Science.gov

Sample records for grid spectral nodal

  1. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  2. Numerical aspects of spectral segmentation on polygonal grids

    SciTech Connect

    Matsekh, Anna; Skurikhin, Alexei; Prasad, Lakshman; Rosten, Edward

    2010-01-01

    The authors analyze numerical behavior of the spectral graph partitioning problem arising in the Normalized Cuts formulation of the image segmentation problem on polygonal grids. They make an observation that in the presence of rounding errors the eigenvector corresponding to the k-th smallest eigenvalue of the generalized graph Laplacian should contain more than k nodal domains that represent coherent segments in the image. As the result, the eigenvector corresponding to the trivial solution carries a wealth of information about the nodal domains in the image and can be used as an initial guess for the Krylov subspace eigensolver, while the computed eigenvector subspace, corresponding to just a few of the lowest eigenvalues of the graph Laplacian, will contain sufficient information for obtaining meaningful segmentation.

  3. A nodal spectral stiffness matrix for the finite-element method

    NASA Astrophysics Data System (ADS)

    Bittencourt, Marco L.; Vazquez, Thais G.

    2008-12-01

    In this paper, shape functions are proposed for the spectral finite-element method aiming to finding a nodal spectral stiffness matrix. The proposed shape functions obtain a nearly diagonal 1D stiffness matrix with better conditioning than using the Lagrange and Jacobi bases.

  4. Spectral Topography Generation for Arbitrary Grids

    NASA Astrophysics Data System (ADS)

    Oh, T. J.

    2015-12-01

    A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).

  5. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cutttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell, C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cutting of potato (Solanum tuberosum) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamp (LPS/CWF). Results suggested that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  6. Normal State Spectral Lineshapes of Nodal Quasiparticles in Single Layer Bi2201 Superconductor

    SciTech Connect

    Lanzara, A.

    2010-04-30

    A detailed study of the normal state photoemission lineshapes and quasiparticle dispersion for the single layer Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}(Bi2201) superconductor is presented. We report the first experimental evidence of a double peak structure and a dip of spectral intensity in the energy distribution curves (EDCs) along the nodal direction. The double peak structure is well identified in the normal state, up to ten times the critical temperature. As a result of the same self-energy effect, a strong mass renormalization of the quasiparticle dispersion, i.e. kink, and an increase of the quasiparticle lifetime in the normal state are also observed. Our results provide unambiguous evidence on the existence of bosonic excitation in the normal state, and support a picture where nodal quasiparticles are strongly coupled to the lattice.

  7. Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    2004-01-01

    A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of

  8. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cuttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  9. A stabilised nodal spectral element method for fully nonlinear water waves

    NASA Astrophysics Data System (ADS)

    Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.

    2016-08-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.

  10. Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.

    2004-01-01

    A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. A discussion on the Discontinuous Spectral Difference (SD) Method, locations of the unknowns and flux points and numerical results are also presented.

  11. Multi-Dimensional Spectral Difference Method for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    2005-01-01

    A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. It combines the best features of structured and unstructured grid methods to attain computational efficiency and geometric flexibility; it utilizes the concept of discontinuous and high-order local representations to achieve conservation and high accuracy; and it is based on the finite-difference formulation for simplicity. Universal reconstructions are obtained by distributing unknowns in a geometrically similar manner for all unstructured cells. Placements of the unknown and flux points with various order of accuracy are given for the line, triangular and tetrahedral elements. The data structure of the new method permits an optimum use of cache memory, resulting in further computational efficiency on modern computers. A new pointer system is developed that reduces memory requirements and simplifies programming for any order of accuracy. Numerical solutions are presented and compared with the exact solutions for wave propagation problems in both two and three dimensions to demonstrate the capability of the method. Excellent agreement has been found. The method is simpler and more efficient than previous discontinuous Galerkin and spectral volume methods for unstructured grids.

  12. A spectral element shallow water model on spherical geodesic grids

    NASA Astrophysics Data System (ADS)

    Giraldo, Francis X.

    2001-04-01

    The spectral element method for the two-dimensional shallow water equations on the sphere is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements obtained from the generalized icosahedral grid introduced previously (Giraldo FX. Lagrange-Galerkin methods on spherical geodesic grids: the shallow water equations. Journal of Computational Physics 2000; 160: 336-368). The equations are written in Cartesian co-ordinates that introduce an additional momentum equation, but the pole singularities disappear. This paper represents a departure from previously published work on solving the shallow water equations on the sphere in that the equations are all written, discretized, and solved in three-dimensional Cartesian space. Because the equations are written in a three-dimensional Cartesian co-ordinate system, the algorithm simplifies into the integration of surface elements on the sphere from the fully three-dimensional equations. A mapping (Song Ch, Wolf JP. The scaled boundary finite element method - alias consistent infinitesimal finite element cell method - for diffusion. International Journal for Numerical Methods in Engineering 1999; 45: 1403-1431) which simplifies these computations is described and is shown to contain the Eulerian version of the method introduced previously by Giraldo (Journal of Computational Physics 2000; 160: 336-368) for the special case of triangular elements. The significance of this mapping is that although the equations are written in Cartesian co-ordinates, the mapping takes into account the curvature of the high-order spectral elements, thereby allowing the elements to lie entirely on the surface of the sphere. In addition, using this mapping simplifies all of the three-dimensional spectral-type finite element surface integrals because any of the typical two-dimensional planar finite element or spectral element basis functions found in any textbook (for example, Huebner et al

  13. The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE PAGES

    Guba, O.; Taylor, M. A.; Ullrich, P. A.; Overfelt, J. R.; Levy, M. N.

    2014-06-25

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity ismore » constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  14. The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE PAGES

    Guba, O.; Taylor, M. A.; Ullrich, P. A.; Overfelt, J. R.; Levy, M. N.

    2014-11-27

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  15. Time-Spectral Rotorcraft Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.

    2014-01-01

    The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.

  16. Reprint of: A conservative multi-tracer transport scheme for spectral-element spherical grids

    NASA Astrophysics Data System (ADS)

    Erath, Christoph; Nair, Ramachandran D.

    2014-08-01

    Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.

  17. A conservative multi-tracer transport scheme for spectral-element spherical grids

    NASA Astrophysics Data System (ADS)

    Erath, Christoph; Nair, Ramachandran D.

    2014-01-01

    Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.

  18. Pseudo spectral Chebyshev representation of few-group cross sections on sparse grids

    SciTech Connect

    Bokov, P. M.; Botes, D.; Zimin, V. G.

    2012-07-01

    This paper presents a pseudo spectral method for representing few-group homogenised cross sections, based on hierarchical polynomial interpolation. The interpolation is performed on a multi-dimensional sparse grid built from Chebyshev nodes. The representation is assembled directly from the samples using basis functions that are constructed as tensor products of the classical one-dimensional Lagrangian interpolation functions. The advantage of this representation is that it combines the accuracy of Chebyshev interpolation with the efficiency of sparse grid methods. As an initial test, this interpolation method was used to construct a representation for the two-group macroscopic cross sections of a VVER pin cell. (authors)

  19. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. It is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical system due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.

  20. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES

    Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.

    2016-06-07

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  1. Single-grid spectral collocation for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bernardi, Christine; Canuto, Claudio; Maday, Yvon; Metivet, Brigitte

    1988-01-01

    The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.

  2. A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.

  3. The use of the spectral method within the fast adaptive composite grid method

    SciTech Connect

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  4. Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve

  5. Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2015-01-01

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  6. KEK NODAL system

    SciTech Connect

    Kurokawa, S.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Koiso, H.; Kurihara, N.; Oide, K.; Shinomoto, M.

    1985-10-01

    The KEK NODAL system, which is based on the NODAL devised at the CERN SPS, works on an optical-fiber token ring network of twenty-four minicomputers (Hitachi HIDIC 80's) to control the TRISTAN accelerator complex, now being constructed at KEK. KEK NODAL retains main features of the original NODAL: the interpreting scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following characteristics: fast execution due to the compiler-interpreter method, a multicomputer file system, a full-screen editing facility, and a dynamic linkage scheme of data modules and NODAL functions. The structure of the KEK NODAL system under PMS, a real-time multitasking operating system of HIDIC 80, is described; the NODAL file system is also explained.

  7. Three-Dimensional High-Order Spectral Volume Method for Solving Maxwell's Equations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.

    2004-01-01

    A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of

  8. Human Cerberus Prevents Nodal-Receptor Binding, Inhibits Nodal Signaling, and Suppresses Nodal-Mediated Phenotypes

    PubMed Central

    Aykul, Senem; Ni, Wendi; Mutatu, Washington; Martinez-Hackert, Erik

    2015-01-01

    The Transforming Growth Factor-ß (TGFß) family ligand Nodal is an essential embryonic morphogen that is associated with progression of breast and other cancers. It has therefore been suggested that Nodal inhibitors could be used to treat breast cancers where Nodal plays a defined role. As secreted antagonists, such as Cerberus, tightly regulate Nodal signaling during embryonic development, we undertook to produce human Cerberus, characterize its biochemical activities, and determine its effect on human breast cancer cells. Using quantitative methods, we investigated the mechanism of Nodal signaling, we evaluated binding of human Cerberus to Nodal and other TGFß family ligands, and we characterized the mechanism of Nodal inhibition by Cerberus. Using cancer cell assays, we examined the ability of Cerberus to suppress aggressive breast cancer cell phenotypes. We found that human Cerberus binds Nodal with high affinity and specificity, blocks binding of Nodal to its signaling partners, and inhibits Nodal signaling. Moreover, we showed that Cerberus profoundly suppresses migration, invasion, and colony forming ability of Nodal expressing and Nodal supplemented breast cancer cells. Taken together, our studies provide mechanistic insights into Nodal signaling and Nodal inhibition with Cerberus and highlight the potential value of Cerberus as anti-Nodal therapeutic. PMID:25603319

  9. Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids II: Extension to Two Dimensional Scalar Equation

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.

  10. Nodal-chain metals

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.

    2016-10-01

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  11. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites

    NASA Astrophysics Data System (ADS)

    Mannella, N.; Yang, W. L.; Zhou, X. J.; Tanaka, K.; Zheng, H.; Mitchell, J. F.; Zaanen, J.; Devereaux, T. P.; Nagaosa, N.; Hussain, Z.; Shen, Z. X.

    2006-03-01

    In this talk, the result of a recent angle-resolved photoemission spectroscopy (ARPES) investigation which allowed elucidating the controversial nature of the ferromagnetic metallic groundstate in the prototypical colossal magnetoresistive manganite bilayer compound La1.2Sr1.8Mn2O7 will be discussed [1]. The distribution of spectral weight in momentum space exhibits a nodal--antinodal dichotomous character. Quasiparticle excitations have been detected for the first time along the nodal direction (i.e. diagonal), and they are found to determine the metallic transport properties of this compound. The weight of the quasiparticle peak diminishes rapidly while crossing over to the antinodal (i.e. parallel to the Mn--O bonds) parallel sections of the Fermi surface, with the spectra strongly resembling those found in heavily underdoped cuprates high temperature superconductors (HTSC) such as Ca2-xNaxCuO2Cl2 [2]. This dichotomy between the electronic excitations along the nodal and antinodal directions in momentum space was so far considered a characteristic unique feature of the copper oxide HTSC. These findings therefore cast doubt on the assumption that the pseudogap state in the cuprate HTSC and the nodal-antinodal dichotomy are hallmarks of the superconductivity state. [1] N. Mannella et al., Nature 438, 474 (2005) [2] K. M Shen et al., Science 307, 901 (2005).

  12. An evaluation of sea level cyclone forecasts produced by NMC's Nested-Grid Model and Global Spectral Model

    SciTech Connect

    Smith, B.B.; Mullen, S.L. Arizona Univ., Tucson )

    1993-03-01

    An analysis of the 24- and 48-h sea level cyclone errors occurring in the NMC's Nested-Grid Model (NGM) and the Aviation Run of the Global Spectral Model (AVN) during the 1987/1988 and 1989/1990 winter seasons is presented. Central pressure, 1000-500-mb thickness, and displacement errors for cyclone center are compared, and the circumstances under which one model performs better than the other are documented. Overall, the NGM slightly overdeepens cyclones and the T80 AVN underdeepens cyclones when both models are verified against the NGM initial panel. Both models underdevelop oceanic and deep cyclones. The pressure error variance tends to be smaller for the AVN, particularly at 48 h. It is inferred that the variability of individual central pressure forecasts is smaller for the AVN. Mean absolute displacement errors are smaller for the T80 AVN than the NGM. 35 refs.

  13. A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Jin; Hong, Song-You

    2016-06-01

    A new global model with a non-hydrostatic (NH) dynamical core is developed. It employs the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization. The solver includes a time-split third-order Runge-Kutta (RK3) time-integration technique. Pursuing the quasi-uniform and pole singularity-free spherical geometry, a cubed-sphere grid is employed. To assess the performance of the developed dynamical solver, the results from a number of idealized benchmark tests for hydrostatic and non-hydrostatic flows are presented and compared. The results indicate that the non-hydrostatic dynamical solver is able to produce solutions with good accuracy and consistency comparable to reference solutions. Further evaluation of the model with a full-physics package demonstrates its capability in reproducing heavy rainfall over the Korean Peninsula, which confirms that coupling of the dynamical solver and full-physics package is robust.

  14. High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.

    A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies

  15. The Stagger-grid: A grid of 3D stellar atmosphere models. II. Horizontal and temporal averaging and spectral line formation

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.

    2013-12-01

    Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are

  16. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    NASA Astrophysics Data System (ADS)

    Jakobson, Dmitry; Naud, Frédéric

    2016-09-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2} , we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)} , where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2} ) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ} . As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ} , the number of intersections of nodal lines with any compact segment of geodesic grows like {λ} , up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  17. Variational multiscale turbulence modelling in a high order spectral element method

    SciTech Connect

    Wasberg, Carl Erik Gjesdal, Thor Reif, Bjorn Anders Pettersson Andreassen, Oyvind

    2009-10-20

    In the variational multiscale (VMS) approach to large eddy simulation (LES), the governing equations are projected onto an a priori scale partitioning of the solution space. This gives an alternative framework for designing and analyzing turbulence models. We describe the implementation of the VMS LES methodology in a high order spectral element method with a nodal basis, and discuss the properties of the proposed scale partitioning. The spectral element code is first validated by doing a direct numerical simulation of fully developed plane channel flow. The performance of the turbulence model is then assessed by several coarse grid simulations of channel flow at different Reynolds numbers.

  18. Final Report - High-Order Spectral Volume Method for the Navier-Stokes Equations On Unstructured Tetrahedral Grids

    SciTech Connect

    Wang, Z J

    2012-12-06

    The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equations for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives.

  19. Occult nodal metastasis in solid carcinomata

    SciTech Connect

    Moloy, P.J.; Nicolson, G.L.

    1987-01-01

    This book contains 23 selections. Some of the titles are: Rationale for radiotherapy in subclinical nodal disease; rationale of chemotherapy for nodal disease: The stabilization of topoisomerase II-DNA complexes as a mechanism of antineoplastic drug action; magnetic resonance imaging of malignant cervical adenopathy; and local and regional immune function in cancer patients.

  20. Heterogeneous treatment in the variational nodal method

    SciTech Connect

    Fanning, T.H.; Palmiotti, G.

    1995-06-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations.

  1. Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model''

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  2. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    SciTech Connect

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-07-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S{sub N} equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS{sub N} method, which consists in the application of the Laplace transform to the set of nodal S{sub N} equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S{sub N} up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S{sub N} equations for N up to 16 and we begin the convergence of the S{sub N} nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  3. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling

    PubMed Central

    Robertson, Elizabeth J.

    2016-01-01

    Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development. PMID:26791244

  4. Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

    SciTech Connect

    Mannella, N.

    2010-06-02

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

  5. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  6. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    SciTech Connect

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  7. Nodal domains in open microwave systems.

    PubMed

    Kuhl, U; Höhmann, R; Stöckmann, H-J; Gnutzmann, S

    2007-03-01

    Nodal domains are studied both for real psiR and imaginary part psiI of the wave functions of an open microwave cavity and found to show the same behavior as wave functions in closed billiards. In addition we investigate the variation of the number of nodal domains and the signed area correlation by changing the global phase phig according to psiR+ipsiI=eiphig(psiR'+ipsiI'). This variation can be qualitatively, and the correlation quantitatively explained in terms of the phase rigidity characterizing the openness of the billiard.

  8. Nodal domains in open microwave systems

    NASA Astrophysics Data System (ADS)

    Kuhl, U.; Höhmann, R.; Stöckmann, H.-J.; Gnutzmann, S.

    2007-03-01

    Nodal domains are studied both for real ψR and imaginary part ψI of the wave functions of an open microwave cavity and found to show the same behavior as wave functions in closed billiards. In addition we investigate the variation of the number of nodal domains and the signed area correlation by changing the global phase φg according to ψR+iψI=eiφg(ψR'+iψI') . This variation can be qualitatively, and the correlation quantitatively explained in terms of the phase rigidity characterizing the openness of the billiard.

  9. Nodal quasiparticle in pseudogapped colossal magnetoresistivemanganites

    SciTech Connect

    Mannella, Norman; Yang, Wanli L.; Zhou, Xing Jiang; Zheng, Hong; Mitchell, John F.; Zaanen, Jan; Devereaux, Thomas P.; Nagaosa, Naoto; Hussain, Zahid; Shen, Zhi-Xun

    2008-01-17

    A characteristic feature of the copper oxidehigh-temperaturesuperconductors is the dichotomy between the electronicexcitations along the nodal (diagonal) and antinodal (parallel to the CuO bonds) directions in momentum space, generally assumed to be linked tothe 'd-wave' symmetry of the superconducting state. Angle-resolvedphotoemission measurements in the superconducting state have revealed aquasiparticle spectrum with a d-wave gap structure that exhibits amaximum along the antinodal direction and vanishes along the nodaldirection1. Subsequent measurements have shown that, at low dopinglevels, this gap structure persists even in the high-temperature metallicstate, although the nodal points of the superconducting state spread outin finite 'Fermi arcs'2. This is the so-called pseudogap phase, and ithas been assumed that it is closely linked to the superconducting state,either by assigning it to fluctuating superconductivity3 or by invokingorders which are natural competitors of d-wave superconductors4, 5. Herewe report experimental evidence that a very similar pseudogap state witha nodal-antinodal dichotomous character exists in a system that ismarkedly different from a superconductor: the ferromagnetic metallicgroundstate of the colossal magnetoresistive bilayer manganiteLa1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption thatthe pseudogap state in the copper oxides and the nodal-antinodaldichotomy are hallmarks of the superconductivity state.

  10. Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.

    PubMed

    Sako, Keisuke; Pradhan, Saurabh J; Barone, Vanessa; Inglés-Prieto, Álvaro; Müller, Patrick; Ruprecht, Verena; Čapek, Daniel; Galande, Sanjeev; Janovjak, Harald; Heisenberg, Carl-Philipp

    2016-07-19

    During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation. PMID:27396324

  11. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  12. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  13. Self-energy of a nodal fermion in a d -wave superconductor

    NASA Astrophysics Data System (ADS)

    Chubukov, A. V.; Tsvelik, A. M.

    2006-06-01

    We reconsider the self-energy of a nodal (Dirac) fermion in a two-dimensional d -wave superconductor. A conventional belief is that ImΣ(ω,T)˜max(ω3,T3) . We show that Σ(ω,k,T) for k along the nodal direction is actually a complex function of ω,T , and the deviation from the mass shell. In particular, the second-order self-energy diverges at a finite T when either ω or k-kF vanish. We show that the full summation of infinite diagrammatic series recovers a finite result for Σ , but the full angle-resolved photoemission spectroscopy spectral function is nonmonotonic and has a kink whose location compared to the mass shell differs qualitatively for spin-and charge-mediated interactions.

  14. Small renal tumor with lymph nodal enlargement: A histopathological surprise

    PubMed Central

    Thottathil, Mujeeburahiman; Verma, Ashish; D’souza, Nischith; Khan, Altaf

    2016-01-01

    Renal cancer with lymph nodal mass on the investigation is clinically suggestive of an advanced tumor. Small renal cancers are not commonly associated with lymph nodal metastasis. Association of renal cell carcinoma with renal tuberculosis (TB) in the same kidney is also rare. We report here a case of small renal cancer with multiple hilar and paraaortic lymph nodes who underwent radical nephrectomy, and histopathology report showed renal and lymph nodal TB too. PMID:27453671

  15. Nodal integral method for transient heat conduction in a cylinder

    SciTech Connect

    Esser, P.D. )

    1993-01-01

    The accuracy and efficiency of nodal solution methods are well established for neutron diffusion in a variety of geometries, as well as for heat transfer and fluid flow in rectangular coordinates. This paper describes the development of a nodal integral method to solve the transient heat conduction equation in cylindrical geometry. Results for a test problem with an analytical solution indicate that the nodal solution provides higher accuracy than a conventional implicit finite difference scheme, while maintaining similar stability characteristics.

  16. A Computational Model of Dynein Activation Patterns that Can Explain Nodal Cilia Rotation

    PubMed Central

    Chen, Duanduan; Zhong, Yi

    2015-01-01

    Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity. PMID:26153700

  17. A computational model of dynein activation patterns that can explain nodal cilia rotation.

    PubMed

    Chen, Duanduan; Zhong, Yi

    2015-07-01

    Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity.

  18. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  19. The AN neutron transport by nodal diffusion

    SciTech Connect

    Barbarino, A.; Tomatis, D.

    2013-07-01

    The two group diffusion model combined to a nodal approach in space is the preferred scheme for the industrial simulation of nuclear water reactors. The main selling point is the speed of computation, allowing a large number of parametric studies. Anyway, the drawbacks of the underlying diffusion equation may arise with highly heterogeneous interfaces, often encountered in modern UO{sub 2} and MO{sub x} fuel loading patterns, and boron less controlled systems. This paper aims at showing how the simplified AN transport model, equivalent to the well known SPN, can be implemented in standard diffusion codes with minor modifications. Some numerical results are illustrated. (authors)

  20. An essential role for maternal control of Nodal signaling

    PubMed Central

    Kumari, Pooja; Gilligan, Patrick C; Lim, Shimin; Tran, Long Duc; Winkler, Sylke; Philp, Robin; Sampath, Karuna

    2013-01-01

    Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to be conserved. DOI: http://dx.doi.org/10.7554/eLife.00683.001 PMID:24040511

  1. Wire-grid polarizer using galvanic growth technology: demonstration of a wide spectral and angular bandwidth component with high extinction ratio

    NASA Astrophysics Data System (ADS)

    Verrier, Isabelle; Kämpfe, Thomas; Celle, Frederic; Cazier, Anthony; Guttmann, Markus; Matthis, Barbara; Laukkanen, Janne; Lacour, Frédéric; Veillas, Colette; Reynaud, Stéphanie; Parriaux, Olivier; Jourlin, Yves

    2015-04-01

    Functional demonstration of a wide band, wide angular width wire-grid polarizer has been made in the framework of a user project of the European project ACTMOST (Access To Micro-Optics Expertise, Services and Technologies). The polarization function relies on linear polarizers using the wire-grid polarizer principle by means of a metal grating of unusually large period, exhibiting a large extinction of the transmission of the TE polarization in the 850-nm wavelength range. This grating achieves a broadband and especially high angular aperture reflection with low loss and permits resorting to very low cost incoherent light sources for the transmitted TM polarization. This paper will describe the design, the modeling and optimization, as well as the complete technological process chain, that has been used, starting with the photoresist grating printing using phase-mask UV-based lithography to the uniform galvanic growth of a very shallow gold grating on transparent conductive layer deposited on a glass substrate. Transmission curves for both polarizations performed on the first demonstrators will be presented.

  2. Anomalous thermodynamic power laws in nodal superconductors

    NASA Astrophysics Data System (ADS)

    Quintanilla, Jorge; Mazidian, Bayan; Annett, James F.; Hillier, Adrian D.

    2013-03-01

    Unconventional superconductors are frequently identified by the observation of power law behaviour on low temperature thermodynamic properties such as specific heat. These power laws generally derive from the linear spectrum near points or lines of zeros, or nodes, in the superconducting energy gap on the Fermi surface. Here we show that, in addition to the usual point and line nodes, a much wider class of different nodal types can occur. Some of these new types of nodes typically occur when there are transitions between different types of gap node topology, for example when point or line nodes first appear as a function of some physical parameter. We derive anomalous, non-integer thermodynamic power laws associated with these new nodal types and predict their occurrence in iron pnictide superconductors and in the noncentrosymmetric system Li2Pd3-xPtxB. This works was supported by EPSRC and STFC (U.K.) J.Q. gratefully acknowledges funding from HEFCE and STFC through the South-East Physics network (SEPnet).

  3. A Parallel 3D Spectral Difference Method for Solutions of Compressible Navier Stokes Equations on Deforming Grids and Simulations of Vortex Induced Vibration

    NASA Astrophysics Data System (ADS)

    DeJong, Andrew

    Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.

  4. IUE data reduction - The parameterization of the motion of the IUE reseau grids and spectral formats as a function of time and temperature

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.; Turnrose, B. E.; Bohlin, R. C.

    1982-01-01

    Improvements are made on IUE data reduction using corrected reseau positions and dispersion constants for temperature variations and secular effects. Models describing the motion of the high dispersion spectral format as a function of THDA alone reduce the scatter in the predicted position of a given wavelength, and scatter is further reduced when a linear dependence on time is also allowed. A correction technique is presented for early data which reduces errors in wavelength assignments from over 30 km/s to less than 3 km/s in high dispersion. The reseau temperature correction helps locate the minimum background signal, centered between the echelle orders. The residual uncertainty of 2 km/s for SWP and 2.7 km/s for LWR makes the wavelength accuracy of time and temperature corrected IUE spectra comparable to that of temperature corrected data from the Copernicus satellite.

  5. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. PMID:26000466

  6. Experience with advanced nodal codes at YAEC

    SciTech Connect

    Cacciapouti, R.J.

    1990-01-01

    Yankee Atomic Electric Company (YAEC) has been performing reload licensing analysis since 1969. The basic pressurized water reactor (PWR) methodology involves the use of LEOPARD for cross-section generation, PDQ for radial power distributions and integral control rod worth, and SIMULATE for axial power distributions and differential control rod worth. In 1980, YAEC began performing reload licensing analysis for the Vermont Yankee boiling water reactor (BWR). The basic BWR methodology involves the use of CASMO for cross-section generation and SIMULATE for three-dimensional power distributions. In 1986, YAEC began investigating the use of CASMO-3 for cross-section generation and the advanced nodal code SIMULATE-3 for power distribution analysis. Based on the evaluation, the CASMO-3/SIMULATE-3 methodology satisfied all requirements. After careful consideration, the cost of implementing the new methodology is expected to be offset by reduced computing costs, improved engineering productivity, and fuel-cycle performance gains.

  7. Radar response from vegetation with nodal structure

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Oneill, P. E.

    1984-01-01

    Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties.

  8. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  9. The near-equivalence of five species of spectrally-accurate radial basis functions (RBFs): Asymptotic approximations to the RBF cardinal functions on a uniform, unbounded grid

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2011-02-01

    Radial basis function (RBF) interpolants have become popular in computer graphics, neural networks and for solving partial differential equations in many fields of science and engineering. In this article, we compare five different species of RBFs: Gaussians, hyperbolic secant (sech's), inverse quadratics, multiquadrics and inverse multiquadrics. We show that the corresponding cardinal functions for a uniform, unbounded grid are all approximated by the same function: C(X) ∼ (1/(ρ)) sin (πX)/sinh (πX/ρ) for some constant ρ(α) which depends on the inverse width parameter (“shape parameter”) α of the RBF and also on the RBF species. The error in this approximation is exponentially small in 1/α for sech's and inverse quadratics and exponentially small in 1/α2 for Gaussians; the error is proportional to α4 for multiquadrics and inverse multiquadrics. The error in all cases is small even for α ∼ O(1). These results generalize to higher dimensions. The Gaussian RBF cardinal functions in any number of dimensions d are, without approximation, the tensor product of one dimensional Gaussian cardinal functions: Cd(x1,x2…,xd)=∏j=1dC(xj). For other RBF species, we show that the two-dimensional cardinal functions are well approximated by the products of one-dimensional cardinal functions; again the error goes to zero as α → 0. The near-identity of the cardinal functions implies that all five species of RBF interpolants are (almost) the same, despite the great differences in the RBF ϕ's themselves.

  10. Tunable Weyl Points in Periodically Driven Nodal Line Semimetals.

    PubMed

    Yan, Zhongbo; Wang, Zhong

    2016-08-19

    Weyl semimetals and nodal line semimetals are characterized by linear band touching at zero-dimensional points and one-dimensional lines, respectively. We predict that a circularly polarized light drives nodal line semimetals into Weyl semimetals. The Floquet Weyl points thus obtained are tunable by the incident light, which enables investigations of them in a highly controllable manner. The transition from nodal line semimetals to Weyl semimetals is accompanied by the emergence of a large and tunable anomalous Hall conductivity. Our predictions are experimentally testable by transport measurement in film samples or by pump-probe angle-resolved photoemission spectroscopy. PMID:27588882

  11. NODAL — The second life of the accelerator control language

    NASA Astrophysics Data System (ADS)

    Cuisinier, G.; Perriollat, F.; Ribeiro, P.; Kagarmanov, A.; Kovaltsov, V.

    1994-12-01

    NODAL has been a popular interpreter language for accelerator controls since the beginning of the 1970s. NODAL has been rewritten in the C language to be easily portable to the different computer platforms which are in use in accelerator controls. The paper describes the major features of this new version of NODAL, the major software packages which are available through this implementation, the platforms on which it is currently running, and some relevant performances. The experience gained during the rejuvenation project of the CERN accelerator control systems is presented. The benefit of this is discussed, in particular in a view of the prevailing strong constraints in personnel and money resources.

  12. Tunable Weyl Points in Periodically Driven Nodal Line Semimetals

    NASA Astrophysics Data System (ADS)

    Yan, Zhongbo; Wang, Zhong

    2016-08-01

    Weyl semimetals and nodal line semimetals are characterized by linear band touching at zero-dimensional points and one-dimensional lines, respectively. We predict that a circularly polarized light drives nodal line semimetals into Weyl semimetals. The Floquet Weyl points thus obtained are tunable by the incident light, which enables investigations of them in a highly controllable manner. The transition from nodal line semimetals to Weyl semimetals is accompanied by the emergence of a large and tunable anomalous Hall conductivity. Our predictions are experimentally testable by transport measurement in film samples or by pump-probe angle-resolved photoemission spectroscopy.

  13. A semianalytic two-group nodal model for SIMULATE-3

    SciTech Connect

    Esser, P.D.; Smith, K.S. )

    1993-01-01

    Light water reactor (LWR) cores containing highly enriched ([ge] 10% Pu) mixed-oxide (MOX) fuel exhibit steep thermal flux gradients near MOX-UO[sub 2] assembly interfaces. The fourth-order polynomial representation of the internodal flux used in many polynomial nodal methods (including the QPANDA nodal model in the SIMULATE-3 core analysis code) has already been verified against low-enriched MOX fuel but cannot accurately portray the severe flux variations near highly enriched MOX interfaces. This paper describes the development of an enhanced nodal model that includes transcendental components in the thermal flux profile.

  14. Designer Nodal/BMP2 Chimeras Mimic Nodal Signaling, Promote Chondrogenesis, and Reveal a BMP2-like Structure

    PubMed Central

    Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon

    2014-01-01

    Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780

  15. The genetics of nodal marginal zone lymphoma.

    PubMed

    Spina, Valeria; Khiabanian, Hossein; Messina, Monica; Monti, Sara; Cascione, Luciano; Bruscaggin, Alessio; Spaccarotella, Elisa; Holmes, Antony B; Arcaini, Luca; Lucioni, Marco; Tabbò, Fabrizio; Zairis, Sakellarios; Diop, Fary; Cerri, Michaela; Chiaretti, Sabina; Marasca, Roberto; Ponzoni, Maurilio; Deaglio, Silvia; Ramponi, Antonio; Tiacci, Enrico; Pasqualucci, Laura; Paulli, Marco; Falini, Brunangelo; Inghirami, Giorgio; Bertoni, Francesco; Foà, Robin; Rabadan, Raul; Gaidano, Gianluca; Rossi, Davide

    2016-09-01

    Nodal marginal zone lymphoma (NMZL) is a rare, indolent B-cell tumor that is distinguished from splenic marginal zone lymphoma (SMZL) by the different pattern of dissemination. NMZL still lacks distinct markers and remains orphan of specific cancer gene lesions. By combining whole-exome sequencing, targeted sequencing of tumor-related genes, whole-transcriptome sequencing, and high-resolution single nucleotide polymorphism array analysis, we aimed at disclosing the pathways that are molecularly deregulated in NMZL and we compare the molecular profile of NMZL with that of SMZL. These analyses identified a distinctive pattern of nonsilent somatic lesions in NMZL. In 35 NMZL patients, 41 genes were found recurrently affected in ≥3 (9%) cases, including highly prevalent molecular lesions of MLL2 (also known as KMT2D; 34%), PTPRD (20%), NOTCH2 (20%), and KLF2 (17%). Mutations of PTPRD, a receptor-type protein tyrosine phosphatase regulating cell growth, were enriched in NMZL across mature B-cell tumors, functionally caused the loss of the phosphatase activity of PTPRD, and were associated with cell-cycle transcriptional program deregulation and increased proliferation index in NMZL. Although NMZL shared with SMZL a common mutation profile, NMZL harbored PTPRD lesions that were otherwise absent in SMZL. Collectively, these findings provide new insights into the genetics of NMZL, identify PTPRD lesions as a novel marker for this lymphoma across mature B-cell tumors, and support the distinction of NMZL as an independent clinicopathologic entity within the current lymphoma classification.

  16. The genetics of nodal marginal zone lymphoma

    PubMed Central

    Spina, Valeria; Khiabanian, Hossein; Messina, Monica; Monti, Sara; Cascione, Luciano; Bruscaggin, Alessio; Spaccarotella, Elisa; Holmes, Antony B.; Arcaini, Luca; Lucioni, Marco; Tabbò, Fabrizio; Zairis, Sakellarios; Diop, Fary; Cerri, Michaela; Chiaretti, Sabina; Marasca, Roberto; Ponzoni, Maurilio; Deaglio, Silvia; Ramponi, Antonio; Tiacci, Enrico; Pasqualucci, Laura; Paulli, Marco; Falini, Brunangelo; Inghirami, Giorgio; Bertoni, Francesco; Foà, Robin; Rabadan, Raul; Gaidano, Gianluca

    2016-01-01

    Nodal marginal zone lymphoma (NMZL) is a rare, indolent B-cell tumor that is distinguished from splenic marginal zone lymphoma (SMZL) by the different pattern of dissemination. NMZL still lacks distinct markers and remains orphan of specific cancer gene lesions. By combining whole-exome sequencing, targeted sequencing of tumor-related genes, whole-transcriptome sequencing, and high-resolution single nucleotide polymorphism array analysis, we aimed at disclosing the pathways that are molecularly deregulated in NMZL and we compare the molecular profile of NMZL with that of SMZL. These analyses identified a distinctive pattern of nonsilent somatic lesions in NMZL. In 35 NMZL patients, 41 genes were found recurrently affected in ≥3 (9%) cases, including highly prevalent molecular lesions of MLL2 (also known as KMT2D; 34%), PTPRD (20%), NOTCH2 (20%), and KLF2 (17%). Mutations of PTPRD, a receptor-type protein tyrosine phosphatase regulating cell growth, were enriched in NMZL across mature B-cell tumors, functionally caused the loss of the phosphatase activity of PTPRD, and were associated with cell-cycle transcriptional program deregulation and increased proliferation index in NMZL. Although NMZL shared with SMZL a common mutation profile, NMZL harbored PTPRD lesions that were otherwise absent in SMZL. Collectively, these findings provide new insights into the genetics of NMZL, identify PTPRD lesions as a novel marker for this lymphoma across mature B-cell tumors, and support the distinction of NMZL as an independent clinicopathologic entity within the current lymphoma classification. PMID:27335277

  17. The genetics of nodal marginal zone lymphoma.

    PubMed

    Spina, Valeria; Khiabanian, Hossein; Messina, Monica; Monti, Sara; Cascione, Luciano; Bruscaggin, Alessio; Spaccarotella, Elisa; Holmes, Antony B; Arcaini, Luca; Lucioni, Marco; Tabbò, Fabrizio; Zairis, Sakellarios; Diop, Fary; Cerri, Michaela; Chiaretti, Sabina; Marasca, Roberto; Ponzoni, Maurilio; Deaglio, Silvia; Ramponi, Antonio; Tiacci, Enrico; Pasqualucci, Laura; Paulli, Marco; Falini, Brunangelo; Inghirami, Giorgio; Bertoni, Francesco; Foà, Robin; Rabadan, Raul; Gaidano, Gianluca; Rossi, Davide

    2016-09-01

    Nodal marginal zone lymphoma (NMZL) is a rare, indolent B-cell tumor that is distinguished from splenic marginal zone lymphoma (SMZL) by the different pattern of dissemination. NMZL still lacks distinct markers and remains orphan of specific cancer gene lesions. By combining whole-exome sequencing, targeted sequencing of tumor-related genes, whole-transcriptome sequencing, and high-resolution single nucleotide polymorphism array analysis, we aimed at disclosing the pathways that are molecularly deregulated in NMZL and we compare the molecular profile of NMZL with that of SMZL. These analyses identified a distinctive pattern of nonsilent somatic lesions in NMZL. In 35 NMZL patients, 41 genes were found recurrently affected in ≥3 (9%) cases, including highly prevalent molecular lesions of MLL2 (also known as KMT2D; 34%), PTPRD (20%), NOTCH2 (20%), and KLF2 (17%). Mutations of PTPRD, a receptor-type protein tyrosine phosphatase regulating cell growth, were enriched in NMZL across mature B-cell tumors, functionally caused the loss of the phosphatase activity of PTPRD, and were associated with cell-cycle transcriptional program deregulation and increased proliferation index in NMZL. Although NMZL shared with SMZL a common mutation profile, NMZL harbored PTPRD lesions that were otherwise absent in SMZL. Collectively, these findings provide new insights into the genetics of NMZL, identify PTPRD lesions as a novel marker for this lymphoma across mature B-cell tumors, and support the distinction of NMZL as an independent clinicopathologic entity within the current lymphoma classification. PMID:27335277

  18. Nodal Solutions for Supercritical Laplace Equations

    NASA Astrophysics Data System (ADS)

    Dalbono, Francesca; Franca, Matteo

    2016-11-01

    In this paper we study radial solutions for the following equation Δ u(x)+f (u(x), |x|) = 0, where {x in {Rn}}, n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent {2^{*} = 2n/n-2}. The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular ground states with fast decay and singular ground states with slow decay, all of them with exactly j zeroes. Our approach, based on Fowler transformation and invariant manifold theory, enables us to deal with a wide family of potentials allowing spatial inhomogeneity and a quite general dependence on u. In particular, for the Matukuma-type potential, we show a kind of structural stability.

  19. Classification, Electrophysiological Features and Therapy of Atrioventricular Nodal Reentrant Tachycardia

    PubMed Central

    Josephson, Mark E

    2016-01-01

    Atrioventricular nodal reentrant tachycardia (AVNRT) should be classified as typical or atypical. The term ‘fast-slow AVNRT’ is rather misleading. Retrograde atrial activation during tachycardia should not be relied upon as a diagnostic criterion. Both typical and atypical atrioventricular nodal reentrant tachycardia are compatible with varying retrograde atrial activation patterns. Attempts at establishing the presence of a ‘lower common pathway’ are probably of no practical significance. When the diagnosis of AVNRT is established, ablation should be only directed towards the anatomic position of the slow pathway. If right septal attempts are unsuccessful, the left septal side should be tried. Ablation targeting earliest atrial activation sites during typical atrioventricular nodal reentrant tachycardia or the fast pathway in general for any kind of typical or atypical atrioventricular nodal reentrant tachycardia, are not justified. In this review we discuss current concepts about the tachycardia circuit, electrophysiologic diagnosis, and ablation of this arrhythmia. PMID:27617092

  20. Classification, Electrophysiological Features and Therapy of Atrioventricular Nodal Reentrant Tachycardia

    PubMed Central

    Josephson, Mark E

    2016-01-01

    Atrioventricular nodal reentrant tachycardia (AVNRT) should be classified as typical or atypical. The term ‘fast-slow AVNRT’ is rather misleading. Retrograde atrial activation during tachycardia should not be relied upon as a diagnostic criterion. Both typical and atypical atrioventricular nodal reentrant tachycardia are compatible with varying retrograde atrial activation patterns. Attempts at establishing the presence of a ‘lower common pathway’ are probably of no practical significance. When the diagnosis of AVNRT is established, ablation should be only directed towards the anatomic position of the slow pathway. If right septal attempts are unsuccessful, the left septal side should be tried. Ablation targeting earliest atrial activation sites during typical atrioventricular nodal reentrant tachycardia or the fast pathway in general for any kind of typical or atypical atrioventricular nodal reentrant tachycardia, are not justified. In this review we discuss current concepts about the tachycardia circuit, electrophysiologic diagnosis, and ablation of this arrhythmia.

  1. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  2. Bilinear nodal transport method in weighted diamond difference form

    SciTech Connect

    Azmy, Y.Y.

    1987-01-01

    Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion.

  3. An upwind nodal integral method for incompressible fluid flow

    SciTech Connect

    Esser, P.D. ); Witt, R.J. )

    1993-05-01

    An upwind nodal solution method is developed for the steady, two-dimensional flow of an incompressible fluid. The formulation is based on the nodal integral method, which uses transverse integrations, analytical solutions of the one-dimensional averaged equations, and node-averaged uniqueness constraints to derive the discretized nodal equations. The derivation introduces an exponential upwind bias by retaining the streamwise convection term in the homogeneous part of the transverse-integrated convection-diffusion equation. The method is adapted to the stream function-vorticity form of the Navier-Stokes equations, which are solved over a nonstaggered nodal mesh. A special nodal scheme is used for the Poisson stream function equation to properly account for the exponentially varying vorticity source. Rigorous expressions for the velocity components and the no-slip vorticity boundary condition are derived from the stream function formulation. The method is validated with several benchmark problems. An idealized purely convective flow of a scalar step function indicates that the nodal approximation errors are primarily dispersive, not dissipative, in nature. Results for idealized and actual recirculating driven-cavity flows reveal a significant reduction in false diffusion compared with conventional finite difference techniques.

  4. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    NASA Astrophysics Data System (ADS)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  5. Advanced computational methods for nodal diffusion, Monte Carlo, and S(sub N) problems

    NASA Astrophysics Data System (ADS)

    Martin, W. R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. An alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  6. Advanced computational methods for nodal diffusion, Monte Carlo, and S[sub N] problems

    SciTech Connect

    Martin, W.R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  7. Expression of Nodal and Nodal Receptors in Prostate Stem Cells and Prostate Cancer Cells: Autocrine Effects on Cell Proliferation and Migration

    PubMed Central

    Vo, BaoHan T.; Khan, Shafiq A.

    2010-01-01

    BACKGROUND Nodal, a TGFβ like growth factor, functions as an embryonic morphogen that maintains the pluripotency of embryonic stem cells. Nodal has been implicated in cancer progression; however, there is no information on expression and functions of Nodal in prostate cancer. In this study, we have investigated the expression of Nodal, its receptors, and its effects on proliferation and migration of human prostate cells. METHODS RT-PCR, qPCR, and Western blot analyses were performed to analyze expression of Nodal and Nodal receptors and its effects on phosphorylation of Smad2/3 in prostate cells. The effects on proliferation and migration were determined by 3H-Thymidine incorporation and cell migration assays in the presence or absence of Nodal receptor inhibitor (SB431542). RESULTS Nodal was highly expressed in WPE, DU145, LNCaP, and LNCaP-C81 cells with low expression in RWPE1 and RWPE2 cells, but not in PREC, PC3 and PC3M cells. Nodal receptors are expressed at varying levels in all prostate cells. Treatment with exogenous Nodal induced phosphorylation of Smad2/3 in WPE, DU145, and PC3 cells, which was blocked by SB431542. Nodal dose-dependently inhibited proliferation of WPE, RWPE1 and DU145 cells, but not LNCaP and PC3 cells. Nodal induced cell migration in PC3 cells, which was inhibited by SB431542; Nodal had no effect on cell migration in WPE and DU145 cells. The effects of Nodal on cell proliferation and migration are mediated via ALK4 and ActRII/ActRIIB receptors and Smad 2/3 phosphorylation. CONCLUSIONS Nodal may function as an autocrine regulator of proliferation and migration of prostate cancer cells. PMID:21557273

  8. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  9. Development of depletion perturbation theory for a reactor nodal code

    SciTech Connect

    Bowman, S.M.

    1981-09-01

    A generalized depletion perturbation (DPT) theory formulation for light water reactor (LWR) depletion problems is developed and implemented into the three-dimensional LWR nodal code SIMULATE. This development applies the principles of the original derivation by M.L. Williams to the nodal equations solved by SIMULATE. The present formulation is first described in detail, and the nodal coupling methodology in SIMULATE is used to determine partial derivatives of the coupling coefficients. The modifications to the original code and the new DPT options available to the user are discussed. Finally, the accuracy and the applicability of the new DPT capability to LWR design analysis are examined for several LWR depletion test cases. The cases range from simple static cases to a realistic PWR model for an entire fuel cycle. Responses of interest included K/sub eff/, nodal peaking, and peak nodal exposure. The nonlinear behavior of responses with respect to perturbations of the various types of cross sections was also investigated. The time-dependence of the sensitivity coefficients for different responses was examined and compared. Comparison of DPT results for these examples to direct calculations reveals the limited applicability of depletion perturbation theory to LWR design calculations at the present. The reasons for these restrictions are discussed, and several methods which might improve the computational accuracy of DPT are proposed for future research.

  10. Simulating Weyl points and nodal loops in an optical superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei

    2016-08-01

    We propose a scheme to simulate Weyl points and nodal loops with ultracold atoms in an optical lattice that is subjected to realizable synthetic magnetic field and synthetic dimension. We show that a Hofstadter-like Hamiltonian with a cyclically parameterized on-site energy term can be realized in a tunable two-dimensional optical superlattice, based on the laser-assisted atomic tunneling method. This model effectively describes a three-dimensional periodic lattice system under magnetic fluxes, where a synthetic dimension is encoded by a cyclical phase of the optical lattice potential. For different atomic hopping configurations, the single-particle bands are demonstrated to, respectively, exhibit Weyl points and nodal loops in the extended three-dimensional Brillouin zone. Furthermore, we illustrate that the mimicked Weyl points and nodal loops can be experimentally detected by measuring the atomic transfer fraction in Bloch-Zener oscillations.

  11. Three-dimensional transport with variational nodal methods

    SciTech Connect

    Lewis, E.E.; Palmiotti, G.; Shalil, H.S.; Laurin-Kovitz, K.; Fanning, T.; Hanebutte, U.R.

    1996-12-31

    The development of the variational nodal method contained in the three-dimensional transport code VARIANT is reviewed. This Argonne National Laboratory code treats two- and three- dimensional multigroup problems with anisotropic scattering in hexagonal and Cartesian geometries. The methodology couples hybrid finite elements in space, which enforce nodal balance, with spherical harmonics expansions in angle. The resulting response matrix equations are solved by red-black or four-color iterations. Several enhancements to VARIANT are discussed: The simplified spherical harmonics option provides near spherical harmonic accuracy for many problems at a fraction of the cost. Adjoint and perturbation calculations are performed without the physical- and mathematical adjoint dichotomy appearing in other nodal methods. Heterogeneous node methods extend the problem classes to which the method may be applied. Computational strategies and trade-offs are discussed and possible future research directions are outlined.

  12. A computational study of nodal-based tetrahedral element behavior.

    SciTech Connect

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  13. Super-nodal methods for space-time kinetics

    NASA Astrophysics Data System (ADS)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  14. Deformation modes in the finite element absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hiroyuki; Gerstmayr, Johannes; Shabana, Ahmed A.

    2006-12-01

    The objective of this study is to provide interpretation of the deformation modes in the finite element absolute nodal coordinate formulation using several strain definitions. In this finite element formulation, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element as well as at the nodal points. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Furthermore, the resulting dynamic model, unlike large rotation finite element formulations, leads to a unique rotation field, and as a consequence, the obtained formulation does not suffer from the problem of coordinate redundancy that characterizes existing large deformation finite element formulations. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. Using the material coordinate system, the Timoshenko-Reissner and Euler -Bernoulli beam models can be systematically obtained as special cases of the absolute nodal coordinate formulation beam models. While a constraint approach is used in this study to eliminate the cross-section deformation modes, it is important to point out as mentioned in this paper that lower-order finite elements, some of which already presented in previous investigations, can be efficiently used in thin and stiff structure applications.

  15. A transient, quadratic nodal method for triangular-Z geometry

    SciTech Connect

    DeLorey, T.F.

    1993-06-01

    Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.

  16. Variational nodal solution algorithms for multigroup criticality problems

    SciTech Connect

    Carrico, C.B.; Lewis, E.E.

    1991-01-01

    Variational nodal transport methods are generalized for the treatment of multigroup criticality problems. The generation of variational response matrices is streamlined and automated through the use of symbolic manipulation. A new red-black partitioned matrix algorithm for the solution of the within-group equations is formulated and shown to be at once both a regular matrix splitting and a synthetic acceleration method. The methods are implemented in X- Y geometry as a module of the Argonne National Laboratory code DIF3D. For few group problems highly accurate P[sub 3] eigenvalues are obtained with computing times comparable to those of an existing interface-current nodal transport method.

  17. Long period nodal motion of sun synchronous orbits

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1975-01-01

    An approximative model is formulated for assessing these perturbations that significantly affect long term modal motion of sun synchronous orbits. Computer simulations with several independent computer programs consider zonal and tesseral gravitational harmonics, third body gravitational disturbances induced by the sun and the moon, and atmospheric drag. A pendulum model consisting of evenzonal harmonics through order 4 and solar gravity dominated nodal motion approximation. This pendulum motion results from solar gravity inducing an inclination oscillation which couples into the nodal precession induced by the earth's oblateness. The pendulum model correlated well with simulations observed flight data.

  18. Chiral Spin-Orbital Liquids with Nodal Lines

    NASA Astrophysics Data System (ADS)

    Natori, W. M. H.; Andrade, E. C.; Miranda, E.; Pereira, R. G.

    2016-07-01

    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba2YMoO6.

  19. A transient, Hex-Z nodal code corrected by discontinuity factors. Volume 1: The transient nodal code; Final report

    SciTech Connect

    Shatilla, Y.A.M.; Henry, A.F.

    1993-12-31

    This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called {open_quotes}discontinuity factors,{close_quotes} were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors.

  20. Grid reliability

    NASA Astrophysics Data System (ADS)

    Saiz, P.; Andreeva, J.; Cirstoiu, C.; Gaidioz, B.; Herrala, J.; Maguire, E. J.; Maier, G.; Rocha, R.

    2008-07-01

    Thanks to the Grid, users have access to computing resources distributed all over the world. The Grid hides the complexity and the differences of its heterogeneous components. In such a distributed system, it is clearly very important that errors are detected as soon as possible, and that the procedure to solve them is well established. We focused on two of its main elements: the workload and the data management systems. We developed an application to investigate the efficiency of the different centres. Furthermore, our system can be used to categorize the most common error messages, and control their time evolution.

  1. Extension of the linear nodal method to large concrete building calculations

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented.

  2. Nodal Structure and the Partitioning of Equivalence Classes

    ERIC Educational Resources Information Center

    Fields, Lanny; Watanabe-Rose, Mari

    2008-01-01

    By definition, all of the stimuli in an equivalence class have to be functionally interchangeable with each other. The present experiment, however, demonstrated that this was not the case when using post-class-formation dual-option response transfer tests. With college students, two 4-node 6-member equivalence classes with nodal structures of…

  3. PoroTomo Subtask 6.3 Nodal Seismometers Metadata

    DOE Data Explorer

    Lesley Parker

    2016-03-28

    Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.

  4. Nodal-mediated epigenesis requires dynamin-mediated endocytosis

    PubMed Central

    Ertl, Robin P.; Robertson, Anthony J.; Saunders, Diane; Coffman, James A.

    2011-01-01

    Nodal proteins are diffusible morphogens that drive pattern formation via short-range feedback activation coupled to long-range Lefty-mediated inhibition. In the sea urchin embryo, specification of the secondary (oral-aboral) axis occurs via zygotic expression of nodal, which is localized to the prospective oral ectoderm at early blastula stage. In mid-blastula stage embryos treated with low micromolar nickel or zinc, nodal expression expands progressively beyond the confines of this localized domain to encompass the entire equatorial circumference of the embryo, producing radialized embryos lacking an oral-aboral axis. RNAseq analysis of embryos treated with nickel, zinc or cadmium (which does not radialize embryos) showed that several genes involved in endocytosis were similarly perturbed by nickel and zinc but not cadmium. Inhibiting dynamin, a GTPase required for receptor-mediated endocytosis, phenocopies the effects of nickel and zinc, suggesting that dynamin-mediated endocytosis is required as a sink to limit the range of Nodal signaling. PMID:21337468

  5. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may...

  6. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  7. Wave pinning and spatial patterning in a mathematical model of Antivin/Lefty-Nodal signalling.

    PubMed

    Middleton, A M; King, J R; Loose, M

    2013-12-01

    Nodal signals are key regulators of mesoderm and endoderm development in vertebrate embryos. It has been observed experimentally that in Xenopus embryos the spatial range of Nodal signals is restricted by the signal Antivin (also known as Lefty). Nodal signals can activate both Nodal and Antivin, whereas Antivin is thought to antagonise Nodal by binding either directly to it or to its receptor. In this paper we develop a mathematical model of this signalling network in a line of cells. We consider the heterodimer and receptor-mediated inhibition mechanisms separately and find that, in both cases, the restriction by Antivin to the range of Nodal signals corresponds to wave pinning in the model. Our analysis indicates that, provided Antivin diffuses faster than Nodal, either mechanism can robustly account for the experimental data. We argue that, in the case of Xenopus development, it is wave pinning, rather than Turing-type patterning, that is underlying Nodal-Antivin dynamics. This leads to several experimentally testable predictions, which are discussed. Furthermore, for heterodimer-mediated inhibition to prevent waves of Nodal expression from propagating, the Nodal-Antivin complex must be turned over, and diffusivity of the complex must be negligible. In the absence of molecular mechanisms regulating these, we suggest that Antivin restricts Nodal signals via receptor-mediated, and not heterodimer-mediated, inhibition. PMID:23070212

  8. Chiral Spin-Orbital Liquids with Nodal Lines.

    PubMed

    Natori, W M H; Andrade, E C; Miranda, E; Pereira, R G

    2016-07-01

    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here, we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba_{2}YMoO_{6}. PMID:27419588

  9. Off-diagonal Jacobian support for Nodal BCs

    SciTech Connect

    Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.

    2015-01-01

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  10. Anomalous contagion and renormalization in networks with nodal mobility

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Qi, Hong; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F.

    2016-07-01

    A common occurrence in everyday human activity is where people join, leave and possibly rejoin clusters of other individuals —whether this be online (e.g. social media communities) or in real space (e.g. popular meeting places such as cafes). In the steady state, the resulting interaction network would appear static over time if the identities of the nodes are ignored. Here we show that even in this static steady-state limit, a non-zero nodal mobility leads to a diverse set of outbreak profiles that is dramatically different from known forms, and yet matches well with recent real-world social outbreaks. We show how this complication of nodal mobility can be renormalized away for a particular class of networks.

  11. Anomalous thermodynamic power laws near topological transitions in nodal superconductors

    NASA Astrophysics Data System (ADS)

    Mazidian, B.; Quintanilla, J.; Hillier, A. D.; Annett, J. F.

    2013-12-01

    Unconventional superconductors are most frequently identified by the observation of power-law behavior on low-temperature thermodynamic or transport properties, such as specific heat. Here, we show that, in addition to the usual point and line nodes, a much wider class of different nodal types can occur. These new types of nodes typically occur when there are transitions between different types of gap node topology, for example, when point or line nodes first appear as a function of some physical parameter. We identify anomalous, noninteger thermodynamic power laws associated with these new nodal types, and give physical examples of superconductors in which they might be observed experimentally, including the noncentrosymmetric superconductor Li2Pd3-xPtxB.

  12. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  13. Atrioventricular nodal reentrant tachycardia ablation and inferior vena cava agenesis.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Mabo, Philippe; Martins, Raphaël P

    2016-10-01

    Congenital anomalies of the inferior vena cava (IVC) are rare and very often diagnosed in asymptomatic patients during computed tomography performed for other purposes. These anomalies can have significant clinical implications, for example if electrophysiology procedures are needed. Diagnostic and ablation procedures are difficult since catheter manipulation and positioning are more complex. We present here a case of successful atrioventricular nodal reentrant tachycardia ablation in a patient with unexpected IVC agenesis, using an azygos route. PMID:27633734

  14. Nodal equivalence theory for hexagonal geometry, thermal reactor analysis

    SciTech Connect

    Zika, M.; Downar, T. )

    1992-01-01

    An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.

  15. Nodal Basin Recurrence After Sentinel Lymph Node Biopsy for Melanoma

    PubMed Central

    Kretschmer, Lutz; Bertsch, Hans Peter; Zapf, Antonia; Mitteldorf, Christina; Satzger, Imke; Thoms, Kai-Martin; Völker, Bernward; Schön, Michael Peter; Gutzmer, Ralf; Starz, Hans

    2015-01-01

    Abstract The objective of this study was to analyze different types of nodal basin recurrence after sentinel lymph node biopsy (SLNB) for melanoma. Patients and Methods: Kaplan–Meier estimates and the Cox proportional hazards model were used to study 2653 patients from 3 German melanoma centers retrospectively. The estimated 5-year negative predictive value of SLNB was 96.4%. The estimated false-negative (FN) rates after 1, 2, 3, 5, and 10 years were 2.5%, 4.6%, 6.4%, 8.7%, and 12.6%, respectively. Independent factors associated with false negativity were older age, fewer SLNs excised, and head or neck location of the primary tumor. Compared with SLN-positive patients, the FNs had a significantly lower survival. In SLN-positive patients undergoing completion lymphadenectomy (CLND), the 5-year nodal basin recurrence rate was 18.3%. The recurrence rates for axilla, groin, and neck were 17.2%, 15.5%, and 44.1%, respectively. Significant factors predicting local relapse after CLND were older age, head, or neck location of the primary tumor, ulceration, deeper penetration of the metastasis into the SLN, tumor-positive CLND, and >2 lymph node metastases. All kinds of nodal relapse were associated with a higher prevalence of in-transit metastases. The FN rate after SLNB steadily increases over the observation period and should, therefore, be estimated by the Kaplan–Meier method. False-negativity is associated with fewer SLNs excised. The beneficial effect of CLND on nodal basin disease control varies considerably across different risk groups. This should be kept in mind about SLN-positive patients when individual decisions on prophylactic CLND are taken. PMID:26356697

  16. Progress and applications of the variational nodal method

    SciTech Connect

    Carrico, C.B.; Palmiotti, G.; Lewis, E.E.

    1995-07-01

    This paper summarizes current progress and developments with the variational nodal method(VNM) and its implementaion within the DIF3D code suite. After a brief development of the mathematical basis for the VNM, results from two three-dimensional benchmarks are presented for a variety of computers. Then current applications of the VNM are discussed including diffusion theory calculations, burnup calculations, highly heterogeneous cores, higher-order spherical harmonics approximations, perturbation theory and heterogeneous nodes.

  17. Topological Phase Transitions in Line-nodal Superconductors

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook

    Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.

  18. Anomalous scaling of the penetration depth in nodal superconductors

    NASA Astrophysics Data System (ADS)

    She, Jian-Huang; Lawler, Michael J.; Kim, Eun-Ah

    2015-07-01

    Recent findings of anomalous superlinear scaling of low-temperature (T ) penetration depth (PD) in several nodal superconductors near putative quantum critical points suggest that the low-temperature PD can be a useful probe of quantum critical fluctuations in a superconductor. On the other hand, cuprates, which are poster child nodal superconductors, have not shown any such anomalous scaling of PD, despite growing evidence of quantum critical points (QCP). Then it is natural to ask when and how can quantum critical fluctuations cause anomalous scaling of PD? Carrying out the renormalization group calculation for the problem of two-dimensional superconductors with point nodes, we show that quantum critical fluctuations associated with a point group symmetry reduction result in nonuniversal logarithmic corrections to the T dependence of the PD. The resulting apparent power law depends on the bare velocity anisotropy ratio. We then compare our results to data sets from two distinct nodal superconductors: YBa2Cu3O6.95 and CeCoIn5. Considering all symmetry-lowering possibilities of the point group of interest, C4 v, we find our results to be remarkably consistent with YBa2Cu3O6.95 being near a vertical nematic QCP and CeCoIn5 being near a diagonal nematic QCP. Our results motivate a search for diagonal nematic fluctuations in CeCoIn5.

  19. LSST Telescope Alignment Plan Based on Nodal Aberration Theory

    NASA Astrophysics Data System (ADS)

    Sebag, J.; Gressler, W.; Schmid, T.; Rolland, J. P.; Thompson, K. P.

    2012-04-01

    The optical alignment of the Large Synoptic Survey Telescope (LSST) is potentially challenging, due to its fast three-mirror optical design and its large 3.5° field of view (FOV). It is highly advantageous to align the three-mirror optical system prior to the integration of the complex science camera on the telescope, which corrects the FOV via three refractive elements and includes the operational wavefront sensors. A telescope alignment method based on nodal aberration theory (NAT) is presented here to address this challenge. Without the science camera installed on the telescope, the on-axis imaging performance of the telescope is diffraction-limited, but the field of view is not corrected. The nodal properties of the three-mirror telescope design have been analyzed and an alignment approach has been developed using the intrinsically linear nodal behavior, which is linked via sensitivities to the misalignment parameters. Since mirror figure errors will exist in any real application, a methodology to introduce primary-mirror figure errors into the analysis has been developed and is also presented.

  20. A nodal domain theorem for integrable billiards in two dimensions

    SciTech Connect

    Samajdar, Rhine; Jain, Sudhir R.

    2014-12-15

    Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.

  1. Spectral multigrid methods for elliptic equations II

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1984-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  2. Spectral multigrid methods for elliptic equations 2

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1983-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  3. Convergence properties of iterative algorithms for solving the nodal diffusion equations

    SciTech Connect

    Azmy, Y Y; Kirk, B L

    1990-01-01

    We drive the five point form of the nodal diffusion equations in two-dimensional Cartesian geometry and develop three iterative schemes to solve the discrete-variable equations: the unaccelerated, partial Successive Over Relaxation (SOR), and the full SOR methods. By decomposing the iteration error into its Fourier modes, we determine the spectral radius of each method for infinite medium, uniform model problems, and for the unaccelerated and partial SOR methods for finite medium, uniform model problems. Also for the two variants of the SOR method we determine the optimal relaxation factor that results in the smallest number of iterations required for convergence. Our results indicate that the number of iterations for the unaccelerated and partial SOR methods is second order in the number of nodes per dimension, while, for the full SOR this behavior is first order, resulting in much faster convergence for very large problems. We successfully verify the results of the spectral analysis against those of numerical experiments, and we show that for the full SOR method the linear dependence of the number of iterations on the number of nodes per dimension is relatively insensitive to the value of the relaxation parameter, and that it remains linear even for heterogenous problems. 14 refs., 1 fig.

  4. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  5. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  6. Response of millet and sorghum to a varying water supply around the primary and nodal roots

    PubMed Central

    Rostamza, M.; Richards, R. A.; Watt, M.

    2013-01-01

    Background and Aims Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Methods Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. Key Results When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2

  7. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system.

    PubMed

    Müller, Patrick; Rogers, Katherine W; Jordan, Ben M; Lee, Joon S; Robson, Drew; Ramanathan, Sharad; Schier, Alexander F

    2012-05-11

    Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients revealed that Nodals have a shorter range than Lefty proteins. Pulse-labeling analysis indicated that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays revealed that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning.

  8. Elsevier Trophoblast Research Award lecture: The multifaceted role of Nodal signaling during mammalian reproduction.

    PubMed

    Park, C B; Dufort, D

    2011-03-01

    Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth.

  9. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system

    PubMed Central

    Müller, Patrick; Rogers, Katherine W.; Jordan, Ben M.; Lee, Joon S.; Robson, Drew; Ramanathan, Sharad; Schier, Alexander F.

    2012-01-01

    Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients reveals that Nodals have a shorter range than Lefty proteins. Pulse-labelinganalysis indicates that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays reveal that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning. PMID:22499809

  10. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    SciTech Connect

    Moulton, J.D.; Ascher, U.M.; Morel, J.E.

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  11. Topological insulating phases from two-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Araújo, Miguel A. N.

    2016-10-01

    Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.

  12. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  13. Evaluation of the use of nodal methods for MTR neutronic analysis

    SciTech Connect

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.

  14. Nodal line optimization and its application to violin top plate design

    NASA Astrophysics Data System (ADS)

    Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man

    2010-10-01

    In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.

  15. Automatic partitioning of unstructured grids into connected components

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    This paper presents two partitioning schemes that guarantee connected components given a connected initial grid. Connected components are important for convergence of methods such as domain decomposition or multigrid. For many of the grids tested, the schemes produce partitions as good (in terms of number of cut edges) or better than spectral partitioning and require only modest computational resources. This paper describes the two schemes in detail and presents comparison results from a number of two and three dimensional unstructured grids.

  16. Descents and nodal load in scale-free networks

    NASA Astrophysics Data System (ADS)

    Bareinboim, Elias; Barbosa, Valmir C.

    2008-04-01

    The load of a node in a network is the total traffic going through it when every node pair sustains a uniform bidirectional traffic between them on shortest paths. We express nodal load in terms of the more elementary notion of a node’s descents in breadth-first-search [(BFS) or shortest-path] trees and study both the descent and nodal-load distributions in the case of scale-free networks. Our treatment is both semianalytical (combining a generating-function formalism with simulation-derived BFS branching probabilities) and computational for the descent distribution; it is exclusively computational in the case of the load distribution. Our main result is that the load distribution, even though it can be disguised as a power law through subtle (but inappropriate) binning of the raw data, is in fact a succession of sharply delineated probability peaks, each of which can be clearly interpreted as a function of the underlying BFS descents. This find is in stark contrast with previously held belief, based on which a power law of exponent -2.2 was conjectured to be valid regardless of the exponent of the power-law distribution of node degrees.

  17. Regional non-nodal metastases of cutaneous melanoma.

    PubMed

    Cascinelli, N; Bufalino, R; Marolda, R; Belli, F; Nava, M; Galluzzo, D; Santinami, M; Levene, A

    1986-06-01

    The authors studied the prognosis of patients with so called local recurrences, satellites and in-transit metastases from cutaneous melanoma on the basis of 291 patients. These are the 19.3% of the 1503 patients with stage I and II melanoma originally submitted to surgical treatment at the National Cancer Institute of Milano (Italy). The majority of patients were males (M/F = 0.7): 102 had local recurrence, 99 in-transit metastases, 24 satellites and 66 both local and in-transit metastases. Regional non-nodal metastases were not related with the site of origin, and inadequate treatment of primary. These metastases were more frequently observed in patients who were submitted to regional node dissection no matter whether in discontinuity or in continuity with primary tumor. The frequency of regional non-nodal metastases was found to increase with increasing thickness of primary melanoma or, in stage II patients, with the number of involved nodes. Local and in-transit metastases were related with prognostic criteria in the same way. The overall survival was very close between in-transit and local metastases. Similar survival rates were observed comparing regional non-nodes and disseminated cutaneous and subcutaneous metastases. The authors conclude that the distinction between local recurrences, satellites and in-transit metastases is artificial and that these metastatic events are not prognostically dissimilar from metastases in distant skin areas.

  18. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    SciTech Connect

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  19. Symmetry Breaking in a Model for Nodal Cilia

    NASA Astrophysics Data System (ADS)

    Brokaw, Charles J.

    2005-03-01

    Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.

  20. Extrapolation of critical Rayleigh values using static nodal integral methods

    SciTech Connect

    Wilson, G.L.; Rydin, R.A.

    1988-01-01

    The Benard problem is the study of the convective motion of a fluid in a rectangular cavity that is uniformly heated form below. Flow bifurcation in the cavity is a function of the Rayleigh number (Ra). The time-dependent nodal integral method (TDNIM) has been reported previously; its development leads to a set of 11 equations per node. The static nodal integral method (SNIM) was derived from the TDNIM by forcing the dependent variable at adjacent time steps (one of the velocity components or temperature) to take on the node integral average value. The paper summarizes the SNIM calculation of Ra for mesh sizes ranging from 4 x 4 to 24 x 24. The numerical calculation of Ra is within plus or minus one-half unit. The relative errors are calculated based on the obtained extrapolated value of Ra{sub best}* = 2584. The paper also summarizes three-point schemes used with increasingly finer mesh combinations. This approach avoids the contamination of the results with a coarse mesh; however, the calculation on n is very sensitive to small changes in the numerical values obtained for Ra*. In this approach, the extrapolated values quickly converge to Ra*{sub e} between 2583 and 2584 with n {approx}2.0 as desired, and give a best value of Ra*{sub best} = 2584.

  1. The effects of nodality on the formation of equivalence classes.

    PubMed

    Fields, L; Adams, B J; Verhave, T; Newman, S

    1990-05-01

    A four-member equivalence class (A----B----C----D) can be formed by training AB, BC, and CD. The nodal stimuli, B and C, mediate all of the derivative (transitive and equivalence) relations in the class. The derivative relations AC, CA, BD, and DB are separated by one node, whereas AD and DA are separated by two nodes. How do the number of nodes that separate the stimuli in a derivative relation influence the induction of stimulus control exerted by that relation? Seven college students learned two four-member classes made up of nonsense syllables. After training, all derivative relations were presented repeatedly without informative feedback. Stimulus control exerted by each derivative relation was assessed concurrently. For the 7 subjects, control exerted by the derivative relations increased gradually with repeated presentations. With 6 of the 7 subjects, the one-node relations exerted more control than the two-node relations during the process. However, the disparity between the one- and two-node relations decreased with repeated presentations. Eventually, all derivative relations exerted complete control. The control exerted by derivative relations during induction was inversely related to the number of nodes separating the terms in the derivative relations. These results demonstrate that nodal distance is a determinant of the relatedness of stimuli in equivalence classes. The findings are discussed in terms of remote association, semantic memory networks, and the study of transitive inference.

  2. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  3. Distal end of the atrioventricular nodal artery predicts the risk of atrioventricular block during slow pathway catheter ablation of atrioventricular nodal re-entrant tachycardia

    PubMed Central

    Lin, J; Huang, S; Lai, L; Lin, L; Chen, J; Tseng, Y; Lien, W

    2000-01-01

    OBJECTIVE—To search for a reliable anatomical landmark within Koch's triangle to predict the risk of atrioventricular (AV) block during radiofrequency slow pathway catheter ablation of AV nodal re-entrant tachycardia (AVNRT).
PATIENTS AND METHODS—To test the hypothesis that the distal end of the AV nodal artery represents the anatomical location of the AV node, and thus could be a useful landmark for predicting the risk of AV block, 128 consecutive patients with AVNRT receiving slow pathway catheter ablation were prospectively studied in two phases. In phase I (77 patients), angiographic demonstration of the AV nodal artery and its ending was performed at the end of the ablation procedure, whereas in the subsequent phase II study (51 patients), the angiography was performed immediately before catheter ablation to assess the value of identifying this new landmark in reducing the risk of AV block. Multiple electrophysiologic and anatomical parameters were analysed. The former included the atrial activation sequence between the His bundle recording site (HBE) and the coronary sinus orifice or the catheter ablation site, either during AVNRT or during sinus rhythm. The latter included the spatial distances between the distal end of the AV nodal artery and the HBE and the final catheter ablation site, and the distance between the HBE and the tricuspid border at the coronary sinus orifice floor.
RESULTS—In phase I, nine of the 77 patients had complications of transient (seven patients) or permanent (two patients) complete AV block during stepwise, anatomy guided slow pathway catheter ablation. These nine patients had a wider distance between the HBE and the distal end of the AV nodal artery, and a closer approximation of the catheter ablation site to the distal end of the AV nodal artery, which independently predicted the risk of AV block. In contrast, none of the available electrophysiologic parameters were shown to be reliable. When the distance between

  4. Network-theoretical approach to partitioning of real power grids

    NASA Astrophysics Data System (ADS)

    Abou Hamad, Ibrahim; Israels, Brett; Poroseva, Svetlana V.; Rikvold, Per Arne

    2010-03-01

    Modern societies depend critically on their electrical power grids. It is, therefore, essential to understand the grid's large-scale behavior in order to improve its resilience against catastrophic damage. A key factor determining the grid's large-scale behavior is its topology. In particular, an important question is whether a grid topology can be efficiently partitioned into independent communities (``islands'') of densely connected vertices (generators, substations, consumers) that are more loosely connected to other communities. Such partitioning can be utilized either to strengthen the grid by introducing new connections, or to achieve ``Intentional Intelligent Islanding'' by installing control devices in a minimal number of links in order to contain cascading failures to a limited region. Here we report on the performance of several network-partitioning algorithms, both agglomerative and spectral-based divisive, in applications to real power grids, including the high-voltage grids of Florida and Italy.

  5. NCAR global model topography generation software for unstructured grids

    NASA Astrophysics Data System (ADS)

    Lauritzen, P. H.; Bacmeister, J. T.; Callaghan, P. F.; Taylor, M. A.

    2015-06-01

    It is the purpose of this paper to document the NCAR global model topography generation software for unstructured grids. Given a model grid, the software computes the fraction of the grid box covered by land, the gridbox mean elevation, and associated sub-grid scale variances commonly used for gravity wave and turbulent mountain stress parameterizations. The software supports regular latitude-longitude grids as well as unstructured grids; e.g. icosahedral, Voronoi, cubed-sphere and variable resolution grids. As an example application and in the spirit of documenting model development, exploratory simulations illustrating the impacts of topographic smoothing with the NCAR-DOE CESM (Community Earth System Model) CAM5.2-SE (Community Atmosphere Model version 5.2 - Spectral Elements dynamical core) are shown.

  6. Beam Elements with Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation

    NASA Astrophysics Data System (ADS)

    Matikainen, Marko K.; Dmitrochenko, Oleg; Mikkola, Aki

    2010-09-01

    In this study, higher order beam elements are developed based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a finite element procedure that was recently proposed for flexible multibody applications. Many different elements based on the absolute nodal coordinate formulation are introduced, but still the beam elements are not able to describe the trapezoidal cross section mode. This leads to the locking phenomena, and therefore, the beam elements based on the absolute nodal coordinate formulation with three dimensional elasticity converge to an inexact solution. In order to avoid the locking phenomena, the trapezoidal cross section deformation mode is included in the beam elements based on the absolute nodal coordinate with additional degrees of freedom. The proper description for the trapezoidal cross section deformation is important for the continuum beam elements based on three-dimensional elasticity where the material model is often based on general continuum mechanics.

  7. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness.

    PubMed

    Topczewska, Jolanta M; Postovit, Lynne-Marie; Margaryan, Naira V; Sam, Anthony; Hess, Angela R; Wheaton, William W; Nickoloff, Brian J; Topczewski, Jacek; Hendrix, Mary J C

    2006-08-01

    Bidirectional cellular communication is integral to both cancer progression and embryological development. In addition, aggressive tumor cells are phenotypically plastic, sharing many properties with embryonic cells. Owing to the similarities between these two types of cells, the developing zebrafish can be used as a biosensor for tumor-derived signals. Using this system, we show that aggressive melanoma cells secrete Nodal (a potent embryonic morphogen) and consequently can induce ectopic formation of the embryonic axis. We further show that Nodal is present in human metastatic tumors, but not in normal skin, and thus may be involved in melanoma pathogenesis. Inhibition of Nodal signaling reduces melanoma cell invasiveness, colony formation and tumorigenicity. Nodal inhibition also promotes the reversion of melanoma cells toward a melanocytic phenotype. These data suggest that Nodal signaling has a key role in melanoma cell plasticity and tumorigenicity, thereby providing a previously unknown molecular target for regulating tumor progression. PMID:16892036

  8. Nodal promotes invasive phenotypes via a Mitogen Activated Protein Kinase-dependent pathway

    PubMed Central

    Quail, DF; Zhang, G; Findlay, SD; Hess, DA; Postovit, LM

    2016-01-01

    The progression of cancer from localized to invasive disease is requisite for metastasis, and is often characterized by epithelial-to-mesenchymal transition (EMT) and alterations in cellular adhesion and migration. Studies have shown that this transition is associated with an up-regulation of embryonic stem cell-associated genes, resulting in a dedifferentiated phenotype and poor patient prognosis. Nodal is an embryonic factor that plays a critical role in promoting early invasive events during development. Nodal is silenced as stem cells differentiate; however, it re-emerges in adult life during placentation and mammary gland development, and is aberrantly expressed in many cancers. Here, we show that Nodal over-expression, in poorly-invasive breast cancer and choriocarcinoma cells, causes increased invasion and migration in vitro. Furthermore, we show that Nodal over-expression in these epithelial cancer types induces an EMT-like event concomitant with the internalization of E-Cadherin. This ability of Nodal to promote cellular invasion and EMT-like phenomena is dependent upon the phosphorylation of ERK1/2. Since Nodal normally signals through SMADs, these findings lend insight into an alternative pathway that is hijacked by this protein in cancer. To evaluate the clinical implications of our results, we show that Nodal inhibition reduces liver tumor burden in a model of spontaneous breast cancer metastasis in vivo, and that Nodal loss-of-function in aggressive breast cancer lines results in a decrease in invasive phenotypes. Our results demonstrate that Nodal is involved in promoting invasion in multiple cellular contexts, and that Nodal inhibition may be useful as a therapeutic target for patients with progressive disease. PMID:23334323

  9. Magnetic response in three-dimensional nodal semimetals

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito; Hizbullah, Intan Fatimah

    We study the magnetic response in various three-dimensional gapless systems, including Dirac and Weyl semimetals and a line-node semimetal. We show that the susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger delta-function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.

  10. Magnetic susceptibility in three-dimensional nodal semimetals

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito; Hizbullah, Intan Fatimah

    2016-01-01

    We study the magnetic susceptibility in various three-dimensional gapless systems, including Dirac and Weyl semimetals, and a line-node semimetal. The susceptibility is decomposed into the orbital term, the spin term and also the spin-orbit cross term, which is caused by the spin-orbit interaction. We show that the orbital susceptibility logarithmically diverges at the band touching energy in the point-node case, while it exhibits a stronger δ -function singularity in the line node case. The spin-orbit cross term is shown to be paramagnetic in the electron side while diamagnetic in the hole side, in contrast with other two terms which are both even functions in Fermi energy. The spin-orbit cross term in the nodal semimetal is found to be directly related to the chiral surface current induced by the topological surface modes.

  11. Typical nodal calcifications in the maxillofacial region: a case report

    PubMed Central

    Wu, Guomin; Sun, Xiumei; Ni, Shilei; Zhang, Zhimin

    2014-01-01

    Multiple nodal calcifications in the maxillofacial region are very rare. This case report described a 49-year-old female patient diagnosed with calcified lymph nodes due to chronic inflammation of the lymphatic nodes, including the parotid lymphatic nodes, the posterior auricular lymphatic nodes and submandibular lymphatic nodes in the right maxillofacial region. In clinical practice, we conducted ultrasonography, three-dimensional reconstruction of CT and sialography make a preliminary diagnosis. Then we took surgery, while removing the calcified blocks within the lymphatic node and cleaning the wound cavity. After surgery, we used anti-inflammatory therapy for one week. Six months follow-up indicated no evidence of other calcified lymph nodes infection. PMID:25356188

  12. Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma.

    PubMed

    Na'ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv

    2016-01-28

    Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC.

  13. Coexistence of Weyl fermion and massless triply degenerate nodal points

    NASA Astrophysics Data System (ADS)

    Weng, Hongming; Fang, Chen; Fang, Zhong; Dai, Xi

    2016-10-01

    By using first-principles calculations, we propose that WC-type ZrTe is a new type of topological semimetal (TSM). It has six pairs of chiral Weyl nodes in its first Brillouin zone, but it is distinguished from other existing TSMs by having an additional two paris of massless fermions with triply degenerate nodal points as proposed in the isostructural compounds TaN and NbN. The mirror symmetry, threefold rotational symmetry, and time-reversal symmetry require all of the Weyl nodes to have the same velocity vectors and locate at the same energy level. The Fermi arcs on different surfaces are shown, which may be measured by future experiments. It demonstrates that the "material universe" can support more intriguing particles simultaneously.

  14. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm.

    PubMed

    Ellis, Pamela S; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M; Constam, Daniel; Placzek, Marysia

    2015-11-15

    The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated.

  15. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm

    PubMed Central

    Ellis, Pamela S.; Burbridge, Sarah; Soubes, Sandrine; Ohyama, Kyoji; Ben-Haim, Nadav; Chen, Canhe; Dale, Kim; Shen, Michael M.; Constam, Daniel; Placzek, Marysia

    2015-01-01

    The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated. PMID:26417042

  16. Parallel grid population

    SciTech Connect

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  17. Scientific Grid computing.

    PubMed

    Coveney, Peter V

    2005-08-15

    We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.

  18. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    SciTech Connect

    Shih, Helen A. . E-mail: hshih@partners.org; Harisinghani, Mukesh; Zietman, Anthony L.; Wolfgang, John A.; Saksena, Mansi; Weissleder, Ralph

    2005-11-15

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to a common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities.

  19. Nicalin and its binding partner Nomo are novel Nodal signaling antagonists.

    PubMed

    Haffner, Christof; Frauli, Mélanie; Topp, Stephanie; Irmler, Martin; Hofmann, Kay; Regula, Jörg T; Bally-Cuif, Laure; Haass, Christian

    2004-08-01

    Nodals are signaling factors of the transforming growth factor-beta (TGFbeta) superfamily with a key role in vertebrate development. They control a variety of cell fate decisions required for the establishment of the embryonic body plan. We have identified two highly conserved transmembrane proteins, Nicalin and Nomo (Nodal modulator, previously known as pM5), as novel antagonists of Nodal signaling. Nicalin is distantly related to Nicastrin, a component of the Alzheimer's disease-associated gamma-secretase, and forms a complex with Nomo. Ectopic expression of both proteins in zebrafish embryos causes cyclopia, a phenotype that can arise from a defect in mesendoderm patterning mediated by the Nodal signaling pathway. Accordingly, downregulation of Nomo resulted in an increase in anterior axial mesendoderm and the development of an enlarged hatching gland. Inhibition of Nodal signaling by ectopic expression of Lefty was rescued by reducing Nomo levels. Furthermore, Nodal- as well as Activin-induced signaling was inhibited by Nicalin and Nomo in a cell-based reporter assay. Our data demonstrate that the Nicalin/Nomo complex antagonizes Nodal signaling during mesendodermal patterning in zebrafish. PMID:15257293

  20. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts.

    PubMed

    McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F

    2010-04-01

    Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.

  1. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  2. Dynamic Power Grid Simulation

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  3. Application of the Absolute Nodal Co-Ordinate Formulation to Multibody System Dynamics

    NASA Astrophysics Data System (ADS)

    Escalona, J. L.; Hussien, H. A.; Shabana, A. A.

    1998-07-01

    The floating frame of reference formulation is currently the most widely used approach in flexible multibody simulations. The use of this approach, however, has been limited to small deformation problems. In this investigation, the computer implementation of the newabsolute nodal co-ordinate formulationand its use in the small and large deformation analysis of flexible multibody systems that consist of interconnected bodies are discussed. While in the floating frame of reference formulation a mixed set of absolute reference and local elastic co-ordinates are used, in the absolute nodal co-ordinate formulation only absolute co-ordinates are used. In the absolute nodal co-ordinate formulation, new interpretation of the nodal co-ordinates of the finite elements is used. No infinitesimal or finite rotations are used as nodal co-ordinates from beams and plates, instead, global slopes are used to define the element nodal co-ordinates. Using this interpretation of the element co-ordinates, beams and plates can be considered as isoparametric elements, and as a result, exact modelling of the rigid body dynamics can be obtained using the element shape function and the absolute nodal co-ordinates. Unlike the floating frame of reference approach, no co-ordinate transformation is required in order to determine the element inertia. The mass matrix of the finite elements is a constant matrix, and therefore, the centrifugal and Coriolis forces are equal to zero when the absolute nodal co-ordinate formulation is used. Another advantage of using the absolute nodal co-ordinate formulation in the dynamic simulation of multibody systems is its simplicity in imposing some of the joint constraints and also its simplicity in formulating the generalized forces due to spring-damper elements. The results obtained in this investigation show an excellent agreement with the results obtained using the floating frame of reference formulation when large rotation-small deformation problems are

  4. Nodal signaling is required for closure of the anterior neural tube in zebrafish

    PubMed Central

    Aquilina-Beck, Allisan; Ilagan, Kristine; Liu, Qin; Liang, Jennifer O

    2007-01-01

    Background Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish. Results We find that the neural tube in the presumptive forebrain fails to close in zebrafish Nodal signaling mutants. For instance, the cells that will give rise to the pineal organ fail to move from the lateral edges of the neural plate to the midline of the diencephalon. The open neural tube in Nodal signaling mutants may be due in part to reduced function of N-cadherin, a cell adhesion molecule expressed in the neural tube and required for neural tube closure. N-cadherin expression and localization to the membrane are reduced in fish that lack Nodal signaling. Further, N-cadherin mutants and morphants have a pineal phenotype similar to that of mutants with deficiencies in the Nodal pathway. Overexpression of an activated form of the TGFβ Type I receptor Taram-A (Taram-A*) cell autonomously rescues mesendoderm formation in fish with a severe decrease in Nodal signaling. We find that overexpression of Taram-A* also corrects their open neural tube defect. This suggests that, as in mammals, the mesoderm and endoderm have an important role in regulating closure of the anterior neural tube of zebrafish. Conclusion This work helps establish a role for Nodal signals in neurulation, and suggests that defects in Nodal signaling could underlie human neural tube defects such as exencephaly, a fatal condition characterized by an open neural tube in the anterior brain. PMID:17996054

  5. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  6. The accuracy of preoperative axillary nodal staging in primary breast cancer by ultrasound is modified by nodal metastatic load and tumor biology

    PubMed Central

    Dihge, Looket; Grabau, Dorthe A.; Rasmussen, Rogvi W.; Bendahl, Pär-Ola; Rydén, Lisa

    2016-01-01

    Abstract Background The outcome of axillary ultrasound (AUS) with fine-needle aspiration biopsy (FNAB) in the diagnostic work-up of primary breast cancer has an impact on therapy decisions. We hypothesize that the accuracy of AUS is modified by nodal metastatic burden and clinico-pathological characteristics. Material and methods The performance of AUS and AUS-guided FNAB for predicting nodal metastases was assessed in a prospective breast cancer cohort subjected for surgery during 2009–2012. Predictors of accuracy were included in multivariate analysis. Results AUS had a sensitivity of 23% and a specificity of 95%, while AUS-guided FNAB obtained 73% and 100%, respectively. AUS-FNAB exclusively detected macro-metastases (median four metastases) and identified patients with more extensive nodal metastatic burden in comparison with sentinel node biopsy. The accuracy of AUS was affected by metastatic size (OR 1.11), obesity (OR 2.46), histological grade (OR 4.43), and HER2-status (OR 3.66); metastatic size and histological grade were significant in the multivariate analysis. Conclusions The clinical utility of AUS in low-risk breast cancer deserves further evaluation as the accuracy decreased with a low nodal metastatic burden. The diagnostic performance is modified by tumor and clinical characteristics. Patients with nodal disease detected by AUS-FNAB represent a group for whom neoadjuvant therapy should be considered. PMID:27050668

  7. Embryonic Morphogen Nodal Is Associated with Progression and Poor Prognosis of Hepatocellular Carcinoma

    PubMed Central

    Jia, Wei-Dong; Xu, Ge-Liang; Ma, Jin-Liang; Ren, Yun; Chen, Hao; Sun, Si-Nan; Huang, Mei; Li, Jian-Sheng

    2014-01-01

    Background Nodal, a TGF-β-related embryonic morphogen, is involved in multiple biologic processes. However, the expression of Nodal in hepatocellular carcinoma (HCC) and its correlation with tumor angiogenesis, epithelial-mesenchymal transition, and prognosis is unclear. Methods We used real-time PCR and Western blotting to investigate Nodal expression in 6 HCC cell lines and 1 normal liver cell line, 16 pairs of tumor and corresponding paracarcinomatous tissues from HCC patients. Immunohistochemistry was performed to examine Nodal expression in HCC and corresponding paracarcinomatous tissues from 96 patients. CD34 and Vimentin were only examined in HCC tissues of patients mentioned above. Nodal gene was silenced by shRNA in MHCC97H and HCCLM3 cell lines, and cell migration and invasion were detected. Statistical analyses were applied to evaluate the prognostic value and associations of Nodal expression with clinical parameters. Results Nodal expression was detected in HCC cell lines with high metastatic potential alone. Nodal expression is up-regulated in HCC tissues compared with paracarcinomatous and normal liver tissues. Nodal protein was expressed in 70 of the 96 (72.9%) HCC tumors, and was associated with vascular invasion (P = 0.000), status of metastasis (P = 0.004), AFP (P = 0.049), ICGR15 (indocyanine green retention rate at 15 min) (P = 0.010) and tumor size (P = 0.000). High Nodal expression was positively correlated with high MVD (microvessal density) (P = 0.006), but not with Vimentin expression (P = 0.053). Significantly fewer migrated and invaded cells were seen in shRNA group compared with blank group and negative control group (P<0.05). High Nodal expression was found to be an independent factor for predicting overall survival of HCC. Conclusions Our study demonstrated that Nodal expression is associated with aggressive characteristics of HCC. Its aberrant expression may be a predictive factor of unfavorable prognosis

  8. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  9. Coplanar interdigitated grid detector with single electrode readout

    DOEpatents

    Luke, Paul N.

    2001-01-01

    The coplanar interdigitated grid technique with single electrode readout provides substantial spectral performance improvement over that of conventional full-area planar electrode detectors and over coplanar interdigitated grid detectors which measure the difference between the induced charge signals from two interdigitated coplanar grid electrodes. The signal from only one interdigitated grid electrode is read out. The signal response is optimized by changing the relative areas of the two grid electrodes and the bias applied across the detector. Only one preamplifier is needed and signal subtraction is not necessary. This eliminates the electronic noise contribution from the additional preamplifier used in the normal coplanar grid implementation, and conventional single-amplifier detector electronics can be used.

  10. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  11. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  12. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments.

    PubMed

    Silveira, S S; Cordeiro-Silva, R; Degenhardt-Goldbach, J; Quoirin, M

    2016-05-01

    Micropropagation of Calophyllum brasiliense Cambess. (Clusiaceae) is a way to overcome difficulties in achieving large-scale plant production, given the recalcitrant nature of the seeds, irregular fructification and absence of natural vegetative propagation of the species. Cultures were established using nodal segments 2 cm in length, obtained from 1-2 year old seedlings, maintained in a greenhouse. Mercury chloride and Plant Preservative Mixture™ were used in the surface sterilizing stage, better results being achieved with Plant Preservative Mixture™ incorporation in culture medium, at any concentration. Polyvinylpyrrolidone, activated charcoal, cysteine, ascorbic acid or citric acid were added to the culture medium to avoid oxidation. After 30 days of culture, polyvinylpirrolidone and ascorbic acid gave better results, eliminating oxidation in most explants. For shoot multiplication, benzylaminopurine was used in concentrations of 4.4 and 8.8 µM in Woody Plant Medium, resulting in an average of 4.43 and 4.68 shoots per explant, respectively, after 90 days. Indole-3-butyric acid and α-naphthalene acetic acid were used to induce root formation, reaching a maximum rooting rate of 24% with 20µM α-naphthalene acetic acid. For acclimatization. the rooted plants were transferred to Plantmax® substrate and cultured in a greenhouse, reaching 79% of survival after 30 days and 60% after one year.

  13. Micropropagation of commercially cultivated Henna (Lawsonia inermis) using nodal explants.

    PubMed

    Ram, Kheta; Shekhawat, N S

    2011-07-01

    Lawsonia inermis Linn. (Mehandi) is cultivated as cash crop in India particularly in Sojat area of Pali district, Rajasthan. Present investigation describes an efficient regeneration system for elite genotype of L. inermis using nodal segments. Optimum response in terms of percent cultures responding, days to bud break and average shoot length was observed on MS medium supplemented with 6-benzylaminopurine (BA; 2.0 mg l(-1)). Shoot multiplication was influenced by plant growth regulators, repeated transfer of explants and addition of ammonium sulphate. Maximum shoots were regenerated on MS medium supplemented with BA (0.25 mg l(-1)), kinetin (Kn; 0.25 mg l(-1)), indole-3-acetic acid (IAA; 0.1 mg l(-1)) and ammonium sulphate (150 mg l(-1)). To reduce resources, time and labours costs, we have also attempted ex vitro rooting of shoots. About 95 % shoots were rooted ex vitro on soilrite after treatment with indole-3-butyric acid (IBA; 300 mg l(-1)) and 2-naphthoxy acetic acid (NOA; 100 mg l(-1)) and establishment in soil successfully.

  14. Heterogeneous nodal responses in cascade dynamics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, Kwang-Il

    2014-03-01

    Structure and dynamics of multiplex network systems have been intensively studied recently, revealing nontrivial results such as facilitated cascading failures and new type of phase transitions unforeseen in the single-level systems. However, most studies about multi-layered, network of networks have mainly considered the case of single nodal response to multiple layers, that is, every node responds to the multiple layers in identical way. Most complex systems like human society, however, function not only through various kinds of relations but also through heterogeneous response behavior across agents, indicating a new level of complexity. To address it, here we formulate a threshold cascade model on multiplex networks with a mixture of two response functions: OR and AND rules. For the OR response, nodes are activated if enough neighbors in any layer are active, whereas for the AND response, the nodes activate only if enough neighbors in all layers are active. Coexistence of these two response rules is shown to control between facilitation and inhibition of cascading failures, and moreover, it can also control the type of transitions to global cascades between continuous and discontinuous ones. We will discuss the implication of the results in the context of social dynamics.

  15. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments.

    PubMed

    Silveira, S S; Cordeiro-Silva, R; Degenhardt-Goldbach, J; Quoirin, M

    2016-05-01

    Micropropagation of Calophyllum brasiliense Cambess. (Clusiaceae) is a way to overcome difficulties in achieving large-scale plant production, given the recalcitrant nature of the seeds, irregular fructification and absence of natural vegetative propagation of the species. Cultures were established using nodal segments 2 cm in length, obtained from 1-2 year old seedlings, maintained in a greenhouse. Mercury chloride and Plant Preservative Mixture™ were used in the surface sterilizing stage, better results being achieved with Plant Preservative Mixture™ incorporation in culture medium, at any concentration. Polyvinylpyrrolidone, activated charcoal, cysteine, ascorbic acid or citric acid were added to the culture medium to avoid oxidation. After 30 days of culture, polyvinylpirrolidone and ascorbic acid gave better results, eliminating oxidation in most explants. For shoot multiplication, benzylaminopurine was used in concentrations of 4.4 and 8.8 µM in Woody Plant Medium, resulting in an average of 4.43 and 4.68 shoots per explant, respectively, after 90 days. Indole-3-butyric acid and α-naphthalene acetic acid were used to induce root formation, reaching a maximum rooting rate of 24% with 20µM α-naphthalene acetic acid. For acclimatization. the rooted plants were transferred to Plantmax® substrate and cultured in a greenhouse, reaching 79% of survival after 30 days and 60% after one year. PMID:27143061

  16. High-latitude oceanic variability associated with the 18. 6-year nodal tide

    SciTech Connect

    Royer, T.C. )

    1993-03-15

    Ocean temperatures in the upper 250 m in the northern North Pacific (60[degree]N, 149[degree]W) increased by more than 1[degree]C from 1972 to 1986 but are now decreasing. Subsurface temperature anomalies are well correlated ([approx] 0.58) with the air temperature anomalies at Sitka, Alaska; hence the coastal air temperatures can be used as a proxy data set to extend the ocean temperature time series back to 1828. Up to 30% of the low-frequency variance can be accounted for with the 18.6-year nodal signal. Additionally, spectral analysis of these air temperature variations indicates a significant low-frequency peak in the range of the 18.6-year signal. Similar low-frequency signals have been reported for Hudson Bay air temperatures since 1700, for sea surface temperatures in the North Atlantic from 1876 to 1939, and for sea level in the high-latitude southern hemisphere. The water column temperature variations presented here are the first evidence that the upper ocean is responding to this very long period tidal forcing. An enhanced high-latitude response to the 18.6-year forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50[degree]. These low-frequency ocean-atmosphere variations must be considered in high-latitude assessments of global climate change, since they are of the same magnitude as many of the predicted global changes. 29 refs., 5 figs., 2 tabs.

  17. Recommendations for Radiotherapy Technique and Dose in Extra-nodal Lymphoma.

    PubMed

    Hoskin, P J; Díez, P; Gallop-Evans, E; Syndikus, I; Bates, A; Bayne, M

    2016-01-01

    Extra-nodal sites may be involved in around 40% of patients with non-Hodgkin lymphoma. The general principles for target volume delineation in this setting are presented, together with specific examples. In general, the entire organ affected should be encompassed in the clinical target volume with an expansion of at least 10 mm, increased in some instances to account for patterns of potential lymphatic flow. Adjacent lymph nodes may be treated using standard techniques for nodal irradiation. Doses for extra-nodal lymphoma follow the same principles as nodal lymphoma, delivering 30 Gy in 15 fractions for Hodgkin and aggressive non-Hodgkin lymphoma and 24 Gy in 12 fractions for indolent lymphomas, with the exception of certain palliative situations, mycosis fungoides, central nervous system lymphoma and natural killer/T-cell lymphoma.

  18. Relation between finite element methods and nodal methods in transport theory

    SciTech Connect

    Walters, W.F.

    1985-01-01

    This paper examines the relationship between nodal methods and finite-element methods for solving the discrete-ordinates form of the transport equation in x-y geometry. Specifically, we will examine the relation of three finite-element schemes to the linear-linear (LL) and linear-nodal (LN) nodal schemes. The three finite-element schemes are the linear-continuous-diamond-difference (DD) scheme, the linear-discontinuous (LD) scheme, and the quadratic-discontinuous (QD) scheme. A brief derivation of the (LL) and (LN) nodal schemes is given in the third section of this paper. The approximations that cause the LL scheme to reduce to the DD, LD, and QD schemes are then indicated. An extremely simple method of deriving the finite-element schemes is then introduced.

  19. Dose-dependent Nodal/Smad signals pattern the early mouse embryo.

    PubMed

    Robertson, Elizabeth J

    2014-08-01

    Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo. PMID:24704361

  20. Recommendations for Radiotherapy Technique and Dose in Extra-nodal Lymphoma.

    PubMed

    Hoskin, P J; Díez, P; Gallop-Evans, E; Syndikus, I; Bates, A; Bayne, M

    2016-01-01

    Extra-nodal sites may be involved in around 40% of patients with non-Hodgkin lymphoma. The general principles for target volume delineation in this setting are presented, together with specific examples. In general, the entire organ affected should be encompassed in the clinical target volume with an expansion of at least 10 mm, increased in some instances to account for patterns of potential lymphatic flow. Adjacent lymph nodes may be treated using standard techniques for nodal irradiation. Doses for extra-nodal lymphoma follow the same principles as nodal lymphoma, delivering 30 Gy in 15 fractions for Hodgkin and aggressive non-Hodgkin lymphoma and 24 Gy in 12 fractions for indolent lymphomas, with the exception of certain palliative situations, mycosis fungoides, central nervous system lymphoma and natural killer/T-cell lymphoma. PMID:26456507

  1. ANOVA-HDMR structure of the higher order nodal diffusion solution

    SciTech Connect

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-07-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  2. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  3. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  4. Nodal signaling in Xenopus gastrulae is cell-autonomous and patterned by beta-catenin.

    PubMed

    Hashimoto-Partyka, Minako K; Yuge, Masahiro; Cho, Ken W Y

    2003-01-01

    The classical three-signal model of amphibian mesoderm induction and more recent modifications together propose that an activin-like signaling activity is uniformly distributed across the vegetal half of the Xenopus blastula and that this activity contributes to mesoderm induction. In support of this, we have previously shown that the activin-response element (DE) of the goosecoid promoter is uniformly activated across the vegetal half of midgastrula-stage embryos. Here, we further examine the nature of this activity by measuring DE activation by endogenous signals over time. We find that the spatiotemporal pattern of DE activation is much more dynamic than was previously appreciated and also conclude that DE(6X)Luc activity reflects endogenous nodal signaling in the embryo. Using both the DE(6X)Luc construct and endogenous Xbra and Xgsc expression as read-outs for nodal activity, and the cleavage-mutant version of Xnr2 (CmXnr2) to regionally suppress endogenous nodal activity, we demonstrate that nodal signals act cell-autonomously in Xenopus gastrulae. Nodal-expressing cells are unable to rescue either reporter gene activation or target gene expression in distant nodal-deficient cells, suggesting that nodals function at short range in this context. Finally, we show that DE activation by endogenous signals occurs in the absence of dorsal beta-catenin-mediated signaling, but that the timing of dorsal initiation is altered. We conclude that nodal signals in Xenopus gastrulae function cell autonomously at short ranges and that the spatiotemporal pattern of this signaling along the dorsoventral axis is regulated by maternal Wnt-like signaling. PMID:12490202

  5. High Risk of Lateral Nodal Metastasis in Lateral Solitary Solid Papillary Thyroid Cancer.

    PubMed

    Lai, Xing-Jian; Zhang, Bo; Jiang, Yu-Xin; Li, Jian-Chu; Zhao, Rui-Na; Yang, Xiao; Zhang, Qing; Zhang, Xiao-Yan; Li, Wen-Bo; Zhu, Shen-Ling

    2016-01-01

    We explored the relationship between ultrasonic intra-thyroidal location and neck node metastasis pattern in solitary solid papillary thyroid cancer (PTC). Data on 186 patients were retrospectively reviewed. The association between several characteristics and neck node metastasis pattern were analyzed. Among the 186 thyroid nodules, age ≥45 y (p = 0.005), mass size ≥2 cm (p = 0.001), presence of calcifications (p < 0.001) and lateral nodal metastasis (p = 0.001) were significantly related to central nodal metastasis in multivariate analysis. Mass size ≥2 cm (p = 0.046) and central nodal metastasis (p = 0.002) were significantly related to lateral nodal metastasis in multivariate analysis. Location of an intra-thyroidal solitary solid PTC located non-adjacent to the trachea (lateral) was significantly related to lateral nodal metastasis (p = 0.043) compared with location of an intra-thyroidal solitary solid PTC adjacent to the trachea (medial or isthmus). Lateral lesions have a high risk of lateral nodal metastasis in solitary solid PTC.

  6. Undertreatment of patients with localized extranodal compared with nodal diffuse large B-cell lymphoma.

    PubMed

    Kuper-Hommel, Marion J J; van de Schans, Saskia A M; Vreugdenhil, Gerard; van Krieken, J Han; Coebergh, Jan-Willem W

    2013-08-01

    Population-based studies analyzing clinical implications of nodal versus extranodal (EN) presentation of diffuse large B-cell lymphoma (DLBCL) are scarce. We studied clinical differences and trends in incidence, treatment and survival of nodal and EN DLBCL in a population-based cohort. All patients newly diagnosed with localized (Ann Arbor stage [AAS] I and II) nodal (n = 5124) and EN (n = 4776) DLBCL, and primary mediastinal B-cell lymphoma (PMBL; n = 88), diagnosed between 1989 and 2010, were selected from the Netherlands Cancer Registry. Primary EN disease was correlated with older age and more favorable clinical stage (AAS I). The age standardized incidence rates for men with localized EN DLBCL, and for men and women with localized PMBL, increased significantly, whereas the age standardized incidence rates of all other subgroups remained stable. The stomach was the most common EN localization. Patients with EN disease received less chemotherapy and targeted therapy than their nodal counterparts, irrespective of age and period of diagnosis. Their 5-year overall survival (OS) was 48% vs. 54% in the nodal group, but in multivariate analysis primary extranodal presentation was not independently associated with inferior survival. This population-based study shows clinically relevant differences between localized nodal and EN DLBCL and PMBL. Since patients with EN were significantly less often optimally treated, we advocate better interaction between medical disciplines. PMID:23190406

  7. A quasi-static polynomial nodal method for nuclear reactor analysis

    SciTech Connect

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  8. The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development

    PubMed Central

    Deshwar, Ashish R; Chng, Serene C; Ho, Lena; Reversade, Bruno; Scott, Ian C

    2016-01-01

    The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFβ signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis. DOI: http://dx.doi.org/10.7554/eLife.13758.001 PMID:27077952

  9. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  10. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  11. Multiple Coarse Grid Multigrid Methods for Solving Elliptic Problems

    NASA Technical Reports Server (NTRS)

    Xiao, Shengyou; Young, David

    1996-01-01

    In this paper we describe some classes of multigrid methods for solving large linear systems arising in the solution by finite difference methods of certain boundary value problems involving Poisson's equation on rectangular regions. If parallel computing systems are used, then with standard multigrid methods many of the processors will be idle when one is working at the coarsest grid levels. We describe the use of Multiple Coarse Grid MultiGrid (MCGMG) methods. Here one first constructs a periodic set of equations corresponding to the given system. One then constructs a set of coarse grids such that for each grid corresponding to the grid size h there are four grids corresponding to the grid size 2*h. Multigrid operations such as restriction of residuals and interpolation of corrections are done in parallel at each grid level. For suitable choices of the multigrid operators the MCGMG method is equivalent to the Parallel Superconvergent MultiGrid (PSMG) method of Frederickson and McBryan. The convergence properties of MCGMG methods can be accurately analyzed using spectral methods.

  12. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    SciTech Connect

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  13. Coexistent Types of Atrioventricular Nodal Re-Entrant Tachycardia

    PubMed Central

    Marine, Joseph E.; Latchamsetty, Rakesh; Zografos, Theodoros; Tanawuttiwat, Tanyanan; Sheldon, Seth H.; Buxton, Alfred E.; Calkins, Hugh; Morady, Fred; Josephson, Mark E.

    2015-01-01

    Background— There is evidence that atypical fast–slow and typical atrioventricular nodal re-entrant tachycardia (AVNRT) do not use the same limb for fast conduction, but no data exist on patients who have presented with both typical and atypical forms of this tachycardia. We compared conduction intervals during typical and atypical AVNRT that occurred in the same patient. Methods and Results— In 20 of 1299 patients with AVNRT, both typical and atypical AVNRT were induced at electrophysiology study by pacing maneuvers and autonomic stimulation or occurred spontaneously. The mean age of the patients was 47.6±10.9 years (range, 32–75 years), and 11 patients (55%) were women. Tachycardia cycle lengths were 368.0±43.1 and 365.8±41.1 ms, and earliest retrograde activation was recorded at the coronary sinus ostium in 60% and 65% of patients with typical and atypical AVNRT, respectively. Thirteen patients (65%) displayed atypical AVNRT with fast–slow characteristics. By comparing conduction intervals during slow–fast and fast–slow AVNRT in the same patient, fast pathway conduction times during the 2 types of AVNRT were calculated. The mean difference between retrograde fast pathway conduction during slow–fast AVNRT and anterograde fast pathway conduction during fast–slow AVNRT was 41.8±39.7 ms and was significantly different when compared with the estimated between-measurement error (P=0.0055). Conclusions— Our data provide further evidence that typical slow–fast and atypical fast–slow AVNRT use different anatomic pathways for fast conduction. PMID:26155802

  14. Cluster analysis of contaminated sediment data: nodal analysis.

    PubMed

    Hartwell, S Ian; Claflin, Larry W

    2005-07-01

    The objective of the present study was to explore the use of multivariate statistical methods as a means to discern relationships between contaminants and biological and/or toxicological effects in a representative data set from the National Status and Trends (NS&T) Program. Data from the National Oceanic and Atmospheric Administration, NS&T Program's Bioeffects Survey of Delaware Bay, USA, were examined using various univariate and multivariate statistical techniques, including cluster analysis. Each approach identified consistent patterns and relationships between the three types of triad data. The analyses also identified factors that bias the interpretation of the data, primarily the presence of rare and unique species and the dependence of species distributions on physical parameters. Sites and species were clustered with the unweighted pair-group method using arithmetic averages clustering with the Jaccard coefficient that clustered species and sites into mutually consistent groupings. Pearson product moment correlation coefficients, normalized for salinity, also were clustered. The most informative analysis, termed nodal analysis, was the intersection of species cluster analysis with site cluster analysis. This technique produced a visual representation of species association patterns among site clusters. Site characteristics, such as salinity and grain size, not contaminant concentrations, appeared to be the primary factors determining species distributions. This suggests the sediment-quality triad needs to use physical parameters as a distinct leg from chemical concentrations to improve sediment-quality assessments in large bodies of water. Because the Delaware Bay system has confounded gradients of contaminants and physical parameters, analyses were repeated with data from northern Chesapeake Bay, USA, with similar results. PMID:16050601

  15. Advanced computational methods for nodal diffusion, Monte Carlo, and S{sub N} problems. Progress report, January 1, 1992--March 31, 1993

    SciTech Connect

    Martin, W.R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  16. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  17. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  18. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  19. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  20. Mapping implicit spectral methods to distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea L.; Vanrosendale, John

    1991-01-01

    Spectral methods were proven invaluable in numerical simulation of PDEs (Partial Differential Equations), but the frequent global communication required raises a fundamental barrier to their use on highly parallel architectures. To explore this issue, a 3-D implicit spectral method was implemented on an Intel hypercube. Utilization of about 50 percent was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64 Fourier-spectral grid; finer grids yield higher utilizations. Chebyshev-spectral grids are more problematic, since plane-relaxation based multigrid is required. However, by using a semicoarsening multigrid algorithm, and by relaxing all multigrid levels concurrently, relatively high utilizations were also achieved in this harder case.

  1. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    PubMed Central

    Seol, Ki Ho

    2016-01-01

    Purpose To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Materials and Methods Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4–72 Gy (39.6–45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. Results The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. Conclusion No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC. PMID:27104162

  2. An efficient 3D traveltime calculation using coarse-grid mesh for shallow-depth source

    NASA Astrophysics Data System (ADS)

    Son, Woohyun; Pyun, Sukjoon; Lee, Ho-Young; Koo, Nam-Hyung; Shin, Changsoo

    2016-10-01

    3D Kirchhoff pre-stack depth migration requires an efficient algorithm to compute first-arrival traveltimes. In this paper, we exploited a wave-equation-based traveltime calculation algorithm, which is called the suppressed wave equation estimation of traveltime (SWEET), and the equivalent source distribution (ESD) algorithm. The motivation of using the SWEET algorithm is to solve the Laplace-domain wave equation using coarse grid spacing to calculate first-arrival traveltimes. However, if a real source is located at shallow-depth close to free surface, we cannot accurately calculate the wavefield using coarse grid spacing. So, we need an additional algorithm to correctly simulate the shallow source even for the coarse grid mesh. The ESD algorithm is a method to define a set of distributed nodal sources that approximate a point source at the inter-nodal location in a velocity model with large grid spacing. Thanks to the ESD algorithm, we can efficiently calculate the first-arrival traveltimes of waves emitted from shallow source point even when we solve the Laplace-domain wave equation using a coarse-grid mesh. The proposed algorithm is applied to the SEG/EAGE 3D salt model. From the result, we note that the combination of SWEET and ESD algorithms can be successfully used for the traveltime calculation under the condition of a shallow-depth source. We also confirmed that our algorithm using coarse-grid mesh requires less computational time than the conventional SWEET algorithm using relatively fine-grid mesh.

  3. High energy collimating fine grids for HESP program

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol D.; Frazier, Edward

    1993-01-01

    There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.

  4. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  5. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  6. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  7. Topological nodal-line fermions in spin-orbit metal PbTaSe2.

    PubMed

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M Zahid

    2016-02-02

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.

  8. Recognizing nodal marginal zone lymphoma: recent advances and pitfalls. A systematic review

    PubMed Central

    van den Brand, Michiel; van Krieken, J. Han J.M.

    2013-01-01

    The diagnosis of nodal marginal zone lymphoma is one of the remaining problem areas in hematopathology. Because no established positive markers exist for this lymphoma, it is frequently a diagnosis of exclusion, making distinction from other low-grade B-cell lymphomas difficult or even impossible. This systematic review summarizes and discusses the current knowledge on nodal marginal zone lymphoma, including clinical features, epidemiology and etiology, histology, and cytogenetic and molecular features. In particular, recent advances in diagnostics and pathogenesis are discussed. New immunohistochemical markers have become available that could be used as positive markers for nodal marginal zone lymphoma. These markers could be used to ensure more homogeneous study groups in future research. Also, recent gene expression studies and studies describing specific gene mutations have provided clues to the pathogenesis of nodal marginal zone lymphoma, suggesting deregulation of the nuclear factor kappa B pathway. Nevertheless, nodal marginal zone lymphoma remains an enigmatic entity, requiring further study to define its pathogenesis to allow an accurate diagnosis and tailored treatment. However, recent data indicate that it is not related to splenic or extranodal lymphoma, and that it is also not related to lymphoplasmacytic lymphoma. Thus, even though the diagnosis is not always easy, it is clearly a separate entity. PMID:23813646

  9. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    DOE PAGES

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; et al

    2016-02-02

    Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterizedmore » by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less

  10. Topological nodal-line fermions in spin-orbit metal PbTaSe2.

    PubMed

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M Zahid

    2016-01-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889

  11. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    NASA Astrophysics Data System (ADS)

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, Baokai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-02-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.

  12. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance.

    PubMed

    Tanaka, Mina; Takei, Kentaro; Kojima, Mikiko; Sakakibara, Hitoshi; Mori, Hitoshi

    2006-03-01

    In intact plants, the shoot apex grows predominantly and inhibits outgrowth of axillary buds. After decapitation of the shoot apex, outgrowth of axillary buds begins. This phenomenon is called an apical dominance. Although the involvement of auxin, which represses outgrowth of axillary buds, and cytokinin (CK), which promotes outgrowth of axillary buds, has been proposed, little is known about the underlying molecular mechanisms. In the present study, we demonstrated that auxin negatively regulates local CK biosynthesis in the nodal stem by controlling the expression level of the pea (Pisum sativum L.) gene adenosine phosphate-isopentenyltransferase (PsIPT), which encodes a key enzyme in CK biosynthesis. Before decapitation, PsIPT1 and PsIPT2 transcripts were undetectable; after decapitation, they were markedly induced in the nodal stem along with accumulation of CK. Expression of PsIPT was repressed by the application of indole-3-acetic acid (IAA). In excised nodal stem, PsIPT expression and CK levels also increased under IAA-free conditions. Furthermore, beta-glucuronidase expression, under the control of the PsIPT2 promoter region in transgenic Arabidopsis, was repressed by an IAA. Our results indicate that in apical dominance one role of auxin is to repress local biosynthesis of CK in the nodal stem and that, after decapitation, CKs, which are thought to be derived from the roots, are locally biosynthesized in the nodal stem rather than in the roots. PMID:16507092

  13. Temporal and spatial requirements for Nodal-induced anterior mesendoderm and mesoderm in anterior neurulation.

    PubMed

    Gonsar, Ngawang; Coughlin, Alicia; Clay-Wright, Jessica A; Borg, Bethanie R; Kindt, Lexy M; Liang, Jennifer O

    2016-01-01

    Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation. PMID:26528772

  14. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    PubMed Central

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889

  15. Temporal and spatial requirements for Nodal-induced anterior mesendoderm and mesoderm in anterior neurulation.

    PubMed

    Gonsar, Ngawang; Coughlin, Alicia; Clay-Wright, Jessica A; Borg, Bethanie R; Kindt, Lexy M; Liang, Jennifer O

    2016-01-01

    Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation.

  16. Data Grid Implementations

    SciTech Connect

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  17. Transforming Power Grid Operations

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Nieplocha, Jarek; Pratt, Robert G.

    2007-04-15

    While computation is used to plan, monitor, and control power grids, some of the computational technologies now used are more than a hundred years old, and the complex interactions of power grid components impede real-time operations. Thus it is hard to speed up “state estimation,” the procedure used to estimate the status of the power grid from measured input. State estimation is the core of grid operations, including contingency analysis, automatic generation control, and optimal power flow. How fast state estimation and contingency analysis are conducted (currently about every 5 minutes) needs to be increased radically so the analysis of contingencies is comprehensive and is conducted in real time. Further, traditional state estimation is based on a power flow model and only provides a static snapshot—a tiny piece of the state of a large-scale dynamic machine. Bringing dynamic aspects into real-time grid operations poses an even bigger challenge. Working with the latest, most advanced computing techniques and hardware, researchers at Pacific Northwest National Laboratory (PNNL) intend to transform grid operations by increasing computational speed and improving accuracy. Traditional power grid computation is conducted on single PC hardware platforms. This article shows how traditional power grid computation can be reformulated to take advantage of advanced computing techniques and be converted to high-performance computing platforms (e.g., PC clusters, reconfigurable hardware, scalable multicore shared memory computers, or multithreaded architectures). The improved performance is expected to have a huge impact on how power grids are operated and managed and ultimately will lead to more reliability and better asset utilization to the power industry. New computational capabilities will be tested and demonstrated on the comprehensive grid operations platform in the Electricity Infrastructure Operations Center, which is a newly commissioned PNNL facility for

  18. Entrainment mapping in patients with sustained atrioventricular nodal reentrant tachycardia: insights into the sites of conduction slowing in the slow atrioventricular nodal pathway.

    PubMed

    Haines, D E; Nath, S; DiMarco, J P; Lobban, J H

    1997-10-01

    The inferoposterior region of the triangle of Koch is hypothesized to be the location of the atrial insertion of the slow atrioventricular (AV) nodal pathway. However, the actual site of conduction slowing in the slow AV nodal pathway is unknown. Entrainment mapping during AV nodal reentry can localize the reentrant pathway as follows: the AH interval measured from the mapping catheter = A'H (where A' is the exit site of the reentrant circuit) minus A'A (the conduction time from A' to the site of mapping); the SH interval during entrainment = SA' (the conduction time from stimulus into the reentry circuit) plus A'H. Thus, in all cases, the SH interval should be greater than or equal to the AH interval, and the deltaAH-SH should increase as distance and conduction time (SA' and A'A) from the reentry circuit increases. Fourteen patients with typical AV nodal reentry (cycle length 346 +/- 62 ms) and 1 with fast-slow (cycle length 430 ms) underwent activation and entrainment mapping from 8 to 12 sites in the triangle of Koch and coronary sinus. Pacing was performed at 2 to 3 mA above threshold, at a cycle length 10 ms shorter than tachycardia. A mapping site was defined as being in close proximity to the circuit if the deltaAH-SH was within 120% of the shortest 20th percentile deltaAH-SH value from all measured sites. In the 14 typical cases, 45 of 83 sites (54%) in the anatomic slow pathway region fulfilled criteria for close proximity to the reentry circuit compared with 13 of 50 sites (26%) outside of this region (p = 0.005). For these patients, the shortest SH interval measured from any entrainment site was 294 +/- 58 ms (89 +/- 10% of tachycardia cycle length, range 70% to 119%), indicating that the site of slow conduction in the slow pathway during AV nodal reentrant tachycardia was distal to all mapped sites. Thus, during typical AV nodal reentry, the "slow" pathway does not conduct slowly, and its insertion is located at or within the inferoposterior or

  19. Service Oriented Gridded Atmospheric Radiances (SOAR)

    NASA Astrophysics Data System (ADS)

    Halem, M.; Goldberg, M. D.; Tilmes, C.; Zhou, L.; Shen, S.; Yesha, Y.

    2005-12-01

    We are developing a scalable web service tool that can provide complex griding services on-demand for atmospheric radiance data sets from multiple temperature and moisture sounding sensors on the NASA and NOAA polar orbiting satellites collected over the past three decades. This server-to-server middle ware tool will provide the framework for transforming user requests for an arbitrary spatial/temporal/spectral gridded radiance data set from one or more instruments into an action to invoke a griding process from a set of scientifically validated application programs that have been developed to perform such functions. The invoked web service agents will access, subset, concatenate, convolve, perform statistical and physically based griding operations and present the data as specified level 3 gridded fields for analysis and visualization in multiple formats. Examples of the griding operations consist of spatial-temporal radiance averaging accounting for the field of view instrument response function, first footprint in grid bin, selecting min/max brightness temperatures within a grid element, ratios of channels, filtering, convolving high resolution spectral radiances to match broader band spectral radiances, limb adjustments, calculating variances of radiances falling in grid box and creating visual displays of these fields. The gridded web services tool will support both human input through a WWW GUI as well as a direct computer request through a W3C SOAP/XML web service interface. It will generate regional and global gridded data sets on demand. A second effort will demonstrate the ability to locate, access, subset and grid radiance data for any time period and resolution from remote archives of NOAA and NASA data. The system will queue the work flow requests, stage processing and delivery of arbitrary gridded data sets in a data base and notify the users when the request is completed. This tool will greatly expand satellite sounding data utilization by

  20. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling

    PubMed Central

    Kenyon, Emma J.; Campos, Isabel; Bull, James C.; Williams, P. Huw; Stemple, Derek L.; Clark, Matthew D.

    2015-01-01

    The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. PMID:25478908

  1. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling.

    PubMed

    Kenyon, Emma J; Campos, Isabel; Bull, James C; Williams, P Huw; Stemple, Derek L; Clark, Matthew D

    2015-01-15

    The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.

  2. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats.

    PubMed

    Brown, A A; Xu, T; Arroyo, E J; Levinson, S R; Brophy, P J; Peles, E; Scherer, S S

    2001-07-15

    We examined the organization of the molecular components of the nodal region in spontaneously diabetic BB-Wistar rats. Frozen sections and teased fibers from the sciatic nerves were immunostained for nodal (voltage-gated Na(+) channels, ankyrin(G), and ezrin), paranodal (contactin, Caspr, and neurofascin 155 kDa), and juxtaparanodal (Caspr2, the Shaker-type K(+) channels Kv1.1 and Kv1.2, and their associated subunit Kvbeta2) proteins. All of these proteins were properly localized in myelinated fibers from rats that had been diabetic for 15-44 days, compared to age-matched, nondiabetic animals. These results demonstrate that the axonal membrane is not reorganized, so nodal reorganization is not likely to be the cause of nerve conduction slowing in this animal model of acute diabetes. PMID:11438983

  3. Activin/Nodal signalling before implantation: setting the stage for embryo patterning

    PubMed Central

    Papanayotou, Costis; Collignon, Jérôme

    2014-01-01

    Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression. PMID:25349448

  4. Activin/Nodal signalling before implantation: setting the stage for embryo patterning.

    PubMed

    Papanayotou, Costis; Collignon, Jérôme

    2014-12-01

    Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression.

  5. Interaction of pupil offset and fifth-order nodal aberration field properties in rotationally symmetric telescopes.

    PubMed

    Hu, Haili; Liu, Jianjun; Fan, Zhigang

    2013-07-29

    In this paper we succeeded in deriving changes in the nodal positions of aberrations that belong to the fifth-order class in pupil dependence by applying a system level pupil decentration vector. Our treatment is specifically for rotationally symmetric multi-mirror optical designs that simply use an offset pupil as a means of creating an unobscured optical design. When the pupil is offset, only the vectors to determine the node locations are modified by the pupil decentration vector, while the nodal properties originally developed for titled/decentered optical systems are retained. In general, the modifications to the nodal vectors for any particular aberration type are contributed only by terms of higher order pupil dependence.

  6. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  7. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi

    PubMed Central

    Margaryan, Naira V.; Gilgur, Alina; Seftor, Elisabeth A.; Purnell, Chad; Arva, Nicoleta C.; Gosain, Arun K.; Hendrix, Mary J. C.; Strizzi, Luigi

    2016-01-01

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro

  8. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  9. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  10. Assessment of Ultrasound Features Predicting Axillary Nodal Metastasis in Breast Cancer: The Impact of Cortical Thickness

    PubMed Central

    Stachs, A.; Thi, A. Tra-Ha; Dieterich, M.; Stubert, J.; Hartmann, S.; Glass, Ä.; Reimer, T.; Gerber, B.

    2015-01-01

    Purpose: To evaluate the accuracy of axillary ultrasound (AUS) in detecting nodal metastasis in patients with early-stage breast cancer and to identify AUS features with high predictive power. Materials and Methods: Prospective single-center preliminary study in 105 patients with a primary diagnosis of breast cancer and clinically negative axilla. AUS was performed using a 12 MHz linear-array transducer before ultrasound-guided needle biopsy. Nodal characteristics (shape, longitudinal-transverse [LT] axis ratio, margins, cortical thickness, hyperechoic hilum) were correlated with histopathological nodal status after SLNB or axillary lymph node dissection (ALND). Results: Nodal metastases were present in 42/105 patients (40.0%). Univariate analyses showed that absence of hyperechoic hilum, round shape, LT axis ratio<2, sharp margins and cortical thickness>3 mm were associated with lymph node metastasis. Multivariate logistic regression analysis revealed cortical thickness > 3 mm as an independent predictive parameter for nodal involvement. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 66.7, 74.6, 63.6, 77.0% and 71.4% respectively when cortical thickness > 3 mm was applied as the criterion for AUS positivity. Axillary tumor volume was low in patients with pT1/2 tumors and negative AUS, since only 3.2% of patients had > 2 metastatic lymph nodes. Conclusion: Cortical thickness>3 mm is a reliable predictor of nodal metastatic involvement. Negative AUS does not exclude lymph node metastases, but extensive axillary tumor volume is rare.

  11. A predictive index of axillary nodal involvement in operable breast cancer.

    PubMed Central

    De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.

    1996-01-01

    We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286

  12. Spectral methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Salas, M. D.; Zang, T. A.

    1983-01-01

    Spectral methods for compressible flows are introduced in relation to finite difference and finite element techniques within the framework of the method of weighted residuals. Current spectral collocation methods are put in historical context. The basic concepts of both Fourier and Chebyshev spectral collocation methods are provided. Filtering strategies for both shock-fitting and shock-capturing approaches are also presented. Fourier shock capturing techniques are evaluated using a one-dimensional, periodic astrophysical 'nozzle' problem. Examples of shock-fitting approaches include a shock/acoustic wave interaction, shock/vortex interaction, and the classical blunt body problem. While the shock capturing spectral method does not yet show a clear advantage over second-order finite differences, equivalent accuracy can be obtained using shock fitting with far fewer grid points.

  13. A quadtree-adaptive spectral wave model

    NASA Astrophysics Data System (ADS)

    Popinet, Stéphane; Gorman, Richard M.; Rickard, Graham J.; Tolman, Hendrik L.

    A spectral wave model coupling a quadtree-adaptive discretisation of the two spatial dimensions with a standard discretisation of the two spectral dimensions is described. The implementation is greatly simplified by reusing components of the Gerris solver (for spatial advection on quadtrees) and WAVEWATCH III (for spectral advection and source terms). Strict equivalence between the anisotropic diffusion and spatial filtering methods for alleviation of the Garden Sprinkler Effect (GSE) is demonstrated. This equivalence facilitates the generalisation of GSE alleviation techniques to quadtree grids. For the case of a cyclone-generated wave field, the cost of the adaptive method increases linearly with spatial resolution compared to quadratically for constant-resolution methods. This leads to decrease in runtimes of one to two orders of magnitude for practical spatial resolutions. Similar efficiency gains are shown to be possible for global spectral wave forecasting.

  14. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  15. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    SciTech Connect

    Lao, Louis; Hope, Andrew J.; Maganti, Manjula; Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander; Cho, B. C. John

    2014-09-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT.

  16. Grid Computing Education Support

    SciTech Connect

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  17. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  18. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements

    PubMed Central

    Norris, Dominic P.; Robertson, Elizabeth J.

    1999-01-01

    The TGFβ-related molecule Nodal is required for establishment of the anterior–posterior (A–P) and left–right (L-R) body axes of the vertebrate embryo. In mouse, several discrete sites of nodal activity closely correlate with its highly dynamic expression domains. nodal function in the posterior epiblast promotes primitive streak formation, whereas transient nodal expression in the extraembryonic visceral endoderm is essential for patterning the rostral central nervous system. Asymmetric nodal expression in the developing node and at later stages in left lateral plate mesoderm has been implicated as a key regulator of L-R axis determination. We have analyzed the cis-regulatory elements controlling nodal expression domains during early development. We show that the regulatory sequences conferring node-specific expression are contained in an upstream region of the locus, whereas early expression in the endoderm and epiblast and asymmetric expression at later stages on the left side of the body axis are controlled by a 600-bp intronic enhancer. Targeted deletion of a 100-bp subregion of this intronic enhancer eliminates nodal expression in the early epiblast and visceral endoderm and disrupts asymmetric expression in the node and lateral plate mesoderm. Thus, developmentally regulated nodal expression at distinct tissue sites during A–P and L-R axis formation is potentially controlled by common transcriptional activators. PMID:10385626

  19. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  20. Eigensolutions of Laplacian Operator on the sphere for geodesic grids

    NASA Astrophysics Data System (ADS)

    Cheong, Hyeong-Bin; Kang, Hyun-Gyu; Jeong, Han-Byeol; Jin, Min-Geun

    2015-04-01

    Spherical Laplacian operator is solved as an eigen-problem for two geodesic grids of the cubed sphere grid and the icosahedral-hexagonal grid. To discretize the Laplacian operator, the spectral element method was used for the cubed-sphere grid, while the finite difference method was employed for the icosahedral-hexagonal grids. Matrix equations with respect to the unknown grid-point values on the global domain, obtained from the discretization, were solved numerically on a standard linear-system solver package. It was shown that the eigenvectors exhibited non lat-lon grid structure, unlike the spherical harmonics functions which are the eigenfuctions for the lat-lon grid. The eigenvalues were found to behave as a step-function-like behavior, i.e., 2n+1 identical eigenvalues for the degree of n. Implication of the eigenvalues and corresponding eigenvectors to the atmospheric dynamical core is discussed in the aspect of the phase speed of some basic dynamical mode as well as the time-step size.

  1. Impact of Incidental Irradiation on Clinically Uninvolved Nodal Regions in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Involved-Field Radiation Therapy: Does Incidental Irradiation Contribute to the Low Incidence of Elective Nodal Failure?

    SciTech Connect

    Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi

    2010-06-01

    Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.

  2. Grid in Geosciences

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2010-05-01

    The worldwide Earth science community covers a mosaic of disciplines and players such as academia, industry, national surveys, international organizations, and so forth. It provides a scientific basis for addressing societal issues, which require that the Earth science community utilize massive amounts of data, both in real and remote time. This data is usually distributed among many different organizations and data centers. These facts, the utilization of massive, distributed data amounts, explain the interest of the Earth science community for Grid technology, also noticeable by the variety of applications ported and tools developed. In parallel to the participation in EGEE, other projects involving ES disciplines were or have been carried out as related projects to EGEE (Enabling Grids for E-sciencE) such as CYCLOPS, SEEGrid, EELA2, EUASIA or outside e.g., in the framework of WGISS/CEOS. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity were deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. Examples are in hydrology for flood or Black Sea Catchment monitoring, and in fire monitoring. Meteorological, pollution and climate applications are based on meteorological models ported on Grid such as MM5 (Mesoscale Model), WRF (Weather Research and Forecasting), RAMS (Regional Atmospheric Modeling System) or CAM (Community Atmosphere Model). Seismological applications on Grid are numerous in locations where their occurrence is important and computer resources too small; then interfaces and gateways have been developed to facilitate the access to data and specific software and avoid work duplication. A portal has been deployed for commercial seismological software, Geocluster, for academic users. In this presentation examples of such applications will

  3. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  4. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  5. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  6. Beyond grid security

    NASA Astrophysics Data System (ADS)

    Hoeft, B.; Epting, U.; Koenig, T.

    2008-07-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.

  7. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  8. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  9. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  10. Computer Code Generates Homotopic Grids

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1992-01-01

    HOMAR is computer code using homotopic procedure to produce two-dimensional grids in cross-sectional planes, which grids then stacked to produce quasi-three-dimensional grid systems for aerospace configurations. Program produces grids for use in both Euler and Navier-Stokes computation of flows. Written in FORTRAN 77.

  11. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  12. Multiplicity of positive and nodal solutions for scalar field equations

    NASA Astrophysics Data System (ADS)

    Cerami, Giovanna; Molle, Riccardo; Passaseo, Donato

    2014-11-01

    In this paper the question of finding infinitely many solutions to the problem -Δu+a(x)u=|u, in RN, u∈H1(RN), is considered when N≥2, p∈(2,2N/(N-2)), and the potential a(x) is a positive function which is not required to enjoy symmetry properties. Assuming that a(x) satisfies a suitable “slow decay at infinity” condition and, moreover, that its graph has some “dips”, we prove that the problem admits either infinitely many nodal solutions or infinitely many constant sign solutions. The proof method is purely variational and allows to describe the shape of the solutions. a(x)→a∞>0 as|x|→∞, a(x)≥a0>0 ∀x∈RN, a∈LlocN/2(RN), ∃ηbar∈(0,√{a∞}):lim|x|→∞ ⁡(a(x)-a∞)e=∞ be satisfied.Then there exists a positive constant,A=A(N,ηbar,a0,a∞)∈R, such that, when|a(x)-a∞|N/2,loc:=supy∈RN ⁡|a(x)-a∞|L(B1(y))The above result (see also the subsequent [3] for a different proof and more general nonlinearities) is the starting point of our work; some comments and questions come naturally looking at its statement. Indeed, assumptions (h1)-(h3) are standard and very mild, moreover, the slow decay condition (h4) is basic and it is the deep motivation for the success in obtaining “multibump” solutions. The solutions are found by a max-min argument on the action functional I restricted to special classes of multibump functions

  13. Prevalence and distribution pattern of nodal metastases in advanced ovarian cancer

    PubMed Central

    Bachmann, Cornelia; Bachmann, Robert; Kraemer, Bernhard; Brucker, Sara Yvonne; Staebler, Anette; Fend, Falko; Rothmund, Ralf; Wallwiener, Diethelm

    2016-01-01

    The objective of this study was to examine the relevance of pelvic and para-aortic lymph node involvement and the tumour characteristics affecting nodal metastases and survival in primary advanced ovarian cancer. A total of 130 consecutive patients were retrospectively investigated. All the patients received stage-related surgery with pelvic and para-aortic lymphadenectomy. The median follow-up was 53.5 months. The clinicopathological parameters and distribution pattern of nodal metastases were evaluated. Lymph node metastases were detectable in 74.62% of the cases. Overall, both pelvic and para-aortic nodes were affected in 35.9% of the patients, whereas 13.3% had metastases only in the pelvic and 13.3% only in the para-aortic lymph nodes. Histological grade 1/2 and 3, serous and endometrioid histology were independent predictors of nodal metastasis. Serous and endometrioid cancers have shown a predilection for metastasis to the pelvic lymph nodes alone, both to the pelvic and the para-aortic nodes, or the para-aortic nodes alone. Overall survival was significantly positively affected by serous histology with positive nodes (P=0.043). It is crucial to investigate the risk factors and metastatic patterns of such patients in a multicenter analysis to evaluate individual subgroups. Prospective studies are required to investigate the prognostic effect of lymphadenectomy in advanced ovarian cancer and its association with histology and distribution pattern of nodal metastasis. PMID:27703680

  14. Precision evaluation of lens systems using a nodal slide/MTF optical bench

    NASA Astrophysics Data System (ADS)

    Doherty, Victor J.; Chapnik, Philip D.

    1992-01-01

    A compact, self-contained production instrument designed to permit the rapid and precise performance characterization of a wide variety of lenses and optical systems has been developed by Eidolon Corporation. The Eidolon Production Nodal Slide/MTF Measurement System can be used to measure effective focal length (EFL), distortion, field curvature, chromatic aberration, spot size, and modulation transfer function (MTF).

  15. [The Nodal regulated dusp4 inhibits mesendoderm formation during zebrafish gastrulation].

    PubMed

    Liu, Zhao-Ting; Wei, Shi; Wang, Qiang

    2012-09-01

    MAP kinase phosphatase-2 (MKP-2/DUSP4), a dual specificity protein phosphatase with tyrosine/serine/ threonine phosphatase activity, is associated with cellular proliferation and differentiation, but its functions during embryo development are unclear. To study the developmental function of dusp4, we first examined the spatiotemporal expression pattern of this gene during zebrafish embryonic development by whole mount in situ hybridization. We found that dusp4 was maternally expressed since its transcripts were present from the one-cell to the 256-cell stages. At early gastrulation stages, dusp4 transcripts specifically distributed at margin region, where the mesendodermal cells were located. Further-more, Nodal signal was crucial for dusp4 expression. The expression of dusp4 was obviously increased in Nodal ligand overexpressed embryos, while its expression was almost lost in the Nodal signal-deficient MZoep mutants. In addition, dusp4 MO was also designed to knock down its expression in embryos. The mesendoderm formation was significantly in-creased in dusp4 morphants, but not obviously changed in dusp4 overexpressed embryos, suggesting that dusp4 is necessary, but not sufficient for the inhibitory of mesendoderm induction. Thus, our results indicate that Nodal regulated dusp4 plays a repressive role in mesendoderm induction. PMID:23017456

  16. Photoacoustic intra-operative nodal staging using clinically approved superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Grootendorst, Diederik J.; Fratila, Raluca M.; Visscher, Martijn; Ten Haken, Bennie; van Wezel, Richard; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theo J. M.

    2013-02-01

    Detection of tumor metastases in the lymphatic system is essential for accurate staging of various malignancies, however fast, accurate and cost-effective intra-operative evaluation of the nodal status remains difficult to perform with common available medical imaging techniques. In recent years, numerous studies have confirmed the additional value of superparamagnetic iron oxide dispersions (SPIOs) for nodal staging purposes, prompting the clearance of different SPIO dispersions for clinical practice. We evaluate whether a combination of photoacoustic (PA) imaging and a clinically approved SPIO dispersion, could be applied for intra-operative nodal staging. Metastatic adenocarcinoma was inoculated in Copenhagen rats for 5 or 8 days. After SPIO injection, the lymph nodes were photoacoustically imaged both in vivo and ex vivo whereafter imaging results were correlated with MR and histology. Results were compared to a control group without tumor inoculation. In the tumor groups clear irregularities, as small as 1 mm, were observed in the PA contrast pattern of the nodes together with an decrease of PA response. These irregularities could be correlated to the absence of contrast in the MR images and could be linked to metastatic deposits seen in the histological slides. The PA and MR images of the control animals did not show these features. We conclude that the combination of photoacoustic imaging with a clinically approved iron oxide nanoparticle dispersion is able to detect lymph node metastases in an animal model. This approach opens up new possibilities for fast intra-operative nodal staging in a clinical setting.

  17. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... authorized only as a part of an integrated communication system wherein 10.6 GHz DEMS User Stations... 47 Telecommunication 5 2013-10-01 2013-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED)...

  18. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... authorized only as a part of an integrated communication system wherein 10.6 GHz DEMS User Stations... 47 Telecommunication 5 2012-10-01 2012-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED)...

  19. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... authorized only as a part of an integrated communication system wherein 10.6 GHz DEMS User Stations... 47 Telecommunication 5 2014-10-01 2014-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED)...

  20. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorized only as a part of an integrated communication system wherein 10.6 GHz DEMS User Stations... 47 Telecommunication 5 2011-10-01 2011-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED)...

  1. NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method

    NASA Astrophysics Data System (ADS)

    Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto

    2014-06-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.

  2. Three-Dimensional, Nodal, Neutron Diffusion Criticality Code System in Hex-Z Geometry.

    1992-07-27

    Version: 00 SIXTUS-3 is a 3D extention of SIXTUS-2 and is based on a response matrix nodal model. The code offers a fast and accurate analysis of critical systems in the regular hex-z geometry with the multigroup cross section representation including arbitrary upscattering.

  3. Nodal Analysis Optimization Based on the Use of Virtual Current Sources: A Powerful New Pedagogical Method

    ERIC Educational Resources Information Center

    Chatzarakis, G. E.

    2009-01-01

    This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…

  4. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design. PMID:27557003

  5. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    SciTech Connect

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry and cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.

  6. Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1

    PubMed Central

    Housley, Michael P.; Weiner, Orion D.

    2012-01-01

    Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions. PMID:22945937

  7. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  8. Sensitivity derivatives and optimization of nodal point locations for vibration reduction

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Haftka, Raphael T.

    1987-01-01

    A method is developed for sensitivity analysis and optimization of nodal point locations in connection with vibration reduction. A straightforward derivation of the expression for the derivative of nodal locations is given, and the role of the derivative in assessing design trends is demonstrated. An optimization process is developed which uses added lumped masses on the structure as design variables to move the node to a preselected location; for example, where low response amplitude is required or to a point which makes the mode shape nearly orthogonal to the force distribution, thereby minimizing the generalized force. The optimization formulation leads to values for added masses that adjust a nodal location while minimizing the total amount of added mass required to do so. As an example, the node of the second mode of a cantilever box beam is relocated to coincide with the centroid of a prescribed force distribution, thereby reducing the generalized force substantially without adding excessive mass. A comparison with an optimization formulation that directly minimizes the generalized force indicates that nodal placement gives essentially a minimum generalized force when the node is appropriately placed.

  9. Senstitivty analysis and optimization of nodal point placement for vibration reduction

    NASA Technical Reports Server (NTRS)

    Pritchard, J. I.; Adelman, H. M.; Haftka, R. T.

    1986-01-01

    A method is developed for sensitivity analysis and optimization of nodal point locations in connection with vibration reduction. A straightforward derivation of the expression for the derivative of nodal locations is given, and the role of the derivative in assessing design trends is demonstrated. An optimization process is developed which uses added lumped masses on the structure as design variables to move the node to a preselected location - for example, where low response amplitude is required or to a point which makes the mode shape nearly orthogonal to the force distribution, thereby minimizing the generalized force. The optimization formulation leads to values for added masses that adjust a nodal location while minimizing the total amount of added mass required to do so. As an example, the node of the second mode of a cantilever box beam is relocated to coincide with the centroid of a prescribed force distribution, thereby reducing the generalized force substantially without adding excessive mass. A comparison with an optimization formulation that directly minimizes the generalized force indicates that nodal placement gives essentially a minimum generalized force when the node is appropriately placed.

  10. A difference-equation formalism for the nodal domains of separable billiards

    NASA Astrophysics Data System (ADS)

    Manjunath, Naren; Samajdar, Rhine; Jain, Sudhir R.

    2016-09-01

    Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.

  11. Radiation therapy for carcinoma of the hypopharynx with special reference to nodal control

    SciTech Connect

    Teshima, T.; Chatani, M.; Inoue, T.; Miyahara, H.; Sato, T.

    1988-05-01

    From October 1977 through December 1983, 61 patients with carcinoma of the hypopharynx were treated with radiation therapy (RT) and surgery or with RT alone. Five-year survival rates by N-stage, according to the TNM classification by UICC (1978), were 52% for N0 cases, 23% for N1, and 17% for N2-3 (N1 vs. N2-3, not significant). For N1-3 cases, corresponding figures by level of cervical nodal involvement by UICC (1978) were 29% for level 3 cases, 15% for level 2, and 8% for level 4 (level 3 vs. level 4, p less than 0.04). Therefore, the level of cervical nodal involvement was a more useful prognosticator for patients with nodal metastasis than the N-stage. Effective nodal control for patients with clinically positive nodes (N1-3) was obtained with a combination of neck node dissection and RT of 50 Gy or more. For N0 cases, elective RT of 50 Gy or more, encompassing an adequate field, was required.

  12. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Liu, Jianpeng; Vanderbilt, David; Duan, Wenhui

    2016-05-01

    Based on first-principles calculations and an effective Hamiltonian analysis, we systematically investigate the electronic and topological properties of alkaline-earth compounds A X2 (A =Ca , Sr, Ba; X =Si , Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a snakelike nodal loop in three-dimensional momentum space. Drumheadlike surface states emerge either inside or outside the loop circle on the (001) surface depending on surface termination, while complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit coupling is included, the nodal line is gapped and the system becomes a topological insulator with Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and silicides.

  13. GridLAB-D/SG

    SciTech Connect

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  14. Mammographic Density and Prediction of Nodal Status in Breast Cancer Patients.

    PubMed

    Hack, C C; Häberle, L; Geisler, K; Schulz-Wendtland, R; Hartmann, A; Fasching, P A; Uder, M; Wachter, D L; Jud, S M; Loehberg, C R; Lux, M P; Rauh, C; Beckmann, M W; Heusinger, K

    2013-02-01

    Aim: Nodal status remains one of the most important prognostic factors in breast cancer. The cellular and molecular reasons for the spread of tumor cells to the lymph nodes are not well understood and there are only few predictors in addition to tumor size and multifocality that give an insight into additional mechanisms of lymphatic spread. Aim of our study was therefore to investigate whether breast characteristics such as mammographic density (MD) add to the predictive value of the presence of lymph node metastases in patients with primary breast cancer. Methods: In this retrospective study we analyzed primary, metastasis-free breast cancer patients from one breast center for whom data on MD and staging information were available. A total of 1831 patients were included into this study. MD was assessed as percentage MD (PMD) using a semiautomated method and two readers for every patient. Multiple logistic regression analyses with nodal status as outcome were used to investigate the predictive value of PMD in addition to age, tumor size, Ki-67, estrogen receptor (ER), progesterone receptor (PR), grading, histology, and multi-focality. Results: Multifocality, tumor size, Ki-67 and grading were relevant predictors for nodal status. Adding PMD to a prediction model which included these factors did not significantly improve the prediction of nodal status (p = 0.24, likelihood ratio test). Conclusion: Nodal status could be predicted quite well with the factors multifocality, tumor size, Ki-67 and grading. PMD does not seem to play a role in the lymphatic spread of tumor cells. It could be concluded that the amount of extracellular matrix and stromal cell content of the breast which is reflected by MD does not influence the probability of malignant breast cells spreading from the primary tumor to the lymph nodes.

  15. Concordance of studies for nodal staging is prognostic for worse survival in esophageal cancer.

    PubMed

    Dhupar, R; Correa, A M; Ajani, J; Betancourt, S; Mehran, R J; Swisher, S G; Hofstetter, W L

    2014-01-01

    Pretreatment clinical staging in esophageal cancer influences prognosis and treatment strategy. Current staging strategies utilize multiple imaging modalities, and often the results are contradictory. No studies have examined the implications of concordance of computed tomography (CT), positron emission tomography (PET), and endoscopic ultrasound (EUS) when used for the evaluation of nodal disease. The objective of this study was to determine if concordance of CT, PET, or EUS for nodal disease predicts worse overall survival. We reviewed 615 esophageal cancer patients with pretreatment CT, PET, and EUS that underwent esophagectomy for survival outcomes based on concordance of studies for nodal disease. Concordant N+ is defined as two or three studies positive for nodal disease; non-concordant N+ is defined as only one positive study. Node-positive disease by any study predicted shorter survival than node-negative disease (42% vs. 73% 5-year survival; P<0.001). Additionally, non-concordant N+ patients had shorter survival than N- patients (52% vs. 73% 5-year survival; P<0.001). Concordant N+ patients had shorter survival than non-concordant N+ patients (38- vs. 61-month median survival; P=0.017). There were no statistically significant differences in survival based on specific combinations of studies. When PET was disregarded, patients with both CT+ and EUS+ had shorter survival than patients with either CT+ or EUS+ (39- vs. 58-month median survival; P=0.029). Pretreatment CT, PET, or EUS concordance for node-positive disease predicts shorter overall survival in patients that undergo esophagectomy for esophageal cancer. Predicting survival in esophageal cancer should consider the synergistic capabilities of CT, PET, and EUS in evaluating nodal status.

  16. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  17. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    SciTech Connect

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  18. Laser catheter-induced atrioventricular nodal delays and atrioventricular block in dogs: acute and chronic observations.

    PubMed

    Narula, O S; Boveja, B K; Cohen, D M; Narula, J T; Tarjan, P P

    1985-02-01

    Selective modification of atrioventricular (AV) nodal conduction, that is, induction of varying degrees of AV nodal delays or block (second or third degree), or both, was achieved with a pervenous laser catheter technique. In six adult mongrel dogs anesthetized with pentobarbital (Nembutal), 5F leads were placed through femoral and external jugular veins and placed into the right atrium and His bundle region. Through another femoral vein, a 200 micron optical fiber was inserted by way of a 7F catheter with a preformed curved tip. Guided by fluoroscopy and His bundle electrograms, the fiber's tip was positioned in the AV nodal region. After autonomic blockade was achieved with intravenous propranolol (5 mg) and atropine (1 mg), AV conduction was analyzed. An argon laser delivered 3 to 4 watts into the fiber in bursts of 10 seconds' duration until the desired degree of AV nodal delay or block (second or third degree) was manifested. Monitoring of His bundle electrograms was continued for 2 hours. Four weekly serial electrocardiograms were recorded, after which electrophysiologic studies were repeated. Acute post-lasing studies showed that: in all six dogs, the mean PR interval was prolonged from 116 ms (range 100 to 135) to 153 ms (range 120 to 185), with the prolongation being caused exclusively by AH lengthening from 68 ms (range 50 to 90) to 105 ms (range 65 to 140); the mean effective refractory period of the AV node increased from less than 185 ms (range less than 150 to less than 200) to 215 ms (range 190 to 280); and the mean atrial pacing cycle length, at which second degree AV nodal block was manifested, increased from 210 ms (range 160 to 260) to 261 ms (range 205 to 320).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Clinical nodal staging scores for prostate cancer: a proposal for preoperative risk assessment

    PubMed Central

    Kluth, L A; Abdollah, F; Xylinas, E; Rieken, M; Fajkovic, H; Seitz, C; Sun, M; Karakiewicz, P I; Schramek, P; Herman, M P; Becker, A; Hansen, J; Ehdaie, B; Loidl, W; Pummer, K; Lee, R K; Lotan, Y; Scherr, D S; Seiler, D; Ahyai, S A; Chun, F K-H; Graefen, M; Tewari, A; Nonis, A; Bachmann, A; Montorsi, F; Gönen, M; Briganti, A; Shariat, S F

    2014-01-01

    Background: Pelvic lymph node dissection in patients undergoing radical prostatectomy for clinically localised prostate cancer is not without morbidity and its therapeutical benefit is still a matter of debate. The objective of this study was to develop a model that allows preoperative determination of the minimum number of lymph nodes needed to be removed at radical prostatectomy to ensure true nodal status. Methods: We analysed data from 4770 patients treated with radical prostatectomy and pelvic lymph node dissection between 2000 and 2011 from eight academic centres. For external validation of our model, we used data from a cohort of 3595 patients who underwent an anatomically defined extended pelvic lymph node dissection. We estimated the sensitivity of pathological nodal staging using a beta-binomial model and developed a novel clinical (preoperative) nodal staging score (cNSS), which represents the probability that a patient has lymph node metastasis as a function of the number of examined nodes. Results: In the development and validation cohorts, the probability of missing a positive lymph node decreases with increase in the number of nodes examined. A 90% cNSS can be achieved in the development and validation cohorts by examining 1–6 nodes in cT1 and 6–8 nodes in cT2 tumours. With 11 nodes examined, patients in the development and validation cohorts achieved a cNSS of 90% and 80% with cT3 tumours, respectively. Conclusions: Pelvic lymph node dissection is the only reliable technique to ensure accurate nodal staging in patients treated with radical prostatectomy for clinically localised prostate cancer. The minimum number of examined lymph nodes needed for accurate nodal staging may be predictable, being strongly dependent on prostate cancer characteristics at diagnosis. PMID:25003663

  20. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  1. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  2. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  3. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  4. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  5. GridPV Toolbox

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  6. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  7. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava.

    PubMed

    Röttinger, Eric; DuBuc, Timothy Q; Amiel, Aldine R; Martindale, Mark Q

    2015-01-01

    Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms. PMID:25979707

  8. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava.

    PubMed

    Röttinger, Eric; DuBuc, Timothy Q; Amiel, Aldine R; Martindale, Mark Q

    2015-05-15

    Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.

  9. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava

    PubMed Central

    Röttinger, Eric; DuBuc, Timothy Q.; Amiel, Aldine R.; Martindale, Mark Q.

    2015-01-01

    ABSTRACT Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms. PMID:25979707

  10. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  11. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  12. The Spectral Shift Function and Spectral Flow

    NASA Astrophysics Data System (ADS)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  13. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  14. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  15. APEC Smart Grid Initiative

    SciTech Connect

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  16. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  17. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  18. Dynamic properties of three-dimensional piezoelectric Kagome grids

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Jing; Li, Feng-Ming

    2015-07-01

    Piezoelectric Kagome grids can be considered as a kind of functional material because they have vibration isolation performance and can transform mechanical energy to electric energy. In this study, the dynamic properties of three-dimensional (3D) piezoelectric Kagome grids without and with material defects are studied based on the frequency-domain responses. The spectral element method (SEM) is adopted to solve a 3D piezoelectric beam which contains bending components in two planes, tensional components, and torsional components. The dynamic stiffness matrix of a spectral piezoelectric beam is derived. Highly accurate solutions in the frequency-domain are obtained by solving the equation of motion of the whole structure. Compared with the results from the FEM and those in the existing literature, it can be seen that the SEM can be effectively used to study the 3D piezoelectric Kagome grids. The band-gap properties of Kagome grid and defect state properties of Kagome grid with material defects are analyzed. The effect of the piezoelectric parameter on the band-gap property is investigated further.

  19. An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Linda Z.; Holland, Nicholas D.

    2002-01-01

    The full-length sequence and zygotic expression of an amphioxus nodal gene are described. Expression is first detected in the early gastrula just within the dorsal lip of the blastopore in a region of hypoblast that is probably comparable with the vertebrate Spemann's organizer. In the late gastrula and early neurula, expression remains bilaterally symmetrical, limited to paraxial mesoderm and immediately overlying regions of the neural plate. Later in the neurula stage, all neural expression disappears, and mesodermal expression disappears from the right side. All along the left side of the neurula, mesodermal expression spreads into the left side of the gut endoderm. Soon thereafter, all expression is down-regulated except near the anterior and posterior ends of the animal, where transcripts are still found in the mesoderm and endoderm on the left side. At this time, expression also begins in the ectoderm on the left side of the head, in the region where the mouth later forms. These results suggest that amphioxus and vertebrate nodal genes play evolutionarily conserved roles in establishing Spemann's organizer, patterning the mesoderm rostrocaudally and setting up the asymmetrical left-right axis of the body.

  20. Error estimation and adaptive order nodal method for solving multidimensional transport problems

    SciTech Connect

    Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.

    1998-01-01

    The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.

  1. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    NASA Technical Reports Server (NTRS)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  2. The effect of viscosity on steady transonic flow with a nodal solution topology

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Zank, Gary P.

    1991-01-01

    The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.

  3. Cryopreservation of Passiflora pohlii nodal segments and assessment of genetic stability of regenerated plants.

    PubMed

    Merhy, T S M; Vianna, M G; Garcia, R O; Pacheco, G; Mansur, E

    2014-01-01

    Passiflora pohlii is a wild species native to Brazil, with a potential agronomic interest due to its tolerance to soil-borne pathogens that cause damage to the passion fruit culture, and could be used in breeding. Because this species occurs in impacted regions, the goal of this study was the development of in vitro conservation strategies, using nodal segments from axenic plants. Encapsulation-vitrification and vitrification techniques were tested for cryopreservation of nodal segments. The highest recovery (65%) was obtained with the vitrification technique using treatment with the PVS3 vitrification solution from 30 to 120 min. Post-rewarming recovery was achieved on MSM medium supplemented with 30.8 μM BAP with incubation in the dark for 30 days before transfer in the presence of light. No differences were detected between control and cryopreserved materials as assayed by RAPD and ISSR. PMID:24997838

  4. Error analysis of the quadratic nodal expansion method in slab geometry

    SciTech Connect

    Penland, R.C.; Turinsky, P.J.; Azmy, Y.Y.

    1994-10-01

    As part of an effort to develop an adaptive mesh refinement strategy for use in state-of-the-art nodal diffusion codes, the authors derive error bounds on the solution variables of the quadratic Nodal Expansion Method (NEM) in slab geometry. Closure of the system is obtained through flux discontinuity relationships and boundary conditions. In order to verify the analysis presented, the authors compare the quadratic NEM to the analytic solution of a test problem. The test problem for this investigation is a one-dimensional slab [0,20cm] with L{sup 2} = 6.495cm{sup 2} and D = 0.1429cm. The slab has a unit neutron source distributed uniformly throughout and zero flux boundary conditions. The analytic solution to this problem is used to compute the node-average fluxes over a variety of meshes, and these are used to compute the NEM maximum error on each mesh.

  5. Coherence Effects of Caroli-de Gennes-Matricon Modes in Nodal Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Kato, Yusuke

    2016-05-01

    Coherence effects by the impurity scattering of Caroli-de Gennes-Matricon (CdGM) modes in a vortex for nodal topological superconductors have been studied. The coherence effects reflect a topological number defined on a particular momentum space avoiding the superconducting gap nodes. First, we analytically derived the eigenvalue and eigenfunction of the CdGM modes, including the zero-energy modes, in a nodal topological superconducting state without impurities, where we focused on a possible superconducting state of UPt3 as an example. Then, we studied impurity effects on the CdGM modes by introducing the impurity self-energy, which are dominated by the coherence factor depending on the eigenfunction of the CdGM modes. For the zero-energy CdGM modes, the coherence factor vanishes in a certain momentum range, which is guaranteed by topological invariance characterized by the one-dimensional winding number.

  6. A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries

    SciTech Connect

    Toreja, A J; Uddin, R

    2002-10-21

    A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.

  7. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  8. Numerical divergence effects of equivalence theory in the nodal expansion method

    SciTech Connect

    Zika, M.R.; Downar, T.J. )

    1993-11-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.

  9. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    SciTech Connect

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  10. Three-Dimensional Conformal Radiation Therapy for Esophageal Squamous Cell Carcinoma: Is Elective Nodal Irradiation Necessary?

    SciTech Connect

    Zhao Kuaile; Ma Jinbo; Liu Guang; Wu Kailiang; Shi Xuehui; Jiang Guoliang

    2010-02-01

    Purpose: To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. Methods and Materials: A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. Results: All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. Conclusions: In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems.

  11. Salvage therapy of small volume prostate cancer nodal failures: a review of the literature.

    PubMed

    De Bari, Berardino; Alongi, Filippo; Buglione, Michela; Campostrini, Franco; Briganti, Alberto; Berardi, Genoveffa; Petralia, Giuseppe; Bellomi, Massimo; Chiti, Arturo; Fodor, Andrei; Suardi, Nazareno; Cozzarini, Cesare; Nadia, Di Muzio; Scorsetti, Marta; Orecchia, Roberto; Montorsi, Francesco; Bertoni, Filippo; Magrini, Stefano Maria; Jereczek-Fossa, Barbara Alicja

    2014-04-01

    New imaging modalities may be useful to identify prostate cancer patients with small volume, limited nodal relapse ("oligo-recurrent") potentially amenable to local treatments (radiotherapy, surgery) with the aim of long-term control of the disease, even in a condition traditionally considered prognostically unfavorable. This report reviews the new diagnostic tools and the main published data about the role of surgery and radiation therapy in this particular subgroup of patients.

  12. Sentinel Node Identification Rate and Nodal Involvement in the EORTC 10981-22023 AMAROS Trial

    PubMed Central

    Meijnen, Philip; van Tienhoven, Geertjan; van de Velde, Cornelis J. H.; Mansel, Robert E.; Bogaerts, Jan; Duez, Nicole; Cataliotti, Luigi; Klinkenbijl, Jean H. G.; Westenberg, Helen A.; van der Mijle, Huub; Snoj, Marko; Hurkmans, Coen; Rutgers, Emiel J. T.

    2010-01-01

    Background The randomized EORTC 10981-22023 AMAROS trial investigates whether breast cancer patients with a tumor-positive sentinel node biopsy (SNB) are best treated with an axillary lymph node dissection (ALND) or axillary radiotherapy (ART). The aim of the current substudy was to evaluate the identification rate and the nodal involvement. Methods The first 2,000 patients participating in the AMAROS trial were evaluated. Associations between the identification rate and technical, patient-, and tumor-related factors were evaluated. The outcome of the SNB procedure and potential further nodal involvement was assessed. Results In 65 patients, the sentinel node could not be identified. As a result, the sentinel node identification rate was 97% (1,888 of 1,953). Variables affecting the success rate were age, pathological tumor size, histology, year of accrual, and method of detection. The SNB results of 65% of the patients (n = 1,220) were negative and the patients underwent no further axillary treatment. The SNB results were positive in 34% of the patients (n = 647), including macrometastases (n = 409, 63%), micrometastases (n = 161, 25%), and isolated tumor cells (n = 77, 12%). Further nodal involvement in patients with macrometastases, micrometastases, and isolated tumor cells undergoing an ALND was 41, 18, and 18%, respectively. Conclusions With a 97% detection rate in this prospective international multicenter study, the SNB procedure is highly effective, especially when the combined method is used. Further nodal involvement in patients with micrometastases and isolated tumor cells in the sentinel node was similar—both were 18%. PMID:20300966

  13. Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review.

    PubMed

    Barake, Walid; Caldwell, Jane; Baranchuk, Adrian

    2013-01-01

    This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided. PMID:23329875

  14. EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP

    SciTech Connect

    B. D. Ganapol; D. W. Nigg

    2008-09-01

    In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.

  15. Nodal soliton solutions for generalized quasilinear Schrödinger equations

    SciTech Connect

    Deng, Yinbin Peng, Shuangjie; Wang, Jixiu

    2014-05-15

    This paper is concerned with constructing nodal radial solutions for generalized quasilinear Schrödinger equations in R{sup N} which arise from plasma physics, fluid mechanics, as well as high-power ultashort laser in matter. For any given integer k ⩾ 0, by using a change of variables and minimization argument, we obtain a sign-changing minimizer with k nodes of a minimization problem.

  16. Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review

    PubMed Central

    Barake, Walid; Caldwell, Jane; Baranchuk, Adrian

    2013-01-01

    This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided. PMID:23329875

  17. Unidimensional Measurement May Evaluate Target Lymph Nodal Response After Induction Chemotherapy for Nasopharyngeal Carcinoma

    PubMed Central

    Chen, Chuanben; Zhang, Mingwei; Xu, Yuanji; Yue, Qiuyuan; Bai, Penggang; Zhou, Lin; Xiao, Youping; Zheng, Dechun; Lin, Kongqi; Qiu, Sufang; Chen, Yunbin; Pan, Jianji

    2016-01-01

    Abstract The aim of the study was to evaluate whether short axis and long axis on axial and coronal magnetic resonance imaging planes would reflect the tumor burden or alteration in size after induction chemotherapy in nasopharyngeal carcinoma. Patients with pathologically confirmed nasopharyngeal carcinoma (n = 37) with at least 1 positive cervical lymph node (axial short axis ≥15 mm) were consecutively enrolled in this prospective study. Lymph nodal measurements were performed along its short axis and long axis in both axial and coronal magnetic resonance imaging planes at diagnosis and after 2 cycles of induction chemotherapy. In addition, lymph nodal volumes were automatically calculated in 3D treatment-planning system, which were used as reference standard. Student's t test or nonparametric Mann–Whitney U test was used to compare the continuous quantitative variables. Meanwhile, the κ statistic and McNemar's test were used to evaluate the degree of agreement and discordance in response categorization among different measurements. Axial short axis was significantly associated with volumes at diagnosis (P < 0.001). A good agreement (κ=0.583) was found between axial short axis and volumetric criteria. However, the inconsistent lymph nodal shrinkage in 4 directions was observed. Axial short-axis shrinking was more rapid than the other 3 parameters. Interestingly, when utilizing the alternative planes for unidimensional measurements to assess tumor response, coronal short-axis showed the best concordance (κ=0.792) to the volumes. Axial short axis may effectively reflect tumor burden or change in tumor size in the assessment of target lymph nodal response after induction chemotherapy for nasopharyngeal carcinoma. However, it should be noted that axial short axis may amplify the therapeutic response. In addition, the role of coronal short axis in the assessment of tumor response needs further evaluation. PMID:26945354

  18. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures

    SciTech Connect

    Caramana, E.J.; Shashkov, M.J.

    1997-12-31

    The bane of Lagrangian hydrodynamics calculations is premature breakdown of the grid topology that results in severe degradation of accuracy and run termination often long before the assumption of Lagrangian zonal mass ceased to be valid. At short spatial grid scales this is usually referred to by the terms hourglass mode or keystone motion associated in particular with underconstrained grids such as quadrilaterals and hexahedrons in two and three dimensions, respectively. At longer spatial scales relative to the grid spacing there is what is referred to ubiquitously as spurious vorticity, or the long-thin zone problem. In both cases the result is anomalous grid distortion and tangling that has nothing to do with the actual solution, as would be the case for turbulent flow. In this work the authors show how such motions can be eliminated by the proper use of subzonal Lagrangian masses, and associated densities and pressures. These subzonal masses arise in a natural way from the fact that they require the mass associated with the nodal grid point to be constant in time. This is addition to the usual assumption of constant, Lagrangian zonal mass in staggered grid hydrodynamics scheme. The authors show that with proper discretization of subzonal forces resulting from subzonal pressures, hourglass motion and spurious vorticity can be eliminated for a very large range of problems. Finally the authors are presenting results of calculations of many test problems.

  19. Decay of isotropic turbulence generated by a mechanically agitated grid.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Wan, C. A.

    1972-01-01

    Experimental study of weak isotropic turbulence, created by a mechanically agitated grid, has indicated that in the absence of large linear-momentum wakes the energy of turbulence relaxes very quickly into a stable self-preserving structure, which, depending on the initial Reynolds number of turbulence, decays at different constant inverse powers of time. Both the longitudinal correlation coefficients and the corresponding spectral distributions, except for the difference in the parametric constants, are of the same functional type as those found previously for a passive grid.

  20. The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation

    NASA Astrophysics Data System (ADS)

    He, Jin; Lilley, Carmen M.

    2009-08-01

    Surface stress was incorporated into the finite element absolute nodal coordinate formulation in order to model elastic bending of nanowires in large deformation. The absolute nodal coordinate formulation is a numerical method to model bending structures in large deformation. The generalized Young-Laplace equation was employed to model the surface stress effect on bending nanowires. Effects from surface stress and large deformation on static bending nanowires are presented and discussed. The results calculated with the absolute nodal coordinate formulation incorporated with surface stress show that the surface stress effect makes the bending nanowires behave like softer or stiffer materials depending on the boundary condition. The surface stress effect diminishes as the dimensions of the bending structures increase beyond the nanoscale. The developed algorithm is consistent with the classical absolute nodal coordinate formulation at the macroscale.

  1. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.

    PubMed

    Molina, M Dolores; de Crozé, Noémie; Haillot, Emmanuel; Lepage, Thierry

    2013-08-01

    Recent studies suggest that specification of the dorsal-ventral and left-right axes of the sea urchin embryo relies on Nodal-expressing signalling centres located in the ventral ectoderm and in the archenteron that share striking similarities with vertebrate organising centres. Nodal and its downstream target BMP2/4 pattern all three germ layers along the dorsal-ventral axis, repress neural fates and control morphogenesis of the larva. Moreover, Nodal establishes left-right asymmetry by repressing formation of the adult rudiment and inhibiting germline cells differentiation on the right side, while BMP2/4 promotes expression of mesodermal genes on the left side. These findings provide a framework for future studies and raise new questions regarding the events upstream and downstream of Nodal and BMP signalling during axis formation. PMID:23769944

  2. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  3. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  4. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network

    PubMed Central

    Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.

    2016-01-01

    A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153

  5. A coarse-mesh nodal method-diffusive-mesh finite difference method

    SciTech Connect

    Joo, H.; Nichols, W.R.

    1994-05-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  6. A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Dufva, K. E.; Sopanen, J. T.; Mikkola, A. M.

    2005-02-01

    In this study, a new two-dimensional shear deformable beam element is proposed for large deformation problems. The kinematics of the beam are defined using an exact displacement field, where the rotation angles of the cross-section caused by bending and shear deformations are described separately. Cubic interpolation is used for determining the curvature of the beam due to bending, while linear interpolation polynomials are used for the shear strain. The absolute nodal coordinate formulation, in which global displacements and slopes are used as the nodal coordinates, is employed for the finite element discretization of the beam. The capability of the element to predict static deformation is studied using numerical examples. The results imply that the element is free of a phenomenon called shear-locking. The capability of the element to model highly nonlinear behaviour is established using a bending test where the cantilever is bent into a full circle using only four elements. A flexible pendulum and a spin-up manoeuvre are modelled in order to study the behaviour of the element in dynamical problems. The proposed element is also compared with an existing shear deformable beam element based on the absolute nodal coordinate formulation. Finally, the simple linearization of the beam curvature based on the assumption of small strain will be discussed.

  7. Nodal Liquid Theory of the Pseudo-Gap Phase of High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Balents, Leon; Fisher, Matthew P. A.; Nayak, Chetan

    We introduce and study the nodal liquid, a novel zero-temperature quantum phase obtained by quantum-disordering a d-wave superconductor. It has numerous remarkable properties which lead us to suggest it as an explanation of the pseudo-gap state in underdoped high-temperature superconductors. In the absence of impurities, these include power-law magnetic order, a T-linear spin susceptibility, nontrivial thermal conductivity, and two- and one-particle charge gaps, the latter evidenced, e.g. in transport and electron photoemission (which exhibits pronounced fourfold anisotropy inherited from the d-wave quasiparticles). We use a (2+1)-dimensional duality transformation to derive an effective field theory for this phase. The theory is comprised of gapless neutral Dirac particles living at the former d-wave nodes, weakly coupled to the fluctuating gauge field of a dual Ginzburg-Landau theory. The nodal liquid interpolates naturally between the d-wave superconductor and the insulating antiferromagnet, and our effective field theory is powerful enough to permit a detailed analysis of a panoply of interesting phenomena, including charge ordering, antiferromagnetism, and d-wave superconductivity. We also discuss the zero-temperature quantum phase transitions which separate the nodal liquid from various ordered phases.

  8. Some results of a nodal method for nonlinear space-time reactor dynamics

    SciTech Connect

    Le, T.T.; Grossman, L.M.

    1991-12-31

    There are many reports about nodal methods for static and dynamic problems, but not many for the nonlinear feedback cases. In this paper, a class of nodal methods called ``mathematical nodal method`` (MNM) is studied with the temperature feedback problems. The spatially complex domain of the problem is represented as a collection of geometrically simple subdomains of the size of fuel assemblies called nodes. Over each node, the time dependent coefficients of the neutron flux, precursor concentrations, fuel and coolant temperatures are the surface and volume weighted average (moment) values of the unknown solutions; the space dependent basis functions are a combination of Legendre polynomials. If the material parameters are a linear function of fuel and coolant temperatures, the coupled equations can be put in a dimensionless form and a system of time dependent ordinary differential equations containing nonlinear feedback terms is obtained. These nonlinear feedback terms are updated at each time step during the time iteration process. Results of some benchmark problems are included in this report.

  9. Some results of a nodal method for nonlinear space-time reactor dynamics

    SciTech Connect

    Le, T.T. ); Grossman, L.M. . Dept. of Nuclear Engineering)

    1991-01-01

    There are many reports about nodal methods for static and dynamic problems, but not many for the nonlinear feedback cases. In this paper, a class of nodal methods called mathematical nodal method'' (MNM) is studied with the temperature feedback problems. The spatially complex domain of the problem is represented as a collection of geometrically simple subdomains of the size of fuel assemblies called nodes. Over each node, the time dependent coefficients of the neutron flux, precursor concentrations, fuel and coolant temperatures are the surface and volume weighted average (moment) values of the unknown solutions; the space dependent basis functions are a combination of Legendre polynomials. If the material parameters are a linear function of fuel and coolant temperatures, the coupled equations can be put in a dimensionless form and a system of time dependent ordinary differential equations containing nonlinear feedback terms is obtained. These nonlinear feedback terms are updated at each time step during the time iteration process. Results of some benchmark problems are included in this report.

  10. Primary nodal peripheral T-cell lymphomas: diagnosis and therapeutic considerations

    PubMed Central

    Lage, Luis Alberto de Pádua Covas; Cabral, Tamara Carvalho dos Santos; Costa, Renata de Oliveira; Gonçalves, Marianne de Castro; Levy, Debora; Zerbini, Maria Cláudia Nogueira; Pereira, Juliana

    2015-01-01

    Nodal peripheral T-cell lymphomas are a rare group of neoplasms derived from post-thymic and activated T lymphocytes. A review of scientific articles listed in PubMed, Lilacs, and the Cochrane Library databases was performed using the term “peripheral T-cell lymphomas”. According to the World Health Organization classification of hematopoietic tissue tumors, this group of neoplasms consists of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), angioimmunoblastic T-cell lymphoma (AITL), anaplastic large cell lymphoma-anaplastic lymphoma kinase positive (ALCL-ALK+), and a provisional entity called anaplastic large cell lymphoma-anaplastic lymphoma kinase negative (ALCL-ALK−). Because the treatment and prognoses of these neoplasms involve different principles, it is essential to distinguish each one by its clinical, immunophenotypic, genetic, and molecular features. Except for anaplastic large cell lymphoma-anaplastic lymphoma kinase positive, which has no adverse international prognostic index, the prognosis of nodal peripheral T-cell lymphomas is worse than that of aggressive B-cell lymphomas. Chemotherapy based on anthracyclines provides poor outcomes because these neoplasms frequently have multidrug-resistant phenotypes. Based on this, the current tendency is to use intensified cyclophosphamide, doxorubicin, vincristine, prednisolone (CHOP) regimens with the addition of new drugs, and autologous hematopoietic stem cell transplantation. This paper describes the clinical features and diagnostic methods, and proposes a therapeutic algorithm for nodal peripheral T-cell lymphoma patients. PMID:26190436

  11. A coarse-mesh nodal method, the diffusive-mesh finite difference method

    SciTech Connect

    Joo, H.; Nichols, W.R.

    1994-12-31

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross section (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes and can lead to difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the diffusive-mesh finite difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  12. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  13. RHALE: A 3-D MMALE code for unstructured grids

    SciTech Connect

    Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.

    1993-08-01

    This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.

  14. Potential Pitfall in the Assessment of Lung Cancer with FDG-PET/CT: Talc Pleurodesis Causes Intrathoracic Nodal FDG Avidity

    PubMed Central

    Carter, Brett W.; Muse, Victorine; Digumarthy, Subba; Shepard, Jo-Anne; Sharma, Amita

    2013-01-01

    Objective. Talc pleurodesis is a common procedure performed to treat complications related to lung cancer. The purpose of our study was to characterize any thoracic nodal findings on FDG PET/CT associated with prior talc pleurodesis. Materials and Methods. The electronic medical record identified 44 patients who underwent PET/CT between January 2006 and December 2010 and had a history of talc pleurodesis. For each exam, we evaluated the distribution pattern, size, and attenuation of intrathoracic lymph nodes and the associated standardized uptake value. Results. High-attenuation intrathoracic lymph nodes were noted in 11 patients (25%), and all had corresponding increased FDG uptake (range 2–9 mm). Involved nodal groups were anterior peridiaphragmatic (100%), paracardiac (45%), internal mammary (25%), and peri-IVC (18%) nodal stations. Seven of the 11 patients (63%) had involvement of multiple lymph nodal groups. Mean longitudinal PET/CT and standalone CT followups of 15 ± 11 months showed persistence of both high-attenuation and increased uptake at these sites, without increase in nodal size suggesting metastatic disease involvement. Conclusions. FDG avid, high-attenuation lymph nodes along the lymphatic drainage pathway for parietal pleura are a relatively common finding following talc pleurodesis and should not be mistaken for nodal metastases during the evaluation of patients with history of lung cancer. PMID:26316941

  15. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  16. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  17. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  18. TRMM Gridded Text Products

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2007-01-01

    NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.

  19. Constructing the ASCI computational grid

    SciTech Connect

    BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.

    2000-06-01

    The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.

  20. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  1. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  2. Enhancing control of grid distribution in algebraic grid generation

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I.-P.; Roelke, R. J.

    1992-01-01

    Three techniques are presented to enhance the control of grid-point distribution for a class of algebraic grid generation methods known as the two-, four- and six-boundary methods. First, multidimensional stretching functions are presented, and a technique is devised to construct them based on the desired distribution of grid points along certain boundaries. Second, a normalization procedure is proposed which allows more effective control over orthogonality of grid lines at boundaries and curvature of grid lines near boundaries. And third, interpolating functions based on tension splines are introduced to control curvature of grid lines in the interior of the spatial domain. In addition to these three techniques, consistency conditions are derived which must be satisfied by all user-specified data employed in the grid generation process to control grid-point distribution. The usefulness of the techniques developed in this study was demonstrated by using them in conjunction with the two- and four-boundary methods to generate several grid systems, including a three-dimensional grid system in the coolant passage of a radial turbine blade with serpentine channels and pin fins.

  3. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  4. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  5. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  6. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  7. A staggered-grid convolutional differentiator for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  8. Grid crusher apparatus and method

    SciTech Connect

    McDaniels, J.D. Jr.

    1994-01-11

    A grid crusher apparatus and method are provided for a nuclear fuel rod consolidation system. Spacer grids are crushed within a basket which is then placed in a storage canister. The grid crusher apparatus has a ram assembly and a basket driving mechanism. The ram assembly has a sleeve ram and a central ram. The sleeve ram surrounds the central ram which is longitudinally movable within the sleeve ram. The central ram protrudes from the sleeve ram at a ram contact end and is retractable upon application of a preselected force to the central ram so that the central ram is flush with the sleeve ram at the ram contact end. The basket driving mechanism is configured to move the basket containing a spacer grid towards the ram contact end so that the spacer grid is crushed within the basket. The spacer grid is crushed by the combination of successive forces from the central ram and the sleeve ram, respectively. Essentially, the central portion of the spacer grid is crushed first, and then the remaining outer portion of the spacer grid is crushed to complete the crushing action of the spacer grid. The foregoing process is repeated for other spacer grids until the basket reaches a predetermined allowable capacity, and then the basket is stored in a storage canister. 11 figs.

  9. Evaluating the Information Power Grid using the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    VanderWijngaartm Rob F.; Frumkin, Michael A.

    2004-01-01

    The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.

  10. Wire grid polarizers fabricated by low angle deposition

    NASA Astrophysics Data System (ADS)

    Watts, M. P. C.; Little, M.; Egan, E.; Hochbaum, A.; Johns, C.; Stephansen, S.

    2013-03-01

    Oblique angle metal deposition has been combined with high aspect ratio imprinted structures to create wire grid polarizers (WGP's) for use as polarization recyclers in liquid crystal displays. The optical results for the oblique deposition WGP show contrast comparable to a conventionally etched WGP. In addition, the WGP showed improved spectral and spatial uniformity as compared to a multilayer reflective polarizer. The next steps to the fabrication of meter sized WGP are proposed.

  11. Regional Nodal Recurrence After Breast Conservation Treatment With Radiotherapy for Women With Early-Stage Breast Carcinoma

    SciTech Connect

    Lukens, J. Nicholas Vapiwala, Neha; Hwang, W.-T.; Solin, Lawrence J.

    2009-04-01

    Purpose: To report the long-term outcomes for women presenting with regional lymph node recurrence after breast conservation treatment with radiotherapy for Stage I and II invasive breast carcinoma. Methods and Materials: Of the women with pathologic Stage I and II invasive breast carcinoma treated with breast conservation treatment at University of Pennsylvania, 29 developed regional nodal recurrence as their first site of failure. An analysis of the patterns of regional nodal recurrence and their prognosis after recurrence was undertaken. The median follow-up from regional nodal recurrence was 5.4 years. Results: The pattern of regional nodal recurrence was as follows: 14 (48%) with simultaneous local and axillary recurrence, 7 (24%) with recurrence in the axilla only, 5 (17%) with recurrence in the supraclavicular region only, and 3 (10%) with multiple nodal sites of recurrence. For the entire study group, the 5-, 10-, and 15-year overall survival rate was 70%, 37%, and 28%, respectively. The 10-year overall survival rate for patients with locoregional recurrence was 32% compared with 45% for patients with regional-only recurrence (p = 0.50). The 10-year overall survival rate for patients with axillary recurrence discovered on pathologic examination of the mastectomy specimen was 31% compared with 42% for patients with palpable regional lymphadenopathy (p = 0.83). Conclusion: Patients with regional nodal recurrence after breast conservation treatment with radiotherapy for early-stage breast carcinoma are potentially salvageable. The prognosis after regional nodal recurrence was not significantly different when stratified by the presence or absence of simultaneous in-breast recurrence or the method of detection.

  12. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  13. GridPP: the UK grid for particle physics.

    PubMed

    Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

    2009-06-28

    The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments. PMID:19451101

  14. GridPP: the UK grid for particle physics.

    PubMed

    Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

    2009-06-28

    The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments.

  15. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  16. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  17. TASMANIAN Sparse Grids Module

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  18. Evaluating Spectral Signals to Identify Spectral Error

    PubMed Central

    Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana

    2016-01-01

    Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541

  19. The EUAsiaGrid Project

    NASA Astrophysics Data System (ADS)

    Paganoni, Marco

    The EUAsiaGrid proposal contributes to the aims of the Research Infrastructures part of the EU Seventh Framework Programme (FP7) by promoting interoperation between the European and the Asian-Pacific Grids. The project, with a total number of 15 partners coordinated by INFN, started on April 1st 2008. It will disseminate the knowledge about the EGEE Grid infrastructure, organize specific training events and support applications both within the scientific communities with an already long experience in the Computing Grids (High Energy Physics, Computational Chemistry, Bioinformatics and Biomedics) and in the most recent ones (Social Sciences, Disaster Mitigation, Cultural Heritage). Ultimately the EUAsiaGrid project will pave the way towards a common e-Infrastructure with the European and the Asian Grids.

  20. Prepares Overset Grids for Processing

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  1. Prepares Overset Grids for Processing

    SciTech Connect

    Barnette, Daniel W.

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically load balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.

  2. Spectral methods for CFD

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched.

  3. NodalB{copyright}: A unique program for optimum production of sucker rod pumping oil wells

    SciTech Connect

    Guirados, C.D.; Ercolino, J.M.; Sandoval, J.L.

    1995-12-31

    Sucker rod pumping is the oldest artificial lift method used in production of oil wells. This method is usually designed and analyzed with the assistance of programs based on simplified models, such as the API RP 11L, or with a wave equation simulator. In many cases, however, a technique that permits consideration of the inflow and outflow performance of the well is a more efficient way to design and analyze an oil well. This technique, referred to as Total Analysis or System Analysis (SA), has been successfully applied to flowing and artificially lifted wells. This paper presents a computer program developed by Intevep S.A., called NodalB{copyright}, created to perform the SA of sucker rod pumping wells. NodalB{copyright}`s unique characteristics make it a competitive program in today`s market of design and optimization software. This program allows consideration of the inflow performance of the reservoir depending on the drilling scheme, either vertical or horizontal, and determination of the sensitivity of the rod pumping system to its most relevant parameters, such as: pumping speed and stroke, pump diameter, gas oil ratio, gas separation efficiency, tubing diameter, pump depth, rod string design, oil viscosity, injected diluent (diesel, kerosene, etc.) ratio, water cut, reservoir pressure, productivity index, and different production schemes (i.e. production through the tubing or through the casing-tubing annulus). These features show the power of this program as a predictive tool. NodalB{copyright} is specially applicable to design, optimization and troubleshooting of heavy and viscous oil wells, taking into account the viscosity effects in the rod pumping system.

  4. Plant regeneration from single-nodal-stem explants of legume tree Prosopis alba Griseb.

    PubMed

    Castillo de Meier, G; Bovo, O A

    2000-08-01

    Seeds of Prosopis alba were scarified with abrasive paper and placed to germinate on MS (Murashige and Skoog 1962) nutrient medium. After 7 days of culture, the basal part of cotyledons was removed and pieces of 4 mm" from distal parts were cultured on Murashige and Skoog (1962) mineral salts and vitamins (MS) (3% sucrose) supplemented with growth regulators. Callus proliferation took place in the majority of the media tested. A low percentage of calluses with green buds that developed on MS basal medium containing 0.1 mg.L-1 2,4-D alone or supplemented with BAP at 0.1 mg.L-1 was observed. Neither cotyledonary segments in any medium assayed regenerated the whole plants. Bud elongation (near 70%) was achieved when single-nodal-stem segments cut from 20 days old seedlings were cultured on MS salts supplemented with 3 mg.L-1 NAA or 3 mg.L-1 IBA combined with 0.05 mg.L-1 KIN after 60 days in culture. Multiple shoots per bud were also observed. Single-nodal-stem segments from five-year-old plants were also cultured on the same media used for seedling explants. Maximal frequency of explants with bud elongation (near 70%) was found on MS with 0.1 mg.L-1 NAA plus 1 mg.L-1 BAP after 60 days of culture. Single-nodal-stem explants cut from adult trees (more than 20 years) were also employed, but the number of bud elongation was lesser. For rooting, the elongated shoots were transferred to a semisolid or liquid MS culture medium employing a paper bridge, supplemented with 0.5 mg.L-1 IBA or 0.1 mg.L-1 NAA.

  5. UV Spectral Templates for High-Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara; Lindler, Don; Lanz, Thierry

    2003-01-01

    New instrumentation such as DEIMOS on Keck-II now enable deep spectral surveys, and thereby samples of galaxies at younger ages. At a redshift, z = 1, all galaxies are less than 6 Gyr old and hence, have not yet formed horizontal-branch stars. Also, at z = 1, the restframe-UV comes into view, and with it, a new set of spectral diagnostics. UV spectral features are especially important because most of the UV flux comes from stars at the main-sequence turnoff (MSTO). Hence, UV spectral diagnostics enable the ages of z = 1 galaxies to be estimated directly from MSTO stars. In preparation for these high-redshift spectral surveys, we are developing UV spectral templates for stellar populations younger than 6 Gyr using UV-optical spectra of stars observed by HST/STIS. We are also planning to supplement these observations with theoretical spectral grids of stars of various metallicities. In this paper, we present a progress report on the observation-based spectral templates and spectral diagnostics.

  6. On unstructured grids and solvers

    NASA Technical Reports Server (NTRS)

    Barth, T. J.

    1990-01-01

    The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.

  7. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  8. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  9. Optimal three-dimensional reusable tug trajectories for planetary missions including correction for nodal precession

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Equations are derived by using the maximum principle to maximize the payload of a reusable tug for planetary missions. The analysis includes a correction for precession of the space shuttle orbit. The tug returns to this precessed orbit (within a specified time) and makes the required nodal correction. A sample case is analyzed that represents an inner planet mission as specified by a fixed declination and right ascension of the outgoing asymptote and the mission energy. The reusable stage performance corresponds to that of a typical cryogenic tug. Effects of space shuttle orbital inclination, several trajectory parameters, and tug thrust on payload are also investigated.

  10. [Successful ablation of an atrioventricular nodal reentrant tachycardia ablation 2 years after orthotopic heart transplantation].

    PubMed

    Bellmann, Barbara; Reith, Sebastian; Gemein, Christopher; Schauerte, Patrick

    2015-09-01

    We report the case of a 48-year-old woman with an orthotopic heart transplantation. Two years after transplantation, the patient reported intermittent palpitations and dyspnea. The results of the 12-lead electrogram provided suspicion of AV nodal reentrant tachycardia (AVNRT), which was confirmed in the electrophysiological examination. The AVNRT was successfully eliminated without complications by radiofrequency catheter ablation of the slow pathway. The case shows that an AVNRT, even with existing sinus rhythm of the original heart, can also occur on the transplanted heart and ablation is safe and feasible. PMID:26208808

  11. Theoretical basis of the linear nodal and linear characteristic methods in the TORT computer code

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.

    1993-01-01

    Novel numerical procedures for solving the Boltzmann equation have been added to the Three Dimensional Oak Ridge Discrete Ordinates Transport Code (TORT). These procedures produce much more accuracy in theflux solutions for a given mesh size, or allow a smaller mesh to be used in order to reduce costs. The first method is a special adaptation of the linear nodal method proposed by Walters and O'Dell. The basic method has been extensively adapted in order to avoid numerical distortions that may occur in shielding problems. The second method is a characteristic procedure with linear expansion of sources and boundary flows. These methods are in widespread use in the TORT code.

  12. Theoretical basis of the linear nodal and linear characteristic methods in the TORT computer code

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.

    1993-01-01

    Novel numerical procedures for solving the Boltzmann equation have been added to the Three Dimensional Oak Ridge Discrete Ordinates Transport Code (TORT). These procedures produce much more accuracy in theflux solutions for a given mesh size, or allow a smaller mesh to be used in order to reduce costs. The first method is a special adaptation of the linear nodal method proposed by Walters and O`Dell. The basic method has been extensively adapted in order to avoid numerical distortions that may occur in shielding problems. The second method is a characteristic procedure with linear expansion of sources and boundary flows. These methods are in widespread use in the TORT code.

  13. Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code

    SciTech Connect

    Sullivan, T.J.

    1986-05-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve the engine thermal efficiency. The investigation was accomplished by using the Lewis nodal-analysis Stirling engine computer model. Bypassing the P-40 Stirling engine heater at full power resulted in a rise in the indicated thermal efficiency from 40.6 to 41.0 percent. For the idealized (some losses not included) heater bypass that was analyzed, this benefit is not considered significant.

  14. Treatment of paroxysmal nodal tachycardia by dual demand pacemaker in the coronary sinus.

    PubMed Central

    O'Keeffe, D B; Curry, P V; Sowton, E

    1981-01-01

    A patient with refractory paroxysmal atrioventricular nodal re-entrant tachycardia had required direct current cardioversion to terminate attacks on 83 occasions. A dual demand pacemaker was implanted to sense and interrupt attacks of tachycardia automatically. The pacing electrode was positioned in the proximal coronary sinus near to the atrioventricular node; a site from which fixed rate underdrive pacing successfully interrupted attacks throughout a trial period of one week, with a lead left in this position on a temporary basis. Complete control of the arrhythmia was obtained in the six months after pacemaker implantation. Images PMID:7459160

  15. Nodal promotes the self-renewal of human colon cancer stem cells via an autocrine manner through Smad2/3 signaling pathway.

    PubMed

    Gong, Yuehua; Guo, Ying; Hai, Yanan; Yang, Hao; Liu, Yang; Yang, Shi; Zhang, Zhenzhen; Ma, Meng; Liu, Linhong; Li, Zheng; He, Zuping

    2014-01-01

    Colorectal cancer is one of the most common and fatal tumors. However, molecular mechanisms underlying carcinogenesis of colorectal cancer remain largely undefined. Here, we explored the expression and function of Nodal in colon cancer stem cells (CCSCs). Nodal and its receptors were present in numerous human colorectal cancer cell lines. NODAL and ALK-4 were coexpressed in human colon cancerous tissues, and NODAL, CD24, and CD44, markers for CCSCs, were expressed at higher levels in human colon cancerous tissues than adjacent noncancerous colon tissues. Human CCSCs were isolated by magnetic activated cell sorting using anti-CD24 and anti-CD44. Nodal transcript and protein were hardly detectable in CD44- or CD24-negative human colorectal cancer cell lines, whereas Nodal and its receptors were present in CCSCs. Notably, Nodal facilitated spheroid formation of human CCSCs, and phosphorylation of Smad2 and Smad3 was activated by Nodal in cells of spheres derived from human CCSCs. Collectively, these results suggest that Nodal promotes the self-renewal of human CCSCs and mediate carcinogenesis of human colorectal cancer via an autocrine manner through Smad2/3 pathway. This study provides a novel insight into molecular mechanisms controlling fate of human CCSCs and offers new targets for gene therapy of human colorectal cancer.

  16. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  17. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.

    PubMed

    Duboc, Véronique; Röttinger, Eric; Besnardeau, Lydia; Lepage, Thierry

    2004-03-01

    In the sea urchin embryo, the oral-aboral axis is specified after fertilization by mechanisms that are largely unknown. We report that early sea urchin embryos express Nodal and Antivin in the presumptive oral ectoderm and demonstrate that these genes control formation of the oral-aboral axis. Overexpression of nodal converted the whole ectoderm into oral ectoderm and induced ectopic expression of the orally expressed genes goosecoid, brachyury, BMP2/4, and antivin. Conversely, when the function of Nodal was blocked, by injection of an antisense Morpholino oligonucleotide or by injection of antivin mRNA, neither the oral nor the aboral ectoderm were specified. Injection of nodal mRNA into Nodal-deficient embryos induced an oral-aboral axis in a largely non-cell-autonomous manner. These observations suggest that the mechanisms responsible for patterning the oral-aboral axis of the sea urchin embryo may share similarities with mechanisms that pattern the dorsoventral axis of other deuterostomes.

  18. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    SciTech Connect

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  19. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  20. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  1. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  2. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  3. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  4. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  5. Spectral collocation methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.

    1987-01-01

    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

  6. Indications for Pelvic Nodal Treatment in Prostate Cancer Should Change. Validation of the Roach Formula in a Large Extended Nodal Dissection Series

    SciTech Connect

    Abdollah, Firas; Cozzarini, Cesare; Suardi, Nazareno; Gallina, Andrea; Capitanio, Umberto; Bianchi, Marco; Tutolo, Manuela; Salonia, Andrea; La Macchia, Mariangela; Di Muzio, Nadia; Rigatti, Patrizio; Montorsi, Francesco; Briganti, Alberto

    2012-06-01

    Purpose: Previous studies have criticized the predicting ability of the Roach formula in assessing the risk of lymph node invasion (LNI) in contemporary patients with prostate cancer (PCa) due to a significant overestimation of LNI rates. However, all those studies included patients treated with limited pelvic lymph node dissection (PLND), which is associated with high rates of false negative findings. We hypothesized that the Roach formula is still an accurate tool for LNI predictions if an extended PLND (ePLND) is performed. Methods and Materials: We included 3,115 consecutive patients treated with radical prostatectomy and ePLND between 2000 and 2010 at a single tertiary referral center. Extended PLND consisted of removal of obturator, external iliac, and hypogastric lymph nodes. We externally validated the Roach formula by using the area under the receiver operating characteristics curve and calibration plot method. Moreover, we tested the performance characteristics of different formula-generated cutoff values ranging from 1% to 20%. Results: The accuracy of the Roach formula was 80.3%. The calibration showed only a minor underestimation of the LNI risk in high-risk patients (6.7%). According to the Roach formula, the use of 15% cut off would have allowed 74.2% (2,311/3,115) of patients to avoid nodal irradiation, while up to 32.7% (111/336) of all patients with LNI would have been missed. When the cut off was lowered to 6%, nodal treatment would have been spared in 1,541 (49.5%) patients while missing 41 LNI patients. The sensitivity, specificity, and negative predictive values associated with the 6% cut off were 87.9%, 54%, and 97.3%, respectively. Conclusions: The Roach formula is still accurate and does not overestimate the rate of LNI in contemporary prostate cancer patients if they are treated with ePLND. However, the recommended cut off of 15% would miss approximately one-third of patients with LNI. Based on our results, the cut off should be lowered to

  7. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  8. New Method for Imaging Gap Nodal Structure of Unconventional Superconductors through the Anisotropic Nonlinear Meissner Effect

    NASA Astrophysics Data System (ADS)

    Bae, Seokjin; Tan, Yuewen; Gogna, Rahul; Mendelsohn, Nathan; Remillard, Steven; Anlage, Steven

    We present a new measurement method which can be used to image gap nodal structure of superconductors whose pairing symmetry is unknown. This method utilizes photoresponse from a microwave resonance of the superconducting sample perturbed by a scanned laser spot. For an epitaxial or single crystal sample, the anisotropy of this photoresponse is directly related to that of gap function via the non-linear Meissner coefficient, so the gap nodal directions can be inferred from the photoresponse image. The significant advantage of the presented method over previous spiral or lumped circuit resonator methods is that it does not require a complicated lithographic patterning process which often degrades superconductivity or introduces defect-dominant photoresponse and hence limits one from testing various kinds of materials. The validity of the method is confirmed both by HFSS simulation and experiments on unpatterned superconducting thin films. Photoresponse images from example unconventional superconductors will be also presented and discussed. This work is supported by the NSF Grants DMR-1410712.

  9. Oyster Creek cycle 10 nodal model parameter optimization study using PSMS

    SciTech Connect

    Dougher, J.D.

    1987-01-01

    The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed.

  10. Hybrid modal nodal method for multibody smart structure model reduction: application to modal feedback control

    NASA Astrophysics Data System (ADS)

    Matichard, Fabrice; Gaudiller, Luc

    2006-12-01

    The hybrid modal nodal (HMN) method, designed for multibody smart structure model reduction and feedback control development, is based on the independent modeling of structural and electromechanical behavior. Firstly, this approach permits reducing the model of substructures independently of the electromechanical behavior. This allows choosing the most adapted component mode synthesis (CMS) method and corresponding code for any application, something that is not permitted by classical multi-physics projection-based methods. Thus, the substructuring process used in this paper is based on super-elements directly adapted for multibody dynamics modeling. Secondly, the electromechanical behavior of distributed components is introduced into the structural modal model via a nodal formulation. Its independence of any projection guarantees accuracy and its formulation is valid whatever the multibody assembly and its modal shapes. The proposed application is composed of successive developments and experiments designed to validate the model reduction method, its implementation and its use for modal feedback control, i.e. a smart beam, actively controlled by piezoelectric ceramics. It is successively clamped to illustrate the electromechanical coupling reduction, articulated to introduce the rigid-body/flexible mode coupling reduction and, finally, bi-articulated in order to deal with the nonlinear problem.

  11. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm

    PubMed Central

    Yaguchi, Junko; Takeda, Noriyo; Inaba, Kazuo; Yaguchi, Shunsuke

    2016-01-01

    When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis. PMID:27101101

  12. Comparison of Nodal Risk Formula and MR Lymphography for Predicting Lymph Node Involvement in Prostate Cancer

    SciTech Connect

    Deserno, Willem M.L.L.G.; Debats, Oscar A.; Rozema, Tom; Fortuin, Ansje S.; Heesakkers, Roel A.M.; Hoogeveen, Yvonne; Peer, Petronella G.M.; Barentsz, Jelle O.; Lin, Emile N.J.T. van

    2011-09-01

    Purpose: To compare the nodal risk formula (NRF) as a predictor for lymph node (LN) metastasis in patients with prostate cancer with magnetic resonance lymphography (MRL) using Ultrasmall Super-Paramagnetic particles of Iron Oxide (USPIO) and with histology as gold standard. Methods and Materials: Logistic regression analysis was performed with the results of histopathological evaluation of the LN as dependent variable and the nodal risk according to the NRF and the result of MRL as independent input variables. Receiver operating characteristic (ROC) analysis was performed to assess the performance of the models. Results: The analysis included 375 patients. In the single-predictor regression models, the NRF and MRL results were both significantly (p <0.001) predictive of the presence of LN metastasis. In the models with both predictors included, NRF was nonsignificant (p = 0.126), but MRL remained significant (p <0.001). For NRF, sensitivity was 0.79 and specificity was 0.38; for MRL, sensitivity was 0.82 and specificity was 0.93. After a negative MRL result, the probability of LN metastasis is 4% regardless of the NRF result. After a positive MRL, the probability of having LN metastasis is 68%. Conclusions: MRL is a better predictor of the presence of LN metastasis than NRF. Using only the NRF can lead to a significant overtreatment on the pelvic LN by radiation therapy. When the MRL result is available, the NRF is no longer of added value.

  13. Inland waterway ports nodal attraction indices relevant in development strategies on regional level

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.

    2016-08-01

    Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.

  14. Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway

    PubMed Central

    Xu, Cong; Fan, Zi Peng; Müller, Patrick; Fogley, Rachel; DiBiase, Anthony; Trompouki, Eirini; Unternaehrer, Juli; Xiong, Fengzhu; Torregroza, Ingrid; Evans, Todd; Megason, Sean G.; Daley, George Q.; Schier, Alexander F.; Young, Richard A.; Zon, Leonard I.

    2012-01-01

    SUMMARY In mammalian embryonic stem cells, the acquisition of pluripotency is dependent upon Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog, and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extra-embryonic yolk syncytial layer (YSL), which produces Nodal required for endoderm induction. We examined the genes that were regulated by Nanog-like, and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which in turn specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extra-embryonic tissue required for endoderm induction. PMID:22421047

  15. [Successful selective electrical ablation of the retrograde pathway in atrioventricular nodal reentry tachycardia associated with syncope].

    PubMed

    Lukl, J; Cíhalík, C

    1992-01-01

    A 55-year-old man was admitted to the intensive care unit on account of repeatedly occurring syncopes which developed at the peak of physical exertion. The attack was reproduced by exercise on a bicycle ergometer: the patient developed paroxysmal tachycardia with a narrow QRS and a frequency of 160/min leading after 20 sec. to severe hypotension and loss of consciousness. The same tachycardia caused by programmed atrial stimulation caused a drop of tension in the recumbent position by 30 mmHg and after more detailed analysis during electrophysiological examination it was evaluated as atrioventricular nodal reentrant tachycardia. By an electric discharge of 300 J administered by means of a stimulation electrode 7F USCI into the area of the AV node the retrograde conduction through the perinodal rapid pathways was completely interrupted and 1st. degree atrioventricular block developed. Repeated electrophysiological examination and exercise tests on a bicycle ergometer provided evidence of the disappearance of the retrograde pathway and the impossibility to elicit AVNRT. The authors express the view that the rapid perinodal pathway is interrupted in successful cases in both directions and the 1st. degree AV block is due to conduction along a slow pathway and not incidental slowing of conduction along the rapid pathway which is the generally accepted interpretation. Modification of the atrioventricular conduction by interruption of the rapid pathway by fulguration is according to data in the literature and the described patient a method which makes is possible to cure severe atrioventricular nodal reentrant tachycardias.

  16. Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity

    PubMed Central

    Palm, Anna-Karin E.; Friedrich, Heike C.; Kleinau, Sandra

    2016-01-01

    Marginal zone (MZ) B cells, representing a distinct subset of innate-like B cells, mount rapid T-independent responses to blood-borne antigens. They express low-affinity polyreactive antigen receptors that recognize both foreign and self-structures. The spleen is considered the exclusive site for murine MZ B cells. However, we have here identified B cells with a MZ B-cell phenotype in the subcapsular sinuses of mouse lymph nodes. The nodal MZ (nMZ) B cells display high levels of IgM, costimulators and TLRs, and are represented by naïve and memory cells. The frequency of nMZ B cells is about 1–6% of nodal B cells depending on mouse strain, with higher numbers in older mice and a trend of increased numbers in females. There is a significant expansion of nMZ B cells following immunization with an autoantigen, but not after likewise immunization with a control protein or with the adjuvant alone. The nMZ B cells secrete autoantibodies upon activation and can efficiently present autoantigen to cognate T cells in vitro, inducing T-cell proliferation. The existence of self-reactive MZ B cells in lymph nodes may be a source of autoantigen-presenting cells that in an unfortunate environment may activate T cells leading to autoimmunity. PMID:27277419

  17. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm.

    PubMed

    Yaguchi, Junko; Takeda, Noriyo; Inaba, Kazuo; Yaguchi, Shunsuke

    2016-04-01

    When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis. PMID:27101101

  18. Observation of topological nodal fermion semimetal phase in ZrSiS

    NASA Astrophysics Data System (ADS)

    Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; Sanchez, Daniel S.; Sankar, Raman; Szlawska, Maria; Xu, Su-Yang; Dimitri, Klauss; Dhakal, Nagendra; Maldonado, Pablo; Oppeneer, Peter M.; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz

    2016-05-01

    Unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ ) point, the M point, and the X point of the BZ, respectively. We experimentally establish the spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.

  19. Nodal predictive error model and Bayesian approach for thermal diffusivity and heat source mapping

    NASA Astrophysics Data System (ADS)

    Massard, H.; Fudym, Olivier; Orlande, H. R. B.; Batsale, J. C.

    2010-07-01

    This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis-Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.

  20. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    DOE PAGES

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less

  1. Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element

    PubMed Central

    Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna

    2011-01-01

    RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265

  2. Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes.

    PubMed

    Schmid, Tobias; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    We present the effects of misalignments on the field dependence of the third-order aberration fields of traditional, two-mirror astronomical telescopes in the context of nodal aberration theory, which we believe is the most general and extensible framework for describing and improving on-station performance. While many of the advantages of nodal aberration theory, compared to other, often power series expansion-based descriptions of misalignment effects on aberrations, become particularly important when analyzing telescopes with more than two mirrors, or in the presence of figure errors; this paper aims to provide and demonstrate the fundamental concepts needed to fully describe the state of correction of misaligned two-mirror telescopes. Importantly, it is shown that the assumption that perfect performance on axis ensures a fully aligned telescope is false, and we demonstrate that if Ritchey-Chrétien telescopes are aligned for zero coma on axis as the sole criterion, formidable misalignments will likely remain, leading to image quality degradation, particularly beyond midfield caused by astigmatism with binodal field dependence (i.e., astigmatism goes to zero at two points in the field).

  3. Reflector modelling of small high leakage cores making use of multi-group nodal equivalence theory

    SciTech Connect

    Theron, S. A.; Reitsma, F.

    2012-07-01

    This research focuses on modelling reflectors in typical material testing reactors (MTRs). Equivalence theory is used to homogenise and collapse detailed transport solutions to generate equivalent nodal parameters and albedo boundary conditions for reflectors, for subsequent use in full core nodal diffusion codes. This approach to reflector modelling has been shown to be accurate for two-group large commercial light water reactor (LWR) analysis, but has not been investigated for MTRs. MTRs are smaller, with much larger leakage, environment sensitivity and multi-group spectrum dependencies than LWRs. This study aims to determine if this approach to reflector modelling is an accurate and plausible homogenisation technique for the modelling of small MTR cores. The successful implementation will result in simplified core models, better accuracy and improved efficiency of computer simulations. Codes used in this study include SCALE 6.1, OSCAR-4 and EQUIVA (the last two codes are developed and used at Necsa). The results show a five times reduction in calculational time for the proposed reduced reactor model compared to the traditional explicit model. The calculated equivalent parameters however show some sensitivity to the environment used to generate them. Differences in the results compared to the current explicit model, require more careful investigation including comparisons with a reference result, before its implementation can be recommended. (authors)

  4. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  5. Universal heat conduction in Ce1 -xYbxCoIn5 : Evidence for robust nodal d -wave superconducting gap

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Petrovic, C.; Maple, M. B.; Shu, L.; Li, S. Y.

    2016-02-01

    In the heavy-fermion superconductor Ce1 -xYbxCoIn5 , Yb doping was reported to cause a possible change from nodal d -wave superconductivity to a fully gapped d -wave molecular superfluid of composite pairs near x ≈0.07 (nominal value xnom=0.2 ). Here we present systematic thermal conductivity measurements on Ce1 -xYbxCoIn5 (x =0.013 , 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d -wave superconducting gap in Ce1 -xYbxCoIn5 . Similar universal heat conduction is also observed in the CeCo (In1 -yCdy )5 system. These results reveal a robust nodal d -wave gap in CeCoIn5 upon Yb or Cd doping.

  6. Shifting nodal-plane suppressions in high-order-harmonic spectra from diatomic molecules in orthogonally polarized driving fields

    NASA Astrophysics Data System (ADS)

    Das, T.; Figueira de Morisson Faria, C.

    2016-08-01

    We analyze the imprint of nodal planes in high-order-harmonic spectra from aligned diatomic molecules in intense laser fields whose components exhibit orthogonal polarizations. We show that the typical suppression in the spectra associated to nodal planes is distorted, and that this distortion can be employed to map the electron's angle of return to its parent ion. This investigation is performed semianalytically at the single-molecule response and single-active orbital level, using the strong-field approximation and the steepest descent method. We show that the velocity form of the dipole operator is superior to the length form in providing information about this distortion. However, both forms introduce artifacts that are absent in the actual momentum-space wave function. Furthermore, elliptically polarized fields lead to larger distortions in comparison to two-color orthogonally polarized fields. These features are investigated in detail for O2, whose highest occupied molecular orbital provides two orthogonal nodal planes.

  7. Spin-orbit interaction driven collective electron-hole excitations in a noncentrosymmetric nodal loop Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Ahn, Kyo-Hoon; Lee, Kwan-Woo; Pickett, Warren E.

    2015-09-01

    NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to "Russian doll nested" Fermi surfaces containing 4 ×10-4 electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T*≈100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low-energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.

  8. The effect of differential growth rates across plants on spectral predictions of physiological parameters.

    PubMed

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic

  9. The Effect of Differential Growth Rates across Plants on Spectral Predictions of Physiological Parameters

    PubMed Central

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and

  10. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  11. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  12. Structured and unstructured grid generation.

    PubMed

    Thompson, J F; Weatherill, N P

    1992-01-01

    Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687

  13. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  14. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  15. Hydroacoustic propagation grids for the CTBT knowledge databaes BBN technical memorandum W1303

    SciTech Connect

    J. Angell

    1998-05-01

    The Hydroacoustic Coverage Assessment Model (HydroCAM) has been used to develop components of the hydroacoustic knowledge database required by operational monitoring systems, particularly the US National Data Center (NDC). The database, which consists of travel time, amplitude correction and travel time standard deviation grids, is planned to support source location, discrimination and estimation functions of the monitoring network. The grids will also be used under the current BBN subcontract to support an analysis of the performance of the International Monitoring System (IMS) and national sensor systems. This report describes the format and contents of the hydroacoustic knowledgebase grids, and the procedures and model parameters used to generate these grids. Comparisons between the knowledge grids, measured data and other modeled results are presented to illustrate the strengths and weaknesses of the current approach. A recommended approach for augmenting the knowledge database with a database of expected spectral/waveform characteristics is provided in the final section of the report.

  16. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    SciTech Connect

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target

  17. On Multigrid for Overlapping Grids

    SciTech Connect

    Henshaw, W

    2004-01-13

    The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.

  18. Performance of a recoverable tug for planetary missions including use of perigee propulsion and corrections for nodal regression

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.

  19. Phase I Trial of Pelvic Nodal Dose Escalation With Hypofractionated IMRT for High-Risk Prostate Cancer

    SciTech Connect

    Adkison, Jarrod B.; McHaffie, Derek R.; Bentzen, Soren M.; Patel, Rakesh R.; Khuntia, Deepak; Petereit, Daniel G.; Hong, Theodore S.; Tome, Wolfgang; Ritter, Mark A.

    2012-01-01

    Purpose: Toxicity concerns have limited pelvic nodal prescriptions to doses that may be suboptimal for controlling microscopic disease. In a prospective trial, we tested whether image-guided intensity-modulated radiation therapy (IMRT) can safely deliver escalated nodal doses while treating the prostate with hypofractionated radiotherapy in 5 Vulgar-Fraction-One-Half weeks. Methods and Materials: Pelvic nodal and prostatic image-guided IMRT was delivered to 53 National Comprehensive Cancer Network (NCCN) high-risk patients to a nodal dose of 56 Gy in 2-Gy fractions with concomitant treatment of the prostate to 70 Gy in 28 fractions of 2.5 Gy, and 50 of 53 patients received androgen deprivation for a median duration of 12 months. Results: The median follow-up time was 25.4 months (range, 4.2-57.2). No early Grade 3 Radiation Therapy Oncology Group or Common Terminology Criteria for Adverse Events v.3.0 genitourinary (GU) or gastrointestinal (GI) toxicities were seen. The cumulative actuarial incidence of Grade 2 early GU toxicity (primarily alpha blocker initiation) was 38%. The rate was 32% for Grade 2 early GI toxicity. None of the dose-volume descriptors correlated with GU toxicity, and only the volume of bowel receiving {>=}30 Gy correlated with early GI toxicity (p = 0.029). Maximum late Grades 1, 2, and 3 GU toxicities were seen in 30%, 25%, and 2% of patients, respectively. Maximum late Grades 1 and 2 GI toxicities were seen in 30% and 8% (rectal bleeding requiring cautery) of patients, respectively. The estimated 3-year biochemical control (nadir + 2) was 81.2 {+-} 6.6%. No patient manifested pelvic nodal failure, whereas 2 experienced paraaortic nodal failure outside the field. The six other clinical failures were distant only. Conclusions: Pelvic IMRT nodal dose escalation to 56 Gy was delivered concurrently with 70 Gy of hypofractionated prostate radiotherapy in a convenient, resource-efficient, and well-tolerated 28-fraction schedule. Pelvic nodal dose

  20. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    SciTech Connect

    Filho, J. F. P.

    2013-07-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  1. Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- Tc superconductors

    DOE PAGES

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d-wave nodal lines (nodal gap) contrasts the common understanding of the d-wave pairing symmetry, which challenges the present theories for the high-Tcsuperconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-Tcsuperconductors.« less

  2. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  3. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  4. The chain collocation method: A spectrally accurate calculus of forms

    NASA Astrophysics Data System (ADS)

    Rufat, Dzhelil; Mason, Gemma; Mullen, Patrick; Desbrun, Mathieu

    2014-01-01

    Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces of piecewise polynomial basis functions for differential forms. Yet, in many problems where solutions are smoothly varying in space, a spectral numerical treatment is called for. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectangular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus (DEC), with resulting computational tools extending well-known collocation-based spectral methods. Its efficient implementation using fast Fourier transforms is provided as well.

  5. Recovering pointwise values of discontinuous data within spectral accuracy

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Tadmor, E.

    1985-01-01

    The pointwise values of a function, f(x), can be accurately recovered either from its spectral or pseudospectral approximations, so that the accuracy solely depends on the local smoothness of f in the neighborhood of the point x. Most notably, given the equidistant function grid values, its intermediate point values are recovered within spectral accuracy, despite the possible presence of discontinuities scattered in the domain. (Recall that the usual spectral convergence rate decelerates otherwise to first order, throughout). To this end, a highly oscillatory smoothing kernel is employed in contrast to the more standard positive unit-mass mollifiers. In particular, post-processing of a stable Fourier method applied to hyperbolic equations with discontinuous data, recovers the exact solution modulo a spectrally small error. Numerical examples are presented.

  6. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  7. Spectrally nonselective holographic objective

    NASA Astrophysics Data System (ADS)

    Wardosanidze, Zurab V.

    1991-10-01

    Reflection holograms and holographic optical elements fabricated by the Denisyuk method are spectrally selective. In certain applications there may be a need for the development of holographic structures that are not selective in terms of the spectral composition of the reconstructing light. This paper describes the possibility of creating spectral nonselective optical elements and reflection holograms on a dichromate gelatin layer (DGL). The essential condition for achieving nonselectivity in this case is a strong absorption of actinic radiation in the initial emulsion layer conditioning the strongly damping character of the summary field in thickness.

  8. A rapid retrieval methodology based on the spectrally integrated Voigt function for space observation spectral radiance data

    NASA Astrophysics Data System (ADS)

    Quine, Brendan M.; Abrarov, Sanjar M.; Jagpal, Raj K.

    2014-06-01

    In our recent publication, we proposed the application of the spectrally integrated Voigt function (SIVF) to a line-by-line (LBL) radiative transfer modelling1. We applied the GENSPECT LBL radiative transfer model that utilizes the HITRAN database to generate synthetic spectral data due to thermal or solar radiation of the Earth or planetary atmosphere2. It has been shown that the SIVF methodology enables the computation of a LBL radiative transfer at reduced spectral resolution model without loss in accuracy. In contrast to the traditional method of computation, the SIVF implementation accounts for the area under the Voigt function between adjacent grid points resulting in well-preserved shape of a spectral radiance even at low spectral resolution. This significant advantage of the SIVF methodology can be applied in the rapid retrieval of the space observation data, required for real-time control and decision making in future generation of the Argus3 remote-sensing microspectrometers. The spectrally integrated methodology can be generalized to other linebroadening profiles, such as Galatry, Rautian-Sobelman or speed dependent profiles, to prevent underestimation of the spectral radiance that always occurs at reduced spectral resolution1 in any LBL radiative transfer model using a traditional method of computation.

  9. Intra-atrial conduction block mimicking atrioventricular nodal block after multiple catheter ablation procedures for atrial tachycardia in a patient with cardiomyopathy.

    PubMed

    Chugh, Aman; Yokokawa, Miki; Baman, Timir; Bogun, Frank; Wu, Audrey

    2012-11-01

    A 42-year-old woman with a history of cardiomyopathy and multiple ablation procedures for atrial tachycardia developed intra-atrial conduction block that mimicked atrioventricular (AV) nodal block during radiofrequency ablation at the cavotricuspid isthmus. She was treated with atrial pacing (from the coronary sinus), which overcame intra-atrial conduction block and resulted in AV nodal conduction.

  10. National Smart Water Grid

    SciTech Connect

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  11. An electrostatic analog for generating cascade grids

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1980-01-01

    Accurate and efficient numerical simulation of flows through turbomachinery blade rows depends on the topology of the computational grids. These grids must reflect the periodic nature of turbomachinery blade row geometries and conform to the blade shapes. Three types of grids can be generated that meet these minimal requirements: through-flow grids, O-type grids, and C-type grids. A procedure which can be used to generate all three types of grids is presented. The resulting grids are orthogonal and can be stretched to capture the essential physics of the flow. A discussion is also presented detailing the extension of the generation procedure to three dimensional geometries.

  12. GridOPTICS Software System

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  13. GridOPTICS Software System

    SciTech Connect

    Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.

  14. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  15. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  16. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  17. Running medical image analysis on GridFactory desktop grid.

    PubMed

    Orellana, Frederik; Niinimaki, Marko; Zhou, Xin; Rosendahl, Peter; Müller, Henning; Waananen, Anders

    2009-01-01

    At the Geneva University Hospitals work is in progress to establish a computing facility for medical image analysis, potentially using several hundreds of desktop computers. Typically, hospitals do not have a computer infrastructure dedicated to research, nor can the data leave the hospital network for the reasons of privacy. For this purpose, a novel batch system called GridFactory has been tested along-side with the well-known batch system Condor. GridFactory's main benefits, compared to other batch systems, lie in its virtualization support and firewall friendliness. The tests involved running visual feature extraction from 50,000 anonymized medical images on a small local grid of 20 desktop computers. A comparisons with a Condor based batch system in the same computers is then presented. The performance of GridFactory is found satisfactory. PMID:19593040

  18. Performance of seminal and nodal roots of wheat in stagnant solution: K+ and P uptake and effects of increasing O2 partial pressures around the shoot on nodal root elongation.

    PubMed

    Wiengweera, Amara; Greenway, Hank

    2004-09-01

    Roots of intact wheat plants were grown for 7-12 d in stagnant nutrient solution, containing 0.1% agar, to mimic the lack of convection in waterlogged soil. Net K+ and P uptakes by seminal and nodal roots were measured separately using a split root system. For seminal roots in stagnant solution, net uptakes as a percentage of aerated roots were between 0% and 16% for P, while K+ ranged between 15% uptake and 54% loss. For the more waterlogging-tolerant nodal roots, net uptakes in stagnant nutrient solution, as a percentage of aerated roots, were 31-73% for P and 69-115% for K+. Elongation rates of nodal roots in stagnant nutrient were about 35-43% of those for roots in aerated solution. This partial inhibition occurred in these nodal roots despite their 15% porosity (v/v). Elevation of O2 partial pressures around the shoots to 40 kPa and then to 80 kPa substantially accelerated nodal root elongation in stagnant solution, demonstrating that most of the inhibition seen with ambient O2 around the shoots was associated with a restricted O2 supply to these nodal roots. Thus, in wheat nodal roots, with a partial pressure of 20 kPa O2 around the shoots, O2 diffusion from the shoots did not completely relieve the restrictions on elongation resulting from stagnancy in the nutrient solution. These results contrast with those in the literature for rice, in which roots function efficiently in stagnant solutions (0.1% agar). So, when wheat roots are aerenchymatous there are still restrictions to O2 diffusion in the gas space continuum between the atmosphere and the functional tissues of the roots. This poor acclimation must have been due to inefficiency of the aerenchymatous axes, which may include persistence of anoxic steles, and/or restricted O2 diffusion in other parts of the gas space continuum, in either the shoots and shoot-root junction or in the root tip.

  19. Overset grids in compressible flow

    NASA Technical Reports Server (NTRS)

    Eberhardt, S.; Baganoff, D.

    1985-01-01

    Numerical experiments have been performed to investigate the importance of boundary data handling with overset grids in computational fluid dynamics. Experience in using embedded grid techniques in compressible flow has shown that shock waves which cross grid boundaries become ill defined and convergence is generally degraded. Numerical boundary schemes were studied to investigate the cause of these problems and a viable solution was generated using the method of characteristics to define a boundary scheme. The model test problem investigated consisted of a detached shock wave on a 2-dimensional Mach 2 blunt, cylindrical body.

  20. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  1. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  2. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  3. Thermophotovoltaic Spectral Control

    SciTech Connect

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  4. Spectrally selective glazings

    SciTech Connect

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  5. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  6. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  7. Constructing Polynomial Spectral Models for Stars

    NASA Astrophysics Data System (ADS)

    Rix, Hans-Walter; Ting, Yuan-Sen; Conroy, Charlie; Hogg, David W.

    2016-08-01

    Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abundances. Simultaneous fitting of these { N } ˜ 10-40 model labels to observed spectra has been deemed unfeasible because the number of ab initio spectral model grid calculations scales exponentially with { N }. We suggest instead the construction of a polynomial spectral model (PSM) of order { O } for the model flux at each wavelength. Building this approximation requires a minimum of only ≤ft(≥nfrac{}{}{0em}{}{{ N }+{ O }}{{ O }}\\right) calculations: e.g., a quadratic spectral model ({ O }=2) to fit { N }=20 labels simultaneously can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat larger number (˜300-1000) of randomly chosen models lead to a better performing PSM. Such a PSM can be a good approximation only over a portion of label space, which will vary case-by-case. Yet, taking the APOGEE survey as an example, a single quadratic PSM provides a remarkably good approximation to the exact ab initio spectral models across much of this survey: for random labels within that survey the PSM approximates the flux to within 10-3 and recovers the abundances to within ˜0.02 dex rms of the exact models. This enormous speed-up enables the simultaneous many-label fitting of spectra with computationally expensive ab initio models for stellar spectra, such as non-LTE models. A PSM also enables the simultaneous fitting of observational parameters, such as the spectrum’s continuum or line-spread function.

  8. A hybrid Pseudo-spectral Immersed-Boundary Method for Applications to Aquatic Locomotion

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Hall, David; Mohseni, Kamran

    2011-11-01

    A hybrid pseudo-spectral immersed boundary method is developed for application in marine locomotion. Spatial derivatives are calculated using pseudo-spectral method while a 2nd-order Runge-Kutta scheme is used for time integration. The singular force applied on the immersed boundary is obtained using a direct forcing method. To avoid Gibb's phenomenon in the spectral method, we regularize the force by smoothing it over several grid cells. This method has the advantage of spectral accuracy and the flexibility to model irregular, moving boundaries on a Cartesian coordinate without complex mesh generation. The method is applied to examine locomotion of jellyfish for both jetting and paddling jellyfish.

  9. NODAL secreted by male germ cells regulates the proliferation and function of human Sertoli cells from obstructive azoospermia and nonobstructive azoospermia patients

    PubMed Central

    Tian, Ru-Hui; Yang, Shi; Zhu, Zi-Jue; Wang, Jun-Long; Liu, Yun; Yao, Chencheng; Ma, Meng; Guo, Ying; Yuan, Qingqing; Hai, Yanan; Huang, Yi-Ran; He, Zuping; Li, Zheng

    2015-01-01

    This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells. PMID:26289399

  10. Lunar nodal tide and distance to the moon during the Precambrian

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The first direct determination of the lunar distance in the Precambrian is presented. A 23.3 + or - 0.3 yr periodicity preserved in 2500 Myr BP Australian banded iron formation is interpreted as reflecting the climatic influence of the lunar nodal tide, which has been detected with its modern 18.6-yr periodicity in some modern climate records. The lunar distance at 2500 Myr BP would then have been about 52 earth radii. The implied history of precambrian tidal friction is in accord with both the more recent paleontological evidence and the long-term stability of the lunar orbit. The length of the Milankovitch cycles that modulate the ice ages today also evolve with the earth-moon system. Their detection in the Precambrian sedimentary record would then permit an independent determination of the lunar distance.

  11. Sick sinus syndrome and atrial fibrillation in older persons - A view from the sinoatrial nodal myocyte.

    PubMed

    Monfredi, O; Boyett, M R

    2015-06-01

    Sick sinus syndrome remains a highly relevant clinical entity, being responsible for the implantation of the majority of electronic pacemakers worldwide. It is an infinitely more complex disease than it was believed when first described in the mid part of the 20th century. It not only involves the innate leading pacemaker region of the heart, the sinoatrial node, but also the atrial myocardium, predisposing to atrial tachydysrhythmias. It remains controversial as to whether the dysfunction of the sinoatrial node directly causes the dysfunction of the atrial myocardium, or vice versa, or indeed whether these two aspects of the condition arise through some related underlying pathological mechanism, such as extracellular matrix remodeling, i.e., fibrosis. This review aims to shed new light on the myriad possible contributing factors in the development of sick sinus syndrome, with a particular focus on the sinoatrial nodal myocyte. This article is part of a Special Issue entitled CV Aging.

  12. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction

    PubMed Central

    Dubrulle, Julien; Jordan, Benjamin M; Akhmetova, Laila; Farrell, Jeffrey A; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Schier, Alexander F

    2015-01-01

    Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI: http://dx.doi.org/10.7554/eLife.05042.001 PMID:25869585

  13. Unified Theory of PT and CP Invariant Topological Metals and Nodal Superconductors.

    PubMed

    Zhao, Y X; Schnyder, Andreas P; Wang, Z D

    2016-04-15

    As PT and CP symmetries are fundamental in physics, we establish a unified topological theory of PT and CP invariant metals and nodal superconductors, based on the mathematically rigorous KO theory. Representative models are constructed for all nontrivial topological cases in dimensions d=1, 2, and 3, with their exotic physical meanings being elucidated in detail. Intriguingly, it is found that the topological charges of Fermi surfaces in the bulk determine an exotic direction-dependent distribution of topological subgap modes on the boundaries. Furthermore, by constructing an exact bulk-boundary correspondence, we show that the topological Fermi points of the PT and CP invariant classes can appear as gapless modes on the boundary of topological insulators with a certain type of anisotropic crystalline symmetry.

  14. A rare case of extra nodal Rosai-Dorfman disease with isolated multifocal osseous manifestation

    PubMed Central

    Patel, Maharshi H; Jambhekar, Kedar R; Pandey, Tarun; Ram, Roopa

    2015-01-01

    Sinus histiocytosis with massive lymphadenopathy (SHML) or Rosai–Dorfman disease is a non-neoplastic condition which typically presents as massive, bilateral cervical lymphadenopathy and can involve multiple extranodal organ systems such as skin, eyes, and upper respiratory tract in about 28% cases. Bone lesions in association with nodal disease are seen in less than 10% cases. Isolated bone involvement as the only manifestation of SHML is extremely rare, with less than 50 cases reported in the literature. We report a very uncommon case of Rosai–Dorfman disease with isolated multifocal osseous involvement as the only presenting feature, involving about 10 different sites with no lymphadenopathy or other organ system involvement. PMID:26288524

  15. [Dual atrioventricular nodal conduction and arrhythmia with severe hemodynamic alterations during liver retransplantation].

    PubMed

    Zaballos, M; Jimeno, C; Jiménez, C; Fraile, J R; Almendral; García de Lucas, E

    2005-01-01

    We report the case of a man who developed tachycardia caused by atrioventricular reentry related to dual nodal conduction during liver retransplantation. The hemodynamic alterations were severe. Arrhythmia and altered cardiac conduction are potential complications of liver transplantation. The development of tachyarrhythmias--atrial fibrillation as well as episodes of supraventricular and ventricular tachycardia and bradycardia--have been described. Such arrhythmias tend to occur particularly during reperfusion of the graft. Risk factors implicated are the severe ion imbalances, acid-base imbalance, and hypothermia that accompany the reperfusion of a new organ. A review of the possible pathogenic and etiological mechanisms that lead to arrhythmia in patients with end-stage liver disease is provided.

  16. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.

    PubMed

    Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y

    2010-02-26

    The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.

  17. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGES

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  18. Topological semimetals with triply degenerate nodal points in θ -phase tantalum nitride

    NASA Astrophysics Data System (ADS)

    Weng, Hongming; Fang, Chen; Fang, Zhong; Dai, Xi

    2016-06-01

    Using first-principles calculation and symmetry analysis, we propose that θ -TaN is a topological semimetal having a new type of point nodes, i.e., triply degenerate nodal points. Each node is a band crossing between degenerate and nondegenerate bands along the high-symmetry line in the Brillouin zone, and is protected by crystalline symmetries. Such new type of nodes will always generate singular touching points between different Fermi surfaces and three-dimensional spin texture around them. Breaking the crystalline symmetry by external magnetic field or strain leads to various topological phases. By studying the Landau levels under a small field along the c axis, we demonstrate that the system has a new quantum anomaly that we call "helical anomaly.'

  19. Diagnosis of non-nodal paratracheobronchial lesions by linear endobronchial ultrasound.

    PubMed

    Lourido, Tamara; Botana, Maribel; Leiro, Virginia; Núñez, Manuel; Fernández-Villar, Alberto

    2013-08-01

    Linear endobronchial ultrasound (EBUS) allows samples of lesions close to the airways to be obtained, as it enables aspiration to be performed under visual control in real time, opening new possibilities for minimally invasive examination of the mediastinum. While there are many publications on its usefulness in the study of mediastinal or hilar lymphadenopathies, there are few that analyse the role of EBUS-guided transbronchial needle aspiration for the diagnosis of other lesions adjacent to the airways or digestive tract. We describe the characteristics and results obtained in a series of 26 cases of non-nodal lesions of different aetiologies studied by EBUS- guided transbronchial needle aspiration through the airways or oesophagus, demonstrating the usefulness and safety of this technique in the diagnosis of these types of lesions.

  20. The Titan -1:0 Nodal Bending Wave in Saturn's Ring C.

    PubMed

    Rosen, P A; Lissauer, J J

    1988-08-01

    The most prominent oscillatory feature observed in the Voyager 1 radio occultation of Saturn's rings is identified as a one-armed spiral bending wave excited by Titan's -1:0 nodal inner vertical resonance. Ring partides in a bending wave move in coherently inclined orbits, warping the local mean plane of the rings. The Titan -1:0 wave is the only known bending wave that propagates outward, away from Saturn, and the only spiral wave yet observed in which the wave pattern rotates opposite to the orbital direction of the ring particles. It is also the first bending wave identified in ring C. Modeling the observed feature with existing bending wave theory gives a surface mass density of approximately 0.4 g/cm(2) outside the wave region and a local ring thickness of [unknown]5 meters, and suggests that surface mass density is not constant in the wave region.

  1. Increased mesquite gum formation in nodal explants cultures after treatment with a microbial biomass preparation.

    PubMed

    Orozco-Villafuerte, Juan; Buendía-González, Leticia; Cruz-Sosa, Francisco; Vernon-Carter, Eduardo J

    2005-08-01

    Prosopis laevigata nodal explants cultures were established in Murashige and Skoog medium. Simultaneously these cultures were subjected to stress with biotic elicitors and an environmental factor (temperature increase to promote heat stress) in order to promote and increase exuded mesquite gum production. The biotic elicitors were: Aspergillus nidulans and Pseudomonas pseudoalcaligenes both used in concentrations of 10, 20 and 30 mg, whereas the environmental condition was different incubation temperatures (25, 35 and 40 degrees C). The greatest gum production (approximately 13 mg of pooled gum from 100 explants after 14 days incubation) took place when the culture medium was added 10, 20 and 30 mg of autoclaved fungal mycelium of A. nidulans or 30 mg of autoclaved bacterial biomass of P. pseudoalcaligenes in combination with an incubation temperature of 35 degrees C. These treatments were non-significantly different among themselves (P < 0.05), but were significantly different to the rest of the treatments (P > 0.05).

  2. Lunar nodal tide and distance to the moon during the Precambrian

    NASA Astrophysics Data System (ADS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-04-01

    The first direct determination of the lunar distance in the Precambrian is presented. A 23.3 + or - 0.3 yr periodicity preserved in 2500 Myr BP Australian banded iron formation is interpreted as reflecting the climatic influence of the lunar nodal tide, which has been detected with its modern 18.6-yr periodicity in some modern climate records. The lunar distance at 2500 Myr BP would then have been about 52 earth radii. The implied history of precambrian tidal friction is in accord with both the more recent paleontological evidence and the long-term stability of the lunar orbit. The length of the Milankovitch cycles that modulate the ice ages today also evolve with the earth-moon system. Their detection in the Precambrian sedimentary record would then permit an independent determination of the lunar distance.

  3. Analysis of nodal point pollution, variability, and sustainability in mesohaline tidal creeks.

    PubMed

    Muller, Andrew; Muller, Diana

    2014-08-15

    Mesohaline tidal creeks are critical since they may lie at the crossroads of aquatic habitat and urban/sub-urban pressures. The emphasis of this study was to determine the water quality stressor variations within and between tidal creeks and determine whether they serve as nodes of pollutants into the sub-estuary. Measurements of water quality stressors were conducted over a six-year period. The study revealed that characterizing the variability of individual tidal creeks is critical to understanding the process and impacts of stressors in sub-estuarine environments and that the tidal creeks are actually nodal points of sediment and nutrient pollution. This results in hypoxia being controlled within tidal creeks rather than being imported from the parent estuary. The calculated metrics were then used to create a Sustainability Characterization Map. Methods incorporated in this study would be of value to restoration managers, and in the decision-making process of urban and suburban watershed planners.

  4. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    SciTech Connect

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure of the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.

  5. Identification and expression of Smads associated with TGF-beta/activin/nodal signaling pathways in the rainbow trout (Oncorhynuchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Smad proteins are essential components of the TGF-beta/activin/nodal family signaling pathway. We report the identification and characterization of transcripts representing 3 receptor Smads (Smad2a, Smad2b, Smad3), 2 common Smads (Smad4a, Smad4b) and one inhibitory Smad (Smad7). Phylogenetic an...

  6. Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma.

    PubMed

    Byrne, Maria; Koop, Demian; Cisternas, Paula; Strbenac, Dario; Yang, Jean Yee Hwa; Wray, Gregory A

    2015-12-01

    Understanding the unusual radial body plan of echinoderms and its relationship to the bilateral plan of other deuterostomes remains a challenge. The molecular processes of embryonic and early larval development in sea urchins are well characterised, but those giving rise to the adult and its radial body remain poorly studied. We used the developmental transcriptome generated for Heliocidaris erythrogramma, a species that forms the juvenile soon after gastrulation, to investigate changes in gene expression underlying radial body development. As coelomogenesis is key to the development of pentamery and juvenile formation on the left side of the larva, we focussed on genes associated with the nodal and BMP2/4 network that pattern this asymmetry. We identified 46 genes associated with this Nodal and BMP2/4 signalling network, and determined their expression profiles from the gastrula, through to rudiment development, metamorphosis and the fully formed juvenile. Genes associated with Nodal signalling shared similar expression profiles, indicating that they may have a regulatory relationship in patterning morphogenesis of the juvenile sea urchin. Similarly, many genes associated with BMP2/4 signalling had similar expression profiles through juvenile development. Further examination of the roles of Nodal- and BMP2/4-associated genes is required to determine function and whether the gene expression profiles seen in H. erythrogramma are due to ongoing activity of gene networks established during early development, or to redeployment of regulatory cassettes to pattern the adult radial body plan.

  7. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development

    PubMed Central

    Tadjuidje, Emmanuel; Kofron, Matthew; Mir, Adnan; Wylie, Christopher; Heasman, Janet; Cha, Sang-Wook

    2016-01-01

    Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus. PMID:27488374

  8. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    PubMed Central

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2015-01-01

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s+− wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s+− wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375

  9. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    SciTech Connect

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.

  10. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    DOE PAGES

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less

  11. Finite elements using absolute nodal coordinates for large-deformation flexible multibody dynamics

    NASA Astrophysics Data System (ADS)

    Dmitrochenko, Oleg

    2008-06-01

    A family of structural finite elements using a modern absolute nodal coordinate formulation (ANCF) is discussed in the paper with many applicationsE This approach has been initiated in 1996 by A. Shabana. It introduces large displacements of 2D/3D finite elements relative to the global reference frame without using any local frame. The elements employ finite slopes as nodal variables and can be considered as generalizations of ordinary finite elements that use infinitesimal slopes. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices and generalized gravity forces as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This approach allows applying known abstractions of real elastic bodies: Euler-Bernoulli beams, Timoshenko beams and more general models as well as Kirchhoff and Mindlin plate theories. Shabana et al. proposed a sub-family of thick beam and plate finite elements with large deformations and employ the 3D theory of continuum mechanics. Despite the universality of such approach it has to use extra degrees of freedom when simulating thin beams and plates, which case is most important. In our research, we propose another sub-family of thin beams as well as rectangular and triangle plates. We use Kirchhoff plate theory with nonlinear strain-displacement relationships to obtain elastic forces. A number of static and dynamic simulation examples of problems with 2D/3D very elastic beams and plate underwent large displacements and/or deformations will be shown in the presentation.

  12. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

    PubMed Central

    Wolff, Sebastian; Bucher, Christian

    2013-01-01

    This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in

  13. Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system

    PubMed Central

    Çolakoğlu, Gülsen; Bergstrom-Tyrberg, Ulrika; Berglund, Erik O.; Ranscht, Barbara

    2014-01-01

    Myelin, a multilayered membrane sheath formed by oligodendrocytes around axons in the CNS, enables rapid nerve impulse conduction and sustains neuronal health. The signals exchanged between axons and oligodendrocytes in myelin remain to be fully elucidated. Here we provide genetic evidence for multiple and critical functions of Contactin-1 in central myelin. We document dynamic Contactin-1 expression on oligodendrocytes in vivo, and progressive accumulation at nodes of Ranvier and paranodes during postnatal mouse development. Nodal and paranodal expression stabilized in mature myelin, but overall membranous expression diminished. Contactin-1–deficiency disrupted paranodal junction formation as evidenced by loss of Caspr, mislocalized potassium Kv1.2 channels, and abnormal myelin terminal loops. Reduced numbers and impaired maturation of sodium channel clusters accompanied this phenotype. Histological, electron microscopic, and biochemical analyses uncovered significant hypomyelination in Contactin-1–deficient central nerves, with up to 60% myelin loss. Oligodendrocytes were present in normal numbers, albeit a minor population of neuronal/glial antigen 2-positive (NG2+) progenitors lagged in maturation by postnatal day 18, when the mouse null mutation was lethal. Major contributing factors to hypomyelination were defects in the generation and organization of myelin membranes, as judged by electron microscopy and quantitative analysis of oligodendrocyte processes labeled by GFP transgenically expressed from the proteolipid protein promoter. These data reveal that Contactin-1 regulates both myelin formation and organization of nodal and paranodal domains in the CNS. These multiple roles distinguish central Contactin-1 functions from its specific role at paranodes in the periphery, and emphasize mechanistic differences in central and peripheral myelination. PMID:24385581

  14. Pharmacologic intervention in axonal excitability: in vivo assessment of nodal persistent sodium currents in human neuropathies.

    PubMed

    Kuwabara, Satoshi; Misawa, Sonoko

    2008-01-01

    Axonal excitability testing can provide new insights into the ionic mechanisms underlying the pathophysiology of hyperexcitability of motor and sensory axons in human neuropathies. Threshold tracking was developed in the 1990's to non-invasively measure a number of axonal excitability indices that depend on sodium and potassium channel function, and this makes it possible to monitor the effects of pharmacologic intervention with ion channel modulators. This paper reviews recent advances in ionic-pathophysiological studies in humans. (1) Neuropathic pain or muscle cramp/fasciculation is partly caused by hyperexcitability of the injured axons. The enhanced excitability can result from altered ion channel function; such as an increase in persistent sodium currents. Persistent sodium currents can be reliably estimated using threshold tracking. In peripheral neuropathy, persistent sodium currents usually increase possibly due to over-expression of sodium channels associated with axonal regeneration, and could be responsible for ectopic firings. Administration of sodium channel blockers such as mexiletine, results in marked alleviation of muscle cramping in parallel with a decrease in nodal persistent sodium currents. (2) In diabetic neuropathy, the activation of the polyol pathway mediated by an enzyme, aldose reductase, leads to reduced Na(+)/K(+) pump activity, and intra-axonal sodium accumulation; sodium currents are reduced presumably due to decreased trans-axonal sodium gradient. Aldose reductase inhibitiors improve nodal sodium currents, as well as nerve conduction, and this can be objectively assessed by threshold tracking. Studies of ion-channel pathophysiology in human subjects have recently begun. Investigating ionic mechanisms by monitoring the corresponding ionic currents. is of clinical relevance, because once a specific ionic conductance is identified, pharmacologic blocking or modulation could provide a new therapeutic option. PMID:20021424

  15. The Association Between Biological Subtype and Isolated Regional Nodal Failure After Breast-Conserving Therapy

    SciTech Connect

    Wo, Jennifer Y.; Taghian, Alphonse G.; Nguyen, Paul L.; Raad, Rita Abi; Sreedhara, Meera B.A.; Bellon, Jennifer R.; Wong, Julia S.; Gadd, Michele A.; Smith, Barbara L.; Harris, Jay R.

    2010-05-01

    Purpose: To evaluate the risk of isolated regional nodal failure (RNF) among women with invasive breast cancer treated with breast-conserving surgery (BCS) and radiation therapy (RT) and to determine factors, including biological subtype, associated with RNF. Methods and Materials: We retrospectively studied 1,000 consecutive women with invasive breast cancer who received breast-conserving surgery and RT from 1997 through 2002. Ninety percent of patients received adjuvant systemic therapy; none received trastuzumab. Sentinel lymph node biopsy was done in 617 patients (62%). Of patients with one to three positive nodes, 34% received regional nodal irradiation (RNI). Biological subtype classification into luminal A, luminal B, HER-2, and basal subtypes was based on estrogen receptor status-, progesterone receptor status-, and HER-2-status of the primary tumor. Results: Median follow-up was 77 months. Isolated RNF occurred in 6 patients (0.6%). On univariate analysis, biological subtype (p = 0.0002), lymph node involvement (p = 0.008), lymphovascular invasion (p = 0.02), and Grade 3 histology (p = 0.01) were associated with significantly higher RNF rates. Compared with luminal A, the HER-2 (p = 0.01) and basal (p = 0.08) subtypes were associated with higher RNF rates. The 5-year RNF rate among patients with one to three positive nodes treated with tangents alone was 2.4%; we could not identify a subset of these patients with a substantial risk of RNF. Conclusions: Isolated RNF is a rare occurrence after breast-conserving therapy. Patients with the HER-2 (not treated with trastuzumab) and basal subtypes appear to be at higher risk of developing RNF although this risk is not high enough to justify the addition of RNI. Low rates of RNF in patients with one to three positive nodes suggest that tangential RT without RNI is reasonable in most patients.

  16. Clinically Apparent Internal Mammary Nodal Metastasis in Patients With Advanced Breast Cancer: Incidence and Local Control

    SciTech Connect

    Zhang Yujing; Oh, Julia L.; Whitman, Gary J.

    2010-07-15

    Purpose: To investigate the incidence and local control of internal mammary lymph node metastases (IMN+) in patients with clinical N2 or N3 locally advanced breast cancer. Methods and Materials: We retrospectively reviewed the records of 809 breast cancer patients diagnosed with advanced nodal disease (clinical N2-3) who received radiation treatment at our institution from January 2000 December 2006. Patients were considered IMN+ on the basis of imaging studies. Results: We identified 112 of 809 patients who presented with IMN+ disease (13.8%) detected on ultrasound, computed tomography (CT), positron emission tomography/CT (PET/CT), and/or magnetic resonance imaging (MRI) studies. All 112 patients with IMN+ disease received anthracycline and taxane-based chemotherapy. Neoadjuvant chemotherapy (NCT) resulted in a complete response (CR) on imaging studies of IMN disease in 72.1% of patients. Excluding 16 patients with progressive disease, 96 patients received adjuvant radiation to the breast or the chest wall and the regional lymphatics including the IMN chain with a median dose of 60 Gy if the internal mammary lymph nodes normalized after chemotherapy and 66 Gy if they did not. The median follow-up of surviving patients was 41 months (8-118 months). For the 96 patients able to complete curative therapy, the actuarial 5-year IMN control rate, locoregional control, overall survival, and disease-free survival were 89%, 80%, 76%, and 56%. Conclusion: Over ten percent of patients with advanced nodal disease will have IMN metastases on imaging studies. Multimodality therapy including IMN irradiation achieves excellent rates of control in the IMN region and a DFS of more than 50% after curative treatment.

  17. Debunking the lunar nodal tide in sea level data from the Northwest European shelf

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Nielsen, Jacob W.

    2016-04-01

    In a recent study (Hansen, et al, 2015. Sea-Level Forcing by Synchronization of 56- and 74-Year Oscillations with the Moon's Nodal Tide on the Northwest European Shelf (Eastern North Sea to Central Baltic Sea). Journal of Coastal Research, 31(5), 1041 - 1056, hereafter 'HAK'), the existence of an 18.6 year lunar nodal tide signal of considerable strength and other periodic signals in the North Sea -- Baltic Sea area is claimed. We criticize important aspects of the analysis presented in HAK and thereby cast doubt on their conclusions. HAK claim that 18.6 year variations in sea level are predicted by tidal theory, but this is not the case in general and therefore the existence of such variations must be explicitly shown. We calculate the amplitude spectrum of the annual sea level by harmonic analysis and find no significant peaks at the periods claimed by HAK. Next, we used the results given by HAK to reconstruct their decomposition, and formed the residuals by subtracting the decomposition from the original data. We found that a strong variability near 18.6 years in the residuals, showing that the decomposition by HAK overrepresents the variability at this period. This motivated us to redo HAK's analysis following their prescription and we found a seven times lower amplitude for the 18.6 year periodicity than claimed by HAK. Finally, we discuss HAK's mode selection-criteria, based on correlation coefficients of trending series and find them invalid. Therefore, we perform a significance test based on a Monte Carlo technique and conclude that none of the modes identified by HAK are statistically significant.

  18. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.

    PubMed

    Coman, I; Aigrot, M S; Seilhean, D; Reynolds, R; Girault, J A; Zalc, B; Lubetzki, C

    2006-12-01

    Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known about aggregation of nodal, paranodal and juxtaparanodal constituents during the repair process. We analysed by immunohistochemistry on free-floating sections from multiple sclerosis brains the expression and distribution of nodal (Na(v) channels), paranodal (paranodin/Caspr) and juxtaparanodal (K(v) channels and Caspr2) molecules in demyelinated and remyelinated lesions. Whereas in demyelinated lesions, paranodal and juxtaparanodal proteins are diffusely distributed on denuded axons, the distribution of Na(v) channels is heterogeneous, with a diffuse immunoreactivity but also few broad Na(v) channel aggregates in all demyelinated lesions. In contrast to the demyelinated plaques, all remyelinated lesions are characterized by the detection of aggregates of Na(v) channels, paranodin/Caspr, K(v) channels and Caspr2. Our data suggest that these aggregates precede remyelination, and that Na(v) channel aggregation is the initial event, followed by aggregation of paranodal and then juxtaparanodal axonal proteins. Remyelination takes place in multiple sclerosis tissue but myelin repair is often incomplete, and the reasons for this remyelination deficit are many. We suggest that a defect of Na(v) channel aggregation might be involved in the remyelination failure in demyelinated lesions with spared axons and oligodendroglial cells. PMID:16766541

  19. Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction.

    PubMed

    Inouye, Hideyo; Liu, Jiliang; Makowski, Lee; Palmisano, Marilena; Burghammer, Manfred; Riekel, Christian; Kirschner, Daniel A

    2014-01-01

    X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.

  20. isochrones: Stellar model grid package

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.

    2015-03-01

    Isochrones, written in Python, simplifies common tasks often done with stellar model grids, such as simulating synthetic stellar populations, plotting evolution tracks or isochrones, or estimating the physical properties of a star given photometric and/or spectroscopic observations.

  1. Modal Analysis for Grid Operation

    SciTech Connect

    2011-03-03

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signal stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.

  2. Assistive Awareness in Smart Grids

    NASA Astrophysics Data System (ADS)

    Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite

    The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions

  3. Quantum simulation of exotic PT -invariant topological nodal loop bands with ultracold atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Zhao, Y. X.; Liu, Rui-Bin; Xue, Zheng-Yuan; Zhu, Shi-Liang; Wang, Z. D.

    2016-04-01

    Since the well-known PT symmetry has its fundamental significance and implication in physics, where PT denotes a joint operation of space inversion P and time reversal T , it is important and intriguing to explore exotic PT -invariant topological metals and to physically realize them. Here we develop a theory for a different type of topological metals that are described by a two-band model of PT -invariant topological nodal loop states in a three-dimensional Brillouin zone, with the topological stability being revealed through the PT -symmetry-protected nontrivial Z2 topological charge even in the absence of both P and T symmetries. Moreover, the gapless boundary modes are demonstrated to originate from the nontrivial topological charge of the bulk nodal loop. Based on these exact results, we propose an experimental scheme to realize and to detect tunable PT -invariant topological nodal loop states with ultracold atoms in an optical lattice, in which atoms with two hyperfine spin states are loaded in a spin-dependent three-dimensional optical lattice and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with site-dependent phase. It is shown that such a realistic cold-atom setup can yield topological nodal loop states, having a tunable band-touching ring with the twofold degeneracy in the bulk spectrum and nontrivial surface states. The nodal loop states are actually protected by the combined PT symmetry and are characterized by a Z2-type invariant (or topological charge), i.e., a quantized Berry phase. Remarkably, we demonstrate with numerical simulations that (i) the characteristic nodal ring can be detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy. The present proposal for realizing topological nodal loop states in cold-atom systems may provide a unique

  4. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2016-07-12

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  5. Parallel Power Grid Simulation Toolkit

    SciTech Connect

    Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  6. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2016-07-12

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  7. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  8. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  9. Vascular endothelial growth factor C complements the ability of positron emission tomography to predict nodal disease in lung cancer

    PubMed Central

    Farjah, Farhood; Madtes, David K.; Wood, Douglas E.; Flum, David R.; Zadworny, Megan E.; Waworuntu, Rachel; Hwang, Billanna; Mulligan, Michael S.

    2016-01-01

    Objective Vascular endothelial growth factors (VEGFs) C and D are biologically rational markers of nodal disease that could improve the accuracy of lung cancer staging. We hypothesized that these biomarkers would improve the ability of positron emission tomography (PET) to predict nodal disease among patients with suspected or confirmed non–small cell lung cancer (NSCLC). Methods A cross-sectional study (2010–2013) was performed of patients prospectively enrolled in a lung nodule biorepository, staged by computed tomography (CT) and PET, and who underwent pathologic nodal evaluation. Enzyme-linked immunosorbent assay was used to measure biomarker levels in plasma from blood drawn before anesthesia. Likelihood ratio testing was used to compare the following logistic regression prediction models: ModelPET, ModelPET/VEGF-C, ModelPET/VEGF-D, and ModelPET/VEGF-C/VEGF-D. To account for 5 planned pairwise comparisons, P values<.01 were considered significant. Results Among 62 patients (median age, 67 years; 48% men; 87% white; and 84% NSCLC), 58% had fluorodeoxyglucose uptake in hilar and/or mediastinal lymph nodes. The prevalence of pathologically confirmed lymph node metastases was 40%. Comparisons of prediction models revealed the following: ModelPET/VEGF-C versus ModelPET (P = .0069), ModelPET/VEGF-D versus ModelPET (P = .1886), ModelPET/VEGF-C/VEGF-D versus ModelPET (P = .0146), ModelPET/VEGF-C/VEGF-D versus ModelPET/VEGF-C (P = .2818), and ModelPET/VEGF-C/VEGF-D versus ModelPET/VEGF-D (P = .0095). In ModelPET/VEGF-C, higher VEGF-C levels were associated with an increased risk of nodal disease (odds ratio, 2.96; 95% confidence interval, 1.26–6.90). Conclusions Plasma levels of VEGF-C complemented the ability of PET to predict nodal disease among patients with suspected or confirmed NSCLC. VEGF-D did not improve prediction. PMID:26320776

  10. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  11. Polymorphisms in MMP9 and SIPA1 are associated with increased risk of nodal metastases in early stage cervical cancer

    PubMed Central

    Brooks, Rebecca; Kizer, Nora; Nguyen, Loan; Jaishuen, Atthapon; Wanat, Karolyn; Nugent, Elizabeth; Grigsby, Perry; Allsworth, Jenifer E.; Rader, Janet S.

    2009-01-01

    Objective Heritable polymorphisms modulate metastatic efficiency in cancer. Single nucleotide polymorphisms (SNPs) in MMP9 (rs17576) and SIPA1 (rs746429, rs931127) have been associated with nodal metastases in multiple cancers. We investigated the association of these SNPs with nodal metastases in early stage cervical cancer. Methods Consecutive patients with stage IB cervical cancer who underwent a pelvic lymph node (LN) dissection were included. Cases (≥ 1 positive LN, n=101) were compared with controls (negative LN pathology, n=273). Genotyping was performed on genomic DNA in the 3 SNPs using a Taqman assay, and correlated with clinical variables. Results The G allele at SIPA1 rs931127 was associated with an increased risk of nodal disease (OR 1.9, p=0.03), and approached significance at SIPA 1 rs746429 (OR 2.2, p=0.09) and MMP9 rs17576 (OR 1.5, 0.08). In patients with stage Ib1 lesions (n=304), the G allele at both SIPA1 SNPs were associated with LN metastases (rs746429 OR 10.1, p=0.01; rs931127 OR 2.4, p=0.01). In patients with no lymph vascular space invasion, SIPA1 SNPs were again associated with LN metastases, and all patients with nodal disease had at least one G allele at SIPA1 rs746429. Conclusions In this case control study, SNPs in SIPA1 varied statistically in cervical cancer patients with and without nodal metastases, and in MMP9 after controlling for stage and lymphvascular space invasion. Further work is needed to characterize inherited polymorphisms that provide a permissive background for the metastatic cascade. PMID:19906411

  12. Diffusion-Weighted MRI for Nodal Staging of Head and Neck Squamous Cell Carcinoma: Impact on Radiotherapy Planning

    SciTech Connect

    Dirix, Piet; Vandecaveye, Vincent; De Keyzer, Frederik; Op de beeck, Katya; Poorten, Vincent Vander; Delaere, Pierre; Verbeken, Eric; Hermans, Robert; Nuyts, Sandra

    2010-03-01

    Purpose: To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. Methods and Materials: Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. Results: A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. Conclusions: These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.

  13. Impact of FDG-PET/CT Imaging on Nodal Staging for Head-And-Neck Squamous Cell Carcinoma

    SciTech Connect

    Murakami, Ryuji . E-mail: murakami@kaiju.medic.kumamoto-u.ac.jp; Uozumi, Hideaki; Hirai, Toshinori; Nishimura, Ryuichi; Shiraishi, Shinya; Ota, Kazutoshi D.D.S.; Murakami, Daizo; Tomiguchi, Seiji; Oya, Natsuo; Katsuragawa, Shigehiko; Yamashita, Yasuyuki

    2007-06-01

    Purpose: To evaluate the impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging on nodal staging for head-and-neck squamous cell carcinoma (SCC). Methods and Materials: The study population consisted of 23 patients with head-and-neck SCC who were evaluated with FDG-PET/CT and went on to neck dissection. Two observers consensually determined the lesion size and maximum standardized uptake value (SUV{sub max}) and compared the results with pathologic findings on nodal-level involvement. Two different observers (A and B) independently performed three protocols for clinical nodal staging. Methods 1, 2, and 3 were based on conventional modalities, additional visual information from FDG-PET/CT images, and FDG-PET/CT imaging alone with SUV data, respectively. Results: All primary tumors were visualized with FDG-PET/CT. Pathologically, 19 positive and 93 negative nodal levels were identified. The SUV{sub max} overlapped in negative and positive nodes <15 mm in diameter. According to receiver operating characteristics analysis, the size-based SUV{sub max} cutoff values were 1.9, 2.5, and 3.0 for lymph nodes <10 mm, 10-15 mm, and >15 mm, respectively. These cutoff values yielded 79% sensitivity and 99% specificity for nodal-level staging. For Observer A, the sensitivity and specificity in Methods 1, 2, and 3 were 68% and 94%, 68% and 99%, and 84% and 99%, respectively, and Method 3 yielded significantly higher accuracy than Method 1 (p = 0.0269). For Observer B, Method 3 yielded the highest sensitivity (84%) and specificity (99%); however, the difference among the three protocols was not statistically significant. Conclusion: Imaging with FDG-PET/CT with size-based SUV{sub max} cutoff values is an important modality for radiation therapy planning.

  14. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  15. BMP Inhibition in Seminomas Initiates Acquisition of Pluripotency via NODAL Signaling Resulting in Reprogramming to an Embryonal Carcinoma

    PubMed Central

    Nettersheim, Daniel; Jostes, Sina; Sharma, Rakesh; Schneider, Simon; Hofmann, Andrea; Ferreira, Humberto J.; Hoffmann, Per; Kristiansen, Glen; Esteller, Manel B.; Schorle, Hubert

    2015-01-01

    Type II germ cell cancers (GCC) can be subdivided into seminomas and non-seminomas. Seminomas are similar to carcinoma in situ (CIS) cells, the common precursor of type II GCCs, with regard to epigenetics and expression, while embryonal carcinomas (EC) are totipotent and differentiate into teratomas, yolk-sac tumors and choriocarcinomas. GCCs can present as seminomas with a non-seminoma component, raising the question if a CIS gives rise to seminomas and ECs at the same time or whether seminomas can be reprogrammed to ECs. In this study, we utilized the seminoma cell line TCam-2 that acquires an EC-like status after xenografting into the murine flank as a model for a seminoma to EC transition and screened for factors initiating and driving this process. Analysis of expression and DNA methylation dynamics during transition of TCam-2 revealed that many pluripotency- and reprogramming-associated genes were upregulated while seminoma-markers were downregulated. Changes in expression level of 53 genes inversely correlated to changes in DNA methylation. Interestingly, after xenotransplantation 6 genes (GDF3, NODAL, DNMT3B, DPPA3, GAL, AK3L1) were rapidly induced, followed by demethylation of their genomic loci, suggesting that these 6 genes are poised for expression driving the reprogramming. We demonstrate that inhibition of BMP signaling is the initial event in reprogramming, resulting in activation of the pluripotency-associated genes and NODAL signaling. We propose that reprogramming of seminomas to ECs is a multi-step process. Initially, the microenvironment causes inhibition of BMP signaling, leading to induction of NODAL signaling. During a maturation phase, a fast acting NODAL loop stimulates its own activity and temporarily inhibits BMP signaling. During the stabilization phase, a slow acting NODAL loop, involving WNTs re-establishes BMP signaling and the pluripotency circuitry. In parallel, DNMT3B-driven de novo methylation silences seminoma-associated genes

  16. Incidental Nodal Lymphangioleiomyomatosis Is Not a Harbinger of Pulmonary Lymphangioleiomyomatosis: A Study of 19 Cases with Evaluation of Diagnostic Immunohistochemistry

    PubMed Central

    Schoolmeester, J. Kenneth; Park, Kay J.

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is a proliferation of perivascular epithelioid cells typically affecting the lung as a low grade, destructive and progressive disease, but may also be found in lymph nodes and other organs. LAM is sometimes seen as an incidental finding in lymph node dissections performed for staging of gynecologic tumors. To our knowledge, no study has investigated the clinical significance of incidental nodal LAM in relation to subsequent development of pulmonary LAM. We identified 19 patients from our institution with LAM in lymph nodes. Follow up was available for 100% of patients and ranged from 3 to 123 months (mean 33.8 months). All were women and ages ranged from 35 to 71 years (mean 56.3). None had a history of tuberous sclerosis, renal angiomyolipoma or pulmonary LAM. LAM involvement spanned 1 to 6 nodes (mean 2) ranging from 1 to 100% of the total excised lymph nodes. The single largest focus of nodal LAM ranged from 1 to 9 mm (mean 4.3) in 18 patients without evidence of persistent or recurrent nodal LAM. In the one patient with persistent local nodal LAM, the greatest diameter was 25 mm. Affected lymph node sites were regional pelvic and retroperitoneal chains routinely sampled in staging operations. An immunohisotchemical panel of HMB45, A103 and β-catenin was evaluated in 18 cases. HMB45 showed strong, but usually focal staining in every case compared to A103 which was very focally expressed (39%) or negative. β-catenin showed strong, diffuse cytoplasmic and membranous (nonnuclear) reactivity in 100% of cases. At last clinic visit, all 19 patients had no manifestations of pulmonary LAM. In an absence of signs of symptoms of extranodal LAM, patients with incidentally discovered nodal LAM smaller than 10 mm are not at risk for developing pulmonary LAM. PMID:26135558

  17. White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid

    NASA Technical Reports Server (NTRS)

    Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn

    1996-01-01

    A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.

  18. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  19. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m). PMID:18345245

  20. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).