMID:26224772
Changing from computing grid to knowledge grid in life-science grid.
Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy
2009-09-01
Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:19579217
The Spectral Shift Function and Spectral Flow
NASA Astrophysics Data System (ADS)
Azamov, N. A.; Carey, A. L.; Sukochev, F. A.
2007-11-01
At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non
Bloyd, Cary N.
2012-03-01
This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.
Rokach, Joshua Z.
2010-10-15
The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)
Rabari, Anil; Fadipe, Oloruntomi
2014-03-31
NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.
NASA Technical Reports Server (NTRS)
Seki, Rycichi
1989-01-01
Because the governing equations in fluid dynamics contain partial differentials and are too difficult in most cases to solve analytically, these differentials are generally replaced by finite difference terms. These terms contain terms in the solution at nearby states. This procedure discretizes the field into a finite number of states. These states, when plotted, form a grid, or mesh, of points. It is at these states, or field points, that the solution is found. The optimum choice of states, the x, y, z coordinate values, minimizes error and computational time. But the process of finding these states is made more difficult by complex boundaries, and by the need to control step size differences between the states, that is, the need to control the spacing of field points. One solution technique uses a different set of state variables, which define a different coordinate system, to generate the grid more easily. A new method, developed by Dr. Joseph Steger, combines elliptic and hyperbolic partial differential equations into a mapping function between the physical and computational coordinate systems. This system of equations offers more control than either equation provides alone. The Steger algorithm was modified in order to allow bodies with stronger concavities to be used, offering the possibility of generating a single grid about multiple bodies. Work was also done on identifying areas where grid breakdown occurs.
Grid generation research at OSU
NASA Technical Reports Server (NTRS)
Nakamura, S.
1992-01-01
In the last two years, effort was concentrated on: (1) surface modeling; (2) surface grid generation; and (3) 3-D flow space grid generation. The surface modeling shares the same objectives as the surface modeling in computer aided design (CAD), so software available in CAD can in principle be used for solid modeling. Unfortunately, however, the CAD software cannot be easily used in practice for grid generation purposes, because they are not designed to provide appropriate data base for grid generation. Therefore, we started developing a generalized surface modeling software from scratch, that provides the data base for the surface grid generation. Generating surface grid is an important step in generating a 3-D space for flow space. To generate a surface grid on a given surface representation, we developed a unique algorithm that works on any non-smooth surfaces. Once the surface grid is generated, a 3-D space can be generated. For this purpose, we also developed a new algorithm, which is a hybrid of the hyperbolic and the elliptic grid generation methods. With this hybrid method, orthogonality of the grid near the solid boundary can be easily achieved without introducing empirical fudge factors. Work to develop 2-D and 3-D grids for turbomachinery blade geometries was performed, and as an extension of this research we are planning to develop an adaptive grid procedure with an interactive grid environment.
A spectral canonical electrostatic algorithm
NASA Astrophysics Data System (ADS)
Webb, Stephen D.
2016-03-01
Studying single-particle dynamics over many periods of oscillations is a well-understood problem solved using symplectic integration. Such integration schemes derive their update sequence from an approximate Hamiltonian, guaranteeing that the geometric structure of the underlying problem is preserved. Simulating a self-consistent system over many oscillations can introduce numerical artifacts such as grid heating. This unphysical heating stems from using non-symplectic methods on Hamiltonian systems. With this guidance, we derive an electrostatic algorithm using a discrete form of Hamilton’s principle. The resulting algorithm, a gridless spectral electrostatic macroparticle model, does not exhibit the unphysical heating typical of most particle-in-cell methods. We present results of this using a two-body problem as an example of the algorithm’s energy- and momentum-conserving properties.
Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do
2011-02-01
Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.
Combined-modality therapy for patients with regional nodal metastases from melanoma
Ballo, Matthew T. . E-mail: mballo@mdanderson.org; Ross, Merrick I.; Cormier, Janice N.; Myers, Jeffrey N.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Hwu, Patrick; Zagars, Gunar K.
2006-01-01
Purpose: To evaluate the outcome and patterns of failure for patients with nodal metastases from melanoma treated with combined-modality therapy. Methods and Materials: Between 1983 and 2003, 466 patients with nodal metastases from melanoma were managed with lymphadenectomy and radiation, with or without systemic therapy. Surgery was a therapeutic procedure for clinically apparent nodal disease in 434 patients (regionally advanced nodal disease). Adjuvant radiation was generally delivered with a hypofractionated regimen. Adjuvant systemic therapy was delivered to 154 patients. Results: With a median follow-up of 4.2 years, 252 patients relapsed and 203 patients died of progressive disease. The actuarial 5-year disease-specific, disease-free, and distant metastasis-free survival rates were 49%, 42%, and 44%, respectively. By multivariate analysis, increasing number of involved lymph nodes and primary ulceration were associated with an inferior 5-year actuarial disease-specific and distant metastasis-free survival. Also, the number of involved lymph nodes was associated with the development of brain metastases, whereas thickness was associated with lung metastases, and primary ulceration was associated with liver metastases. The actuarial 5-year regional (in-basin) control rate for all patients was 89%, and on multivariate analysis there were no patient or disease characteristics associated with inferior regional control. The risk of lymphedema was highest for those patients with groin lymph node metastases. Conclusions: Although regional nodal disease can be satisfactorily controlled with lymphadenectomy and radiation, the risk of distant metastases and melanoma death remains high. A management approach to these patients that accounts for the competing risks of distant metastases, regional failure, and long-term toxicity is needed.
Narula, O S; Boveja, B K; Cohen, D M; Narula, J T; Tarjan, P P
1985-02-01
Selective modification of atrioventricular (AV) nodal conduction, that is, induction of varying degrees of AV nodal delays or block (second or third degree), or both, was achieved with a pervenous laser catheter technique. In six adult mongrel dogs anesthetized with pentobarbital (Nembutal), 5F leads were placed through femoral and external jugular veins and placed into the right atrium and His bundle region. Through another femoral vein, a 200 micron optical fiber was inserted by way of a 7F catheter with a preformed curved tip. Guided by fluoroscopy and His bundle electrograms, the fiber's tip was positioned in the AV nodal region. After autonomic blockade was achieved with intravenous propranolol (5 mg) and atropine (1 mg), AV conduction was analyzed. An argon laser delivered 3 to 4 watts into the fiber in bursts of 10 seconds' duration until the desired degree of AV nodal delay or block (second or third degree) was manifested. Monitoring of His bundle electrograms was continued for 2 hours. Four weekly serial electrocardiograms were recorded, after which electrophysiologic studies were repeated. Acute post-lasing studies showed that: in all six dogs, the mean PR interval was prolonged from 116 ms (range 100 to 135) to 153 ms (range 120 to 185), with the prolongation being caused exclusively by AH lengthening from 68 ms (range 50 to 90) to 105 ms (range 65 to 140); the mean effective refractory period of the AV node increased from less than 185 ms (range less than 150 to less than 200) to 215 ms (range 190 to 280); and the mean atrial pacing cycle length, at which second degree AV nodal block was manifested, increased from 210 ms (range 160 to 260) to 261 ms (range 205 to 320).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3968310
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
Potsdam Wolf-Rayet model atmosphere grids for WN stars
NASA Astrophysics Data System (ADS)
Todt, H.; Sander, A.; Hainich, R.; Hamann, W.-R.; Quade, M.; Shenar, T.
2015-07-01
We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. The full set of synthetic spectra and the spectral energy distributions are available online at http://www.astro.physik.uni-potsdam.de/PoWR.html
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Ion Engine Grid Gap Measurements
NASA Technical Reports Server (NTRS)
Soulas, Gerge C.; Frandina, Michael M.
2004-01-01
A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.
Grid Interaction Technical Team Roadmap
2013-06-01
The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.
Haramoto, Yoshikazu; Tanegashima, Kousuke; Onuma, Yasuko; Takahashi, Shuji; Sekizaki, Hiroyuki; Asashima, Makoto
2004-01-01
In vertebrates, nodal-related genes are crucial for specifying mesendodermal cell fates. Six nodal-related genes have been identified in Xenopus, but only one, nodal, has been identified in the mouse. The Xenopus nodal-related gene 3 (Xnr3), however, lacks the mesoderm-inducing activity of the other five nodal-related genes in Xenopus, and can directly induce neural tissue in animal caps by antagonizing BMP signals. In this study, we isolated three clones of the Xenopus (Silurana) tropicalis nodal-related gene 3 (Xtnr3) and analyzed their function. The Xtnr3 genes show high homology to Xnr3 and have the same activity. Southern blot and genomic PCR analyses indicate that the X. tropicalis genome has duplications in the Xtnr3 gene sequences and our three clones represent separate gene loci. We also found a partial clone of Xtnr3 that coded for the N-terminal part of its pro-region. Surprisingly, this sequence also induced neural tissue by antagonizing BMP signals, and its coded protein physically associated with BMP4 mature protein. Furthermore, we showed that the pro-region of Xnr5 has the same activity. Together, these findings indicate that the pro-region of nodal-related genes acts antagonistically towards BMP signals, which identifies a novel mechanism for the inhibition of BMP signaling. PMID:14697360
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
2012-02-08
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.
Smart Grid Demonstration Project
Miller, Craig; Carroll, Paul; Bell, Abigail
2015-03-11
The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and
Gridded electron reversal ionizer
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor)
1993-01-01
A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.
Röttinger, Eric; DuBuc, Timothy Q.; Amiel, Aldine R.; Martindale, Mark Q.
2015-01-01
ABSTRACT Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms. PMID:25979707
Röttinger, Eric; DuBuc, Timothy Q; Amiel, Aldine R; Martindale, Mark Q
2015-01-01
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms. PMID:25979707
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... Energy Regulatory Commission Atlantic Grid Operations A LLC, Atlantic Grid Operations B LLC, Atlantic Grid Operations C LLC, Atlantic Grid Operations D LLC and Atlantic Grid Operations E LLC; Notice of... (Commission) Rules of Practice and Procedure, 18 CFR 385.207, and Order No. 679,\\1\\ Atlantic Grid Operations...
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2007-01-01
NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Grid generation for turbomachinery problems
NASA Technical Reports Server (NTRS)
Steinhoff, J.; Reddy, K. C.
1986-01-01
The development of a computer code to generate numerical grids for complex internal flow systems such as the fluid flow inside the space shuttle main engine is outlined. The blending technique for generating a grid for stator-rotor combination at a particular radial section is examined. The computer programs which generate these grids are listed in the Appendices. These codes are capable of generating grids at different cross sections and thus providng three dimensional stator-rotor grids for the turbomachinery of the space shuttle main engine.
Caramana, E.J.; Shashkov, M.J.
1997-12-31
The bane of Lagrangian hydrodynamics calculations is premature breakdown of the grid topology that results in severe degradation of accuracy and run termination often long before the assumption of Lagrangian zonal mass ceased to be valid. At short spatial grid scales this is usually referred to by the terms hourglass mode or keystone motion associated in particular with underconstrained grids such as quadrilaterals and hexahedrons in two and three dimensions, respectively. At longer spatial scales relative to the grid spacing there is what is referred to ubiquitously as spurious vorticity, or the long-thin zone problem. In both cases the result is anomalous grid distortion and tangling that has nothing to do with the actual solution, as would be the case for turbulent flow. In this work the authors show how such motions can be eliminated by the proper use of subzonal Lagrangian masses, and associated densities and pressures. These subzonal masses arise in a natural way from the fact that they require the mass associated with the nodal grid point to be constant in time. This is addition to the usual assumption of constant, Lagrangian zonal mass in staggered grid hydrodynamics scheme. The authors show that with proper discretization of subzonal forces resulting from subzonal pressures, hourglass motion and spurious vorticity can be eliminated for a very large range of problems. Finally the authors are presenting results of calculations of many test problems.
RHALE: A 3-D MMALE code for unstructured grids
Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.
1993-08-01
This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.
A Lagrangian staggered grid Godunov-like approach for hydrodynamics
NASA Astrophysics Data System (ADS)
Morgan, Nathaniel R.; Lipnikov, Konstantin N.; Burton, Donald E.; Kenamond, Mark A.
2014-02-01
Much research in Lagrangian staggered-grid hydrodynamics (SGH) has focused on explicit viscosity models for adding dissipation to a calculation that has shocks. The explicit viscosity is commonly called “artificial viscosity”. Recently, researchers have developed hydrodynamic algorithms that incorporate approximate Riemann solutions on the dual grid [28,29,35,30,2,3]. This approach adds dissipation to the calculation via solving a Riemann-like problem. In this work, we follow the works of [28,29,35,30] and solve a multidirectional Riemann-like problem at the cell center. The Riemann-like solution at the cell center is used in the momentum and energy equations. The multidirectional Riemann-like problem used in this work differs from previous work in that it is an extension of the cell-centered hydrodynamics (CCH) nodal solution approach in [7]. Incorporating the multidirectional Riemann-like problem from [7] into SGH has merits such as the ability to resist mesh instabilities like hourglass null modes and chevron null modes. The approach is valid for complex multidimensional flows with strong shocks. Numerical details and test problems are presented.
NASA Technical Reports Server (NTRS)
Banks, D. W.; Hafez, M. M.
1996-01-01
Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.
Progress in Grid Generation: From Chimera to DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Kao, Kai-Hsiung
1994-01-01
Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are
NASA Astrophysics Data System (ADS)
Abad Lopez, Carlos Adrian
Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility
GridTool: A surface modeling and grid generation tool
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1995-01-01
GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.
NASA Technical Reports Server (NTRS)
Yu, Jr-Kai; Holland, Linda Z.; Holland, Nicholas D.
2002-01-01
The full-length sequence and zygotic expression of an amphioxus nodal gene are described. Expression is first detected in the early gastrula just within the dorsal lip of the blastopore in a region of hypoblast that is probably comparable with the vertebrate Spemann's organizer. In the late gastrula and early neurula, expression remains bilaterally symmetrical, limited to paraxial mesoderm and immediately overlying regions of the neural plate. Later in the neurula stage, all neural expression disappears, and mesodermal expression disappears from the right side. All along the left side of the neurula, mesodermal expression spreads into the left side of the gut endoderm. Soon thereafter, all expression is down-regulated except near the anterior and posterior ends of the animal, where transcripts are still found in the mesoderm and endoderm on the left side. At this time, expression also begins in the ectoderm on the left side of the head, in the region where the mouth later forms. These results suggest that amphioxus and vertebrate nodal genes play evolutionarily conserved roles in establishing Spemann's organizer, patterning the mesoderm rostrocaudally and setting up the asymmetrical left-right axis of the body.
Merhy, T S M; Vianna, M G; Garcia, R O; Pacheco, G; Mansur, E
2014-01-01
Passiflora pohlii is a wild species native to Brazil, with a potential agronomic interest due to its tolerance to soil-borne pathogens that cause damage to the passion fruit culture, and could be used in breeding. Because this species occurs in impacted regions, the goal of this study was the development of in vitro conservation strategies, using nodal segments from axenic plants. Encapsulation-vitrification and vitrification techniques were tested for cryopreservation of nodal segments. The highest recovery (65%) was obtained with the vitrification technique using treatment with the PVS3 vitrification solution from 30 to 120 min. Post-rewarming recovery was achieved on MSM medium supplemented with 30.8 μM BAP with incubation in the dark for 30 days before transfer in the presence of light. No differences were detected between control and cryopreserved materials as assayed by RAPD and ISSR. PMID:24997838
Hydrogen atoms under magnification: direct observation of the nodal structure of Stark states.
Stodolna, A S; Rouzée, A; Lépine, F; Cohen, S; Robicheaux, F; Gijsbertsen, A; Jungmann, J H; Bordas, C; Vrakking, M J J
2013-05-24
To describe the microscopic properties of matter, quantum mechanics uses wave functions, whose structure and time dependence is governed by the Schrödinger equation. In atoms the charge distributions described by the wave function are rarely observed. The hydrogen atom is unique, since it only has one electron and, in a dc electric field, the Stark Hamiltonian is exactly separable in terms of parabolic coordinates (η, ξ, φ). As a result, the microscopic wave function along the ξ coordinate that exists in the vicinity of the atom, and the projection of the continuum wave function measured at a macroscopic distance, share the same nodal structure. In this Letter, we report photoionization microscopy experiments where this nodal structure is directly observed. The experiments provide a validation of theoretical predictions that have been made over the last three decades. PMID:23745864
Error analysis of the quadratic nodal expansion method in slab geometry
Penland, R.C.; Turinsky, P.J.; Azmy, Y.Y.
1994-10-01
As part of an effort to develop an adaptive mesh refinement strategy for use in state-of-the-art nodal diffusion codes, the authors derive error bounds on the solution variables of the quadratic Nodal Expansion Method (NEM) in slab geometry. Closure of the system is obtained through flux discontinuity relationships and boundary conditions. In order to verify the analysis presented, the authors compare the quadratic NEM to the analytic solution of a test problem. The test problem for this investigation is a one-dimensional slab [0,20cm] with L{sup 2} = 6.495cm{sup 2} and D = 0.1429cm. The slab has a unit neutron source distributed uniformly throughout and zero flux boundary conditions. The analytic solution to this problem is used to compute the node-average fluxes over a variety of meshes, and these are used to compute the NEM maximum error on each mesh.
Error estimation and adaptive order nodal method for solving multidimensional transport problems
Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.
1998-01-01
The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.
The effect of viscosity on steady transonic flow with a nodal solution topology
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Zank, Gary P.
1991-01-01
The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain.
Lagadec, Ronan; Laguerre, Laurent; Menuet, Arnaud; Amara, Anis; Rocancourt, Claire; Péricard, Pierre; Godard, Benoît G; Rodicio, Maria Celina; Rodriguez-Moldes, Isabel; Mayeur, Hélène; Rougemont, Quentin; Mazan, Sylvie; Boutet, Agnès
2015-01-01
Left-right asymmetries in the epithalamic region of the brain are widespread across vertebrates, but their magnitude and laterality varies among species. Whether these differences reflect independent origins of forebrain asymmetries or taxa-specific diversifications of an ancient vertebrate feature remains unknown. Here we show that the catshark Scyliorhinus canicula and the lampreys Petromyzon marinus and Lampetra planeri exhibit conserved molecular asymmetries between the left and right developing habenulae. Long-term pharmacological treatments in these species show that nodal signalling is essential to their generation, rather than their directionality as in teleosts. Moreover, in contrast to zebrafish, habenular left-right differences are observed in the absence of overt asymmetry of the adjacent pineal field. These data support an ancient origin of epithalamic asymmetry, and suggest that a nodal-dependent asymmetry programme operated in the forebrain of ancestral vertebrates before evolving into a variable trait in bony fish. PMID:25819227
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
Nodal sets of solutions of equations involving magnetic Schroedinger operator in three dimensions
Pan Xingbin
2007-05-15
It is well known that the complexity of the nodal set of a function mainly comes from the singular set on which both the function and the gradient vanish. The singular set of a real-valued solution of a linear elliptic equation has been well investigated. For a complex-valued solution of a linear equation involving a magnetic Schroedinger operator, the structure of the nodal set has not been well investigated yet excepted in the two-dimensional case. In this paper we extend the arguments of Garafalo and Lin [Indiana Univ. Math. J. 35, 245-268 (1986)] and of Han [Indiana Univ. Math. J. 43, 983-1002 (1994)] to show that the singular set of such a solution in a three-dimensional domain is countably 1-rectifiable. The functions considered in this paper include the order parameter in the Ginzburg-Landau theory of superconductivity and the eigenfunctions of the magnetic Schroedinger operator.
Coherence Effects of Caroli-de Gennes-Matricon Modes in Nodal Topological Superconductors
NASA Astrophysics Data System (ADS)
Tsutsumi, Yasumasa; Kato, Yusuke
2016-05-01
Coherence effects by the impurity scattering of Caroli-de Gennes-Matricon (CdGM) modes in a vortex for nodal topological superconductors have been studied. The coherence effects reflect a topological number defined on a particular momentum space avoiding the superconducting gap nodes. First, we analytically derived the eigenvalue and eigenfunction of the CdGM modes, including the zero-energy modes, in a nodal topological superconducting state without impurities, where we focused on a possible superconducting state of UPt3 as an example. Then, we studied impurity effects on the CdGM modes by introducing the impurity self-energy, which are dominated by the coherence factor depending on the eigenfunction of the CdGM modes. For the zero-energy CdGM modes, the coherence factor vanishes in a certain momentum range, which is guaranteed by topological invariance characterized by the one-dimensional winding number.
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
Sentinel Node Identification Rate and Nodal Involvement in the EORTC 10981-22023 AMAROS Trial
Meijnen, Philip; van Tienhoven, Geertjan; van de Velde, Cornelis J. H.; Mansel, Robert E.; Bogaerts, Jan; Duez, Nicole; Cataliotti, Luigi; Klinkenbijl, Jean H. G.; Westenberg, Helen A.; van der Mijle, Huub; Snoj, Marko; Hurkmans, Coen; Rutgers, Emiel J. T.
2010-01-01
Background The randomized EORTC 10981-22023 AMAROS trial investigates whether breast cancer patients with a tumor-positive sentinel node biopsy (SNB) are best treated with an axillary lymph node dissection (ALND) or axillary radiotherapy (ART). The aim of the current substudy was to evaluate the identification rate and the nodal involvement. Methods The first 2,000 patients participating in the AMAROS trial were evaluated. Associations between the identification rate and technical, patient-, and tumor-related factors were evaluated. The outcome of the SNB procedure and potential further nodal involvement was assessed. Results In 65 patients, the sentinel node could not be identified. As a result, the sentinel node identification rate was 97% (1,888 of 1,953). Variables affecting the success rate were age, pathological tumor size, histology, year of accrual, and method of detection. The SNB results of 65% of the patients (n = 1,220) were negative and the patients underwent no further axillary treatment. The SNB results were positive in 34% of the patients (n = 647), including macrometastases (n = 409, 63%), micrometastases (n = 161, 25%), and isolated tumor cells (n = 77, 12%). Further nodal involvement in patients with macrometastases, micrometastases, and isolated tumor cells undergoing an ALND was 41, 18, and 18%, respectively. Conclusions With a 97% detection rate in this prospective international multicenter study, the SNB procedure is highly effective, especially when the combined method is used. Further nodal involvement in patients with micrometastases and isolated tumor cells in the sentinel node was similar—both were 18%. PMID:20300966
Salvage therapy of small volume prostate cancer nodal failures: a review of the literature.
De Bari, Berardino; Alongi, Filippo; Buglione, Michela; Campostrini, Franco; Briganti, Alberto; Berardi, Genoveffa; Petralia, Giuseppe; Bellomi, Massimo; Chiti, Arturo; Fodor, Andrei; Suardi, Nazareno; Cozzarini, Cesare; Nadia, Di Muzio; Scorsetti, Marta; Orecchia, Roberto; Montorsi, Francesco; Bertoni, Filippo; Magrini, Stefano Maria; Jereczek-Fossa, Barbara Alicja
2014-04-01
New imaging modalities may be useful to identify prostate cancer patients with small volume, limited nodal relapse ("oligo-recurrent") potentially amenable to local treatments (radiotherapy, surgery) with the aim of long-term control of the disease, even in a condition traditionally considered prognostically unfavorable. This report reviews the new diagnostic tools and the main published data about the role of surgery and radiation therapy in this particular subgroup of patients. PMID:24315428
Zhao Kuaile; Ma Jinbo; Liu Guang; Wu Kailiang; Shi Xuehui; Jiang Guoliang
2010-02-01
Purpose: To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. Methods and Materials: A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. Results: All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. Conclusions: In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems.
Numerical divergence effects of equivalence theory in the nodal expansion method
Zika, M.R.; Downar, T.J. )
1993-11-01
Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.
Nodal Fermi surface pocket approaching an optimal quantum critical point in YBCO
NASA Astrophysics Data System (ADS)
Sebastian, Suchitra; Tan, Beng; Lonzarich, Gilbert; Ramshaw, Brad; Harrison, Neil; Balakirev, Fedor; Mielke, Chuck; Sabok, S.; Dabrowski, B.; Liang, Ruixing; Bonn, Doug; Hardy, Walter
2014-03-01
I present new quantum oscillation measurements over the entire underdoped regime in YBa2Cu3O6+x and YBa2Cu4O8 using ultra-high magnetic fields to destroy superconductivity and access the normal ground state. A robust small nodal Fermi surface created by charge order is found to extend over the entire underdoped range, exhibiting quantum critical signatures approaching optimal doping.
Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review.
Barake, Walid; Caldwell, Jane; Baranchuk, Adrian
2013-01-01
This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided. PMID:23329875
Chen, Chuanben; Zhang, Mingwei; Xu, Yuanji; Yue, Qiuyuan; Bai, Penggang; Zhou, Lin; Xiao, Youping; Zheng, Dechun; Lin, Kongqi; Qiu, Sufang; Chen, Yunbin; Pan, Jianji
2016-01-01
Abstract The aim of the study was to evaluate whether short axis and long axis on axial and coronal magnetic resonance imaging planes would reflect the tumor burden or alteration in size after induction chemotherapy in nasopharyngeal carcinoma. Patients with pathologically confirmed nasopharyngeal carcinoma (n = 37) with at least 1 positive cervical lymph node (axial short axis ≥15 mm) were consecutively enrolled in this prospective study. Lymph nodal measurements were performed along its short axis and long axis in both axial and coronal magnetic resonance imaging planes at diagnosis and after 2 cycles of induction chemotherapy. In addition, lymph nodal volumes were automatically calculated in 3D treatment-planning system, which were used as reference standard. Student's t test or nonparametric Mann–Whitney U test was used to compare the continuous quantitative variables. Meanwhile, the κ statistic and McNemar's test were used to evaluate the degree of agreement and discordance in response categorization among different measurements. Axial short axis was significantly associated with volumes at diagnosis (P < 0.001). A good agreement (κ=0.583) was found between axial short axis and volumetric criteria. However, the inconsistent lymph nodal shrinkage in 4 directions was observed. Axial short-axis shrinking was more rapid than the other 3 parameters. Interestingly, when utilizing the alternative planes for unidimensional measurements to assess tumor response, coronal short-axis showed the best concordance (κ=0.792) to the volumes. Axial short axis may effectively reflect tumor burden or change in tumor size in the assessment of target lymph nodal response after induction chemotherapy for nasopharyngeal carcinoma. However, it should be noted that axial short axis may amplify the therapeutic response. In addition, the role of coronal short axis in the assessment of tumor response needs further evaluation. PMID:26945354
EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP
B. D. Ganapol; D. W. Nigg
2008-09-01
In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Nodal soliton solutions for generalized quasilinear Schrödinger equations
Deng, Yinbin Peng, Shuangjie; Wang, Jixiu
2014-05-15
This paper is concerned with constructing nodal radial solutions for generalized quasilinear Schrödinger equations in R{sup N} which arise from plasma physics, fluid mechanics, as well as high-power ultashort laser in matter. For any given integer k ⩾ 0, by using a change of variables and minimization argument, we obtain a sign-changing minimizer with k nodes of a minimization problem.
Flow simulation on generalized grids
Koomullil, R.P.; Soni, B.K.; Huang, Chi Ti
1996-12-31
A hybrid grid generation methodology and flow simulation on grids having an arbitrary number of sided polygons is presented. A hyperbolic type marching scheme is used for generating structured grids near the solid boundaries. A local elliptic solver is utilized for smoothing the grid lines and for avoiding grid line crossing. A new method for trimming the overlaid structured grid is presented. Delaunay triangulation is employed to generate an unstructured grid in the regions away from the body. The structured and unstructured grid regions are integrated together to form a single grid for the flow solver. An edge based data structure is used to store the grid information to ease the handling of general polygons. Integral form of the Navier-Stokes equations makes up the governing equations. A Roe averaged Riemann solver is utilized to evaluate the numerical flux at cell faces. Higher order accuracy is achieved by applying Taylor`s series expansion to the conserved variables, and the gradient is calculated by using Green`s theorem. For the implicit scheme, the sparse matrix resulting from the linearization is solved using GMRES method. The flux Jacobians are calculated numerically or by an approximate analytic method. Results are presented to validate the current methodology.
Evaluating the Information Power Grid using the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
VanderWijngaartm Rob F.; Frumkin, Michael A.
2004-01-01
The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.
Anisotropic density fluctuations, plasmons, and Friedel oscillations in nodal line semimetal
NASA Astrophysics Data System (ADS)
Rhim, Jun-Won; Kim, Yong Baek
2016-04-01
Motivated by recent experimental efforts on three-dimensional semimetals, we investigate the static and dynamic density response of the nodal line semimetal by computing the polarizability for both undoped and doped cases. The nodal line semimetal in the absence of doping is characterized by a ring-shape zero energy contour in momentum space, which may be considered as a collection of Dirac points. In the doped case, the Fermi surface has a torus shape and two independent processes of the momentum transfer contribute to the singular features of the polarizability even though we only have a single Fermi surface. In the static limit, there exist two independent singularities in the second derivative of the static polarizability. This results in the highly anisotropic Friedel oscillations which show the angle-dependent algebraic power law and the beat phenomena in the oscillatory electron density near a charged impurity. Furthermore, the dynamical polarizability has two singular lines along {\\hslash }ω =γ p and {\\hslash }ω =γ p{sin}η , where η is the angle between the external momentum {p} and the plane where the nodal ring lies. From the dynamical polarizability, we obtain the plasmon modes in the doped case, which show anisotropic dispersions and angle-dependent plasma frequencies. Qualitative differences between the low and high doping regimes are discussed in light of future experiments.
A coarse-mesh nodal method-diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-05-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
Influence of extracapsular nodal spread extent on prognosis of oral squamous cell carcinoma
Wreesmann, Volkert B.; Katabi, Nora; Palmer, Frank L.; Montero, Pablo H.; Migliacci, Jocelyn C.; Gönen, Mithat; Carlson, Diane; Ganly, Ian; Shah, Jatin P.; Ghossein, Ronald; Patel, Snehal G.
2016-01-01
Background An objective definition of clinically relevant extracapsular nodal spread (ECS) in head and neck squamous cell carcinoma (SCC) is unavailable. Methods Pathologic review of 245 pathologically positive oral cavity SCC neck dissection specimens was performed. The presence/absence of ECS, its extent (in millimeters), and multiple nodal and primary tumor risk factors were related to disease-specific survival (DSS) at a follow-up of 73 months. Results ECS was detected in 109 patients (44%). DSS was significantly better for patients without ECS than patients with ECS. Time-dependent receiver operator curve (ROC) analysis identified a prognostic cutoff for ECS extent at 1.7 mm. In multivariate analyses, DSS was significantly lower for patients with major ECS compared with patients with minor ECS, but not significantly different between patients with minor ECS and patients without ECS. Conclusion ECS is clinically relevant in oral cavity SCC when it has extended more than 1.7 mm beyond the nodal capsule. PMID:26514096
Measurement of the Nodal Precession of WASP-33 b via Doppler Tomography
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Cochran, William D.; Collier Cameron, Andrew; Bayliss, Daniel
2015-09-01
We have analyzed new and archival time series spectra taken six years apart during transits of the hot Jupiter WASP-33 b, and spectroscopically resolved the line profile perturbation caused by the Rossiter-McLaughlin effect. The motion of this line profile perturbation is determined by the path of the planet across the stellar disk, which we show to have changed between the two epochs due to nodal precession of the planetary orbit. We measured rates of change of the impact parameter and the sky-projected spin-orbit misalignment of {db}/{dt}={-0.0228}-0.0018+0.0050 {{yr}}-1 and dλ /{dt}={-0\\buildrel{\\circ}\\over{.} 487}-0.076+0.089 {{yr}}-1, respectively, corresponding to a rate of nodal precession of d{{Ω }}/{dt}=0\\buildrel{\\circ}\\over{.} {373}-0.083+0.031 {{yr}}-1. This is only the second measurement of nodal precession for a confirmed exoplanet transiting a single star. Finally, we used the rate of precession to set limits on the stellar gravitational quadrupole moment of 0.0054≤slant {J}2≤slant 0.035.
Differential Stability of PNS and CNS Nodal Complexes When Neuronal Neurofascin Is Lost
Desmazieres, Anne; Zonta, Barbara; Zhang, Ao; Wu, Lai-Man N.; Sherman, Diane L.
2014-01-01
Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. βIV Spectrin, ankyrin G, and, to a lesser extent, the β1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node. PMID:24719087
Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX
Rajic, H.L.; Ougouag, A.M.
1987-01-01
Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence rate of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.
Differential stability of PNS and CNS nodal complexes when neuronal neurofascin is lost.
Desmazieres, Anne; Zonta, Barbara; Zhang, Ao; Wu, Lai-Man N; Sherman, Diane L; Brophy, Peter J
2014-04-01
Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. βIV Spectrin, ankyrin G, and, to a lesser extent, the β1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node. PMID:24719087
Adventures in Computational Grids
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.
and Drayton Munster, Miroslav Stoyanov
2013-09-20
Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.
2013-09-20
Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less
A staggered-grid convolutional differentiator for elastic wave modelling
NASA Astrophysics Data System (ADS)
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
The Volume Grid Manipulator (VGM): A Grid Reusability Tool
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.
Jani, S; Kishan, A; O'Connell, D; King, C; Steinberg, M; Low, D; Lamb, J
2014-06-01
Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as a ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.
Spectral distributed Lagrange multiplier method: algorithm and benchmark tests
NASA Astrophysics Data System (ADS)
Dong, Suchuan; Liu, Dong; Maxey, Martin R.; Karniadakis, George Em
2004-04-01
We extend the formulation of the distributed Lagrange multiplier (DLM) approach for particulate flows to high-order methods within the spectral/ hp element framework. We implement the rigid-body motion constraint inside the particle via a penalty method. The high-order DLM method demonstrates spectral convergence rate, i.e. discretization errors decrease exponentially as the order of spectral polynomials increases. We provide detailed comparisons between the spectral DLM method, direct numerical simulations, and the force coupling method for a number of 2D and 3D benchmark flow problems. We also validate the spectral DLM method with available experimental data for a transient problem. The new DLM method can potentially be very effective in many-moving body problems, where a smaller number of grid points is required in comparison with low-order methods.
Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.
de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen
2016-01-01
The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640
A grid of LTE zero-metallicity stellar fluxes
NASA Astrophysics Data System (ADS)
Chávez, M.; Cardona, O.
We present a grid of LTE theoretical spectral energy distributions (SEDs) of models composed of only H and He. The calculations were based on the codes developed by L. Auer and considered 71 atmospheric layers in hydrostatic and radiative equilibria. The SEDs consist on 46 wavelength points extending from the extreme ultraviolet to the infrared and cover the parameter space from 10000 to 140000K in effective temperature and 4.0-6.0 dex in surface gravity. The coarse coverage in wavelength makes the grid suitable for continuum studies since the Lyman and Balmer breaks at 912 and 3647 Å: respectively are among the most prominent features for the parameter space covered by the grid.
A grid quality manipulation system
NASA Technical Reports Server (NTRS)
Lu, Ning; Eiseman, Peter R.
1991-01-01
A grid quality manipulation system is described. The elements of the system are the measures by which quality is assessed, the computer graphic display of those measures, and the local grid manipulation to provide a response to the viewed quality indication. The display is an overlaid composite where the region is first covered with colors to reflect the values of the quality indicator, the grid is then placed on top of those colors, and finally a control net is placed on top of everything. The net represents the grid in terms of the control point form of algebraic grid generation. As a control point is moved, both the grid and the colored quality measures also move. This is a real time dynamic action so that the consequences of the manipulation are continuously seen.
Prepares Overset Grids for Processing
1998-04-22
Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less
None, None
2014-10-15
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.
NASA Technical Reports Server (NTRS)
Weinstein, Beth; Lubelczyk, Jeff
2006-01-01
The LGP successfully demonstrated that grid technology could be used to create a collaboration among research scientists, their science development machines, and distributed data to create a science production system in a nationally distributed environment. Grid technology provides a low cost and effective method of enabling production of science products by the science community. To demonstrate this, the LGP partnered with NASA GSFC scientists and used their existing science algorithms to generate virtual Landsat-like data products using distributed data resources. LGP created 48 output composite scenes with 4 input scenes each for a total of 192 scienes processed in parallel. The demonstration took 12 hours, which beat the requirement by almost 50 percent, well within the LDCM requirement to process 250 scenes per day. The LGP project also showed the successful use of workflow tools to automate the processing. Investing in this technology has led to funding for a ROSES ACCESS proposal. The proposal intends to enable an expert science user to produce products from a number of similar distributed instrument data sets using the Land Cover Change Community-based Processing and Analysis System (LC-ComPS) Toolbox. The LC-ComPS Toolbox is a collection of science algorithms that enable the generation of data with ground resolution on the order of Landsat-class instruments.
Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha
2011-01-01
Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586
NASA Technical Reports Server (NTRS)
Hu, Chaumin
2007-01-01
IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.
On unstructured grids and solvers
NASA Technical Reports Server (NTRS)
Barth, T. J.
1990-01-01
The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.
Evaluating Spectral Signals to Identify Spectral Error.
Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana
2016-01-01
Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541
Evaluating Spectral Signals to Identify Spectral Error
Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana
2016-01-01
Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Streett, Craig L.; Hussaini, M. Yousuff
1989-01-01
One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched.
OGC and Grid Interoperability in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas
2010-05-01
EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and
Grid Generation Techniques Utilizing the Volume Grid Manipulator
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1998-01-01
This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.
From the grid to the smart grid, topologically
NASA Astrophysics Data System (ADS)
Pagani, Giuliano Andrea; Aiello, Marco
2016-05-01
In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.
NAS Grid Benchmarks: A Tool for Grid Space Exploration
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)
2001-01-01
We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.
Electrode design for coplanar-grid detectors
Luke, P.N.; Amman, M.; Prettyman, T.H.; Russo, P.A.; Close, D.A.
1996-11-01
The coplanar-grid charge sensing technique provides a method for improving the spectral response of gamma-ray detectors based on compound semiconductors, which typically have poor charge transport properties. The technique functions by effectively modifying the charge induction characteristics of the detector such that the dependence of detector signal on the depth of radiation interaction is minimized. The effectiveness of this technique however can be compromised by non-uniform charge induction characteristics across the detector. This paper examines such non-uniformity due to fringe effects near the detector edges. Alternate electrode configurations are studied that provide effective compensation for such effects. Results from experimental measurements and computer simulations are presented.
Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.
2007-06-01
The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.
National Institute of Standards and Technology Data Gateway
SRD 117 Triatomic Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.
National Institute of Standards and Technology Data Gateway
SRD 115 Hydrocarbon Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.
National Institute of Standards and Technology Data Gateway
SRD 114 Diatomic Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.
TIGER: Turbomachinery interactive grid generation
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark
1992-01-01
A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.
Grid generation using classical techniques
NASA Technical Reports Server (NTRS)
Moretti, G.
1980-01-01
A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.
LAPS Grid generation and adaptation
NASA Astrophysics Data System (ADS)
Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis
2011-10-01
LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.
Structured and unstructured grid generation.
Thompson, J F; Weatherill, N P
1992-01-01
Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687
Intelligent automated surface grid generation
NASA Technical Reports Server (NTRS)
Yao, Ke-Thia; Gelsey, Andrew
1995-01-01
The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.
Some Observations on Grid Convergence
NASA Technical Reports Server (NTRS)
Salas, manuel D.
2006-01-01
It is claimed that current practices in grid convergence studies, particularly in the field of external aerodynamics, are flawed. The necessary conditions to properly establish grid convergence are presented. A theoretical model and a numerical example are used to demonstrate these ideas.
Galvão, António; Skarzynski, Dariusz; Ferreira-Dias, Graça
2016-02-01
In the present work, we investigated the role of Nodal, an embryonic morphogen from the TGFβ superfamily in corpus luteum (CL) secretory activity using cells isolated from equine CL as a model. Expression pattern of Nodal and its receptors activin receptor A type IIB (ACVR2B), activin receptor-like kinase (Alk)-7, and Alk4, as well as the Nodal physiological role, demonstrate the involvement of this pathway in functional luteolysis. Nodal and its receptors were immune localized in small and large luteal cells and endothelial cells, except ACVR2B, which was not detected in the endothelium. Nodal mRNA in situ hybridization confirmed its transcription in steroidogenic and endothelial cells. Expression analysis of the aforementioned factors evidenced that Nodal and Alk7 proteins peaked at the mid-CL (P < .01), the time of luteolysis initiation, whereas Alk4 and ACVR2B proteins increased from mid- to late CL (P < .05). The Nodal treatment of luteal cells decreased progesterone and prostaglandin (PG) E2 concentrations in culture media (P < .05) as well as mRNA and protein of secretory enzymes steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, cytosolic PGE2 synthase, and microsomal PGE2 synthase-1 (P < .05). Conversely, PGF2α secretion and gene expression of PG-endoperoxidase synthase 2 and PGF2α synthase were increased after Nodal treatment (P < .05). Mid-CL cells cultured with PGF2α had increased Nodal protein expression (P < .05) and phosphorylated mothers against decapentaplegic-3 phosphorylation (P < .05). Finally, the supportive interaction between Nodal and PGF2α on luteolysis was shown to its greatest extent because both factors together more significantly inhibited progesterone (P < .05) and promoted PGF2α (P < .05) synthesis than Nodal or PGF2α alone. Our results neatly pinpoint the sites of action of the Nodal signaling pathway toward functional luteolysis in the mare. PMID:26653568
Hydroacoustic propagation grids for the CTBT knowledge databaes BBN technical memorandum W1303
J. Angell
1998-05-01
The Hydroacoustic Coverage Assessment Model (HydroCAM) has been used to develop components of the hydroacoustic knowledge database required by operational monitoring systems, particularly the US National Data Center (NDC). The database, which consists of travel time, amplitude correction and travel time standard deviation grids, is planned to support source location, discrimination and estimation functions of the monitoring network. The grids will also be used under the current BBN subcontract to support an analysis of the performance of the International Monitoring System (IMS) and national sensor systems. This report describes the format and contents of the hydroacoustic knowledgebase grids, and the procedures and model parameters used to generate these grids. Comparisons between the knowledge grids, measured data and other modeled results are presented to illustrate the strengths and weaknesses of the current approach. A recommended approach for augmenting the knowledge database with a database of expected spectral/waveform characteristics is provided in the final section of the report.
Acceleration of conduction velocity linked to clustering of nodal components precedes myelination
Freeman, Sean A.; Desmazières, Anne; Simonnet, Jean; Gatta, Marie; Pfeiffer, Friederike; Aigrot, Marie Stéphane; Rappeneau, Quentin; Guerreiro, Serge; Michel, Patrick Pierre; Yanagawa, Yuchio; Barbin, Gilles; Brophy, Peter J.; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie
2015-01-01
High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance. PMID:25561543
Acceleration of conduction velocity linked to clustering of nodal components precedes myelination.
Freeman, Sean A; Desmazières, Anne; Simonnet, Jean; Gatta, Marie; Pfeiffer, Friederike; Aigrot, Marie Stéphane; Rappeneau, Quentin; Guerreiro, Serge; Michel, Patrick Pierre; Yanagawa, Yuchio; Barbin, Gilles; Brophy, Peter J; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie
2015-01-20
High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance. PMID:25561543
Prognosis and segment-specific nodal spread of primary lung cancer in the right lower lobe
Tomizawa, Kenji; Suda, Kenichi; Takemoto, Toshiki; Mizuno, Tetsuya; Kuroda, Hiroaki; Sakakura, Noriaki; Iwasaki, Takuya; Sakaguchi, Masahiro; Kuwano, Hiroyuki; Mitsudomi, Tetsuya; Sakao, Yukinori
2015-01-01
Background Although lobe-specific nodal spread of primary lung cancer has been recently described, segment-specific nodal spread remains unclear. We investigated the frequency of hailer and mediastinal lymph node involvement and survival in patients with tumors located in the superior segment (SS) and basal segment (BS) in the right lower lobe. Methods Two hundred and sixty-three patients with primary lung cancer originating in the right lower lobe underwent lobectomy with systematic mediastinal lymph node dissection. Patients were categorized into two groups: SS (n = 114) or BS (n = 149). Results Frequencies of metastasis to station 11s and 11i were significantly higher in the SS (P < 0.0001) and BS groups (P = 0.022), respectively. Both the SS and BS groups showed a high frequency of subcarinal mediastinal zone (station 7) metastasis (96.9% and 90.6%, respectively; P = 0.271). The frequencies of superior mediastinal zone (station 2R and 4R) metastasis were 37.5% in the SS and 35.8% in the BS group (P = 0.878). In patients with pN2 disease, three-year disease-free survival was significantly shorter in the SS (22.6%) than the BS group (42.1%; P = 0.020). In the BS group, the independent predictive factors of a poor or good prognosis were metastasis to station 11i or skip metastasis, respectively; however, we did not detect an independent prognostic factor in the SS group. In the right lower lung lobe, there was no segment-specific nodal spread. Conclusion When segmentectomy is undertaken, mediastinal lymph node dissection should be performed in proportion to lobectomy. PMID:26557903
Grid Integration Studies: Data Requirements, Greening the Grid
Katz, Jessica
2015-06-01
A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.
Single grid accelerator for an ion thrustor
NASA Technical Reports Server (NTRS)
Margosian, P. M.; Nakanishi, S. (Inventor)
1973-01-01
A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.
Optimizing solar-cell grid geometry
NASA Technical Reports Server (NTRS)
Crossley, A. P.
1969-01-01
Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.
Gnanaraj, Wesely Edward; Antonisamy, Johnson Marimuthu; RB, Mohanamathi; Subramanian, Kavitha Marappampalyam
2012-01-01
Objective To develop the reproducible in vitro propagation protocols for the medicinally important plants viz., Achyranthes aspera (A. aspera) L. and Achyranthes bidentata (A. bidentata) Blume using nodal segments as explants. Methods Young shoots of A. aspera and A. bidentata were harvested and washed with running tap water and treated with 0.1% bavistin and rinsed twice with distilled water. Then the explants were surface sterilized with 0.1% (w/v) HgCl2 solutions for 1 min. After rinsing with sterile distilled water for 3–4 times, nodal segments were cut into smaller segments (1 cm) and used as the explants. The explants were placed horizontally as well as vertically on solid basal Murashige and Skoog (MS) medium supplemented with 3% sucrose, 0.6% (w/v) agar (Hi-Media, Mumbai) and different concentration and combination of 6-benzyl amino purine (BAP), kinetin (Kin), naphthalene acetic acid (NAA) and indole acetic acid (IAA) for direct regeneration. Results Adventitious proliferation was obtained from A. aspera and A. bidentata nodal segments inoculated on MS basal medium with 3% sucrose and augmented with BAP and Kin with varied frequency. MS medium augmented with 3.0 mg/L of BAP showed the highest percentage (93.60±0.71) of shootlets formation for A. aspera and (94.70±0.53) percentages for A. bidentata. Maximum number of shoots/explants (10.60±0.36) for A. aspera and (9.50±0.56) for A. bidentata was observed in MS medium fortified with 5.0 mg/L of BAP. For A. aspera, maximum mean length (5.50±0.34) of shootlets was obtained in MS medium augmented with 3.0 mg/L of Kin and for A. bidentata (5.40±0.61) was observed in the very same concentration. The highest percentage, maximum number of rootlets/shootlet and mean length of rootlets were observed in 1/2 MS medium supplemented with 1.0 mg/L of IBA. Seventy percentages of plants were successfully established in polycups. Sixty eight percentages of plants were well established in the green house condition
Treatment of paroxysmal nodal tachycardia by dual demand pacemaker in the coronary sinus.
O'Keeffe, D B; Curry, P V; Sowton, E
1981-01-01
A patient with refractory paroxysmal atrioventricular nodal re-entrant tachycardia had required direct current cardioversion to terminate attacks on 83 occasions. A dual demand pacemaker was implanted to sense and interrupt attacks of tachycardia automatically. The pacing electrode was positioned in the proximal coronary sinus near to the atrioventricular node; a site from which fixed rate underdrive pacing successfully interrupted attacks throughout a trial period of one week, with a lead left in this position on a temporary basis. Complete control of the arrhythmia was obtained in the six months after pacemaker implantation. Images PMID:7459160
A Posteriori Error Estimation for a Nodal Method in Neutron Transport Calculations
Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.
1999-11-03
An a posteriori error analysis of the spatial approximation is developed for the one-dimensional Arbitrarily High Order Transport-Nodal method. The error estimator preserves the order of convergence of the method when the mesh size tends to zero with respect to the L{sup 2} norm. It is based on the difference between two discrete solutions that are available from the analysis. The proposed estimator is decomposed into error indicators to allow the quantification of local errors. Some test problems with isotropic scattering are solved to compare the behavior of the true error to that of the estimated error.
Theoretical basis of the linear nodal and linear characteristic methods in the TORT computer code
Childs, R.L.; Rhoades, W.A.
1993-01-01
Novel numerical procedures for solving the Boltzmann equation have been added to the Three Dimensional Oak Ridge Discrete Ordinates Transport Code (TORT). These procedures produce much more accuracy in theflux solutions for a given mesh size, or allow a smaller mesh to be used in order to reduce costs. The first method is a special adaptation of the linear nodal method proposed by Walters and O'Dell. The basic method has been extensively adapted in order to avoid numerical distortions that may occur in shielding problems. The second method is a characteristic procedure with linear expansion of sources and boundary flows. These methods are in widespread use in the TORT code.
Theoretical basis of the linear nodal and linear characteristic methods in the TORT computer code
Childs, R.L.; Rhoades, W.A.
1993-01-01
Novel numerical procedures for solving the Boltzmann equation have been added to the Three Dimensional Oak Ridge Discrete Ordinates Transport Code (TORT). These procedures produce much more accuracy in theflux solutions for a given mesh size, or allow a smaller mesh to be used in order to reduce costs. The first method is a special adaptation of the linear nodal method proposed by Walters and O`Dell. The basic method has been extensively adapted in order to avoid numerical distortions that may occur in shielding problems. The second method is a characteristic procedure with linear expansion of sources and boundary flows. These methods are in widespread use in the TORT code.
Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code
Sullivan, T.J.
1986-05-01
In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve the engine thermal efficiency. The investigation was accomplished by using the Lewis nodal-analysis Stirling engine computer model. Bypassing the P-40 Stirling engine heater at full power resulted in a rise in the indicated thermal efficiency from 40.6 to 41.0 percent. For the idealized (some losses not included) heater bypass that was analyzed, this benefit is not considered significant.
Rosai-Dorfman Disease with nodal and extranodal involvements: A case report
Najafi-Sani, Mehri; Saneian, Hossein; Mahjoub, Fatemeh
2011-01-01
Rosai-Dorfman disease (RDD) is a rare lymphoproliferative disorder with nodal and extranodal involvements. Here we report a case of RDD in a 15-year-old female who presented with epigastric pain, fatigue, Raynaud phenomenon in fingers, submandibular lymphadenopathy, proptosis, hepatosplenomegaly, and round shape painless patches on the extensor surfaces. Histological examination of the submandibular lymph nodes and skin biopsy demonstrated evidences of RDD. Patient was treated with prednisone and thereafter, with azathioprine. After one year, prednisone was discontinued and all of the symptoms and signs, except proptosis, were resolved. This report highlights the extranodal manifestations of RDD. The presentation, differential diagnosis, and treatment are discussed. PMID:22973396
NASA Technical Reports Server (NTRS)
Van Patten, R. A.; Everitt, C. W. F.
1975-01-01
In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.
Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code
NASA Technical Reports Server (NTRS)
Sullivan, T. J.
1986-01-01
In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve engine performance. The Lewis nodal-analysis Stirling engine computer simulation was used for this investigation. Results for the heater-bypass concept showed no significant improvement in the indicated thermal efficiency for the P-40 Stirling engine operating at full-power and part-power conditions. Optimizing the heater tube length produced a small increase in the indicated thermal efficiency with the heater-bypass concept.
NASA Technical Reports Server (NTRS)
Borsody, J.
1976-01-01
Equations are derived by using the maximum principle to maximize the payload of a reusable tug for planetary missions. The analysis includes a correction for precession of the space shuttle orbit. The tug returns to this precessed orbit (within a specified time) and makes the required nodal correction. A sample case is analyzed that represents an inner planet mission as specified by a fixed declination and right ascension of the outgoing asymptote and the mission energy. The reusable stage performance corresponds to that of a typical cryogenic tug. Effects of space shuttle orbital inclination, several trajectory parameters, and tug thrust on payload are also investigated.
Beaulieu, R A
2009-07-13
The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US
Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon
2014-01-01
Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and
Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe
NASA Astrophysics Data System (ADS)
Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang
2016-07-01
A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe2 , PtSn4 , and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (˜1020 cm-3 ) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.
Lawrence, R.D.
1983-03-01
A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.
Topological Nodal-Line Fermions in the Non-Centrosymmetric Spin-Orbit Metal PbTaSe2
NASA Astrophysics Data System (ADS)
Bian, Guang; Princeton Team
We report on the existence of topological nodal-line states in the non-centrosymmetric compound single-crystalline PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states. Our work paves the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems and, potentially, the rich physics arising from the interplay between the topological nodal-line states and the emergent superconductivity in this compound. Work at Princeton University and Princeton-led synchrotron-based ARPES measurements were supported by the Gordon and Betty Moore Foundations EPiQS Initiative through grant GBMF4547 (Hasan) and by by U.S. Department of Energy DE-FG-02-05ER46200.
High energy collimating fine grids
NASA Technical Reports Server (NTRS)
Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele
1995-01-01
The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.
Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,
2014-02-24
GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: A platform to support future EMS development. A middleware that promotes interoperability between power grid applications. A distributed architecture that separates data sources from power grid applications. Support for data exchange with either one-to-one or publisher/subscriber interfaces. An authentication and authorization scheme for limiting the access to data between utilities.
von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science
2001-07-01
In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.
2014-02-24
GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: A platform to support future EMS development. A middleware that promotes interoperability between power grid applications. A distributed architecture that separates data sources from power grid applications. Support for data exchange with either one-to-one or publisher/subscriber interfaces. An authentication and authorization scheme for limiting the access to data between utilities.« less
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven
2005-01-01
The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
National transmission grid study
Abraham, Spencer
2003-05-31
The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).
Buildings-to-Grid Technical Opportunities: From the Grid Perspective
Kropski, Ben; Pratt, Rob
2014-03-28
This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.
NASA Astrophysics Data System (ADS)
Quine, Brendan M.; Abrarov, Sanjar M.; Jagpal, Raj K.
2014-06-01
In our recent publication, we proposed the application of the spectrally integrated Voigt function (SIVF) to a line-by-line (LBL) radiative transfer modelling1. We applied the GENSPECT LBL radiative transfer model that utilizes the HITRAN database to generate synthetic spectral data due to thermal or solar radiation of the Earth or planetary atmosphere2. It has been shown that the SIVF methodology enables the computation of a LBL radiative transfer at reduced spectral resolution model without loss in accuracy. In contrast to the traditional method of computation, the SIVF implementation accounts for the area under the Voigt function between adjacent grid points resulting in well-preserved shape of a spectral radiance even at low spectral resolution. This significant advantage of the SIVF methodology can be applied in the rapid retrieval of the space observation data, required for real-time control and decision making in future generation of the Argus3 remote-sensing microspectrometers. The spectrally integrated methodology can be generalized to other linebroadening profiles, such as Galatry, Rautian-Sobelman or speed dependent profiles, to prevent underestimation of the spectral radiance that always occurs at reduced spectral resolution1 in any LBL radiative transfer model using a traditional method of computation.
Soil spectral characterization
NASA Technical Reports Server (NTRS)
Stoner, E. R.; Baumgardner, M. F.
1981-01-01
The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.
Commission 45: Spectral Classification
NASA Astrophysics Data System (ADS)
Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta
This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.
Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm
Yaguchi, Junko; Takeda, Noriyo; Inaba, Kazuo; Yaguchi, Shunsuke
2016-01-01
When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis. PMID:27101101
Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm.
Yaguchi, Junko; Takeda, Noriyo; Inaba, Kazuo; Yaguchi, Shunsuke
2016-04-01
When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis. PMID:27101101
Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity
Palm, Anna-Karin E.; Friedrich, Heike C.; Kleinau, Sandra
2016-01-01
Marginal zone (MZ) B cells, representing a distinct subset of innate-like B cells, mount rapid T-independent responses to blood-borne antigens. They express low-affinity polyreactive antigen receptors that recognize both foreign and self-structures. The spleen is considered the exclusive site for murine MZ B cells. However, we have here identified B cells with a MZ B-cell phenotype in the subcapsular sinuses of mouse lymph nodes. The nodal MZ (nMZ) B cells display high levels of IgM, costimulators and TLRs, and are represented by naïve and memory cells. The frequency of nMZ B cells is about 1–6% of nodal B cells depending on mouse strain, with higher numbers in older mice and a trend of increased numbers in females. There is a significant expansion of nMZ B cells following immunization with an autoantigen, but not after likewise immunization with a control protein or with the adjuvant alone. The nMZ B cells secrete autoantibodies upon activation and can efficiently present autoantigen to cognate T cells in vitro, inducing T-cell proliferation. The existence of self-reactive MZ B cells in lymph nodes may be a source of autoantigen-presenting cells that in an unfortunate environment may activate T cells leading to autoimmunity. PMID:27277419
Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van
2011-09-01
Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed.
Quantitative Quantum Ergodicity and the Nodal Domains of Hecke-Maass Cusp Forms
NASA Astrophysics Data System (ADS)
Jung, Junehyuk
2016-07-01
We prove a quantitative statement of the quantum ergodicity for Hecke-Maass cusp forms on the modular surface. As an application of our result, along a density 1 subsequence of even Hecke-Maass cusp forms, we obtain a sharp lower bound for the L 2-norm of the restriction to a fixed compact geodesic segment of {η={iy : y > 0} subset H}. We also obtain an upper bound of {O_ɛ (t_φ^{3/8+ɛ} )} for the {L^∞} norm along a density 1 subsequence of Hecke-Maass cusp forms; for such forms, this is an improvement over the upper bound of {O_ɛ(t_φ^{5/12+ɛ} )} given by Iwaniec and Sarnak. In a recent work of Ghosh, Reznikov, and Sarnak, the authors proved for all even Hecke-Maass forms that the number of nodal domains, which intersect a geodesic segment of {η} , grows faster than {t_φ^{1/12-ɛ}} for any {ɛ > 0} , under the assumption that the Lindelöf Hypothesis is true and that the geodesic segment is long enough. Upon removing a density zero subset of even Hecke-Maass forms, we prove without making any assumptions that the number of nodal domains grows faster than {t_φ^{1/8-ɛ}} for any {ɛ > 0}.
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-01-01
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y PMID:26039222
Sarsam, Sinan; Sidiqi, Ibrahim; Shah, Dipak; Zughaib, Marcel
2015-01-01
Patient: Male, 54 Final Diagnosis: WPW and AVNRT Symptoms: Palpitations • shorthness of breath Medication: — Clinical Procedure: EP Study/Radiofrequency Ablation Specialty: Cardiology Objective: Rare co-existance of disease or pathology Background: Atrioventricular nodal reentrant tachycardia (AVNRT) is the most common form of supraventricular tachycardia. In contrast, Wolff-Parkinson-White (WPW) pattern consists of an accessory pathway, which may result in the development of ventricular arrhythmias. Frequent tachycardia caused by AVNRT and accessory pathways may play a role in left ventricular systolic dysfunction. Case Report: A 54-year-old man presented with palpitations and acute decompensated congestive heart failure. His baseline EKG showed Wolff-Parkinson-White (WPW) pattern. While hospitalized, he had an episode of atrioventricular nodal reentrant tachycardia (AVNRT). He underwent radiofrequency catheter ablation for AVNRT, and his accessory pathway was also ablated even though its conduction was found to be weak. He was clinically doing well on follow-up visit, with resolution of his heart failure symptoms and normalization of left ventricular function on echocardiography. Conclusions: This case raises the question whether the accessory pathway plays a role in the development of systolic dysfunction, and if there is any role for ablation in patients with asymptomatic WPW pattern. PMID:26655223
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-06-03
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less
Xue, Li-Jun; Yang, Ji-Hong; Su, Quan-Sheng; Wang, Hai; Liu, Chang
2010-01-01
Synchronous double malignancies of gastric carcinoma (GC) and malignant lymphoma (ML) are rare and very difficult to treat. We report a case of synchronous GC and nodal ML, regarding which clinical and pathological features and treatment are discussed. A 68-year-old woman with a history of inguinal hernia was admitted for abdominal pain and high fever and subsequently underwent herniorrhaphy, but the fever remained. Computerized tomography showed a stomach mass and multiple enlarged lymph nodes in the abdominal cavity and inguinal regions. Gastric adenocarcinoma coexistent with advanced in situ follicular lymphoma was confirmed by endoscopy, biopsy of inguinal lymph nodes and bone marrow examination. Two chemotherapy regimens, R-CHOP (rituximab, cyclophosphamide, perarubicin, vincristine and prednisone) and systemic therapy (5-fluorouracil and calcium folinate) combined with regional perfusion (oxaliplatin and etoposide) through the left gastric artery were performed at intervals against ML and GC, respectively. Partial remission in both tumors was achieved after 4 courses of treatment, but the patient finally died of heart failure. Scrupulous biopsy of non-draining lymph nodes in patients with gastrointestinal carcinomas is supposed to improve the diagnostic rate of simultaneous nodal ML. The interval chemotherapy strategy with two independent regimens is beneficial for such patients, especially for those unable to tolerate major surgery. PMID:20740201
The lunar nodal tide and the distance to tne Moon during the Precambrian era
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.
Observation of topological nodal fermion semimetal phase in ZrSiS
NASA Astrophysics Data System (ADS)
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; Sanchez, Daniel S.; Sankar, Raman; Szlawska, Maria; Xu, Su-Yang; Dimitri, Klauss; Dhakal, Nagendra; Maldonado, Pablo; Oppeneer, Peter M.; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz
2016-05-01
Unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ ) point, the M point, and the X point of the BZ, respectively. We experimentally establish the spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.
Lukl, J; Cíhalík, C
1992-01-01
A 55-year-old man was admitted to the intensive care unit on account of repeatedly occurring syncopes which developed at the peak of physical exertion. The attack was reproduced by exercise on a bicycle ergometer: the patient developed paroxysmal tachycardia with a narrow QRS and a frequency of 160/min leading after 20 sec. to severe hypotension and loss of consciousness. The same tachycardia caused by programmed atrial stimulation caused a drop of tension in the recumbent position by 30 mmHg and after more detailed analysis during electrophysiological examination it was evaluated as atrioventricular nodal reentrant tachycardia. By an electric discharge of 300 J administered by means of a stimulation electrode 7F USCI into the area of the AV node the retrograde conduction through the perinodal rapid pathways was completely interrupted and 1st. degree atrioventricular block developed. Repeated electrophysiological examination and exercise tests on a bicycle ergometer provided evidence of the disappearance of the retrograde pathway and the impossibility to elicit AVNRT. The authors express the view that the rapid perinodal pathway is interrupted in successful cases in both directions and the 1st. degree AV block is due to conduction along a slow pathway and not incidental slowing of conduction along the rapid pathway which is the generally accepted interpretation. Modification of the atrioventricular conduction by interruption of the rapid pathway by fulguration is according to data in the literature and the described patient a method which makes is possible to cure severe atrioventricular nodal reentrant tachycardias. PMID:1561778
Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element
Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna
2011-01-01
RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265
NASA Astrophysics Data System (ADS)
Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.
2015-09-01
NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.
NASA Astrophysics Data System (ADS)
Das, T.; Figueira de Morisson Faria, C.
2016-08-01
We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.
Thermophotovoltaic Spectral Control
DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman
2004-06-09
Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.
1998-08-01
Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.
2011-03-01
Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target
Niu, Jingjing; Liu, Conghui; Yang, Fang; Wang, Zhenwei; Wang, Bo; Zhang, Quanqi; He, Yan; Qi, Jie
2016-02-01
The nodal signaling pathway has been shown to play crucial roles in inducing and patterning the mesoderm and endoderm, as well as in regulating neurogenesis and left-right axis asymmetry. Here, we present the first complete cDNA and genomic sequences as well as the promoter predication of the Dnah9 gene in the Japanese flounder. The 15,558-bp-long cDNA is divided into 96 exons and spread over 138 kb of genomic DNA. Protein sequence comparison showed that it shares higher identity with other vertebrate orthologs, with an ATP binding dynein motor, AAA domain and microtubule binding stalk of dynein motor. Dnah9 exhibited maternal and ubiquitous expression in all cells of the early development stages, but became concentrated in the head at 1 DAH, as identified by qRT-PCR and in situ hybridization methods. Furthermore, after nodal signaling was inhibited, the level of Southpaw did not change significantly at early development stage (50 % epiboly) but increased significantly at late stages (27-somite stages and 1 DAH), as well as the expression of Lefty, an inhibitor of nodal signaling, increased continuously. On the other hand, the expression level of Dnah9 decreased. The transcription factor binding site of FAST-1 (SMAD interacting protein) was identified in the transcription region of Dnah9 by the promoter analysis, which might format the complexes of SMADs, FAST-1 and the transcription region of Dnah9 served as a bridge of Dnah9 and nodal signaling. All evidences indicated that Dnah9 might be downstream of nodal during the early development stages, and an indirect function through SMADs for nodal signaling pathway. PMID:26377939
Kayahara, M; Nagakawa, T; Ohta, T; Kitagawa, H; Tajima, H; Miwa, K
1999-01-01
OBJECTIVE: To determine the pattern of middle (Bm) and distal (Bi) bile duct cancers in an attempt to optimize surgical treatment. SUMMARY BACKGROUND DATA: Lymph node involvement and neural plexus invasion are the prognostic factors most amenable to surgery in Bm and Bi disease. However, a detailed analysis of these factors has not been conducted. METHODS: Fifty patients with Bm and Bi disease (Bm 14 patients, Bi 36 patients) were examined histopathologically. A precise determination was made of lymph node involvement and neural plexus invasion. Important prognostic factors were examined by clinicopathologic study to apply these findings to surgical management. RESULTS: Frequencies of nodal involvement for Bm and Bi disease were 57% and 71%, respectively. The inferior periductal and superior pancreaticoduodenal lymph nodes were most commonly involved. Neural plexus invasion occurred in 20% of patients, particularly involving the plexus in the hepatoduodenal ligament and pancreatic head. Tumor was present at the surgical margin in 50% and 14% of patients with Bm and Bi disease, respectively. Five-year survival rates were 65% in the absence of nodal metastasis and 21% with nodal metastasis. A significant correlation existed between absence of tumor at the surgical margin and survival. A Cox proportional hazard model projected absence of tumor at the surgical margin, followed by nodal involvement, as the strongest prognostic variables. CONCLUSIONS: Absence of tumor at the surgical margin and nodal involvement are important independent prognostic factors in Bm and Bi disease. Skeletonization of the hepatoduodenal ligament, including portal vein resection, is necessary for patients with Bm disease, and a wide nodal dissection is essential in all patients. PMID:9923803
NASA Astrophysics Data System (ADS)
Agosta, E.
2013-05-01
The present work will show for first time some statistical evidences that the lunar nodal cycle can influence the low-frequency variability of summer rainfalls in the plains to the east of subtropical Andes, a region known as 'Nuevo Cuyo' (NC) in South America. The link can be established through the sea surface temperature (SST) modulation that is induced by the nodal amplitudes of diurnal tides over the southwestern South Atlatnci (SWSA) region. In years of strong (weak) diurnal tides, nodal tide-induced diapycnical mixing makes SST cooler (warmer) that are accompanied by negative (positive) sea level pressure (SLP) anomalies affecting the mid-latitudes low-level tropospheric circulation. The SST variations would presumably affect the lower tropospheric baroclinicity in the surroundings of the Malvinas/Falklands Islands in the SWSA, which in turn would induce shifts of mid-latitude stormtracks. Tropospheric circulation anomalies being located over the SWSA directly affect the interannual variability of summer rainfalls in NC. It is further shown that such an influence can be extended to the bidecadal variability observed in the summer rainfalls owing to the nodal modulation effect. The identification of the nodal periodicity in the NC summer rainfall variability is statistically robust. Although the 1976/77 climate shift has mitigated the bidecadal component of the summer rainfalls until the early 2000s, the nodal cycle has always been present. Hence it could improve the interdecadal predictability of the mean conditions of summer rainfalls and of those socio-economic variables being sensitive to precipitation such as grape yield in the Mendoza Province.
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.
Constructing Polynomial Spectral Models for Stars
NASA Astrophysics Data System (ADS)
Rix, Hans-Walter; Ting, Yuan-Sen; Conroy, Charlie; Hogg, David W.
2016-08-01
Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abundances. Simultaneous fitting of these { N } ˜ 10–40 model labels to observed spectra has been deemed unfeasible because the number of ab initio spectral model grid calculations scales exponentially with { N }. We suggest instead the construction of a polynomial spectral model (PSM) of order { O } for the model flux at each wavelength. Building this approximation requires a minimum of only ≤ft(≥nfrac{}{}{0em}{}{{ N }+{ O }}{{ O }}\\right) calculations: e.g., a quadratic spectral model ({ O }=2) to fit { N }=20 labels simultaneously can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat larger number (˜300–1000) of randomly chosen models lead to a better performing PSM. Such a PSM can be a good approximation only over a portion of label space, which will vary case-by-case. Yet, taking the APOGEE survey as an example, a single quadratic PSM provides a remarkably good approximation to the exact ab initio spectral models across much of this survey: for random labels within that survey the PSM approximates the flux to within 10‑3 and recovers the abundances to within ˜0.02 dex rms of the exact models. This enormous speed-up enables the simultaneous many-label fitting of spectra with computationally expensive ab initio models for stellar spectra, such as non-LTE models. A PSM also enables the simultaneous fitting of observational parameters, such as the spectrum’s continuum or line-spread function.
Smart Wire Grid: Resisting Expectations
Ramsay, Stewart; Lowe, DeJim
2014-03-03
Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.
Smart Wire Grid: Resisting Expectations
Ramsay, Stewart; Lowe, DeJim
2014-04-09
Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.
Parallel Power Grid Simulation Toolkit
Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol
2015-09-14
ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.
Discretization formulas for unstructured grids
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1988-01-01
The Galerkin weighted residual technique using linear triangular weight functions is employed to develop finite difference formula in cartesian coordinates for the Laplacian operator, first derivative operators and the function for unstructured triangular grids. The weighted residual coefficients associated with the weak formulation of the Laplacian operator are shown to agree with the Taylor series approach on a global average. In addition, a simple algorithm is presented to determine the Voronoi (finite difference) area of an unstructured grid.
Reinventing Batteries for Grid Storage
Banerjee, Sanjoy
2013-05-29
The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.
Multi baseline Grid Software Correlator
NASA Astrophysics Data System (ADS)
Moritaka, Kimura; Nakajima, Junichi; Kondo, Tetsuro
Software VLBI correlation is regarded as a solution for next generation VLBI. With a flexibility of the software correlation programming, appropriate scientific correlations by scientists are possible as well as the post processing. As the first experiment to handle Gbps VLBI data, multi baseline Grid correlator have been developing at CRL. The performance of software correlation adopted multi CPUs, SIMD architectures and Grid computing technology has nearly reached hardware correlator performance.
Reinventing Batteries for Grid Storage
Banerjee, Sanjoy
2012-01-01
The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.
Adkison, Jarrod B.; McHaffie, Derek R.; Bentzen, Soren M.; Patel, Rakesh R.; Khuntia, Deepak; Petereit, Daniel G.; Hong, Theodore S.; Tome, Wolfgang; Ritter, Mark A.
2012-01-01
Purpose: Toxicity concerns have limited pelvic nodal prescriptions to doses that may be suboptimal for controlling microscopic disease. In a prospective trial, we tested whether image-guided intensity-modulated radiation therapy (IMRT) can safely deliver escalated nodal doses while treating the prostate with hypofractionated radiotherapy in 5 Vulgar-Fraction-One-Half weeks. Methods and Materials: Pelvic nodal and prostatic image-guided IMRT was delivered to 53 National Comprehensive Cancer Network (NCCN) high-risk patients to a nodal dose of 56 Gy in 2-Gy fractions with concomitant treatment of the prostate to 70 Gy in 28 fractions of 2.5 Gy, and 50 of 53 patients received androgen deprivation for a median duration of 12 months. Results: The median follow-up time was 25.4 months (range, 4.2-57.2). No early Grade 3 Radiation Therapy Oncology Group or Common Terminology Criteria for Adverse Events v.3.0 genitourinary (GU) or gastrointestinal (GI) toxicities were seen. The cumulative actuarial incidence of Grade 2 early GU toxicity (primarily alpha blocker initiation) was 38%. The rate was 32% for Grade 2 early GI toxicity. None of the dose-volume descriptors correlated with GU toxicity, and only the volume of bowel receiving {>=}30 Gy correlated with early GI toxicity (p = 0.029). Maximum late Grades 1, 2, and 3 GU toxicities were seen in 30%, 25%, and 2% of patients, respectively. Maximum late Grades 1 and 2 GI toxicities were seen in 30% and 8% (rectal bleeding requiring cautery) of patients, respectively. The estimated 3-year biochemical control (nadir + 2) was 81.2 {+-} 6.6%. No patient manifested pelvic nodal failure, whereas 2 experienced paraaortic nodal failure outside the field. The six other clinical failures were distant only. Conclusions: Pelvic IMRT nodal dose escalation to 56 Gy was delivered concurrently with 70 Gy of hypofractionated prostate radiotherapy in a convenient, resource-efficient, and well-tolerated 28-fraction schedule. Pelvic nodal dose
Filho, J. F. P.
2013-07-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
NASA Technical Reports Server (NTRS)
Borsody, J.
1976-01-01
Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.
Zhou, Tao; Gao, Yi; Zhu, Jian -Xin
2015-03-07
Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d-wave nodal lines (nodal gap) contrasts the common understanding of the d-wave pairing symmetry, which challenges the present theories for the high-Tcsuperconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-Tcsuperconductors.« less
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
AstroGrid-D: Grid technology for astronomical science
NASA Astrophysics Data System (ADS)
Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve
2011-02-01
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
A Global Semi-Lagrangian Spectral Model of the Shallow-Water Equations with Variable Resolution
Drake, John B; Guo, Daniel
2005-01-01
A time-dependent focusing grid works together with the formulation of a semi-implicit, semi-Lagrangian spectral method for the shallow-water equations in a rotated and stretched spherical geometry. The conformal mapping of the underlying discrete grid based on the Schmidt transformation, focuses grid on a particular region or path with variable resolution. A new advective form of the vorticity-divergence equations allows for the conformal map to be incorporated while maintaining an efficient spectral transform algorithm. A shallow water model on the sphere is used to test the spectral model with variable resolution. We are able to focus on a specified location resolving local details of the flow. More importantly, we could follow the features of the flow at all time.
Grid-Optimization Program for Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Daniel, R. E.; Lee, T. S.
1986-01-01
CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.
White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid
NASA Technical Reports Server (NTRS)
Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn
1996-01-01
A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.
Marjoram, Lindsay; Wright, Christopher
2011-01-01
The spatiotemporally dynamic distribution of instructive ligands within embryonic tissue, and their feedback antagonists, including inherent stabilities and rates of clearance, are affected by interactions with cell surfaces or extracellular matrix (ECM). Nodal (here, Xnr1 or Nodal1 in Xenopus) and Lefty interact in a cross-regulatory relationship in mesendoderm induction, and are the conserved instructors of left-right (LR) asymmetry in early somitogenesis stage embryos. By expressing Xnr1 and Lefty proproteins that produce mature functional epitope-tagged ligands in vivo, we found that ECM is a principal surface of Nodal and Lefty accumulation. We detected Lefty moving faster than Nodal, with evidence that intact sulfated proteoglycans in the ECM facilitate the remarkable long distance movement of Nodal. We propose that Nodal autoregulation substantially aided by rapid ligand transport underlies the anteriorward shift of Nodal expression in the left LPM (lateral plate mesoderm), and speculate that the higher levels of chondroitin-sulfate proteoglycan (CSPG) in more mature anterior regions provide directional transport cues. Immunodetection and biochemical analysis showed transfer of Lefty from left LPM to right LPM, providing direct evidence that left-side-derived Lefty is a significant influence in ensuring the continued suppression of right-sided expression of Nodal, maintaining unilateral expression of this conserved determinant of asymmetry. PMID:21205792
Hilbert, Sebastian; Kosiuk, Jedrzej; John, Silke; Hindricks, Gerhard; Bollmann, Andreas
2016-01-01
A 74-year old was considered for atrioventricular (AV) nodal ablation in view of atrial fibrillation (AF) with poorly controlled ventricular rate despite being on amiodarone. Targeted AV nodal ablation was successfully performed after identifying the target site for ablation by reviewing an ultra high-density map of the His region produced by automatic electrogram annotation. PMID:25852249
Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T
2000-06-20
A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m). PMID:18345245
Unstructured-grid large-eddy simulation of flow over an airfoil
NASA Technical Reports Server (NTRS)
Jansen, Kenneth
1994-01-01
Historically, large-eddy simulations (LES) have been restricted to simple geometries where spectral or finite difference methods have dominated due to their efficient use of structured grids. Structured grids, however, not only difficulty representing complex domains and adapting to complicated flow features, but also are rather inefficient for simulating flows at high Reynolds numbers. The lack of efficiency stems from the need to resolve the viscous sublayer, which requires very fine resolution in all three directions near the wall. Structured grids make use of a stretching to reduce the normal grid spacing but must carry the fine resolution in the streamwise and spanwise directions throughout the domain. The unnecessarily fine grid for much of the domain leads to disturbingly high grid estimates. Chapman (1979), and later Moin & Jimenez (1993), pointed out that, in order to advance the technology to airfoils at flight Reynolds numbers, structured grids must be abandoned in lieu of what are known as nested or unstructured grids. The finite element method can efficiently solve the Navier-Stokes equations on unstructured grids. Although the CPU cost per time step per element is somewhat higher than structured grid methods, this effect is more than offset by the reduction in the number of elements. The use of unstructured grids, coupled with the advances in dynamic subgrid-scale modeling such as those made by Germano et al. (1991) and Ghosal et al. (1994), make LES of an airfoil tractable. We have chosen the NACA 4412 airfoil at maximum lift as the first simulation since this flow has not been successfully simulated with the Reynolds-averaged Navier-Stokes equations.
A paradigm for parallel unstructured grid generation
Gaither, A.; Marcum, D.; Reese, D.
1996-12-31
In this paper, a sequential 2D unstructured grid generator based on iterative point insertion and local reconnection is coupled with a Delauney tessellation domain decomposition scheme to create a scalable parallel unstructured grid generator. The Message Passing Interface (MPI) is used for distributed communication in the parallel grid generator. This work attempts to provide a generic framework to enable the parallelization of fast sequential unstructured grid generators in order to compute grand-challenge scale grids for Computational Field Simulation (CFS). Motivation for moving from sequential to scalable parallel grid generation is presented. Delaunay tessellation and iterative point insertion and local reconnection (advancing front method only) unstructured grid generation techniques are discussed with emphasis on how these techniques can be utilized for parallel unstructured grid generation. Domain decomposition techniques are discussed for both Delauney and advancing front unstructured grid generation with emphasis placed on the differences needed for both grid quality and algorithmic efficiency.
Ion beamlet vectoring by grid translation
NASA Technical Reports Server (NTRS)
Homa, J. M.; Wilbur, P. J.
1982-01-01
Ion beamlet vectoring is investigated by collecting deflection and divergence angle data for two-grid systems as a function of the relative displacement of these grids. Results show that at large displacements, accelerator grid impingement becomes a limiting factor and this determines the useful range of beamlet deflection. Beamlet deflection was shown to vary linearly with grid offset angle over this range. Values of deflection-to-offset angle ratio and useful range of deflection are presented as functions of grid-hole geometries, perveance levels, and accelerating voltages. It is found that the divergence of the beamlets is unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished-grid ion thruster are examined to determine where over the grid surface the grid offsets exceed the useful range, which indicates the regions on the surface where high accelerator grid impingment is probably occurring.
Striped ratio grids for scatter estimation
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Wang, Adam S.; Star-Lack, Josh
2016-03-01
Striped ratio grids are a new concept for scatter management in cone-beam CT. These grids are a modification of conventional anti-scatter grids and consist of stripes which alternate between high grid ratio and low grid ratio. Such a grid is related to existing hardware concepts for scatter estimation such as blocker-based methods or primary modulation, but rather than modulating the primary, the striped ratio grid modulates the scatter. The transitions between adjacent stripes can be used to estimate and subtract the remaining scatter. However, these transitions could be contaminated by variation in the primary radiation. We describe a simple nonlinear image processing algorithm to estimate scatter, and proceed to validate the striped ratio grid on experimental data of a pelvic phantom. The striped ratio grid is emulated by combining data from two scans with different grids. Preliminary results are encouraging and show a significant reduction of scatter artifact.
NASA Astrophysics Data System (ADS)
Delli Paoli, F.
2006-11-01
The improvements of the peak instantaneous luminosity of the Tevatron Collider require large increases in computing requirements for the CDF experiment which has to be able to increase proportionally the amount of Monte Carlo data it produces and to satisfy the computing needs for future data analysis. This is, in turn, forcing the CDF Collaboration to move beyond the used dedicated resources and start exploiting Grid resources. CDF has been running a set of CDF Analysis Farm (CAFs), which are submission portals to dedicated pools. In this paper will be presented the CDF strategy to access Grid resources. GlideCAF, a new CAF implementation based on Condor Glide-in technology, has been developed to access resources in specific Grid Sites and is currently in production status at CNAF Tier-1 in Italy. Recently have been configured GlideCAFs also in San Diego (US), Fermilab and Lyon Tier-1 Center (France). GlideCAF model has been used also to implement OsgCAF, which is a Fermilab project to exploit OSG resources in US. LcgCAF is basically a reimplementation of the CAF model in order to access Grid resources by using the LCG/EGEE Middleware components in a total standard Grid way. LcgCAF is constituted by a set of services each of them responsible for accepting, submitting and monitoring CDF user jobs during theirs lifetimes in the Grid environment. An overview of the Grid Environment and of the specific Middleware services used will be presented; GlideCAF and LcgCAF implementations will be discussed in detail. Some details on OsgCAF project will be also given.
Photovoltaic spectral responsivity measurements
Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.
1998-09-01
This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.
Parametric Explosion Spectral Model
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Joo, Han Gyu; Jeong, Jae-Jun; Cho, Byung-Oh; Lee, Won Jae; Zee, Sung Quun
2003-05-15
The refined core thermal-hydraulics (T-H) nodalization feature of the MARS/MASTER code is used to generate a high-fidelity solution to the OECD main steam line break benchmark problem and to investigate the effects of core T-H nodalization. The MARS/MASTER coupling scheme is introduced first that enables efficient refined node core T-H calculations via the COBRA-III module. The base solution is generated using a fine T-H nodalization consisting of fuel assembly-sized radial nodes. Sensitivity studies are performed on core T-H nodalization to examine the impacts on core reactivity, power distribution, and transient behavior. The results indicate that the error in the peak local power can be very large (up to 25%) with a coarse T-H nodalization because of the inability to incorporate detailed thermal feedback. A demonstrative departure from nucleate boiling (DNB) calculation shows no occurrence of DNB in this problem.
Chapman-Fredricks, Jennifer; Sandoval-Sus, Jose; Vega, Francisco; Lossos, Izidore S
2014-08-01
Leukemic, non-nodal mantle cell lymphoma (MCL) is a relatively indolent disease characterized by asymptomatic leukemic presentation, non-nodal disease distribution, and slow disease progression, particularly in comparison to that of classic nodal MCL. We studied 3 cases of leukemic, non-nodal MCL in which TP53, ATM, and/or 13q14 deletions were identified. All three patients had disease progression leading to treatment requirements in two of the patients at 5 and 18 months after initial diagnosis. The third patient also clinically progressed 25 months after initial diagnosis but was lost to follow up despite recommendation for initiation of therapy. We present these cases as potential evidence that while leukemic non-nodal MCL is typically an indolent disease compared to classically defined mantle cell lymphoma, cytogenetic heterogeneity exists and cases with TP53, ATM, and/or 13q14 deletions may have a relatively aggressive clinical course. PMID:24852242
Katz, Jessica; Cochran, Jaquelin
2015-05-27
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.
Multiblock grid generation for jet engine configurations
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1992-01-01
The goal was to create methods for generating grids with minimal human intervention that are applicable to a wide range of problems and compatible with existing numerical methods and with existing and proposed computers. The following topics that are related to multiblock grid generation are briefly covered in viewgraph form: finding a domain decomposition, dimensioning grids, grid smoothing, manipulating grids and decompositions, and some specializations for jet engine configurations.
Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.
Smart Grid Information Clearinghouse (SGIC)
Rahman, Saifur
2014-08-31
Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects
Tian, Ru-Hui; Yang, Shi; Zhu, Zi-Jue; Wang, Jun-Long; Liu, Yun; Yao, Chencheng; Ma, Meng; Guo, Ying; Yuan, Qingqing; Hai, Yanan; Huang, Yi-Ran; He, Zuping; Li, Zheng
2015-01-01
This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells. PMID:26289399