Hypoglycemic activity of Grifola frondosa rich in vanadium.
Cui, Bo; Han, Linna; Qu, Jingran; Lv, Yingtao
2009-11-01
The hypoglycemic activity of fermented mushroom of Grifola frondosa rich in vanadium (GFRV) was studied in this paper. Alloxan- and adrenalin-induced hyperglycemic mice were used in the study. The blood glucose and the HbA1c of the mice were analyzed respectively. After the mice were administered (ig) with GFRV, the blood glucose and the HbA1c of alloxan-induced hyperglycemic mice decreased (p < 0.05, p < 0.01) and ascension of blood glucose induced by adrenalin was inhibited (p < 0.01). Also, the bodyweight of the alloxan-induced hyperglycemic mice was increased gradually. In the fermented mushroom of G. frondosa, vanadium at lower doses in combination with G. frondosa induced significant decreases of the blood glucose and HbA1c levels in hyperglycemic mice.
The Mechanisms Underlying the Hypolipidaemic Effects of Grifola frondosa in the Liver of Rats
Ding, Yinrun; Xiao, Chun; Wu, Qingping; Xie, Yizhen; Li, Xiangmin; Hu, Huiping; Li, Liangqiu
2016-01-01
The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats, and of hyperlipidaemic rats treated with oral G. frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with G. frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), acyl-coenzyme A: cholesterol acyltransferase (ACAT2), apolipoprotein B (ApoB), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC1) were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1) was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) were used to identify 20 proteins differentially expressed in livers of rats treated with G. frondosa compared with untreated hyperlipidemic rats. Of these 20 proteins, seven proteins were down-regulated, and 13 proteins were up-regulated. These findings indicate that the hypolipidaemic effects of G. frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption, and catabolic pathways. G. frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, G. frondosa may produce both hypolipidaemic and anti-atherosclerotic effects, and potentially
Montoya, Sandra; Orrego, Carlos Eduardo; Levin, Laura
2012-04-01
Cultivation of specialty mushrooms on lignocellulosic wastes represents one of the most economical organic recycling processes. Compared with other cultivated mushrooms, very little is known about the nature of the lignocellulolytic enzymes produced by the edible and medicinal fungus Grifola frondosa, the parameters affecting their production, and enzyme activity profiles during different stages of the developmental cycle. In this work we investigated the enzymes that enable G. frondosa, to colonize and deconstruct two formulations based on industrial lignocellulosic by-products. G. frondosa degraded both substrates (oak-sawdust plus corn bran, and oak/corn bran supplemented with coffee spent-ground) decreasing 67 and 50% of their lignin content, along with 44 and 37% of the polysaccharides (hemicellulose and cellulose) respectively. 35.3% biological efficiency was obtained when using oak sawdust plus corn bran as substrate. Coffee spent-ground addition inhibited mushroom production, decreased growth, xylanase and cellulase activities. However, taking into account that G. frondosa successfully colonized this residue; this substrate formula might be considered for its growth and medicinal polysaccharide production. Although G. frondosa tested positive for Azure B plate degradation, a qualitative assay for lignin-peroxidase, attempts to detect this activity during solid state fermentation were unsuccessful. Enzyme activities peaked during colonization but declined drastically during fruiting body formation. Highest activities achieved were: endoglucanase 12.3, exoglucanase 16.2, β-glucosidase 2.3, endoxylanase 20.3, amylase 0.26, laccase 14.8 and Mn-peroxidase 7.4 U/g dry substrate.
Zhang, Chen; Gao, Zheng; Hu, Chunlong; Zhang, Jianjun; Sun, Xinyi; Rong, Chengbo; Jia, Le
2017-02-01
In present work, the strain of Grifola frondosa SH-05 was used as a vector of zinc biotransformation to produce the IZPS. The bioactivities including antioxidant and antibacterial activities in vitro and anti-aging properties in vivo of IZPS were investigated comparing with the IPS. The results which were in consistent with the results of histopathology assay demonstrated that the IZPS had superior antioxidant and anti-aging activities by scavenging the hydroxyl and DPPH radicals, increasing enzyme activities, decreasing the MDA contents and ameliorating the anile condition of mice. Besides, the IZPS also showed potential antibacterial activities. The IZPS with higher bioactivities was composed of were Rha, Ino and Glu with a molar ratio of 4.7:3.6:1. These conclusions indicated that the IZPS might be a potential source of natural antioxidant, antibacterial agent and anti-aging agent.
Yang, Liuqing; Qu, Hongyuan; Mao, Guanghua; Zhao, Ting; Li, Fang; Zhu, Bole; Zhang, Bingtao; Wu, Xiangyang
2013-01-01
Background: This research is among the few that has been conducted on the feasibility of subcritical water extraction (SWE) as a rapid and efficient extraction tool for polysaccharides. Objective: The aim of the study was to extractand optimize the parameter conditions of SWE of polysaccharides from Grifola frondosa using response surface methodology. Materials and Methods: In the study, SWEwas applied to extractbioactive compounds from G. frondosa. A preliminary analysis was made on the physical properties and content determination of extracts using SWE and hot water extraction (HWE). Analysis of the sample residues and antioxidant activities of the polysaccharides extracted by SWE and HWE were then evaluated. Results: The optimal extraction conditions include: extraction temperature of 210°C, extraction time of 43.65 min and the ratio of water to raw material of 26.15:1. Under these optimal conditions, the experimental yield of the polysaccharides (25.1 ± 0.3%) corresponded with the mean value predicted by the model and two times more than the mean value obtained by the traditional HWE. The antioxidant activities of polysaccharides extracted by SWE were generally higher than those extracted by HWE. From the study, the SWE technology could be a time-saving, high yield, and bioactive technique for production of polysaccharides. PMID:23772107
Ma, Xiaolei; Zhou, Fuchuan; Chen, Yuanyuan; Zhang, Yuanyuan; Hou, Lihua; Cao, Xiaohong; Wang, Chunling
2014-07-01
Grifola frondosa is an important fungal research resource. However, there was little report about hyperglycemic activity of Grifola frondosa polysaccharide on insulin resistance in vitro. In this study, the hypoglycemic activity of a polysaccharide obtained from Grifola frondosa (GFP) on HepG2 cell and hpyerglycemic mechanism were investigated. The purity of the isolated polysaccharides was examined by HPLC. In this research, it was found that GFP enhanced the absorption of glucose of HepG2 cells in a dose dependent manner at 24 h of 30 ugmL⁻¹. GC-MS and FT-IR spectroscopy analysis results showed that glucose and galactose were the dominant monosaccharides in GFP and the major component of GFP was β-pyranoside. Western-blotting results showed that the HepG2 cell model treated with GFP activated the insulin receptor protein (IRS) in the cell membrane and increased phosphorylated-AktSer473 expression, which had an inhibition of glycogen synthase kinase (GSK-3). The down-regulation of GSK-3 stimulated synthesis of intracellular glycogen. The results above suggested that the GFP increased the metabolism of glucose and stimulated synthesis of intracellular glycogen through the Akt/GSK-3 pathway.
Su, Chun-Han; Lai, Min-Nan; Ng, Lean-Teik
2017-04-01
This study examined the effects of different extraction temperatures (70°C, 100°C and 121°C) on the physicochemical properties of water soluble polysaccharides (WSP; GF70, GF100 and GF121, respectively) from Grifola frondosa (GF) fruiting bodies, and evaluating their effects on nitric oxide (NO) production in lipopolysaccharide-stimulated RAW264.7 macrophages. Results showed that GF121 had the highest yield. GF70, GF100 and GF121 contained a similar monosaccharide composition and the predominant monosaccharide was glucose. These polysaccharides contained two major macromolecular populations; the high molecular weight population showed a clear trend of reduced molecular weight with increasing extraction temperature. GF121 contained the highest amount of (1→3, 1→6)-β-d-glucans, while the degree of branching in all samples was similar. GF WSP possessed NO inhibitory activity, and the strongest was GF121. This study concludes that WSP are good sources of food ingredients, and high temperature extraction could improve the quantity and quality of GF WSP.
Activity and toxicity of Cr(III)-enriched Grifola frondosa in insulin-resistant mice.
Xu, Qiang; Guo, Jianyou
2009-12-01
This study was designed to evaluate the effect of administration of chromium-enriched Grifola frondosa (CEGF) in insulin-resistant sucrose-fed mice. Mice were randomly assigned to be unsupplemented (S group) or to receive oral CEGF at a dose of 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 mg/kg per day chromium. A control group (C) did not consume sucrose and was not supplemented. Sucrose-fed mice had an elevated serum insulin concentration compared with controls and this was significantly lower in sucrose-fed mice that received CEGF (4.0 and 5.0 mg/kg per day chromium), which did not differ from controls. Impaired glucose tolerance in sucrose-fed mice, evidenced by the poor glucose disposal rate following an intraperitoneal glucose tolerance test, was significantly improved in mice receiving CEGF. CEGF is essentially nontoxic at the dose of 4.0 and 5.0 mg/kg per day. These results indicate that CEGF may have potential beneficial effects in insulin-resistant prediabetic conditions.
Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). I.
Kubo, K; Aoki, H; Nanba, H
1994-08-01
The fruit body of Grifola frondosa (maitake), Basidiomycetes was confirmed to contain substances with anti-diabetic activity. When 1 g/d of powdered fruit body of maitake was given orally to a genetically diabetic mouse (KK-Ay), blood glucose reduction was observed, in contrast to the control group in which the blood glucose increased with ageing. Moreover, levels of insulin and triglyceride in plasma demonstrated a change similar to blood glucose with feeding of maitake. Ether-ethanol-soluble (ES) and hot water-soluble (WS) fractions were prepared from the fruit body and their hypoglycemic activity was examined. Blood glucose-lowering activity was found when ES-fraction or WS-50% ethanol float (X) fraction was administered orally, but other WS-fractions were inactive. These results suggest that the anti-diabetic activity was present not only in the ES-fraction consisting of lipid but also in the X-fraction of peptidoglycan (sugar:protein = 65:35).
Nakai, R; Masui, H; Horio, H; Ohtsuru, M
1999-06-01
We investigated the effect of maitake (Grifola frondosa) water extract on inhibiting the conversion of C3H10T1/2B2C1 cells into adipocytes. Maitake water extract was fractionated by molecular sieve. Heat-labile compounds strongly inhibiting adipocyte conversion proved to occur in fractions of molecular weight of more than 10,000 on the basis of activity measurement of glycerol-3-phosphate dehydrogenase.
Su, Chun-Han; Lu, Tzy-Ming; Lai, Min-Nan; Ng, Lean-Teik
2013-01-01
This study examined the inhibitory effects of Grifola frondosa (GF), a medicinal mushroom popularly consumed in traditional medicine and health food, on digestive enzymes related to type 2 diabetes; chemical profiles and inhibitory kinetics of its bioactive fractions were also analyzed. Results showed that all GF extracts showed weak anti-α-amylase activity; however, strong anti-α-glucosidase activity was noted on GF n-hexane extract (GF-H). Further fractionation confirmed that compared with acarbose (a commercial α-glucosidase inhibitor), the nonpolar fraction of GF possessed a stronger anti-α-glucosidase activity but a weaker anti-α-amylase activity. These activities were not derived from ergosterol and ergosterol peroxide, two major compounds of this fraction. The inhibitory kinetics of GF-H on α-glucosidase was competitive inhibition. GF-H was as good as acarbose in inhibiting the starch digestion in vitro. Oleic acid and linoleic acid could be the major active constituents that have contributed to the potency of GF in inhibiting α-glucosidase activity.
Yang, Byung-Keun; Gu, Young-Ah; Jeong, Yong-Tae; Jeong, Hun; Song, Chi-Hyun
2007-08-01
The immuno-modulating activities and chemical characteristics of exo-biopolymer (EX-GF) produced by a submerged mycelial culture of Grifola frondosa were studied. The EX-GF was fractionated into EX-GF-Fr.I, II, and III by Sephadex G-100 gel chromatography. Anti-complementary activity of EX-GF-Fr.III was highest (71.1%) among them, and its activation system occurred through both classical and alternative pathways, where the classical pathway found to be major one. Lysosomal enzyme activity and nitric oxide production ability of macrophage were also found to be mediated by EX-GF-Fr.III. The molecular weight of the EX-GF-Fr.I, II, and III was estimated to be about 163, 40, and 2.8 kDa, respectively. Total sugar and protein contents of the three fractions were 80.3, 61.9 and 89.3%, and 17.3, 35.2, and 10.7%, respectively. The sugar and amino acid compositions of the EX-GF-Fr.I, II, and III were also analyzed in detail.
Liu, Qian; Cao, Xiujuan; Zhuang, Xuhui; Han, Wei; Guo, Weiqun; Xiong, Jian; Zhang, Xiaolin
2017-05-15
Rice bran polysaccharides (RBPSs) are valuable compounds with many biological activities. In this work, a fungus called Grifola frondosa, was selected to ferment defatted rice bran water extracts and modify the RBPSs, which were then isolated by ethanol precipitation and deproteinization. GC analysis of fermented products suggested they are composed of glucose, arabinose, galactose, mannose, and xylose at a molar ratio of 9:5:8:2:5, which was 32:4:6:2:5 before fermentation. HPLC analysis revealed that the molecular weight of unfermented RBPS was distributed mainly from 10(3) to 10(4)Da, and it changed to 10(2) to 10(3)Da after fermentation. Antioxidant activities and effects on the production of NO were analyzed and it indicated that the scavenging ratios of hydroxyl and DPPH radicals by the fermented products were significantly enhanced compared to the unfermented ones, and also the products fermented for 9days exhibited two-way adjusting effects on the production of NO in macrophages.
Xiao, Chun; Wu, Qingping; Xie, Yizhen; Zhang, Jumei; Tan, Jianbin
2015-11-01
Our laboratory has previously demonstrated that Grifola frondosa polysaccharides (GFPs) showed hypoglycemic effects. This study aimed to investigate which polysaccharide-enriched fractions of GFPs were the main active constituents, and to disclose their hypoglycemic mechanism. F2 and F3 were obtained from GFPs and their hypoglycemic effects were investigated. Fasting serum glucose (FSG) levels, fasting serum insulin (FSI) levels and a homeostasis model assessment of insulin resistance (HOMA-IR) were measured, and the hepatic mRNA levels of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), protein tyrosine phosphatase-1B (PTP1B), phosphatidylinositol 3-kinase (PI3K) and Akt/protein kinase B (PKB) were determined by a quantitative polymerase chain reaction (qPCR). The activity of IR and IRS-1 were determined by an enzyme-linked immunosorbent assay (ELISA), and their phospho-protein levels were analyzed with western blotting. F2 and F3 significantly decreased the levels of FSG, FSI and HOMA-IR compared with a diabetic control group (P < 0.05). F2 and F3 increased the activity and mRNA levels of IR, and the latter also increased the mRNA levels of IRS-1. As for the protein levels of phospho-IR and IRS-1, both F2 and F3 increased the protein levels of IR (Try 1361), but decreased IRS-1 (Ser307). In the PI3K/Akt pathway, F3 increased the mRNA levels of PI3K and Akt, however, F2 inhibited PTP1B expression. F2 and F3 are presumed to cause an improvement in insulin resistance, triggered by the reactivation of IR and IRS-1.
Vunduk, Jovana; Klaus, Anita; Kozarski, Maja; Dordevic, Radovan; Miladinovic, Zoran; Jovanovic, Ljubinko; Niksic, Miomir; Van Griensven, Leonardus Johannes Lambertus Donatus
2016-01-01
Kaolinite and the modified natural zeolite minazel plus (M+) were used as supplements in substrate used for the production of the medicinal mushroom Grifola frondosa. Growth stimulation, expressed as yield and biological efficiency, was observed when M+ (1%) was added. The production cycle was shortened by half as a result of the zeolites' ion-exchange ability, stimulation of enzyme activity, and water retain capacity. Inductively coupled plasma optical emission spectrometry of fruiting bodies showed the absence of heavy metals (arsenic, cadmium, and lead), whereas the concentration of calcium increased greatly and the concentrations of iron, magnesium, and zinc increased moderately under the influence of M+. Solid-state nuclear magnetic resonance showed a positive impact on the β-glucan ratio, which could have been caused by the epimerization reaction stimulated by zeolites. The functionality of the mushroom was evaluated through several antioxidant activity assays, and in all cases a positive effect was established: M+ was statistically more effective in comparison with kaolinite. A strong correlation was established between the antioxidative activity of cultivated fruiting bodies and the tested compounds (total phenolic compounds, carbohydrates, and minerals).
Lin, Chia-Hung; Chang, Ching-Yao; Lin, Hui-Ju; Lin, Wu-Chou; Chen, Ter-Hsin; Wan, Lei
2016-01-01
Mushrooms are used in traditional Chinese medicine to treat a variety of diseases. Grifola frondosa (GF) is an edible mushroom indigenous to many Asian countries with a large fruiting body characterized by overlapping caps. In particular, GF is known for its anti-tumor activity, which has been targeted by scientific and clinical research. This study aimed to investigate the effects of the cold-water extract of GF (GFW) and its active fraction (GFW-GF) on autophagy and apoptosis, and the underlying mechanisms in vitro and in vivo. Our results revealed that GFW and GFW-GF inhibited phosphatidylinositol 3-kinase (PI3K) and stimulated c-Jun N-terminal kinase (JNK) pathways, thereby inducing autophagy. We also demonstrated that GFW and GFW-GF inhibited proliferation, induced cell cycle arrest, and apoptosis in Hep3B hepatoma cells. GFW and GFW-GF markedly arrested cells in S phase and promoted cleavage of caspase-3 and -9. In addition, GFW and GFW-GF decreased the expression levels of the anti-apoptotic proteins protein kinase B and extracellular signal-regulated kinase. We also found that GFW significantly inhibited tumor growth in nude mice implanted with Hep3B cells. Our work demonstrates that GF and its active fraction inhibit hepatoma growth by inducing autophagy and apoptosis. PMID:27013543
Lei, Hong; Zhang, Minmin; Wang, Qin; Guo, Shuzhen; Han, Juncheng; Sun, Hanju; Wu, Wutong
2013-01-01
The hypoglycemic effect of an α-glucan (designated here as MT-α-glucan) from the fruit body of the Maitake medicinal mushroom, Grifola frondosa, on a murine type 2 diabetes mellitus (T2DM) model was evaluated. Body weight and levels of fasting plasma glucose, glycosylated hemoglobin, triglycerides, cholesterol, free fatty acid, nitric oxide (NO), NO synthase, inducible NO synthase, and hepatic malondialdehyde content decreased significantly when MT-α-glucan was administered to T2DM mice. The content of serum insulin, hepatic glycogen, and reduced glutathione and the activity of superoxide dismutase and glutathione peroxidase increased significantly when MT-α-glucan was administered to T2DM mice. Histopathological changes of the pancreas were ameliorated in the treatment group. These data suggest that MT-α-glucan has a hypoglycemic effect on T2DM mice, which might be related to its protective effect of pancreatic β-cells exerted by decreasing levels of factors that destroy β-cells, such as oxidative stress and NO synthesis.
Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice.
Hong, Lei; Xun, Ma; Wutong, Wu
2007-04-01
We have evaluated the anti-diabetic effect of a alpha-glucan (MT-alpha-glucan) from the fruit body of maitake mushrooms (Grifola frondosa) on KK-Ay mice (a kind of genetical type 2 diabetes animal model). The effects of MT-alpha-glucan (450 or 150 mg kg (-1)) on diabetic mice were investigated by observing the changes in body weight, the level of fasting plasma glucose, glycosylated serum protein (GSP), hepatic glycogen, serum insulin, triglycerides, cholesterol, free fatty acid, liver superoxide dismutase (SOD), glutathione peroxidase (GSHpx), reduced glutathione (GSH) and malondialdehyde (MDA). Moreover, the binding capacity of insulin receptors on liver crude plasma membranes was assayed and histopathological changes in the pancreas were observed. Treatment with MT-alpha-glucan significantly decreased the body weight, level of fasting plasma glucose, GSP, serum insulin, triglycerides, cholesterol, free fatty acid and MDA content in livers. Treatment with MT-alpha-glucan significantly increased the content of hepatic glycogen, GSH and the activity of SOD and GSHpx. Moreover, the insulin binding capacity to liver crude plasma membranes increased and histopathological changes in the pancreas were ameliorated in the treatment group. These data suggest that MT-alpha-glucan has an anti-diabetic effect on KK-Ay mice, which might be related to its effect on insulin receptors (i.e., increasing insulin sensitivity and ameliorating insulin resistance of peripheral target tissues).
Sanzen, I; Imanishi, N; Takamatsu, N; Konosu, S; Mantani, N; Terasawa, K; Tazawa, K; Odaira, Y; Watanabe, M; Takeyama, M; Ochiai, H
2001-12-01
We have investigated D-fraction (MDF) extracted from Grifola frondosa (Maitake mushroom) on the inducible nitric oxide synthase (iNOS)-mediated nitric oxide (NO) production in RAW264.7 (RAW) cells, a murine monocyte/macrophage cell line, with special reference to antitumor activity of MDF against human hepatoma-derived huH-1 cells. MDF could induce iNOS mRNA expression in RAW cells in a dose range of more than 30 microg/ml, but the effect of 10 microg/ml of MDF was negligible. The iNOS mRNA expression induced by 100 microg/ml of MDF was 6 hrs later, but lasted for a longer time than that of lipopolysaccharide (LPS), a representative iNOS inducer. Although iNOS mRNA levels in MDF-stimulated cells were almost equal to LPS-stimulated cells at the peak time, the cumulative amount of nitrite was only about 50% compared with that of LPS-treated cells. When huH-I cells were cultured in MDF containing media in a 24-well plate with inserted porous bottom in the presence or absence of RAW cells, the viability of huH-1 cells decreased significantly only in the presence of RAW cells in MDF dose-dependent manner. This antitumor activity of RAW cells in the presence of MDF was abolished or attenuated by the addition of L-NAME, a NOS inhibitor, confirming that this phenomenon is due to iNOS-mediated NO production by RAW cells, but not direct cytotoxic activity of MDF against huH-1 cells. These data suggest that MDF is a novel inducer for iNOS which contributes at least in part to antitumor activity of MDF.
Postemsky, Pablo Daniel; Curvetto, Néstor Raúl
2015-01-01
Submerged culture is an alternative mycelium source for Grifola gargal and G. sordulenta, two rare edible mushrooms related to Grifola frondosa. This work studies their mycelia as a source of antioxidants. The efficient concentrations of methanolic extracts in both radical scavenging (RS) and reducing power (RP) abilities in G. gargal and in G. sordulenta showed a high antioxidant activity. In the experimental design used, the antioxidant activity mainly depended on the culture conditions rather than on the media composition. Irrespective of the basal culture medium, mycelium methanolic extracts of G. sordulenta obtained from culture in Erlenmeyer flasks showed equivalents to ascorbic acid (EQ(AA)) RS-EQ(AA) and RP-EQ(AA) contents higher than the corresponding values obtained with jar cultures. Under stationary cultivation, G. sordulenta produced approximately 50% higher content in both RS-EQ(AA) and RP-EQ(AA) than the medicinal mushroom G. frondosa. Phenolics correlated with RS-EQ(AA) and RP-EQ(AA) in G. gargal and with RP-EQ(AA) in G. sordulenta; besides, thin-layer chromatography showed these compounds to be at least in part related to the RS capacity. It is concluded that G. gargal and G. sordulenta mycelia are excellent sources of antioxidant metabolites.
Anti-Inflammatory Constituents from Bidens frondosa.
Le, Jiamei; Lu, Wenquan; Xiong, Xiaojuan; Wu, Zhijun; Chen, Wansheng
2015-10-09
A new polyacetylene glucoside (3E,5E,11E)-tridecatriene-7,9-diyne-1,2,13-triol-2-O-β-D-glucopyranoside (1), a new phenylpropanoid glucoside 2'-butoxyethylconiferin (2), and a new flavonoid glycoside 8,3',4'-trihydroxyflavone-7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (3), have been isolated from Bidens frondosa together with fifty-three known compounds 4-56. The structures of these compounds were established by spectroscopic methods. mainly ESIMS, 1D- and 2D-NMR spectroscopic data. and comparison with literature data. Compounds 1-34, 36, 39, 43, 47, 51, and 52 were tested for inhibition of nuclear factor kappa B (NF-κB) in 293-NF-κB-luciferase report cell line induced by lipopolysaccharide (LPS), and compounds 1, 2, 3, 9, 15, 21, 24 and 51 were tested for the production of TNF-α, IL-1β, IL-6, IL-10 in RAW 264.7 macrophages induced by LPS. In conclusion, the isolated compounds 1, 2, 3, 9, 15, 21, 24 and 51 exhibited significant activity in anti-inflammatory activity assays.
Antidiarrhoeal Activity of the Alcoholic Extract of the Leaves of Butea frondosa Koen. Ex Roxb
Banji, D.; Banji, Otilia; Shanthmurthy, M.; Singh, M.
2010-01-01
The study evaluated the antidiarrhoeal property of the alcohol extract of Butea frondosa leaf on mice and rats. Studies revealed that at a dose of 25 and 75 mg/kg a considerable reduction in the extent of diarrhoea was observed but at a dose of 100 mg/kg the animals appeared completely constipated when subjected to castor oil induced diarrhoea and intestinal motility model. Therefore, Butea frondosa can be regarded as an effective antidiarrhoeal. PMID:20838531
Amelioration of Atherosclerosis by the New Medicinal Mushroom Grifola gargal Singer
Harada, Etsuko; D'Alessandro-Gabazza, Corina N.; Toda, Masaaki; Morizono, Toshihiro; Chelakkot-Govindalayathil, Ayshwarya-Lakshmi; Roeen, Ziaurahman; Urawa, Masahito; Yasuma, Taro; Yano, Yutaka; Sumiya, Toshimitsu
2015-01-01
ABSTRACT The beneficial effects of edible mushrooms for improving chronic intractable diseases have been documented. However, the antiatherogenic activity of the new medicinal mushroom Grifola gargal is unknown. Therefore, we evaluated whether Grifola gargal can prevent or delay the progression of atherosclerosis. Atherosclerosis was induced in ApoE lipoprotein-deficient mice by subcutaneous infusion of angiotensin II. Grifola gargal extract (GGE) was prepared and intraperitoneally injected. The weight of heart and vessels, dilatation/atheroma formation of thoracic and abdominal aorta, the percentage of peripheral granulocytes, and the blood concentration of MCP-1/CCL2 were significantly reduced in mice treated with GGE compared to untreated mice. By contrast, the percentage of regulatory T cells and the plasma concentration of SDF-1/CXCL12 were significantly increased in mice treated with the mushroom extract compared to untreated mice. In vitro, GGE significantly increased the secretion of SDF-1/CXCL12, VEGF, and TGF-β1 from fibroblasts compared to control. This study demonstrated for the first time that Grifola gargal therapy can enhance regulatory T cells and ameliorate atherosclerosis in mice. PMID:25799023
Wang, X F; Hassani, D; Cheng, Z W; Wang, C Y; Wu, J
2014-12-12
Five gradient concentrations (0.02, 0.04, 0.06, 0.08, and 0.10 g/mL) of leaching liquors from the roots, stems, and leaves of the invasive plant Bidens frondosa were used as conditioning fluid to examine its influence on seed germination conditions of the native plant Geum japonicum var. chinense in Huangshan. All leaching liquors of organs suppressed the seed germination of Geum japonicum var. chinense and reduced the final germination percentage and rate, and increased the germination inhibition rate, with a bimodal dependence on concentration. The leaching liquor inhibited the seed germination significantly at the concentration of 0.02 g/mL respectively. The seed germination was also inhibited as the concentration reached to 0.04 g/mL and beyond. Hence the allelopathic effects of the organs were significantly enhanced respectively. This phenomenon represented the presence of allelopathy substances in the root, stem and leaf of Bidens frondosa.
Goswami, Sumanta Kumar; Inamdar, Mohammed Naseeruddin; Jamwal, Rohitash; Dethe, Shekhar
2013-01-01
Butea frondosa Koenig ex Roxb. (BF) is traditionally used to manage male sexual disorders including erectile dysfunction (ED). Methanol extract of BF (bark) inhibited Rho-kinase 2 (ROCK-II) enzyme activity in vitro with an IC50 of 20.29 ± 1.83 μg/mL. The relaxant effect of methanol extract of BF (MEBF) was studied on phenylephrine precontracted corpus cavernosum smooth muscle (CCSM) isolated from young rats. The effect of MEBF treatment on sexual behaviour of both young (5 month) and aged (24 month) rats was also studied in addition to the influence on smooth muscle, collagen (collagen-I and -III) level in penis, and sperm characteristics of young and aged rats. MEBF relaxed CCSM up to 21.77 ± 2.57% and increased sexual behavior of young and aged rats. This increase in sexual function could be attributed to ROCK-II inhibition and increase in ratio of smooth muscle to collagen level in rat penile tissue. Increased sperm production and decreased defective sperms in young and aged rats corroborate the usefulness of Butea frondosa in male infertility in addition to ED. PMID:24069061
Gianasi, Bruno L.; Verkaik, Katie; Hamel, Jean-François; Mercier, Annie
2015-01-01
The lack of a reliable and innocuous mark-recapture method has limited studies that would provide essential information for the management of commercial sea cucumbers. Tagging sea cucumbers is notoriously difficult because of their plastic nature and autolysis capacities. The markers that have so far been tested, mainly on or through the body wall, were either lost rapidly or had major drawbacks (e.g. suitable only for batch identification, requiring complex analysis, causing infections, necrosis, behavioural changes and mortality). The present study explored the efficacy of passive integrated transponder (PIT) tags for individually marking sea cucumbers by assessing retention rates and long-term side effects of tags inserted in previously unstudied tissues/organs. Individuals of the species Cucumaria frondosa were tagged in the body wall, aquapharyngeal bulb and at the base of the oral tentacles. They were monitored closely for evidence of stress, infection, change in feeding and spawning behaviour and tag retention rate. Implanting the tag in an oral tentacle to reach the hydrovascular system of the aquapharyngeal bulb achieved the best retention rates in full-size individuals: from a maximum of 92% after 30 days to 68% at the end of the experimental period (300 days). Efficacy was lower in smaller individuals (84% after 30 d and 42% after 300 d). Following a slight increase in cloacal movements for 15 h post tagging, no side effect was noted in sea cucumbers tagged in the aquapharyngeal bulb via the tentacles. Feeding and spawning behaviours were not affected and no signs of infections or abnormal cell development in the vicinity of the tags were observed. This study indicates that marking sea cucumbers with 8.2 mm long PIT tags implanted via the oral tentacle is an effective technique, yielding relatively high retention rates over long periods without any detectable physiological or behavioural effects. PMID:26011165
Postemsky, Pablo Daniel; Palermo, Ana Maria; Curvetto, Néstor Raúl
2011-01-01
Grifola gargal is an edible mushroom with attributed antioxidant properties. Different sources of G. gargal materials, i.e., fruit bodies and mycelia grown in liquid or solid media, were used to study its potential protective capacity when somatic mutation and recombination is induced in Drosophila melanogaster using DMBA (7-12-dimethyl-benz(α)anthracene) as promutagen. Heterozygote larvae (white/white+) were grown in media with different concentrations of DMBA. Grifola gargal fruit bodies (GgFB) or mycelia from liquid culture (GgLC) or from solid culture (GgWG), i.e., biotransformed wheat kernel flour, were added to the culture media in combined treatments with DMBA. Water, DMBA solvent, or wheat flour (WF) plus DMBA solvent were used as negative controls. Larval mortality increased from 9% to 11% in negative controls to 31% to 36% in DMBA treatments. The addition of GgFB, GgLC, or GgWG materials produced a protective effect on 25 μmol/vial DMBA-induced mortality. Mutations observed in SMART, as light spots per 100 eyes (LS/100 eyes), increased with increasing doses of DMBA; this was also true when considering the mutation incidence expressed as percentage of eyes exhibiting light spots (% eyes with LS). Interestingly, mycelia from GgFB, GgLC, or GgWG, in the presence of 25 μmol/vial DMBA, showed lower values in SMART of both the total LS/100 eyes and the percentage of eyes with LS. Thus, Grifola gargal materials were not only nontoxic, but in combination with 25 μmol/vial DMBA lowered the mortality induced by the promutagen and showed antimutagenic effects. Protective effects of G. gargal against DMBA are discussed in terms of the onset of desmutagenic and/or bioantimutagenic mechanisms of detoxification in the host organism, probably due to some bioactive compounds known to occur in higher mushrooms.
ERIC Educational Resources Information Center
Kinsella, John J.
1970-01-01
Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)
NASA Solve lists opportunities available to the general public to contribute to solving tough problems related to NASA’s mission through challenges, prize competitions, and crowdsourcing activities...
Wang, Juanjuan; Han, Hua; Chen, Xiangfeng; Yi, Yanghua; Sun, Hongxiang
2014-01-01
The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs. PMID:25062508
Wu, Feng-Juan; Xue, Yong; Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Jing-Feng; Du, Lei; Takahashi, Koretaro; Wang, Yu-Ming
2014-01-01
Alzheimer's disease (AD) is a common neurodegenerative disorders, in which oxidative stress plays an important role. The present study investigated the effect of eicosapentaenoic acid-enriched phospholipids (EPA-enriched PL) from the sea cucumber Cucumaria frondosa on oxidative injury in PC12 cells induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide (t-BHP). We also studied the effect of EPA-enriched PL on learning and memory functions in senescence-accelerated prone mouse strain 8 (SAMP8) in vivo. Pretreatment with EPA-enriched PL resulted in an enhancement of survival in a dose-dependent manner in H2O2 or t-BHP damaged PC12 cells. EPA-enriched PL pretreatment could also reduce the leakage of lactate dehydrogenase (LDH), and increase the intracellular total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity compared with the H2O2 or t-BHP group. The down-regulated Bcl-2 mRNA level and up-regulated Bax, Caspase-9, and Caspase-3 mRNA expression induced by H2O2 or t-BHP could be restored by EPA-enriched PL pretreatment. These results demonstrated that EPA-enriched PL exhibited its neuroprotective effects by virtue of its antioxidant activity, which might be achieved by inhibiting the mitochondria-dependent apoptotic pathway. The neuroprotective effect of EPA-enriched PL was also verified in vivo test: the EPA-enriched PL administration prevented the development of learning and memory impairments in SAMP8 mice. Our results indicated that EPA-enriched PL could offer an efficient and novel strategy to explore novel drugs or functional food for neuronprotection and cognitive improvement.
Stevens, Kevin J; Wall, Christopher B; Janssen, Joel A
2011-05-01
To identify the importance of arbuscular mycorrhizal fungi (AMF) colonizing wetland seedlings following flooding, we assessed the effects of AMF on seedling establishment of two pioneer species, Bidens frondosa and Eclipta prostrata grown under three levels of water availability and ask: (1) Do inoculated seedlings differ in growth and development from non-inoculated plants? (2) Are the effects of inoculation and degree of colonization dependent on water availability? (3) Do plant responses to inoculation differ between two closely related species? Inoculation had no detectable effects on shoot height, or plant biomass but did affect biomass partitioning and root morphology in a species-specific manner. Shoot/root ratios were significantly lower in non-inoculated E. prostrata plants compared with inoculated plants (0.381 ± 0.066 vs. 0.683 ± 0.132). Root length and surface area were greater in non-inoculated E. prostrata (259.55 ± 33.78 cm vs. 194.64 ± 27.45 cm and 54.91 ± 7.628 cm(2) vs. 46.26 ± 6.8 cm(2), respectively). Inoculation had no detectable effect on B. frondosa root length, volume, or surface area. AMF associations formed at all levels of water availability. Hyphal, arbuscular, and vesicular colonization levels were greater in dry compared with intermediate and flooded treatments. Measures of mycorrhizal responsiveness were significantly depressed in E. prostrata compared with B. frondosa for total fresh weight (-0.3 ± 0.18 g vs. 0.06 ± 0.06 g), root length (-0.78 ± 0.28 cm vs.-0.11 ± 0.07 cm), root volume (-0.49 ± 0.22 cm(3) vs. 0.06 ± 0.07 cm(3)), and surface area (-0.59 ± 0.23 cm(2) vs.-0.03 ± 0.08 cm(2)). Given the disparity in species response to AMF inoculation, events that alter AMF prevalence in wetlands could significantly alter plant community structure by directly affecting seedling growth and development.
Teaching through Problem Solving
ERIC Educational Resources Information Center
Fi, Cos D.; Degner, Katherine M.
2012-01-01
Teaching through Problem Solving (TtPS) is an effective way to teach mathematics "for" understanding. It also provides students with a way to learn mathematics "with" understanding. In this article, the authors present a definition of what it means to teach through problem solving. They also describe a professional development vignette that…
Techniques of Problem Solving.
ERIC Educational Resources Information Center
Krantz, Steven G.
The purpose of this book is to teach the basic principles of problem solving in both mathematical and non-mathematical problems. The major components of the book consist of learning to translate verbal discussion into analytical data, learning problem solving methods for attacking collections of analytical questions or data, and building a…
Strategies for Problem Solving.
ERIC Educational Resources Information Center
Karmos, Joseph S.; Karmos, Ann H.
Problem-solving skills are becoming increasingly important in the workplace, and more schools are including them in the curriculum. Knowledge of problem solving will be critical to a work force that is dealing with advanced technology, yet many students have yet to master these skills. Based on this premise, this guide attempts to show how…
Chemical Reaction Problem Solving.
ERIC Educational Resources Information Center
Veal, William
1999-01-01
Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…
ERIC Educational Resources Information Center
Shumway, Richard J.
1989-01-01
Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
Miller, Michael B
2010-01-01
Solving tooth sensitivity requires both you and the patients to be resilient and to understand that if one approach doesn't work, you can try another one that is non-invasive or, at worst, minimally invasive. Much like the clinician who posted the original question, I strongly believe that it is our responsibility to convince patients that jumping to a radical solution could be totally unnecessary--and expensive-- and still might not solve the problem.
NASA Technical Reports Server (NTRS)
1992-01-01
CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.
Solving Problems through Circles
ERIC Educational Resources Information Center
Grahamslaw, Laura; Henson, Lisa H.
2015-01-01
Several problem-solving interventions that utilise a "circle" approach have been applied within the field of educational psychology, for example, Circle Time, Circle of Friends, Sharing Circles, Circle of Adults and Solution Circles. This research explored two interventions, Solution Circles and Circle of Adults, and used thematic…
ERIC Educational Resources Information Center
Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.
The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…
ERIC Educational Resources Information Center
Aznar, Mercedes Martinez; Orcajo, Teresa Ibanez
2005-01-01
A teaching unit on genetics and human inheritance using problem-solving methodology was undertaken with fourth-level Spanish Secondary Education students (15 year olds). The goal was to study certain aspects of the students' learning process (concepts, procedures and attitude) when using this methodology in the school environment. The change…
Problem Solving Techniques Seminar.
ERIC Educational Resources Information Center
Massachusetts Career Development Inst., Springfield.
This booklet is one of six texts from a workplace literacy curriculum designed to assist learners in facing the increased demands of the workplace. Six problem-solving techniques are developed in the booklet to assist individuals and groups in making better decisions: problem identification, data gathering, data analysis, solution analysis,…
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Tyrie, Nancy
2009-01-01
In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…
Circumference and Problem Solving.
ERIC Educational Resources Information Center
Blackburn, Katie; White, David
The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to…
Solving Common Mathematical Problems
NASA Technical Reports Server (NTRS)
Luz, Paul L.
2005-01-01
Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.
ERIC Educational Resources Information Center
Armoni, Michal; Gal-Ezer, Judith; Tirosh, Dina
2005-01-01
Solving problems by reduction is an important issue in mathematics and science education in general (both in high school and in college or university) and particularly in computer science education. Developing reductive thinking patterns is an important goal in any scientific discipline, yet reduction is not an easy subject to cope with. Still,…
ERIC Educational Resources Information Center
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
ERIC Educational Resources Information Center
Ayrinhac, Simon
2014-01-01
We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…
ERIC Educational Resources Information Center
Thorson, Annette, Ed.
1999-01-01
This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…
Problem Solving in Electricity.
ERIC Educational Resources Information Center
Caillot, Michel; Chalouhi, Elias
Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…
Achievement in Problem Solving
ERIC Educational Resources Information Center
Friebele, David
2010-01-01
This Action Research Project is meant to investigate the effects of incorporating research-based instructional strategies into instruction and their subsequent effect on student achievement in the area of problem-solving. The two specific strategies utilized are the integration of manipulatives and increased social interaction on a regular basis.…
Introspection in Problem Solving
ERIC Educational Resources Information Center
Jäkel, Frank; Schreiber, Cornell
2013-01-01
Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…
Universal Design Problem Solving
ERIC Educational Resources Information Center
Sterling, Mary C.
2004-01-01
Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…
Toward Solving the Problem of Problem Solving: An Analysis Framework
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
Problem Solving and Reasoning.
1984-02-01
Sloan Foundation (HAS). This paper is a draft of a chapter to appear in R. C. Atkinson, R. Herrnstein, G. Lindzey, and R. D. Luce (Eds.), Stevens ...D. Luce (Eds.), Stevens ’ Handbook of Experimental Psychology, (Revised Edition). New York: John Wiley & Sons. PROBLEM SOLVING AND REASONING James G... LaBerge & S. J. Samuels (Eds.), Perception and comprehension. Hillsdale, NJ: Erlbaum. Anderson, J. R. (1982). Acquisition of cognitive skill
A comparison of hypoglycemic activity of three species of basidiomycetes rich in vanadium.
Han, Chunchao; Liu, Tongjun
2009-02-01
The hypoglycemic activity of fermented mushroom of three fungi of basidiomycetes rich in vanadium was studied in this paper. Alloxan- and adrenalin-induced hyperglycemic mice were used in the study. The blood glucose and the sugar tolerance were determined. After the mice were administered (ig) with Coprinus comatus rich in vanadium, the blood glucose of alloxan-induced hyperglycemic mice decreased (p < 0.05), ascension of blood glucose induced by adrenalin was inhibited (p < 0.01) and the sugar tolerance of the normal mice was improved. However, the same result did not occur in Ganoderma lucidum and Grifola frondosa group. Compared with Ganoderma rich in vanadium and Grifola frondosa rich in vanadium, the hypoglycemic effects of Coprinus comatus rich in vanadium on hyperglycemic animals are significant; it may be used as a hypoglycemic food or medicine for hyperglycemic people.
1982-10-01
Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R
Solving Differential Equations in R: Package deSolve
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...
Miller, A.
1999-06-01
Human influences create both environmental problems and barriers to effective policy aimed at addressing those problems. In effect, environmental managers manage people as much as they manage the environment. Therefore, they must gain an understanding of the psychological and sociopolitical dimensions of environmental problems that they are attempting to resolve. The author reappraises conventional analyses of environmental problems using lessons from the psychosocial disciplines. The author combines the disciplines of ecology, political sociology and psychology to produce a more adaptive approach to problem-solving that is specifically geared toward the environmental field. Numerous case studies demonstrate the practical application of theory in a way that is useful to technical and scientific professionals as well as to policymakers and planners.
The Identity of Problem Solving
ERIC Educational Resources Information Center
Mamona-Downs, Joanna; Downs, Martin
2005-01-01
This paper raises issues motivated by considering the "identity" of problem solving. This means that we are concerned with how other mathematics education topics impinge on problem solving, and with themes that naturally arise within the problem-solving agenda. We claim that some of these issues need more attention by educational research, while…
Problem Solving and Beginning Programming.
ERIC Educational Resources Information Center
McAllister, Alan
Based on current models of problem solving within cognitive psychology, this study focused on the spontaneous problem solving strategies used by children as they first learned LOGO computer programming, and on strategy transformations that took place during the problem solving process. The research consisted of a six weeks programming training…
Computer Problem-Solving Coaches
NASA Astrophysics Data System (ADS)
Hsu, Leon; Heller, Kenneth
2005-09-01
Computers might be able to play an important role in physics instruction by coaching students to develop good problem-solving skills. Building on previous research on student problem solving and on designing computer programs to teach cognitive skills, we are developing a prototype computer coach to provide students with guided practice in solving problems. In addition to helping students become better problem solvers, such programs can be useful in studying how students learn to solve problems and how and if problem-solving skills can be transferred from a computer to a pencil-and-paper environment.
Cosmology Solved? Quite Possibly!
NASA Astrophysics Data System (ADS)
Turner, Michael S.
1999-03-01
The discovery of the cosmic microwave background (CMB) in 1964 by Penzias and Wilson led to the establishment of the hot big bang cosmological model some 10 years later. Discoveries made in 1998 may ultimately have as profound an effect on our understanding of the origin and evolution of the universe. Taken at face value, they confirm the basic tenets of inflation + cold dark matter, a bold and expansive theory that addresses all the fundamental questions left unanswered by the hot big bang model and holds that the universe is flat, slowly moving elementary particles provide the cosmic infrastructure, and quantum fluctuations seeded all the structure seen in the universe today. Just as it took a decade to establish the hot big bang model after the discovery of the CMB, it will likely take another 10 years to establish the latest addition to the standard cosmology and make the answer to ``Cosmology solved?'' ``YES!'' Whether or not 1998 proves to be a cosmic milestone, the coming avalanche of high-quality cosmological data promises to make the next 20 years an extremely exciting period for cosmology.
Resource Scarcity: Problems Technology Cannot Solve; Problems Technology Can Solve.
ERIC Educational Resources Information Center
Meadows, Dennis; Castle, Emery N.
1979-01-01
Lists resource problems technology can and cannot solve, and emphasizes the need for considering and restructuring the social environments and institutions as well as developing new technologies. (CK)
Measuring Family Problem Solving: The Family Problem Solving Diary.
ERIC Educational Resources Information Center
Kieren, Dianne K.
The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…
Problem Solving Style, Creative Thinking, and Problem Solving Confidence
ERIC Educational Resources Information Center
Houtz, John C.; Selby, Edwin C.
2009-01-01
Forty-two undergraduate and graduate students completed VIEW: An Assessment of Problem Solving Style, the non-verbal Torrance Test Thinking Creatively with Pictures, and the Problem Solving Inventory (PSI). VIEW assesses individuals' orientation to change, manner of processing, and ways of deciding, while the Torrance test measures several…
Multiple Ways to Solve Proportions
ERIC Educational Resources Information Center
Ercole, Leslie K.; Frantz, Marny; Ashline, George
2011-01-01
When solving problems involving proportions, students may intuitively draw on strategies that connect to their understanding of fractions, decimals, and percents. These two statements--"Instruction in solving proportions should include methods that have a strong intuitive basis" and "Teachers should begin instruction with more intuitive…
The Future Problem Solving Program.
ERIC Educational Resources Information Center
Crabbe, Anne B.
1989-01-01
Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…
Creative Thinking and Problem Solving.
ERIC Educational Resources Information Center
Lacy, Grace
The booklet considers the nature of creativity in children and examines classroom implications. Among the topics addressed are the following: theories about creativity; research; developments in brain research; the creative process; creative problem solving; the Structure of Intellect Problem Solving (SIPS) model; a rationale for creativity in the…
Difficulties in Genetics Problem Solving.
ERIC Educational Resources Information Center
Tolman, Richard R.
1982-01-01
Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)
Problem Solving, Scaffolding and Learning
ERIC Educational Resources Information Center
Lin, Shih-Yin
2012-01-01
Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…
Problem Solving: Tips for Teachers.
ERIC Educational Resources Information Center
O'Daffer, Phares G., Ed.; Schaaf, Oscar
1986-01-01
Describes: (1) a computation-oriented problem with procedures and some questions that might be asked of students; (2) four ways to help students develop positive problem-solving attitudes; (3) a strategy game; (4) a multiplication problem; and (5) several questions that will help students develop problem-solving skills. (JN)
Technological Problem Solving: A Proposal.
ERIC Educational Resources Information Center
Waetjen, Walter B.
Examination of newer technology education materials reveals two recurring themes: one relates to curriculum content, familiarizing students with technology, and another to a technique of classroom instruction, i.e., problem solving. A problem-solving framework for technical education has the following components: (1) define the problem; (2)…
Learning Impasses in Problem Solving
NASA Technical Reports Server (NTRS)
Hodgson, J. P. E.
1992-01-01
Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.
Crime Solving Techniques: Training Bulletin.
ERIC Educational Resources Information Center
Sands, Jack M.
The document is a training bulletin for criminal investigators, explaining the use of probability, logic, lateral thinking, group problem solving, and psychological profiles as methods of solving crimes. One chpater of several pages is devoted to each of the five methods. The use of each method is explained; problems are presented for the user to…
NASA Astrophysics Data System (ADS)
2010-11-01
By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the
The Problems of Problem Solving
ERIC Educational Resources Information Center
Watson, Charles E.
1976-01-01
Discusses some common pitfalls in problem-solving and outlines three basic approaches to successfully identifying problems and their causes. (Available from Business Horizons, School of Business, Indiana University, Bloomington, Indiana 47401; $2.50, single copy) (Author/JG)
Problem Solving with General Semantics.
ERIC Educational Resources Information Center
Hewson, David
1996-01-01
Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)
Student Problem-Solving Behaviors
NASA Astrophysics Data System (ADS)
Harper, Kathleen A.
2006-04-01
Kathy Harper is director of undergraduate curriculum development in the physics department at The Ohio State University. She has been involved in local and national workshops for in-service teachers and conducts research in student problem solving.
Modeling Applied to Problem Solving
NASA Astrophysics Data System (ADS)
Pawl, Andrew; Barrantes, Analia; Pritchard, David E.
2009-10-01
Modeling Applied to Problem Solving (MAPS) is a pedagogy that helps students transfer instruction to problem solving in an expert-like manner. Declarative and Procedural syllabus content is organized and learned (not discovered) as a hierarchy of General Models. Students solve problems using an explicit Problem Modeling Rubric that begins with System, Interactions and Model (S.I.M.). System and Interactions are emphasized as the key to a strategic description of the system and the identification of the appropriate General Model to apply to the problem. We have employed the pedagogy in a three-week review course for students who received a D in mechanics. The course was assessed by a final exam retest as well as pre and post C-LASS surveys, yielding a one standard deviation improvement in the students' ability to solve final exam problems and a statistically significant positive shift in 7 of the 9 categories in the C-LASS.
Program solves line flow equation
McCaslin, K.P.
1981-01-19
A program written for the TI-59 programmable calculator solves the Panhandle Eastern A equation - an industry-accepted equation for calculating pressure losses in high-pressure gas-transmission pipelines. The input variables include the specific gravity of the gas, the flowing temperature, the pipeline efficiency, the base temperature and pressure, the inlet pressure, the pipeline's length and inside diameter, and the flow rate (SCF/day); the program solves for the discharge pressure.
Robot, computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.
1972-01-01
The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.
Customer-centered problem solving.
Samelson, Q B
1999-11-01
If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.
Teaching through Collaborative Problem Solving.
ERIC Educational Resources Information Center
Blandford, A. E.
1994-01-01
Discussion of a prototype intelligent education system called WOMBAT (Weighted Objectives Method by Arguing with the Tutor) focuses on dialogue and negotiation in collaborative problem solving. The results of a formative evaluation, in which the system was used by 10 subjects who commented on various aspects of the design, are presented. (Contains…
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.
ERIC Educational Resources Information Center
Pizlo, Zygmunt
2008-01-01
This paper presents a bibliography of more than 200 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo database. Journal papers, book chapters, books and dissertations are included. The topics include human development, education, neuroscience, research in applied settings, as well as…
Error Patterns in Problem Solving.
ERIC Educational Resources Information Center
Babbitt, Beatrice C.
Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…
Gender and Mathematical Problem Solving.
ERIC Educational Resources Information Center
Duffy, Jim; Gunther, Georg; Walters, Lloyd
1997-01-01
Studied the relationship between gender and mathematical problem solving in 83 male and 76 female high achieving Canadian 12-year-olds. Gender differences were found on the Canadian Test of Basic Skills but not on the GAUSS assessment. Implications for the discussion of the origin of gender differences in mathematics are discussed. (SLD)
Supporting Problem Solving in PBL
ERIC Educational Resources Information Center
Jonassen, David
2011-01-01
Although the characteristics of PBL (problem focused, student centered, self-directed, etc.) are well known, the components of a problem-based learning environment (PBLE) and the cognitive scaffolds necessary to support learning to solve different kinds of problems with different learners is less clear. This paper identifies the different…
Problem Solving through Paper Folding
ERIC Educational Resources Information Center
Wares, Arsalan
2014-01-01
The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…
ERIC Educational Resources Information Center
Pizlo, Zygmunt
2007-01-01
This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied…
Customer Service & Team Problem Solving.
ERIC Educational Resources Information Center
Martin, Sabrina Budasi
This curriculum guide provides materials for a six-session, site-specific training course in customer service and team problem solving for the Claretian Medical Center. The course outline is followed the six lesson plans. Components of each lesson plan include a list of objectives, an outline of activities and discussion topics for the lesson,…
Common Core: Solve Math Problems
ERIC Educational Resources Information Center
Strom, Erich
2012-01-01
The new common core standards for mathematics demand that students (and teachers!) exhibit deeper conceptual understanding. That's music to the ears of education professor John Tapper, who says teachers have overemphasized teaching procedures--and getting right answers. In his new book, "Solving for Why," he makes a powerful case for moving beyond…
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.
Students' Problem Solving and Justification
ERIC Educational Resources Information Center
Glass, Barbara; Maher, Carolyn A.
2004-01-01
This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…
ERIC Educational Resources Information Center
Funke, Joachim
2013-01-01
This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
Teachers in elementary schools, supervisors of instruction, and other educational practitioners are the primary audience for this publication. The paper presents philosophical, psychological, and practical reasons for including a problem-solving approach in elementary school instruction. It draws on the writings of John Dewey, Jean Piaget, James…
Problem-Solving Test: Pyrosequencing
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2013-01-01
Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…
Genetics problem solving and worldview
NASA Astrophysics Data System (ADS)
Dale, Esther
The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2016-07-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Maze Solving by Chemotactic Droplets
Lagzi, Istvan; Soh, Siowling; Wesson, Paul J.; Browne, Kevin P.; Grzybowski, Bartosz A.
2010-01-11
Droplets emitting surface-active chemicals exhibit chemotaxis toward low-pH regions. Such droplets are self-propelled and navigate through a complex maze to seek a source of acid placed at one of the maze’s exits. In doing so, the droplets find the shortest path through the maze. Chemotaxis and maze solving are due to an interplay between acid/base chemistry and surface tension effects.
Mathematical problem solving by analogy.
Novick, L R; Holyoak, K J
1991-05-01
We report the results of 2 experiments and a verbal protocol study examining the component processes of solving mathematical word problems by analogy. College students first studied a problem and its solution, which provided a potential source for analogical transfer. Then they attempted to solve several analogous problems. For some problems, subjects received one of a variety of hints designed to reduce or eliminate the difficulty of some of the major processes hypothesized to be involved in analogical transfer. Our studies yielded 4 major findings. First, the process of mapping the features of the source and target problems and the process of adapting the source solution procedure for use in solving the target problem were clearly distinguished: (a) Successful mapping was found to be insufficient for successful transfer and (b) adaptation was found to be a major source of transfer difficulty. Second, we obtained direct evidence that schema induction is a natural consequence of analogical transfer. The schema was found to co-exist with the problems from which it was induced, and both the schema and the individual problems facilitated later transfer. Third, for our multiple-solution problems, the relation between analogical transfer and solution accuracy was mediated by the degree of time pressure exerted for the test problems. Finally, mathematical expertise was a significant predictor of analogical transfer, but general analogical reasoning ability was not. The implications of the results for models of analogical transfer and for instruction were considered.
Journey toward Teaching Mathematics through Problem Solving
ERIC Educational Resources Information Center
Sakshaug, Lynae E.; Wohlhuter, Kay A.
2010-01-01
Teaching mathematics through problem solving is a challenge for teachers who learned mathematics by doing exercises. How do teachers develop their own problem solving abilities as well as their abilities to teach mathematics through problem solving? A group of teachers began the journey of learning to teach through problem solving while taking a…
Teaching Problem Solving through Children's Literature.
ERIC Educational Resources Information Center
Forgan, James W.
This book helps general and special education teachers empower students in grades K-4 to independently solve problems by teaching them how characters in children's literature books solved similar problems. Students are also taught a problem solving strategy that they can apply to solve problems in any situation. The book contains ready-to-use…
Solving the Dark Matter Problem
Baltz, Ted
2016-07-12
Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.
Modeling Applied to Problem Solving
NASA Astrophysics Data System (ADS)
Pawl, Andrew; Barrantes, Analia; Pritchard, David E.
2009-11-01
We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and validate their own Models through guided discovery. Instead, students classify problems under the appropriate instructor-generated Model by selecting a system to consider and describing the interactions that are relevant to that system. We believe that this explicit System, Interactions and Model (S.I.M.) problem modeling strategy represents a key simplification and clarification of the widely disseminated modeling approach originated by Hestenes and collaborators. Our narrower focus allows modeling physics to be integrated into (as opposed to replacing) a typical introductory college mechanics course, while preserving the emphasis on understanding systems and interactions that is the essence of modeling. We have employed the approach in a three-week review course for MIT freshmen who received a D in the fall mechanics course with very encouraging results.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Teaching DICOM by problem solving.
Noumeir, Rita; Pambrun, Jean-François
2012-10-01
The Digital Imaging and Communications in Medicine (DICOM) is the standard for encoding and communicating medical imaging information. It is used in radiology as well as in many other imaging domains such as ophthalmology, dentistry, and pathology. DICOM information objects are used to encode medical images or information about the images. Their usage outside of the imaging department is increasing, especially with the sharing of medical images within Electronic Health Record systems. However, learning DICOM is long and difficult because it defines and uses many specific abstract concepts that relate to each other. In this paper, we present an approach, based on problem solving, for teaching DICOM as part of a graduate course on healthcare information. The proposed approach allows students with diversified background and no software development experience to grasp a large breadth of knowledge in a very short time.
SOLV-DB provides a specialized mix of information on commercially available solvents. The development of the database was funded under the Strategic Environmental Research and Development Program (SERDP) with funds from EPA and DOE's Office of Industrial Technologies in EE. The information includes: • Health and safety considerations involved in choosing and using solvents • Chemical and physical data affecting the suitability of a particular solvent for a wide range of potential applications • Regulatory responsibilities, including exposure and effluent limits, hazard classification status with respect to several key statutes, and selected reporting requirements • Environmental fate data, to indicate whether a solvent is likely to break down or persist in air or water, and what types of waste treatment techniques may apply to it • CAS numbers (from Chemical Abstracts Service) and Sax Numbers (from Sax, et.al., Dangerous Properties of Industrial Materials) Supplier Information See help information at http://solvdb.ncms.org/welcome.htm (Specialized Interface)
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1973-01-01
A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.
Solving the structure of metakaolin
Proffen, Thomas E; White, Claire E; Provis, John L; Riley, Daniel P; Van Deventer, Jannie S J
2009-01-01
Metakaolin has been used extensively as a cement additive and paint extender, and recently as a geopolymer precursor. This disordered layered aluminosilicate is formed via the dehydroxylation of kaolinite. However, an accurate representation of its atomic structure has bever before been presented. Here, a novel synergy between total scattering and density functional modeling is presented to solve the structure of metakaolin. The metastable structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimization using density functional modeling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structure of metakaolin provides new insight into the local environment of the aluminum atoms, with evidence of the existence of tri-coordinated aluminum. By the availability of this detailed atomic description, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin at the atomic level to obtain optimal performance at the macro-scale.
Creative Problem Solving for Social Studies.
ERIC Educational Resources Information Center
Weiss, Steve; Kinney, Mark; And Others
1980-01-01
This article discusses techniques for integrating real problem solving and decision making into secondary social studies programs. Approaches to creative problem solving are presented, and various systematic decision making programs currently available for classroom use are identified. (Author/RM)
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…
Applying Cooperative Techniques in Teaching Problem Solving
ERIC Educational Resources Information Center
Barczi, Krisztina
2013-01-01
Teaching how to solve problems--from solving simple equations to solving difficult competition tasks--has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might…
LEGO Robotics: An Authentic Problem Solving Tool?
ERIC Educational Resources Information Center
Castledine, Alanah-Rei; Chalmers, Chris
2011-01-01
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
Problem Solving with the Elementary Youngster.
ERIC Educational Resources Information Center
Swartz, Vicki
This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
The Important Thing about Teaching Problem Solving
ERIC Educational Resources Information Center
Roberts, Sally K.
2010-01-01
The author teaches a content course in problem solving for middle school teachers. During the course, teacher candidates have the opportunity to confront their insecurities as they actively engage in solving math problems using a variety of strategies. As the semester progresses, they add new strategies to their problem-solving arsenal and…
Developing Creativity through Collaborative Problem Solving
ERIC Educational Resources Information Center
Albert, Lillie R.; Kim, Rina
2013-01-01
This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…
A Component Analysis of Mathematical Problem Solving.
ERIC Educational Resources Information Center
Schwieger, Ruben Don
The purpose of this study was the construction of a theoretical model for analyzing mathematical problem solving. A list of general problem-solving abilities was generated through a literature search. This list was narrowed to eight basic abilities pertinent to mathematics problem solving. Each of these was operationally defined and exemplified in…
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
Strategies for Problem Solving. Revised Edition.
ERIC Educational Resources Information Center
Karmos, Joseph S.; Karmos, Ann H.
This manual provides a comprehensive approach to problem solving; it is written in narrative style with numerous examples. The guide is organized in eight sections that cover the following topics: (1) problem-solving overview (with suggested readings and recommendations for schools); (2) a five-step model for solving problems; (3) strategies for…
Perspectives on Problem Solving and Instruction
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
2013-01-01
Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…
Research on Computers and Problem Solving.
ERIC Educational Resources Information Center
Burton, John K.; And Others
1988-01-01
Eight articles review and report on research involving computers and problem solving skills. Topics discussed include research design; problem solving skills and programing languages, including BASIC and LOGO; computer anxiety; diagnostic programs for arithmetic problems; and relationships between ability and problem solving scores and between…
Solving equations through particle dynamics
NASA Astrophysics Data System (ADS)
Edvardsson, S.; Neuman, M.; Edström, P.; Olin, H.
2015-12-01
The present work evaluates a recently developed particle method (DFPM). The basic idea behind this method is to utilize a Newtonian system of interacting particles that through dissipation solves mathematical problems. We find that this second order dynamical system results in an algorithm that is among the best methods known. The present work studies large systems of linear equations. Of special interest is the wide eigenvalue spectrum. This case is common as the discretization of the continuous problem becomes dense. The convergence rate of DFPM is shown to be in parity with that of the conjugate gradient method, both analytically and through numerical examples. However, an advantage with DFPM is that it is cheaper per iteration. Another advantage is that it is not restricted to symmetric matrices only, as is the case for the conjugate gradient method. The convergence properties of DFPM are shown to be superior to the closely related approach utilizing only a first order dynamical system, and also to several other iterative methods in numerical linear algebra. The performance properties are understood and optimized by taking advantage of critically damped oscillators in classical mechanics. Just as in the case of the conjugate gradient method, a limitation is that all eigenvalues (spring constants) are required to be of the same sign. DFPM has no other limitation such as matrix structure or a spectral radius as is common among iterative methods. Examples are provided to test the particle algorithm's merits and also various performance comparisons with existent numerical algorithms are provided.
Community-powered problem solving.
Gouillart, Francis; Billings, Douglas
2013-04-01
Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.
Stabilization: A Descriptive Framework for Problem Solving
NASA Astrophysics Data System (ADS)
Savrda, Sherry L.
2006-12-01
An alternative description of problem solving was tested against the think-aloud protocols of twelve introductory calculus-based physics students. Think-aloud protocols are transcripts of problem-solving sessions during which participants are asked to verbalize their thoughts as they attempt to solve a problem. The stabilization model tested considers perceptions of problem difficulty to be related to four primary factors: categorization, goal interpretation, resource relevance, and complexity. A fifth superordinate factor, stabilization, considers the shifting relationships between the four primary factors over the problem-solving process. Problem solving is then described in terms of a search for a stable relationship among the four primary factors. Results from the study to be presented suggest that with further refinement, the stabilization model could be an effective alternative model of problem solving. Results related to the observed problem-solving processes undertaken by the participants will also be presented.
Comparison of vanadium-rich activity of three species fungi of basidiomycetes.
Han, Chunchao; Cui, Bo; Qu, Jingran
2009-03-01
A comparison of vanadium-rich activity of three species fungi of Basidiomycetes, Ganoderma lucidum, Coprinus comatus, and Grifola frondosa, was studied. By fermentation and atomic absorption spectroscopy analysis, the biomass of G. lucidum and G. frondosa declined rapidly when the concentration of vanadium exceeded 0.3% but the biomass of C. comatus did not decline rapidly until the concentration of vanadium exceeded 0.4% and the content of vanadium accumulated in the mycelia was 3529.3 microg/g. After the mice were administered (intragastrically) with vanadium-rich C. comatus, the blood glucose of alloxan-induced hyperglycemic mice was decreased (p < 0.05) and the body weight of the alloxan-induced hyperglycemic mice was increased gradually. Thus, we selected C. comatus to absorb vanadium and chose 0.4% as the optimal concentration of vanadium for the pharmacological works.
The Problem Life Solves (Invited)
NASA Astrophysics Data System (ADS)
Shock, E.
2013-12-01
After forming, planets start the long process of dissipating energy into space. Early on, accretionary processes provide sufficient kinetic energy to raise temperatures enough to drive chemical systems rapidly toward equilibrium, maximizing the release of chemical energy. Eventually heat is dissipated, temperatures drop, and outer portions of planets cool enough to slow the rates of chemical reactions. As reaction rates slow to the scale of geologic time, chemical energy becomes trapped in assemblages of planetary materials far from equilibrium. Numerous examples are provided by chondritic meteorites, which show that activation energy barriers allow chemical energy to remain trapped for most of the age of the solar system even if heat dissipation is efficient -- and perhaps as a direct consequence. Activation energies that inhibit favorable reactions can be overcome by catalysis, which permits chemical systems to attain lower energy states. Catalysis in planets serves to continue the release of energy into space begun by heat dissipation. This implies that there is an overall thermodynamic drive for catalysis to appear as planets cool. Reasons why catalysis emerges in some cases and not others may depend on interactions of cooling rates and compositions but the specifics are murky at present. Life is a particularly efficient catalyst, and its emergence on a planet helps solve the problem generated by the catastrophic decrease in reaction rates during cooling. The single example we have of life on Earth got its start catalyzing oxidation-reduction reactions arranged in states far from equilibrium by geologic processes. On the pre-photosynthetic Earth the boldest biosignatures were redox processes occurring at rates that could only be explained by catalysis, and specifically by catalytic processes that have no abiotic mechanism. Biologically enhanced rates of redox reactions persist to the present, and maintain the biogeochemical cycles that permit the photosynthetic
Distance Measurement Solves Astrophysical Mysteries
NASA Astrophysics Data System (ADS)
2003-08-01
Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of
Fibonacci's Triangle: A Vehicle for Problem Solving.
ERIC Educational Resources Information Center
Ouellette, Hugh
1979-01-01
A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)
Mobile serious games for collaborative problem solving.
Sanchez, Jaime; Mendoza, Claudia; Salinas, Alvaro
2009-01-01
This paper presents the results obtained from the implementation of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems posed by the game collaboratively. The data shows that the experimental group had a higher perception of their own skills of collaboration and of the plan execution dimension of problem solving than the control group, providing empirical evidence regarding the contribution of MSGs to the development of collaborative problem-solving skills.
Dynamic Problem Solving: A New Assessment Perspective
ERIC Educational Resources Information Center
Greiff, Samuel; Wustenberg, Sascha; Funke, Joachim
2012-01-01
This article addresses two unsolved measurement issues in dynamic problem solving (DPS) research: (a) unsystematic construction of DPS tests making a comparison of results obtained in different studies difficult and (b) use of time-intensive single tasks leading to severe reliability problems. To solve these issues, the MicroDYN approach is…
Metacognition: Student Reflections on Problem Solving
ERIC Educational Resources Information Center
Wismath, Shelly; Orr, Doug; Good, Brandon
2014-01-01
Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…
Solving Problems in Genetics II: Conceptual Restructuring
ERIC Educational Resources Information Center
Orcajo, Teresa Ibanez; Aznar, Mercedes Martinez
2005-01-01
This paper presents the results of part of an investigation carried out with fourth-level Spanish secondary education students (15 years old), in which we implemented a teaching unit based on problem-solving methodology as an investigation to teach genetics and human inheritance curricular contents. By solving open problems, the students…
Problem Solving Software for Math Classes.
ERIC Educational Resources Information Center
Troutner, Joanne
1987-01-01
Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)
The Functions of Pictures in Problem Solving
ERIC Educational Resources Information Center
Elia, Iliada; Philippou, George
2004-01-01
In the present study, we assert that pictures serve four functions in problem solving: decorative, representational, organizational and informational. We, therefore, investigate the effects of pictures based on their functions in mathematical problem solving (MPS), by high achievement students of Grade 6 in Cyprus, in a communication setting. A…
The Process of Solving Complex Problems
ERIC Educational Resources Information Center
Fischer, Andreas; Greiff, Samuel; Funke, Joachim
2012-01-01
This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…
New Perspectives on Human Problem Solving
ERIC Educational Resources Information Center
Goldstone, Robert L.; Pizlo, Zygmunt
2009-01-01
In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…
Interpersonal Problem Solving in Preschool Aged Children.
ERIC Educational Resources Information Center
Swanson, Arthur J.; Siegel, Lawrence J.
This study was designed as a partial replication and extension of the research on interpersonal problem solving in preschool children by Shure and Spivack. Fifteen well-adjusted and 14 impulsive children from Head Start Centers were administered the Preschool Interpersonal Problem Solving test (PIPS) under either incentive or no incentive…
Can Television Enhance Children's Mathematical Problem Solving?
ERIC Educational Resources Information Center
Fisch, Shalom M.; And Others
1994-01-01
A summative evaluation of "Square One TV," an educational mathematics series produced by the Children's Television Workshop, shows that children who regularly viewed the program showed significant improvement in solving unfamiliar, complex mathematical problems, and viewers showed improvement in their mathematical problem-solving ability…
Students' Equation Understanding and Solving in Iran
ERIC Educational Resources Information Center
Barahmand, Ali; Shahvarani, Ahmad
2014-01-01
The purpose of the present article is to investigate how 15-year-old Iranian students interpret the concept of equation, its solution, and studying the relation between the students' equation understanding and solving. Data from two equation-solving exercises are reported. Data analysis shows that there is a significant relationship between…
Conceptual Problem Solving in High School Physics
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-01-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…
Problem-Solving Rules for Genetics.
ERIC Educational Resources Information Center
Collins, Angelo
The categories and applications of strategic knowledge as these relate to problem solving in the area of transmission genetics are examined in this research study. The role of computer simulations in helping students acquire the strategic knowledge necessary to solve realistic transmission genetics problems was emphasized. The Genetics…
Solving Cubic Equations by Polynomial Decomposition
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
A Multivariate Model of Physics Problem Solving
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Farley, John
2013-01-01
A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…
Problem Solving Interactions on Electronic Networks.
ERIC Educational Resources Information Center
Waugh, Michael; And Others
Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…
Measuring Problem Solving Skills in "Portal 2"
ERIC Educational Resources Information Center
Shute, Valerie J.; Wang, Lubin
2013-01-01
This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…
Computer Games Teach Problem-Solving.
ERIC Educational Resources Information Center
Clayson, James
1982-01-01
The difficulty many students have in solving complex problems stems not from a lack of mathematical skill but from an inability to visualize the problem. An appropriately-structured computer game may assist students in achieving this visualization and in solving problems better. A heuristic approach in programing one game is provided. (Author/JN)
Student Modeling Based on Problem Solving Times
ERIC Educational Resources Information Center
Pelánek, Radek; Jarušek, Petr
2015-01-01
Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…
Problem Solving in the Middle Grades.
ERIC Educational Resources Information Center
Malloy, Carol E.; Guild, D. Bruce
2000-01-01
Describes the mathematics curriculum proposed by the Principles and Standards for School Mathematics (PSSM)in which students build new mathematical knowledge through problem-solving. Compares the role of PSSM problem solving with that in the 1989 curriculum standards. (YDS)
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…
Creativity and Insight in Problem Solving
ERIC Educational Resources Information Center
Golnabi, Laura
2016-01-01
This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…
Distributed problem solving by pilots and dispatchers
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil
1993-01-01
The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.
Strategies for Solving Word Problems in Science.
ERIC Educational Resources Information Center
Garrigan, George A.
1997-01-01
Reviews the approaches presented in the Self-Paced Study of Strategies Useful for Solving Word Problems in the Physical and Biological Sciences that can be used by students to successfully solve word problems encountered in any entry-level science course. Describes the topics covered in five "study sessions" that allow the students to practice the…
Taking "From Scratch" out of Problem Solving
ERIC Educational Resources Information Center
Brown, Wayne
2007-01-01
Solving problems and creating processes and procedures from the ground up has long been part of the IT department's way of operating. IT staffs will continue to encounter new problems to solve and new technologies to be implemented. They also must involve their constituents in the creation of solutions. Nonetheless, for many issues they no longer…
Computer-Based Assessment of Problem Solving.
ERIC Educational Resources Information Center
Baker, E. L.; Mayer, R. E.
1999-01-01
Examines the components required to assess student problem solving in technology environments. Discusses the purposes of testing, provides an example demonstrating the difference between retention and transfer, defines and analyzes problem solving, and explores techniques and standards for measuring the quality of student understanding. Contains…
Learning to Solve Problems in Primary Grades
ERIC Educational Resources Information Center
Whitin, Phyllis; Whitin, David J.
2008-01-01
Problem solving lies at the heart of mathematical learning. Children need opportunities to write, discuss, and solve problems on a regular basis. The problems must incorporate grade-appropriate content and be "accessible and engaging to the students, building on what they know and can do." Teachers also play a key role in establishing a classroom…
Could HPS Improve Problem-Solving?
ERIC Educational Resources Information Center
Coelho, Ricardo Lopes
2013-01-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…
Mathematical Problem Solving through Sequential Process Analysis
ERIC Educational Resources Information Center
Codina, A.; Cañadas, M. C.; Castro, E.
2015-01-01
Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…
Towards Automated Training of Legal Problem Solving.
ERIC Educational Resources Information Center
Muntjewerff, Antoinette J.
An examination of Dutch research on legal case solving revealed that few law students get systematic instruction or testing in the technique of legal problem solving. The research being conducted at the Department of Computer Science and Law at the University of Amsterdam focuses on identifying the different functions in legal reasoning tasks in…
Teaching Problem-Solving. Informal Series/43.
ERIC Educational Resources Information Center
Ross, John A.; Maynes, Florence J.
This monograph is designed to provide practical classroom suggestions, including sample lesson plans, to show how teachers can improve the problem-solving competence of students at all educational and ability levels. The examples provided show that problem-solving instruction can be integrated with teaching the content of particular topics. While…
Teaching Problem Solving: An Instructional Design Strategy.
ERIC Educational Resources Information Center
Ross, John A.; Maynes, Florence J.
1983-01-01
Instructional design strategy for improving problem solving is presented. The strategy entails selecting an appropriate domain of problem-solving tasks, learning hierarchies, teaching methods and assembling of learning materials, and designing teacher training and evaluation. Obstacles to be overcome and directions for future research are…
Mathematical Problem Solving. Issues in Research.
ERIC Educational Resources Information Center
Lester, Frank K., Jr., Ed.; Garofalo, Joe, Ed.
This set of papers was originally developed for a conference on Issues and Directions in Mathematics Problem Solving Research held at Indiana University in May 1981. The purpose is to contribute to the clear formulation of the key issues in mathematical problem-solving research by presenting the ideas of actively involved researchers. An…
Exponential examples of solving parity games
NASA Astrophysics Data System (ADS)
Lebedev, V. N.
2016-04-01
This paper is devoted to solving certain problems on the computational complexity of deciding the winner in cyclic games. The main result is the proof of the fact that the nondeterministic potential transformation algorithm designed for solving parity games is exponential in terms of computation time.
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
Enigma of Runaway Stars Solved
NASA Astrophysics Data System (ADS)
1997-01-01
Supernova Propels Companion Star through Interstellar Space The following success story is a classical illustration of scientific progress through concerted interplay of observation and theory. It concerns a 35-year old mystery which has now been solved by means of exciting observations of a strange double star. An added touch is the successive involvement of astronomers connected to the European Southern Observatory. For many years, astronomers have been puzzled by the fact that, among the thousands of very young, hot and heavy stars which have been observed in the Milky Way, there are some that move with exceptionally high velocities. In some cases, motions well above 100 km/sec, or ten times more than normal for such stars, have been measured. How is this possible? Which mechanism is responsible for the large amounts of energy needed to move such heavy bodies at such high speeds? Could it be that these stars are accelerated during the powerful explosion of a companion star as a supernova? Such a scenario was proposed in 1961 by Adriaan Blaauw [1], but until now, observational proof has been lacking. Now, however, strong supporting evidence for this mechanism has become available from observations obtained at the ESO La Silla observatory. The mysterious runaway stars OB-runaway stars [2] are heavy stars that travel through interstellar space with an anomalously high velocity. They have been known for several decades, but it has always been a problem to explain their high velocities. Although most OB-runaway stars are located at distances of several thousands of lightyears, their high velocity results in a measurable change in position on sky photos taken several years apart. The velocity component in the direction of the Earth can be measured very accurately from a spectrogram. From a combination of such observations, it is possible to measure the space velocity of OB-runaways. Bow shocks reveal runaway stars It has also been found that some OB-runaways display
Shewchuk, R M; Johnson, M O; Elliott, T R
2000-07-01
Self-report measures of social problem solving abilities have yet to be associated with objective problem solving performance in any consistent manner. In the present study, we investigated the relation of social problem solving abilities--as measured by the Social Problem Solving Skills Inventory--Revised (SPSI-R [Maydeu-Olivares, A. & D'Zurilla, T. J. (1996). A factor analytic study of the Social Problem Solving Inventory: an integration of theory and data. Cognitive Therapy and Research, 20, 115-133])--to performance on a structured problem solving task. Unlike previous studies, we examined the relation of problem solving skills to performance curves observed in repeated trials, while controlling for affective reactions to each trial. Using hierarchical modeling techniques, a negative problem orientation was significantly predictive of performance and this effect was not mediated by negative affectivity. Results are discussed as they pertain to contemporary models of social problem solving.
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
ERIC Educational Resources Information Center
Shure, Myrna B.
Designed for teachers of intermediate elementary grades to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. The interpersonal cognitive problem-solving (ICPS) program includes both…
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework
ERIC Educational Resources Information Center
Carlson, Marilyn P.; Bloom, Irene
2005-01-01
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
NASA Astrophysics Data System (ADS)
Zhang, Dongmei; Shen, Ji
2015-10-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we conducted an interview study with 16 graduate students coming from a variety of disciplinary backgrounds. During the interviews, we asked participants to solve two interdisciplinary science problems on the topic of osmosis. We investigated participants' problem reasoning processes and probed in their attitudes toward general interdisciplinary approach and specific interdisciplinary problems. Through a careful inductive content analysis of their responses, we studied how disciplinary, cognitive, and affective factors influenced their interdisciplinary problems-solving. We found that participants' prior discipline-based science learning experiences had both positive and negative influences on their interdisciplinary problem-solving. These influences were embodied in their conceptualization of the interdisciplinary problems, the strategies they used to integrate different disciplinary knowledge, and the attitudes they had toward interdisciplinary approach in general and specific interdisciplinary problems. This study sheds light on interdisciplinary science education by revealing the complex relationship between disciplinary learning and interdisciplinary problem-solving.
Lesion mapping of social problem solving
Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.
2014-01-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511
Lesion mapping of social problem solving.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H
2014-10-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease.
The ideal science student and problem solving
NASA Astrophysics Data System (ADS)
Sullivan, Florence R.
2005-09-01
The purpose of this dissertation was to examine the relationship between students' social mental models of the ideal science student, science epistemological beliefs, problem solving strategies used, and problem solving ability in a robotics environment. Participants were twenty-six academically advanced eleven and twelve year old students attending the Center for Talented Youth summer camp. Survey data was collected from the students including demographic background, views of the ideal science student, and science epistemological beliefs. Students also solved a robotics challenge. This problem solving session was videotaped and students were asked to think aloud as they solved the problem. Two social mental models were identified, a traits-based social mental model and a robust social mental model. A significant association was found between social mental model group and strategy usage. The robust social mental model group is more likely to use domain specific strategies than the traits-based group. Additionally, the robust social mental model group achieved significantly higher scores on their final solution than the traits-based social mental model group. Science epistemological beliefs do not appear to be associated with students' social mental model of the ideal science student. While students with a puzzle-solver view of science were more likely to use domain specific strategies in the planning phase of the problem solving session, there was no significant difference in problem solving ability between this group and students who have a dynamic view of the nature of science knowledge. This difference in strategy usage and problem solving performance may be due to a difference in the students' views of learning and cognition. The robust social mental model group evidenced a situative view of learning and cognition. These students made excellent use of the tools available in the task environment. The traits-based social mental model group displayed an
PSQP -- Puzzle Solving by Quadratic Programming.
Andalo, Fernanda; Taubin, Gabriel; Goldenstein, Siome
2016-03-25
In this article we present the first effective global method for the reconstruction of image puzzles comprising rectangle pieces - Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
Problem Posing and Solving with Mathematical Modeling
ERIC Educational Resources Information Center
English, Lyn D.; Fox, Jillian L.; Watters, James J.
2005-01-01
Mathematical modeling is explored as both problem posing and problem solving from two perspectives, that of the child and the teacher. Mathematical modeling provides rich learning experiences for elementary school children and their teachers.
Problem Solving under Time-Constraints,
2014-09-26
to interruptions. Data from the simulation is compared to data from college students doing the same task. Keywords include: Thinking ; problem solving; dual tasks; computer simulation; production systems; arithmetic.
Problem solving using soft systems methodology.
Land, L
This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.
Indoor Air Quality Problem Solving Tool
Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.
Problem Solving, Patterns, Probability, Pascal, and Palindromes.
ERIC Educational Resources Information Center
Hylton-Lindsay, Althea Antoinette
2003-01-01
Presents a problem-solving activity, the birth order problem, and several solution-seeking strategies. Includes responses of current and prospective teachers and a comparison of various strategies. (YDS)
Organizational Structure and Complex Problem Solving
ERIC Educational Resources Information Center
Becker, Selwyn W.; Baloff, Nicholas
1969-01-01
The problem-solving efficiency of different organization structures is discussed in relation to task requirements and the appropriate organizational behavior, to group adaptation to a task over time, and to various group characteristics. (LN)
Physics: Quantum problems solved through games
NASA Astrophysics Data System (ADS)
Maniscalco, Sabrina
2016-04-01
Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210
Conceptual problem solving in high school physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-12-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.
Collection of solved problems in physics
NASA Astrophysics Data System (ADS)
Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie
2017-01-01
To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).
Could HPS Improve Problem-Solving?
NASA Astrophysics Data System (ADS)
Coelho, Ricardo Lopes
2013-05-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
Innovative problem solving by wild spotted hyenas.
Benson-Amram, Sarah; Holekamp, Kay E
2012-10-07
Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals.
Why students still can't solve physics problems after solving over 2000 problems
NASA Astrophysics Data System (ADS)
Byun, Taejin; Lee, Gyoungho
2014-09-01
This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.
AI tools in computer based problem solving
NASA Technical Reports Server (NTRS)
Beane, Arthur J.
1988-01-01
The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.
Problem solving and decisionmaking: An integration
NASA Technical Reports Server (NTRS)
Dieterly, D. L.
1980-01-01
An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.
Partitioning SAT Instances for Distributed Solving
NASA Astrophysics Data System (ADS)
Hyvärinen, Antti E. J.; Junttila, Tommi; Niemelä, Ilkka
In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Solving inversion problems with neural networks
NASA Technical Reports Server (NTRS)
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Solving coiled-coil protein structures
Dauter, Zbigniew
2015-02-26
With the availability of more than 100,000 entries stored in the Protein Data Bank (PDB) that can be used as search models, molecular replacement (MR) is currently the most popular method of solving crystal structures of macromolecules. Significant methodological efforts have been directed in recent years towards making this approach more powerful and practical. This resulted in the creation of several computer programs, highly automated and user friendly, that are able to successfully solve many structures even by researchers who, although interested in structures of biomolecules, are not very experienced in crystallography.
Problem solving in a distributed environment
NASA Technical Reports Server (NTRS)
Rashid, R. F.
1980-01-01
Distributed problem solving is anayzed as a blend of two disciplines: (1) problem solving and ai; and (2) distributed systems (monitoring). It may be necessary to distribute because the application itself is one of managing distributed resources (e.g., distributed sensor net) and communication delays preclude centralized processing, or it may be desirable to distribute because a single computational engine may not satisfy the needs of a given task. In addition, considerations of reliability may dictate distribution. Examples of multi-process language environment are given.
ERIC Educational Resources Information Center
Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.
2008-01-01
More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…
I Can Problem Solve (ICPS): Interpersonal Cognitive Problem Solving for Young Children.
ERIC Educational Resources Information Center
Shure, Myrna B.
1993-01-01
Teachers of preschool and kindergarten children from low-income families used the I Can Problem Solve (ICPS) program to help the children learn to think through and solve typical interpersonal problems with peers and adults. Compared to nontrained controls, the children exhibited fewer instances of impulsive and inhibited behaviors as observed in…
ERIC Educational Resources Information Center
Shure, Myrna B.
Designed for teachers of kindergarten and the primary grades to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. The 89 lessons are adaptable for various levels of ability throughout the…
I Can Problem Solve: An Interpersonal Cognitive Problem-Solving Program. Preschool.
ERIC Educational Resources Information Center
Shure, Myrna B.
Designed for teachers of preschool to enable children to learn how to solve the problems they have with others, the underlying goal of the program is to help children develop problem-solving skills so that they learn how to think, not what to think. Originally developed for four-year-old children in a preschool setting, most three-year-old…
Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving
ERIC Educational Resources Information Center
Ramani, Geetha B.; Brownell, Celia A.
2014-01-01
Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…
ERIC Educational Resources Information Center
Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel
2016-01-01
This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…
ERIC Educational Resources Information Center
Chamberlin, Scott A.; Powers, Robert A.
2013-01-01
The focus of the article is the validation of an instrument to assess gifted students' affect after mathematical problem solving tasks. Participants were 225 students identified by their district as gifted in grades four to six. The Chamberlin Affective Instrument for Mathematical Problem Solving was used to assess feelings, emotions, and…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
Young Children's Drawings in Problem Solving
ERIC Educational Resources Information Center
Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette
2016-01-01
This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…
Using CAS to Solve Classical Mathematics Problems
ERIC Educational Resources Information Center
Burke, Maurice J.; Burroughs, Elizabeth A.
2009-01-01
Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…
Complex Problem Solving in a Workplace Setting.
ERIC Educational Resources Information Center
Middleton, Howard
2002-01-01
Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)
Synthesizing Strategies Creatively: Solving Linear Equations
ERIC Educational Resources Information Center
Ponce, Gregorio A.; Tuba, Imre
2015-01-01
New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…
Partial Metacognitive Blindness in Collaborative Problem Solving
ERIC Educational Resources Information Center
Ng, Kit Ee Dawn
2010-01-01
This paper investigates the impact of group dynamics on metacognitive behaviours of students (aged 13-14) during group collaborative problem solving attempts involving a design-based real-world applications project. It was discovered that group dynamics mediated the impact of metacognitive judgments related red flag situations and metacognitive…
A combination method for solving nonlinear equations
NASA Astrophysics Data System (ADS)
Silalahi, B. P.; Laila, R.; Sitanggang, I. S.
2017-01-01
This paper discusses methods for finding solutions of nonlinear equations: the Newton method, the Halley method and the combination of the Newton method, the Newton inverse method and the Halley method. Computational results in terms of the accuracy, the number of iterations and the running time for solving some given problems are presented.
Using Bibliotherapy To Teach Problem Solving.
ERIC Educational Resources Information Center
Forgan, James W.
2002-01-01
This article discusses how students with high-incidence disabilities can benefit from using bibliotherapy by learning to become proactive problem solvers. A sample lesson plan is presented based on a teaching framework for bibliotherapy and problem solving that contains the elements of prereading, guided reading, post-reading discussion, and a…
Discovering Steiner Triple Systems through Problem Solving
ERIC Educational Resources Information Center
Sriraman, Bharath
2004-01-01
An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.
Strategies in Subtraction Problem Solving in Children
ERIC Educational Resources Information Center
Barrouillet, Pierre; Mignon, Mathilde; Thevenot, Catherine
2008-01-01
The aim of this study was to investigate the strategies used by third graders in solving the 81 elementary subtractions that are the inverses of the one-digit additions with addends from 1 to 9 recently studied by Barrouillet and Lepine. Although the pattern of relationship between individual differences in working memory, on the one hand, and…
Extending problem-solving procedures through reflection.
Anderson, John R; Fincham, Jon M
2014-11-01
A large-sample (n=75) fMRI study guided the development of a theory of how people extend their problem-solving procedures by reflecting on them. Both children and adults were trained on a new mathematical procedure and then were challenged with novel problems that required them to change and extend their procedure to solve these problems. The fMRI data were analyzed using a combination of hidden Markov models (HMMs) and multi-voxel pattern analysis (MVPA). This HMM-MVPA analysis revealed the existence of 4 stages: Encoding, Planning, Solving, and Responding. Using this analysis as a guide, an ACT-R model was developed that improved the performance of the HMM-MVPA and explained the variation in the durations of the stages across 128 different problems. The model assumes that participants can reflect on declarative representations of the steps of their problem-solving procedures. A Metacognitive module can hold these steps, modify them, create new declarative steps, and rehearse them. The Metacognitive module is associated with activity in the rostrolateral prefrontal cortex (RLPFC). The ACT-R model predicts the activity in the RLPFC and other regions associated with its other cognitive modules (e.g., vision, retrieval). Differences between children and adults seemed related to differences in background knowledge and computational fluency, but not to the differences in their capability to modify procedures.
Euler's Amazing Way to Solve Equations.
ERIC Educational Resources Information Center
Flusser, Peter
1992-01-01
Presented is a series of examples that illustrate a method of solving equations developed by Leonhard Euler based on an unsubstantiated assumption. The method integrates aspects of recursion relations and sequences of converging ratios and can be extended to polynomial equation with infinite exponents. (MDH)
HOW DO YOU SOLVE A QUADRATIC EQUATION
The nature of the floating - point number system of digital computers is explained to a reader whose university mathematical background is very limited...The possibly large errors in using mathematical algorithms blindly with floating - point computation are illustrated by the formula for solving a
Metaphor and analogy in everyday problem solving.
Keefer, Lucas A; Landau, Mark J
2016-11-01
Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website.
Reasoning by Analogy in Solving Comparison Problems.
ERIC Educational Resources Information Center
English, Lyn D.
1998-01-01
Investigates 10-year-old children's abilities to reason by analogy in solving addition and subtraction comparison problems involving unknown compare sets and unknown reference sets. Children responded in a consistent manner to the tasks involving the basic addition problems, indicating substantial relational knowledge of these but responded in an…
Nanomedicine: Problem Solving to Treat Cancer
ERIC Educational Resources Information Center
Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.
2006-01-01
Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…
Instruction Emphasizing Effort Improves Physics Problem Solving
ERIC Educational Resources Information Center
Li, Daoquan
2012-01-01
Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…
Problem Solving with Generic Algorithms and Computers.
ERIC Educational Resources Information Center
Larson, Jay
Success in using a computer in education as a problem-solving tool requires a change in the way of thinking or of approaching a problem. An algorithm, i.e., a finite step-by-step solution to a problem, can be designed around the data processing concepts of input, processing, and output to provide a basis for classifying problems. If educators…
Problem-Solving Analysis and Business Writing.
ERIC Educational Resources Information Center
Myrsiades, Linda Suny
Problem solving skills such as patterning facts, locating problems, separating problems and solutions, and presenting effective written products are essential to success in the business community. Facts can be patterned using a grid relating a problem's effect at the individual, group, situational, and organizational level. Such a grid tests each…
How Instructional Designers Solve Workplace Problems
ERIC Educational Resources Information Center
Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.
2013-01-01
This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…
Complex Problem Solving--More than Reasoning?
ERIC Educational Resources Information Center
Wustenberg, Sascha; Greiff, Samuel; Funke, Joachim
2012-01-01
This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a "Multiple-Item-Approach." It is tested, if (a) three facets of CPS--"rule identification" (adequateness of strategies), "rule knowledge" (generated knowledge) and "rule application"…
Collaborative Problem Solving in Shared Space
ERIC Educational Resources Information Center
Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk
2015-01-01
The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…
Reinventing the Wheel: Design and Problem Solving
ERIC Educational Resources Information Center
Blasetti, Sean M.
2010-01-01
This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…
Problem? "No Problem!" Solving Technical Contradictions
ERIC Educational Resources Information Center
Kutz, K. Scott; Stefan, Victor
2007-01-01
TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…
Teaching Teamwork and Problem Solving Concurrently
ERIC Educational Resources Information Center
Goltz, Sonia M.; Hietapelto, Amy B.; Reinsch, Roger W.; Tyrell, Sharon K.
2008-01-01
Teamwork and problem-solving skills have frequently been identified by business leaders as being key competencies; thus, teaching methods such as problem-based learning and team-based learning have been developed. However, the focus of these methods has been on teaching one skill or the other. A key argument for teaching the skills concurrently is…
Problem-Solving Test: Southwestern Blotting
ERIC Educational Resources Information Center
Szeberényi, József
2014-01-01
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…
Conceptual Structures in Mathematical Problem Solving.
ERIC Educational Resources Information Center
Cifarelli, Victor
The processes by which conceptual knowledge is constructed during mathematical problem solving were studied, focusing on the cognitive activity of learners (i.e., the ways they elaborate, reorganize, and reconceptualize their solution activity). Underlying this research is the view that learners' mathematical conceptions evolve from their activity…
The Use of Transformations in Solving Equations
ERIC Educational Resources Information Center
Libeskind, Shlomo
2010-01-01
Many workshops and meetings with the US high school mathematics teachers revealed a lack of familiarity with the use of transformations in solving equations and problems related to the roots of polynomials. This note describes two transformational approaches to the derivation of the quadratic formula as well as transformational approaches to…
Implicit Theories about Everyday Problem Solving.
ERIC Educational Resources Information Center
Herbert, Margaret E.; Dionne, Jean-Paul
Mental models or implicit theories held by adults about everyday problem solving were studied. Research questions were posed to 12 male and 12 female adults, aged 25 to 60 years, from a wide range of educational and occupational orientations. Subjects were interviewed in pairs. Verbal Protocol Analysis was used to analyze the data from two…
Solving Math Word Problems: A Software Roundup.
ERIC Educational Resources Information Center
Eiser, Leslie
1988-01-01
Reviewed are 11 software packages for the Apple II computer designed to help teach elementary and secondary school children how to solve mathword problems. Included in the review are hardware requirements, price, grade level, use of graphics, kinds of problems, tools provided, strengths, and weaknesses of each program. (CW)
ADHD and Problem-Solving in Play
ERIC Educational Resources Information Center
Borg, Suzanne
2009-01-01
This paper reports a small-scale study to determine whether there is a difference in problem-solving abilities, from a play perspective, between individuals who are diagnosed as ADHD and are on medication and those not on medication. Ten children, five of whom where on medication and five not, diagnosed as ADHD predominantly inattentive type, were…
Solving Problems with the Percentage Bar
ERIC Educational Resources Information Center
van Galen, Frans; van Eerde, Dolly
2013-01-01
At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…
Problem-Solving Interaction in GFL Videoconferencing
ERIC Educational Resources Information Center
Hoshii, Makiko; Schumacher, Nicole
2016-01-01
This paper reports on the interaction between upper intermediate German as a Foreign Language (GFL) learners in Tokyo and prospective GFL teachers in Berlin in an online videoconferencing environment. It focuses on the way problems in comprehension and production are brought up and solved in the subsequent interaction. Our findings illustrate that…
Student Problem Solving in High School Genetics.
ERIC Educational Resources Information Center
Stewart, James
1983-01-01
Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)
Solving Wicked Problems through Action Learning
ERIC Educational Resources Information Center
Crul, Liselore
2014-01-01
This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…
On Teaching Problem Solving in School Mathematics
ERIC Educational Resources Information Center
Pehkonen, Erkki; Näveri, Liisa; Laine, Anu
2013-01-01
The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open…
Teaching, Learning and Assessing Statistical Problem Solving
ERIC Educational Resources Information Center
Marriott, John; Davies, Neville; Gibson, Liz
2009-01-01
In this paper we report the results from a major UK government-funded project, started in 2005, to review statistics and handling data within the school mathematics curriculum for students up to age 16. As a result of a survey of teachers we developed new teaching materials that explicitly use a problem-solving approach for the teaching and…
Solving Rational Expectations Models Using Excel
ERIC Educational Resources Information Center
Strulik, Holger
2004-01-01
Simple problems of discrete-time optimal control can be solved using a standard spreadsheet software. The employed-solution method of backward iteration is intuitively understandable, does not require any programming skills, and is easy to implement so that it is suitable for classroom exercises with rational-expectations models. The author…
Why Some Communities Can Solve Their Problems.
ERIC Educational Resources Information Center
Mathews, David
1989-01-01
Effective communities are well-educated about themselves, have a better understanding of public information, talk through public issues to generate shared knowledge, appreciate the difference between public opinion and public judgment, and believe in public leadership as the key to using public power to solve community problems. (SK)
Solving Geometry Problems via Mechanical Principles
ERIC Educational Resources Information Center
Man, Yiu Kwong
2004-01-01
The application of physical principles in solving mathematics problems have often been neglected in the teaching of physics or mathematics, especially at the secondary school level. This paper discusses how to apply the mechanical principles to geometry problems via concrete examples, which aims at providing insight and inspirations to physics or…
Should Children Learn to Solve Problems?
ERIC Educational Resources Information Center
Watras, Joseph
2011-01-01
In this comparative essay, the author discusses the opposing educational theories of John Dewey and Gregory Bateson. While Dewey believed that the scientific method was the dominant method of solving problems and thereby acquiring knowledge that mattered, Bateson warned that this one-sided approach would lead to actions that could destroy the…
Mental Imagery in Creative Problem Solving.
ERIC Educational Resources Information Center
Polland, Mark J.
In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…
General Problem Solving: Navy Requirements and Solutions.
1985-03-01
Karat, 1982; Lukas, et. al., 1971; Pitt, 1983; Post and Brennan, 1976; Reif and Heller, 1982; Schwieger , 1° 4; Speedie, et. al., 1973; Thor- son...bVo°o ,o. 4*** h ° . . .. - - o. . . . o. , ’ Schwieger , Ruben Don, A Component Analysis of Mathematical Problem Solving, Ph.D
Teacher Learning on Problem-Solving Teams
ERIC Educational Resources Information Center
Gregory, Anne
2010-01-01
Problem-solving teams address student difficulties. Teams comprised of teachers, specialists, and administrators identify the student problem, develop individualized interventions, and assess student change. Teacher experiences of teams are understudied. In a prospective, mixed-method study conducted in the United States, 34 teachers were followed…
Assessing Mathematical Problem Solving Using Comparative Judgement
ERIC Educational Resources Information Center
Jones, Ian; Swan, Malcolm; Pollitt, Alastair
2015-01-01
There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical…
Solving Problems of Practice in Education.
ERIC Educational Resources Information Center
Boyd, Robert D.; Menlo, Allen
1984-01-01
Discusses the many complexities involved in the translation of scientific information in the social sciences into forms usable for solving problems of practice in education. Prescribes a series of stages to be followed from the advent of a practitioner's situational problem to the design of a response to it. (Author/JN)
Purdue Elementary Problem-Solving Inventory.
ERIC Educational Resources Information Center
Purdue Univ., Lafayette, IN. Educational Research Center.
This inventory was designed to assess the general problem solving ability of disadvantaged elementary school children from various ethnic backgrounds and grade levels. Twelve tasks are included in the inventory: sensing the problem, identifying the problem, asking questions, guessing causes, clarification of goals, judging if more information is…
Pose and Solve Varignon Converse Problems
ERIC Educational Resources Information Center
Contreras, José N.
2014-01-01
The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…
Problem-Solving Exercises and Evolution Teaching
ERIC Educational Resources Information Center
Angseesing, J. P. A.
1978-01-01
It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)
Problem-Solving Test: Tryptophan Operon Mutants
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2010-01-01
This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…
Scientific Problem Solving by Expert Systems.
ERIC Educational Resources Information Center
Good, Ron
1984-01-01
Human expert problem-solving in science is defined and used to account for scientific discovery. These ideas are used to describe BACON.5, a machine expert problem solver that discovers scientific laws using data-driver heuristics and "expectations" such as symmetry. Implications of BACON.5 type research for traditional science education…
Raise the Bar on Problem Solving
ERIC Educational Resources Information Center
Englard, Lisa
2010-01-01
In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and…
Facilitating Problem Solving in High School Chemistry.
ERIC Educational Resources Information Center
Gabel, Dorothy L.
The major purpose of this study was to determine whether certain types of instructional strategies (factor-label method, use of analogies, use of diagrams, and proportionality) were superior to others in teaching problem solving in four topics (mole concept, gas laws, stoichiometry, and molarity). Also of major interest was whether particular…
Using Programmable Calculators to Solve Electrostatics Problems.
ERIC Educational Resources Information Center
Yerian, Stephen C.; Denker, Dennis A.
1985-01-01
Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)
Stoichiometric Problem Solving in High School Chemistry.
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen
The purpose of this descriptive study was to create and test questions on stoichiometry with number ratios for quick mental calculations and to identify students' problem-solving strategies. The present study was a component of a more comprehensive investigation in which 7,441 German senior high school students were asked to work on 154 test items…
Effective Practices (Part 4): Problem Solving.
ERIC Educational Resources Information Center
Moursund, Dave
1996-01-01
Discusses the use of computers to help with problem solving. Topics include information science, including effective procedure and procedural thinking; templates; artificially intelligent agents and expert systems; and applications in education, including the goal of computer literacy for all students, and integrated software packages such as…
Facilitating problem solving in high school chemistry
NASA Astrophysics Data System (ADS)
Gabel, Dorothy L.; Sherwood, Robert D.
The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.
Facilitating Problem Solving in High School Chemistry.
ERIC Educational Resources Information Center
Gabel, Dorothy L.; Sherwood, Robert D.
1983-01-01
Investigated superiority of instructional strategies (factor-label method, proportionality, use of analogies, use of diagrams) in teaching problem-solving related to mole concept, gas laws, stoichiometry, and molarity. Also investigated effectiveness of strategies for students (N=609) with different verbal-visual preferences, proportional…
Problem Solving in Chemistry Using Eureka.
ERIC Educational Resources Information Center
Chau, F. T.; Chik, Andy S. W.
1989-01-01
Discusses a software package that allows the user to solve mathematical problems, analyze data, plot graphs, and to examine mathematical models. Presents the attributes of the program and the available mathematical functions. Provides an example of pH calculations. (MVL)
Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning
2012-12-01
Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed.
Black Carbon Measurements in SOLVE-2
NASA Technical Reports Server (NTRS)
Kok, Gregory L.; Baumgardner, Darrel R.
2004-01-01
Droplet Measurement Technologies (DMT), under funding from NASA s Radiation Sciences Program, participated in the SOLVE II field campaign with measurements of light absorbing particles (black carbon and metals). These measurements were made with the Single Particle Soot Photometer (SP-2) on the NASA DC-8. The SP-2 is a new measurement technique that was developed under the SBIR program with funding from the Office of Naval Research. The original instrument suite for the DC-8 did not include the SP-2 and its addition and operation during SOLVE II was intended solely as a means to test its functionality and prepare it for future flight operations. For this reason it required several flights in the early stages of the project to tune its operation and fix some problems that arose. During the flights of January 26, 29, and 30, and February 2, 4 and 6, however, it worked as designed and acquired credible data.
Solving Kinetic Equations on GPU’s
2011-01-01
rarefied gas flows , it is not well suited to the simulation of low Mach number or unsteady flows . Attempts have been made to extend DSMC in order to...simulate nonequilibrium rarefied gas flows . The full nonlinear Boltzmann equation has been solved by means of a semi-regular method which combines a...Valougeorgis, D. and Sharipov, F. (2008). Application of the integro- moment method to steady-state two-dimensional rarefied gas flows subject to boundary
DC-8 MTP calibration for SOLVE-2
NASA Technical Reports Server (NTRS)
Mahoney, M. J.
2003-01-01
The Jet Propulsion Laboratory (JPL) Microwave Temperature Profiler (MTP) was the only instrument making temperature measurements at and below flight level on the DC-8 during the SOLVE-2 campaign. Many years of careful comparison of MTP measurements with radiosondes near the DC-8 flight track have shown that the flight level temperature can be determined to an accuracy of 0.2K relative to radiosondes.
Human Problem Solving in Fault Diagnosis Tasks
1986-04-01
W - FPFag-kx~~ff~P~xNA F MMIP Research Note 86-33 cc HUMAN PROBLEM SOLVING IN FAULT DIAGNOSIS TASKS J U William B. Rouse and Ruston M. Hunt Center...V -m ... 1 Ira wli W - -. W .: m.4.. . W - r - j ; - R 7T._ W77 m- UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) REPORT...ii SECURITY CLASSIFICATION OF THIS PAGE( W "en Data Entered) ,.-... 2
Problem-solving analysis: A piagetian study
NASA Astrophysics Data System (ADS)
Hale, James P.
Fifty-nine second-year medical students were asked to solve 12 Piagetian formal operational tasks. The purpose was to describe the formal logical characteristics of this medical student sample (59 of a total 65 possible) in terms of their abilities to solve problems in four formal logical schemata-combinatorial logic, probabilistic reasoning, propositional logic, and proportional reasoning. These tasks were presented as videotape demonstrations or in written form, depending on whether or not equipment manipulation was required, and were scored using conventional, prespecified scoring criteria. The results of this study show approximately 96% of the sample function at the transitional (Piaget's 3A level) stage of formal operations on all tasks and approximately 4% function at the full formal (Piaget's 3B level) stage of formal operations on all tasks. This sample demonstrates formal level thinking to a much greater degree than other samples reported in the literature to date and suggests these students are adequately prepared and developed to meet the challenge of their training (i.e., medical problem solving).
Direct Containment Heating: A Solved Risk Issue
Passalacqua, Roberto
2002-07-01
In case of a High Pressure Melt Ejection (HPME) heated gas and corium may be expelled from the bottom head of a reactor vessel reaching the containment atmosphere, leading to a Direct Containment Heating (DCH). In addition, released gases might burn (e.g. hydrogen) causing a high load of the reactor containment building. Corium dispersal phenomena also strongly affect consequences of Molten Core-Concrete Interaction (MCCI) since the corium mass, which remains within the cavity, may remarkably diminish. Several computer codes are able to simulate the response of nuclear plants during hypothetical severe accidents: MELCOR, MAAP, ESCADRE and ASTEC have the capability to describe corium slump into the reactor cavity, vessel gases blow-down and possible corium entrainment. In this paper the various steps of model development, validation, plant-specific applications, etc., are described in the attempt of establishing a risk-oriented methodology with the target of solving this particular risk-issue. ENEA mature expertise in level-2 PSA analyses shows that the DCH phenomenology can be considered a solved risk issue. The applied methodology gives also hints and/or guidelines for solving similar risk issues in current PSA (level 2) analysis. (authors)
Solving Nonlinear Euler Equations with Arbitrary Accuracy
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
Discovering the structure of mathematical problem solving.
Anderson, John R; Lee, Hee Seung; Fincham, Jon M
2014-08-15
The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning.
Geogebra for Solving Problems of Physics
NASA Astrophysics Data System (ADS)
Kllogjeri, Pellumb; Kllogjeri, Adrian
Today is highly speed progressing the computer-based education, which allowes educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. In this paper we will be concentrated on the use of GeoGebra programme for solving problems of physics. We have brought an example from physics of how can be used GeoGebra for finding the center of mass(centroid) of a picture(or system of polygons). After the problem is solved graphically, there is an application of finding the center of a real object(a plate)by firstly, scanning the object and secondly, by inserting its scanned picture into the drawing pad of GeoGebra window and lastly, by finding its centroid. GeoGebra serve as effective tool in problem-solving. There are many other applications of GeoGebra in the problems of physics, and many more in different fields of mathematics.
Optimal Planning and Problem-Solving
NASA Technical Reports Server (NTRS)
Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg
2008-01-01
CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.
Journey into Problem Solving: A Gift from Polya
ERIC Educational Resources Information Center
Lederman, Eric
2009-01-01
In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
Young Children's Analogical Problem Solving: Gaining Insights from Video Displays
ERIC Educational Resources Information Center
Chen, Zhe; Siegler, Robert S.
2013-01-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
ERIC Educational Resources Information Center
Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth
2015-01-01
This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…
An approach to solving large reliability models
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Veeraraghavan, Malathi; Dugan, Joanne Bechta; Trivedi, Kishor S.
1988-01-01
This paper describes a unified approach to the problem of solving large realistic reliability models. The methodology integrates behavioral decomposition, state trunction, and efficient sparse matrix-based numerical methods. The use of fault trees, together with ancillary information regarding dependencies to automatically generate the underlying Markov model state space is proposed. The effectiveness of this approach is illustrated by modeling a state-of-the-art flight control system and a multiprocessor system. Nonexponential distributions for times to failure of components are assumed in the latter example. The modeling tool used for most of this analysis is HARP (the Hybrid Automated Reliability Predictor).
Aha: A Connectionist Perspective on Problem Solving
1988-06-08
DOCUMENTATION PAGE 7, -REPORtT SEC.l CASPFC.A’C ON R7ESRtC’ vE %MARK.%GS Unclassif led 22 SECRITY C ASSPFCATION Aur~oRifv 3 ; S’R @Bu ON AjALA81L 3 F...Typically, the search perspective has been used to desc ,.,e problem solving behavior occurring on a macro-level time scale of seconds as opposed to the...unit /. The constants S, E and / (all set to .05 for the simulations described below) scale the strength of the external input, the excitatory input from
Can galileons solve the muon problem?
NASA Astrophysics Data System (ADS)
Lamm, Henry
2015-09-01
The leptonic bound states positronium and muonium are used to constrain Galileon contributions to the Lamb shift of muonic hydrogen. Through the application of a variety of bounds on lepton compositeness, it is shown that either the assumption of equating the charge radius of a particle with its Galileon scale radius is incompatible with experiments, or the scale of Galileons must be M >1.33 GeV , too large to solve the muon problem. The possibility of stronger constraints in the future from true muonium is discussed.
On Spurious Numerics in Solving Reactive Equations
NASA Technical Reports Server (NTRS)
Kotov, D. V; Yee, H. C.; Wang, W.; Shu, C.-W.
2013-01-01
The objective of this study is to gain a deeper understanding of the behavior of high order shock-capturing schemes for problems with stiff source terms and discontinuities and on corresponding numerical prediction strategies. The studies by Yee et al. (2012) and Wang et al. (2012) focus only on solving the reactive system by the fractional step method using the Strang splitting (Strang 1968). It is a common practice by developers in computational physics and engineering simulations to include a cut off safeguard if densities are outside the permissible range. Here we compare the spurious behavior of the same schemes by solving the fully coupled reactive system without the Strang splitting vs. using the Strang splitting. Comparison between the two procedures and the effects of a cut off safeguard is the focus the present study. The comparison of the performance of these schemes is largely based on the degree to which each method captures the correct location of the reaction front for coarse grids. Here "coarse grids" means standard mesh density requirement for accurate simulation of typical non-reacting flows of similar problem setup. It is remarked that, in order to resolve the sharp reaction front, local refinement beyond standard mesh density is still needed.
A Flipped Pedagogy for Expert Problem Solving
NASA Astrophysics Data System (ADS)
Pritchard, David
The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).
Comprehension and computation in Bayesian problem solving
Johnson, Eric D.; Tubau, Elisabet
2015-01-01
Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976
Assessing Cognitive Learning of Analytical Problem Solving
NASA Astrophysics Data System (ADS)
Billionniere, Elodie V.
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
Functional reasoning in diagnostic problem solving
NASA Technical Reports Server (NTRS)
Sticklen, Jon; Bond, W. E.; Stclair, D. C.
1988-01-01
This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.
Solving the Swath Segment Selection Problem
NASA Technical Reports Server (NTRS)
Knight, Russell; Smith, Benjamin
2006-01-01
Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).
Solving optimization problems on computational grids.
Wright, S. J.; Mathematics and Computer Science
2001-05-01
Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms have become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software
Solving Partial Differential Equations on Overlapping Grids
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
Modeling Regular Replacement for String Constraint Solving
NASA Technical Reports Server (NTRS)
Fu, Xiang; Li, Chung-Chih
2010-01-01
Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications
Genetic Algorithms for solving SVM-ICA
NASA Astrophysics Data System (ADS)
Górriz, J. M.; Puntonet, C. G.
2004-11-01
In this paper we solve the well known ill-posed problem called Independent Component Analysis using the Support Vector Machines (SVM) methodology and proposing a genetic algorithm to minimize a nonconvex and nonlinear cost function based on statistical estimators. In this way a novel method for blindly separating unobservable independent component signals from their linear and non linear (using mapping functions) mixtures is devised. The GA presented in this work is able to extract independent components with faster rate than the previous independent component analysis algorithms based on Higher Order Statistics (HOS) as input space dimension increases showing significant accuracy and robustness. Using a suitable mathematically notation we derive independent functions equivalent to the Maximum Entropy principle.
Raman Scattering in Carbon Nanosystems: Solving Polyacetylene.
Heller, Eric J; Yang, Yuan; Kocia, Lucas
2015-03-25
Polyacetylene has been a paradigm conjugated organic conductor since well before other conjugated carbon systems such as nanotubes and graphene became front and center. It is widely acknowledged that Raman spectroscopy of these systems is extremely important to characterize them and understand their internal quantum behavior. Here we show, for the first time, what information the Raman spectrum of polyacetylene contains, by solving the 35-year-old mystery of its spectrum. Our methods have immediate and clear implications for other conjugated carbon systems. By relaxing the nearly universal approximation of ignoring the nuclear coordinate dependence of the transition moment (Condon approximation), we find the reasons for its unusual spectroscopic features. When the Kramers-Heisenberg-Dirac Raman scattering theory is fully applied, incorporating this nuclear coordinate dependence, and also the energy and momentum dependence of the electronic and phonon band structure, then unusual line shapes, growth, and dispersion of the bands are explained and very well matched by theory.
Dynamic discretization method for solving Kepler's equation
NASA Astrophysics Data System (ADS)
Feinstein, Scott A.; McLaughlin, Craig A.
2006-09-01
Kepler’s equation needs to be solved many times for a variety of problems in Celestial Mechanics. Therefore, computing the solution to Kepler’s equation in an efficient manner is of great importance to that community. There are some historical and many modern methods that address this problem. Of the methods known to the authors, Fukushima’s discretization technique performs the best. By taking more of a system approach and combining the use of discretization with the standard computer science technique known as dynamic programming, we were able to achieve even better performance than Fukushima. We begin by defining Kepler’s equation for the elliptical case and describe existing solution methods. We then present our dynamic discretization method and show the results of a comparative analysis. This analysis will demonstrate that, for the conditions of our tests, dynamic discretization performs the best.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
Incubation and Intuition in Creative Problem Solving
Gilhooly, Kenneth J.
2016-01-01
Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745
Raman Scattering in Carbon Nanosystems: Solving Polyacetylene
2015-01-01
Polyacetylene has been a paradigm conjugated organic conductor since well before other conjugated carbon systems such as nanotubes and graphene became front and center. It is widely acknowledged that Raman spectroscopy of these systems is extremely important to characterize them and understand their internal quantum behavior. Here we show, for the first time, what information the Raman spectrum of polyacetylene contains, by solving the 35-year-old mystery of its spectrum. Our methods have immediate and clear implications for other conjugated carbon systems. By relaxing the nearly universal approximation of ignoring the nuclear coordinate dependence of the transition moment (Condon approximation), we find the reasons for its unusual spectroscopic features. When the Kramers–Heisenberg–Dirac Raman scattering theory is fully applied, incorporating this nuclear coordinate dependence, and also the energy and momentum dependence of the electronic and phonon band structure, then unusual line shapes, growth, and dispersion of the bands are explained and very well matched by theory. PMID:27162945
Solving Maxwell eigenvalue problems for accelerating cavities
NASA Astrophysics Data System (ADS)
Arbenz, Peter; Geus, Roman; Adam, Stefan
2001-02-01
We investigate algorithms for computing steady state electromagnetic waves in cavities. The Maxwell equations for the strength of the electric field are solved by a mixed method with quadratic finite edge (Nédélec) elements for the field values and corresponding node-based finite elements for the Lagrange multiplier. This approach avoids so-called spurious modes which are introduced if the divergence-free condition for the electric field is not treated properly. To compute a few of the smallest positive eigenvalues and corresponding eigenmodes of the resulting large sparse matrix eigenvalue problems, two algorithms have been used: the implicitly restarted Lanczos algorithm and the Jacobi-Davidson algorithm, both with shift-and-invert spectral transformation. Two-level hierarchical basis preconditioners have been employed for the iterative solution of the resulting systems of equations.
Solving multi-leader-common-follower games.
Leyffer, S.; Munson, T.; Mathematics and Computer Science
2010-01-01
Multi-leader-common-follower games arise when modelling two or more competitive firms, the leaders, that commit to their decisions prior to another group of competitive firms, the followers, that react to the decisions made by the leaders. These problems lead in a natural way to equilibrium problems with equilibrium constraints (EPECs). We develop a characterization of the solution sets for these problems and examine a variety of nonlinear optimization and nonlinear complementarity formulations of EPECs. We distinguish two broad cases: problems where the leaders can cost-differentiate and problems with price-consistent followers. We demonstrate the practical viability of our approach by solving a range of medium-sized test problems.
A connectionist model for diagnostic problem solving
NASA Technical Reports Server (NTRS)
Peng, Yun; Reggia, James A.
1989-01-01
A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.
Solving the simplest theory of quantum gravity
NASA Astrophysics Data System (ADS)
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2012-09-01
We solve what is quite likely the simplest model of quantum gravity, the worldsheet theory of an infinitely long, free bosonic string in Minkowski space. Contrary to naive expectations, this theory is non-trivial. We illustrate this by constructing its exact factorizable S-matrix. Despite its simplicity, the theory exhibits many of the salient features expected from more mature quantum gravity models, including the absence of local off-shell observables, a minimal length, as well as (integrable relatives of) black holes. All these properties follow from the exact S-matrix. We show that the complete finite volume spectrum can be reconstructed analytically from this S-matrix with the help of the thermodynamic Bethe Ansatz. We argue that considered as a UV complete relativistic 2-dimensional quantum field theory the model exhibits a new type of renormalization group flow behavior, "asymptotic fragility". Asymptotically fragile flows do not originate from a UV fixed point.
Solving Math Problems Approximately: A Developmental Perspective
Ganor-Stern, Dana
2016-01-01
Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224
Teaching Problem Solving as Viewed Through a Theory of Models
ERIC Educational Resources Information Center
Vest, Floyd
1976-01-01
An analysis of methods of teaching children to solve verbal arithmetic problems is presented together with transcriptions of interviews in which children solve problems by reference to problem types. (SD)
ERIC Educational Resources Information Center
Goodwin, Amanda P.
2016-01-01
This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…
A Process Analysis of Engineering Problem Solving and Assessment of Problem Solving Skills
ERIC Educational Resources Information Center
Grigg, Sarah J.
2012-01-01
In the engineering profession, one of the most critical skills to possess is accurate and efficient problem solving. Thus, engineering educators should strive to help students develop skills needed to become competent problem solvers. In order to measure the development of skills, it is necessary to assess student performance, identify any…
Maximum/Minimum Problems Solved Using an Algebraic Way
ERIC Educational Resources Information Center
Modica, Erasmo
2010-01-01
This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…
Interpersonal and Emotional Problem Solving among Narcotic Drug Abusers.
ERIC Educational Resources Information Center
Appel, Philip W.; Kaestner, Elisabeth
1979-01-01
Measured problem-solving abilities of narcotics abusers using the modified means-ends problem-solving procedure. Good subjects had more total relevent means (RMs) for solving problems, used more introspective and emotional RMs, and were better at RM recognition, but did not have more sufficient narratives than poor subjects. (Author/BEF)
Perceived Problem Solving, Stress, and Health among College Students
ERIC Educational Resources Information Center
Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William
2005-01-01
Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…
Independence Pending: Teacher Behaviors Preceding Learner Problem Solving
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2017-01-01
The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…
Team-Based Complex Problem Solving: A Collective Cognition Perspective
ERIC Educational Resources Information Center
Hung, Woei
2013-01-01
Today, much problem solving is performed by teams, rather than individuals. The complexity of these problems has exceeded the cognitive capacity of any individual and requires a team of members to solve them. The success of solving these complex problems not only relies on individual team members who possess different but complementary expertise,…
A Decision Support System for Solving Multiple Criteria Optimization Problems
ERIC Educational Resources Information Center
Filatovas, Ernestas; Kurasova, Olga
2011-01-01
In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…
The Influence of Cognitive Diversity on Group Problem Solving Strategy
ERIC Educational Resources Information Center
Lamm, Alexa J.; Shoulders, Catherine; Roberts, T. Grady; Irani, Tracy A.; Snyder, Lori J. Unruh; Brendemuhl, Joel
2012-01-01
Collaborative group problem solving allows students to wrestle with different interpretations and solutions brought forth by group members, enhancing both critical thinking and problem solving skills. Since problem solving in groups is a common practice in agricultural education, instructors are often put in the position of organizing student…
Teaching Problem Solving in Secondary School Mathematics Classrooms
ERIC Educational Resources Information Center
Lam, Toh Tin; Guan, Tay Eng; Seng, Quek Khiok; Hoong, Leong Yew; Choon, Toh Pee; Him, Ho Foo; Jaguthsing, Dindyal
2014-01-01
This paper reports an innovative approach to teaching problem solving in secondary school mathematics classrooms based on a specifically designed problem-solving module.This approach adopts the science practical paradigm and rides on the works of Polya and Schoenfeld in order to give greater emphasis to the problem solving processes. We report the…
Surveying Graduate Students' Attitudes and Approaches to Problem Solving
ERIC Educational Resources Information Center
Mason, Andrew; Singh, Chandralekha
2010-01-01
Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…
Teaching Young Children Interpersonal Problem-Solving Skills
ERIC Educational Resources Information Center
Joseph, Gail E.; Strain, Phillip S.
2010-01-01
Learning how to problem solve is one of the key developmental milestones in early childhood. Children's problem-solving skills represent a key feature in the development of social competence. Problem solving allows children to stay calm during difficult situations, repair social relations quickly, and get their needs met in ways that are safe and…
Problem-Solving Processes Used by Students in Organic Synthesis.
ERIC Educational Resources Information Center
Bowen, Craig W.; Bodner, George M.
1991-01-01
A model for problem solving stressing both psychological and cultural influences is presented. This model is based on the analyses of how graduate students (n=10) solve organic synthesis problems, along with two models of problem solving and a constructivist epistemological stance. (KR)
Capturing Problem-Solving Processes Using Critical Rationalism
ERIC Educational Resources Information Center
Chitpin, Stephanie; Simon, Marielle
2012-01-01
The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…
Problem Solving Interventions: Impact on Young Children with Developmental Disabilities
ERIC Educational Resources Information Center
Diamond, Lindsay Lile
2012-01-01
Problem-solving skills are imperative to a child's growth and success across multiple environments, including general and special education. Problem solving is comprised of: (a) attention to the critical aspects of a problem, (b) generation of solution(s) to solve the problem, (c) application of a solution(s) to the identified problem, and…
Thinking Process of Naive Problem Solvers to Solve Mathematical Problems
ERIC Educational Resources Information Center
Mairing, Jackson Pasini
2017-01-01
Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…
Teacher Practices with Toddlers during Social Problem Solving Opportunities
ERIC Educational Resources Information Center
Gloeckler, Lissy; Cassell, Jennifer
2012-01-01
This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…
Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics.
ERIC Educational Resources Information Center
Smolensky, Paul; Riley, Mary S.
This document consists of three papers. The first, "A Parallel Model of (Sequential) Problem Solving," describes a parallel model designed to solve a class of relatively simple problems from elementary physics and discusses implications for models of problem-solving in general. It is shown that one of the most salient features of problem…
Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement
ERIC Educational Resources Information Center
Zheng, Robert; Cook, Anne
2012-01-01
The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…
Problem Solving Strategies for Pharmaceutical/Chemical Technology College Students.
ERIC Educational Resources Information Center
Grant, George F.; Alexander, William E.
Teaching problem solving strategies and steps to first year college students enrolled in the pharmaceutical/chemical technology program as a part of their first year chemistry course focused on teaching the students the basic steps in problem solving and encouraging them to plan carefully and focus on the problem solving process rather than to…
A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem
ERIC Educational Resources Information Center
Sidhu, S. Manjit; Selvanathan, N.
2005-01-01
Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…
Problem Solving in the School Curriculum from a Design Perspective
ERIC Educational Resources Information Center
Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng
2010-01-01
In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
Dynamics of students’ epistemological framing in group problem solving
NASA Astrophysics Data System (ADS)
Nguyen, Hai D.; Chari, Deepa N.; Sayre, Eleanor C.
2016-11-01
Many studies have investigated students’ epistemological framing when solving physics problems. Framing supports students’ problem solving as they decide what knowledge to employ and the necessary steps to solve the problem. Students may frame the same problem differently and take alternative paths to a correct solution. When students work in group settings, they share and discuss their framing to decide how to proceed in problem solving as a whole group. In this study, we investigate how groups of students negotiate their framing and frame shifts in group problem solving.
ERIC Educational Resources Information Center
Fede, Jessica L.
2010-01-01
This research investigation examined the effects of "GO Solve Word Problems" math intervention on problem-solving skills of struggling 5th grade students. In a randomized controlled study, 16 5th grade students were given a 12-week intervention of "GO Solve", a computer-based program designed to teach schema-based instruction…
ERIC Educational Resources Information Center
Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee
2005-01-01
A problem solving strategy, Thinking Aloud Pair Problem Solving (TAPPS), developed by Arthur Whimbey to help students monitor and understand their own thought process is presented. The TAPPS strategy encouraged the students interact verbally with each other to solve chemistry problems and improve the achievements in chemistry.
Can Architecture Design Solve Social Problem?
NASA Astrophysics Data System (ADS)
Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.
2017-03-01
Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.
Glow discharge based device for solving mazes
Dubinov, Alexander E. Mironenko, Maxim S.; Selemir, Victor D.; Maksimov, Artem N.; Pylayev, Nikolay A.
2014-09-15
A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.
Solving the mystery of the human cerebellum.
Leiner, Henrietta C
2010-09-01
The mystery of the human cerebellum is this: Why did it enlarge so dramatically in the last million years of human evolution, concomitantly with the greater enlargement of the cerebral cortex? A solution to this mystery was proposed in the 20th century as a result of research by several groups of scientists who investigated the contributions of the cerebellum to the cerebral cortex. In contrast to the 19th century investigations, which were focused on the motor functions of the cerebellum, the focus of the subsequent investigations was expanded to include some mental functions because evidence was produced that the cerebellum contributes to cognition. It was proposed that the combination in the cerebellum of motor and mental capabilities enables the cerebellum to confer on humans some adaptive advantages of great value, and this ability would explain why the human cerebellum has continued to enlarge so dramatically. A valuable adaptive advantage that is included in the proposal is the possibility that the cerebellum couples the motor function of articulating speech to the mental function that selects the language to be spoken, thus helping to produce fluent human speech and language. The validity of this proposal about linguistic processing has not yet been verified. Therefore the mystery of cerebellar enlargement in humans is not yet solved and requires further research.
Solved? The reductive radiation chemistry of alanine.
Pauwels, Ewald; De Cooman, Hendrik; Waroquier, Michel; Hole, Eli O; Sagstuen, Einar
2014-02-14
The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.
Can compactifications solve the cosmological constant problem?
Hertzberg, Mark P.; Masoumi, Ali
2016-06-30
Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ=0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.
Unsupervised neural networks for solving Troesch's problem
NASA Astrophysics Data System (ADS)
Muhammad, Asif Zahoor Raja
2014-01-01
In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.
Solving the RNA polymerase I structural puzzle
Moreno-Morcillo, María; Taylor, Nicholas M. I.; Gruene, Tim; Legrand, Pierre; Rashid, Umar J.; Ruiz, Federico M.; Steuerwald, Ulrich; Müller, Christoph W.; Fernández-Tornero, Carlos
2014-01-01
Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution. PMID:25286842
Solving the RNA polymerase I structural puzzle
Moreno-Morcillo, María; Taylor, Nicholas M. I.; Gruene, Tim; Legrand, Pierre; Rashid, Umar J.; Ruiz, Federico M.; Steuerwald, Ulrich; Müller, Christoph W.; Fernández-Tornero, Carlos
2014-10-01
Details of the RNA polymerase I crystal structure determination provide a framework for solution of the structures of other multi-subunit complexes. Simple crystallographic experiments are described to extract relevant biological information such as the location of the enzyme active site. Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.
Solve the Dilemma of Over-Simplification
NASA Astrophysics Data System (ADS)
Schmitt, Gerhard
Complexity science can help to understand the functioning and the interaction of the components of a city. In 1965, Christopher Alexander gave in his book A city is not a tree a description of the complex nature of urban organization. At this time, neither high-speed computers nor urban big data existed. Today, Luis Bettencourt et al. use complexity science to analyze data for countries, regions, or cities. The results can be used globally in other cities. Objectives of complexity science with regard to future cities are the observation and identification of tendencies and regularities in behavioral patterns, and to find correlations between them and spatial configurations. Complex urban systems cannot be understood in total yet. But research focuses on describing the system by finding some simple, preferably general and emerging patterns and rules that can be used for urban planning. It is important that the influencing factors are not just geo-spatial patterns but also consider variables which are important for the design quality. Complexity science is a way to solve the dilemma of oversimplification of insights from existing cities and their applications to new cities. An example: The effects of streets, public places and city structures on citizens and their behavior depend on how they are perceived. To describe this perception, it is not sufficient to consider only particular characteristics of the urban environment. Different aspects play a role and influence each other. Complexity science could take this fact into consideration and handle the non-linearity of the system...
A Framework for Distributed Problem Solving
NASA Astrophysics Data System (ADS)
Leone, Joseph; Shin, Don G.
1989-03-01
This work explores a distributed problem solving (DPS) approach, namely the AM/AG model, to cooperative memory recall. The AM/AG model is a hierarchic social system metaphor for DPS based on the Mintzberg's model of organizations. At the core of the model are information flow mechanisms, named amplification and aggregation. Amplification is a process of expounding a given task, called an agenda, into a set of subtasks with magnified degree of specificity and distributing them to multiple processing units downward in the hierarchy. Aggregation is a process of combining the results reported from multiple processing units into a unified view, called a resolution, and promoting the conclusion upward in the hierarchy. The combination of amplification and aggregation can account for a memory recall process which primarily relies on the ability of making associations between vast amounts of related concepts, sorting out the combined results, and promoting the most plausible ones. The amplification process is discussed in detail. An implementation of the amplification process is presented. The process is illustrated by an example.
Young children's analogical problem solving: gaining insights from video displays.
Chen, Zhe; Siegler, Robert S
2013-12-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. The sample of 2- and 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older, but not younger, toddlers extracted the problem-solving strategy depicted in the video and spontaneously transferred the strategy to solve isomorphic problems. Transfer by analogy from the video was evident only when the video illustrated the complete problem goal structure, including the character's intention and the action needed to achieve a goal. The same action isolated from the problem-solving context did not serve as an effective source analogue. These results illuminate the development of early representation and processes involved in analogical problem solving. Theoretical and educational implications are discussed.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
Mushroom Extracts Decrease Bone Resorption and Improve Bone Formation.
Erjavec, Igor; Brkljacic, Jelena; Vukicevic, Slobodan; Jakopovic, Boris; Jakopovich, Ivan
2016-01-01
Mushroom extracts have shown promising effects in the treatment of cancer and various chronic diseases. Osteoporosis is considered one of the most widespread chronic diseases, for which currently available therapies show mixed results. In this research we investigated the in vitro effects of water extracts of the culinary-medicinal mushrooms Trametes versicolor, Grifola frondosa, Lentinus edodes, and Pleurotus ostreatus on a MC3T3-E1 mouse osteoblast-like cell line, primary rat osteoblasts, and primary rat osteoclasts. In an animal osteoporosis model, rats were ovariectomized and then fed 2 mushroom blends of G. frondosa and L. edodes for 42 days. Bone loss was monitored using densitometry (dual-energy X-ray absorptiometry) and micro computed tomography. In the concentration test, mushroom extracts showed no toxic effect on MC3T3-E1 cells; a dose of 24 µg/mL showed the most proliferative effect. Mushroom extracts of T. versicolor, G. frondosa, and L. edodes inhibited osteoclast activity, whereas the extract of L. edodes increased osteoblast mineralization and the production of osteocalcin, a specific osteoblastic marker. In animals, mushroom extracts did not prevent trabecular bone loss in the long bones. However, we show for the first time that the treatment with a combination of extracts from L. edodes and G. frondosa significantly reduced trabecular bone loss at the lumbar spine. Inhibitory properties of extracts from L. edodes on osteoclasts and the promotion of osteoblasts in vitro, together with the potential to decrease lumbar spine bone loss in an animal osteoporosis model, indicate that medicinal mushroom extracts can be considered as a preventive treatment and/or a supplement to pharmacotherapy to enhance its effectiveness and ameliorate its harmful side effects.
The relationship between students' problem solving frames and epistemological beliefs
NASA Astrophysics Data System (ADS)
Wampler, Wendi N.
Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. Matter and Interactions [M&I] is a curriculum that focuses on a restructuring of physics content knowledge and emphasizes a systematic approach to problem solving, called modeling, which involves the application physical principles to carefully defined systems of objects and interactions (Chabay and Sherwood, 2007a). Because the M&I approach to problem solving is different from many students' previous physics experience, efforts need to be made to attend to their epistemological beliefs and expectations about not only learning physics content knowledge, but problem solving as well. If a student frames solving physics problems as a `plug and chug' type activity, then they are going continue practicing this strategy. Thus, it is important to address students' epistemological beliefs and monitor how they frame the activity of problem solving within the M&I course. This study aims to investigate how students frame problem solving within the context of a large scale implementation of the M&I curriculum, and how, if at all, those frames shift through the semester. By investigating how students frame the act of problem solving in the M&I context, I was able to examine the connection between student beliefs and expectations about problem solving in physics and the skills and strategies used while solving problems in class. To accomplish these goals, I recruited student volunteers from Purdue's introductory, calculus-based physics course and assessed their problem solving approach and espoused epistemological beliefs over the course of a semester. I obtained data through video recordings of the students engaged in small group problem solving during recitation activities
Leprosy: a problem solved by 2000?
Stearns, A T
2002-09-01
It is now the year 2001, and in many endemic regions leprosy remains a public health problem by any definition. It is clear that defining leprosy purely by prevalence side-steps some of the real issues. There is still much to do to solve the problem of leprosy. Control programmes require better tests for early diagnosis if leprosy is to be reduced much further. Treatment of the infection and of reactions is still far from ideal, whilst an effective vaccine would be valuable in high-risk regions. Research into the true incidence in each endemic area is essential, and control programs of the future will need a more detailed understanding of the transmission of M. leprae to permit new logical interventions. Leprosy remains a devastating disease. Much of the damage that it inflicts is irreversible, and leads to disability and stigmatization. This is perhaps the greatest problem posed. It is easy to dwell on the successes of the elimination campaign, so diverting attention from those populations of 'cured' patients who still suffer from the consequences of infection. Leprosy should be regarded as a problem unsolved so long as patients continue to present with disabilities. WHO has carried out a highly successful campaign in reducing the prevalence of leprosy, and this needs to be acknowledged, but what is happening to the incidence in core endemic areas? Maintaining this success, however, may be an even greater struggle if funding is withdrawn and vertical programmes are absorbed into national health structures. We must take heed of the historian George Santayana, 'those who cannot remember the past are condemned to repeat it'. We should take the example of tuberculosis as a warning of the dangers of ignoring a disease before it has been fully controlled, and strive to continue the leprosy elimination programmes until there are no new cases presenting with disability. The World Health Organisation has shown that leprosy is an eminently treatable disease, and has
Self-affirmation improves problem-solving under stress.
Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.
NASA Astrophysics Data System (ADS)
Ebomoyi, Josephine Itota
The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p < .10) related to ability to solve "Creeping Crud". Peer learning strategy showed a positive significant (p < .10) relationship with scores obtained from solving "Creeping Crud". Students' declared major made a significant (p < .05) difference on the ability to solve "Microquest". A subset (18) volunteered for a think aloud method to determine decision-making process. High achievers used fewer steps, and had more focused approach than low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.
Fourth Order Algorithms for Solving Diverse Many-Body Problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.; Forbert, Harald A.; Chen, Chia-Rong; Kidwell, Donald W.; Ciftja, Orion
2001-03-01
We show that the method of factorizing an evolution operator of the form e^ɛ(A+B) to fourth order with purely positive coefficient yields new classes of symplectic algorithms for solving classical dynamical problems, unitary algorithms for solving the time-dependent Schrödinger equation, norm preserving algorithms for solving the Langevin equation and large time step convergent Diffusion Monte Carlo algorithms. Results for each class of problems will be presented and disucss
Surveying graduate students' attitudes and approaches to problem solving
NASA Astrophysics Data System (ADS)
Mason, Andrew; Singh, Chandralekha
2010-07-01
Students’ attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate students. Comparison of their responses to the survey questions about problem solving in their own graduate-level courses vs problem solving in the introductory physics courses provides insight into their expertise in introductory and graduate-level physics. The physics graduate students’ responses to the survey questions were also compared with those of introductory physics and astronomy students and physics faculty. We find that, even for problem solving in introductory physics, graduate students’ responses to some survey questions are less expertlike than those of the physics faculty. Comparison of survey responses of graduate students and introductory students for problem solving in introductory physics suggests that graduate students’ responses are in general more expertlike than those of introductory students. However, survey responses suggest that graduate-level problem solving by graduate students on several measures has remarkably similar trends to introductory-level problem solving by introductory students.
Hybrid computer techniques for solving partial differential equations
NASA Technical Reports Server (NTRS)
Hammond, J. L., Jr.; Odowd, W. M.
1971-01-01
Techniques overcome equipment limitations that restrict other computer techniques in solving trivial cases. The use of curve fitting by quadratic interpolation greatly reduces required digital storage space.
Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.
ERIC Educational Resources Information Center
Nunokawa, Kazuhiko
1996-01-01
The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge.
Innovation and problem solving: a review of common mechanisms.
Griffin, Andrea S; Guez, David
2014-11-01
Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild.
Mystery of Cometary X-Rays Solved
NASA Astrophysics Data System (ADS)
2000-07-01
On July 14, 2000 NASA's Chandra X-ray Observatory imaged Comet C/1999 S4 (LINEAR) and detected X-rays from oxygen and nitrogen ions. The details of the X-ray emission, as recorded on Chandra's Advanced CCD Imaging Spectrometer, show that they are produced by collisions of ions racing away from the Sun with gas in the comet. "This observation solves one mystery. It proves how comets produce X-rays," said Dr. Carey Lisse of the Space Telescope Science Institute (STScI) leader of a team of scientists from STScI, NASA's Goddard Space Flight Center, Max Planck Institute in Germany, Johns Hopkins University, the University of California, Berkeley, and the Harvard-Smithsonian Center for Astrophysics. "With an instrument like Chandra, we can now study the chemistry of the solar wind, and observe the X-ray glow from the atmospheres of comets as well as planets such as Venus. It may even be possible to observe other, nearby solar systems." Comets, which resemble "dirty snow balls" a few miles in diameter, were thought to be too cold for such energetic emission, so the detection of X-rays by the ROSAT observatory from comet Hyakutake in 1996 was a surprise. Several explanations were suggested, but the source of cometary X-ray emission remained a puzzle until the Chandra observation of Comet C/1999 S4 (LINEAR). Chandra's imaging spectrometer revealed a strong X-ray signal from oxygen and nitrogen ions, clinching the case for the production of X-rays due to the exchange of electrons in collisions between nitrogen and oxygen ions in the solar wind and electrically neutral elements (predominantly hydrogen) in the comets atmosphere. The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on July 14, 2000 for a total of 2 ½ hours. The comet will be re-observed with Chandra during the weeks of July 29 - Aug 13. Comet C/1999 S4 (LINEAR) was discovered in September 1999 by the Lincoln Near Earth Asteroid Research (LINEAR) project, which is operated by the
Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
Problem Solving 101: Making Most of Your Rehearsal Time
ERIC Educational Resources Information Center
Maynard, Lisa M.
2007-01-01
One issue that all teachers at all proficiency levels deal with in teaching music--whether in individual or group settings--is how to effectively solve problems encountered during lessons or rehearsals. What differentiates novice teachers from master teachers is the skill and efficiency with which they solve these problems. The seemingly…
Feasibility of a Web-Based Assessment of Problem Solving.
ERIC Educational Resources Information Center
Schacter, John; And Others
This feasibility study explored the automated data collection, scoring, and reporting of children's complex problem-solving processes and performance in Web-based information-rich environments. Problem solving was studied using realistic problems in realistic contexts demanding multiple cognitive processes in the domain of environmental science.…
The Future Problem Solving Experience Ten Years After.
ERIC Educational Resources Information Center
Flack, Jerry
1991-01-01
Four young men who had participated in the national competition of the Future Problem Solving (FPS) Program 10 years earlier offer reflections about their FPS experience. Their coach concludes that the program equips young people with the vision and skills needed to anticipate and solve problems and build better tomorrows. (JDD)
Students' Reasoning in Mathematics Textbook Task-Solving
ERIC Educational Resources Information Center
Sidenvall, Johan; Lithner, Johan; Jäder, Jonas
2015-01-01
This study reports on an analysis of students' textbook task-solving in Swedish upper secondary school. The relation between types of mathematical reasoning required, used, and the rate of correct task solutions were studied. Rote learning and superficial reasoning were common, and 80% of all attempted tasks were correctly solved using such…
Solving the Sailors and the Coconuts Problem via Diagrammatic Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2010-01-01
In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…
Autobiographical Memory and Social Problem-Solving in Asperger Syndrome
ERIC Educational Resources Information Center
Goddard, Lorna; Howlin, Patricia; Dritschel, Barbara; Patel, Trishna
2007-01-01
Difficulties in social interaction are a central feature of Asperger syndrome. Effective social interaction involves the ability to solve interpersonal problems as and when they occur. Here we examined social problem-solving in a group of adults with Asperger syndrome and control group matched for age, gender and IQ. We also assessed…
Best Known Problem Solving Strategies in "High-Stakes" Assessments
ERIC Educational Resources Information Center
Hong, Dae S.
2011-01-01
In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…
On an algorithm for solving parabolic and elliptic equations
NASA Astrophysics Data System (ADS)
D'Ascenzo, N.; Saveliev, V. I.; Chetverushkin, B. N.
2015-08-01
The present-day rapid growth of computer power, in particular, parallel computing systems of ultrahigh performance requires a new approach to the creation of models and solution algorithms for major problems. An algorithm for solving parabolic and elliptic equations is proposed. The capabilities of the method are demonstrated by solving astrophysical problems on high-performance computer systems with massive parallelism.
A Computer Based Problem Solving Environment in Chemistry
ERIC Educational Resources Information Center
Bilgin, Ibrahim; Karakirik, Erol
2005-01-01
The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves the students' problems solving skills on mole concept. The system has three distinct modes that: i) finds step by step solutions to the word problems on the mole concept ii) enable students' to solve word problems on their own…
A Computer Based Problem Solving Environment in Chemistry
ERIC Educational Resources Information Center
Bilgin, Ibrahim; Karakirik, Erol
2005-01-01
The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves students' problem solving skills on mole concept. The system has three distinct modes that: (1) find step by step solutions to the word problems on the mole concept; (2) enable students to solve word problems on their own by…
Future Problem Solving--One Program Meeting Many Needs.
ERIC Educational Resources Information Center
Hume, Katherine C.
2002-01-01
This article describes the Future Problem Solving Program, a year-long curriculum project with competitive and non-competitive options. The international program involves 250,000 students and is designed to help students enlarge, enrich, and make more accurate their images of the future. Team problem solving and individual problem solving…
Problem-Solving during Shared Reading at Kindergarten
ERIC Educational Resources Information Center
Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees
2015-01-01
This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…
How Problem Solving Can Develop an Algebraic Perspective of Mathematics
ERIC Educational Resources Information Center
Windsor, Will
2011-01-01
SProblem solving has a long and successful history in mathematics education and is valued by many teachers as a way to engage and facilitate learning within their classrooms. The potential benefit for using problem solving in the development of algebraic thinking is that "it may broaden and develop students' mathematical thinking beyond the…
Interpersonal Problem-Solving Skills of Hyperactive Children.
ERIC Educational Resources Information Center
Almeida, M. Connie
The relationship between interpersonal cognitive problem-solving (ICPS) skills and the behavioral adjustment of 30 hyperactive boys (from 5.5 to 12.5 years of age) was examined. Each S was individually administered two problem solving measures to assess alternative thinking and means-end thinking. The childrens' self-concept was also assessed and…
Interpersonal Problem Solving and Prevention in Urban School Children.
ERIC Educational Resources Information Center
Shure, Myrna B.; Healey, Kathryn N.
Recognizing that enhancing the interpersonal problem solving skills of children as young as age four can reduce or prevent high-risk behaviors later on, researchers designed a competence-building model of primary prevention. The two criteria tested were: (1) the theory of interpersonal cognitive problem solving (ICPS) skills as mediators of social…
Toward Group Problem Solving Guidelines for 21st Century Teams
ERIC Educational Resources Information Center
Ranieri, Kathryn L.
2004-01-01
Effective problem-solving skills are critical in dealing with ambiguous and often complex issues in the present-day leaner and globally diverse organizations. Yet respected, well-established problem-solving models may be misaligned within the current work environment, particularly within a team context. Models learned from a more bureaucratic,…
Cognitive Load in Algebra: Element Interactivity in Solving Equations
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs
ERIC Educational Resources Information Center
Knutson, Paul Aanond
2011-01-01
The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…
Problem Solving through an Optimization Problem in Geometry
ERIC Educational Resources Information Center
Poon, Kin Keung; Wong, Hang-Chi
2011-01-01
This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…
Does Incubation Enhance Problem Solving? A Meta-Analytic Review
ERIC Educational Resources Information Center
Sio, Ut Na; Ormerod, Thomas C.
2009-01-01
A meta-analytic review of empirical studies that have investigated incubation effects on problem solving is reported. Although some researchers have reported increased solution rates after an incubation period (i.e., a period of time in which a problem is set aside prior to further attempts to solve), others have failed to find effects. The…
Three Parent and Adult Problem-Solving Instruments.
ERIC Educational Resources Information Center
Wasik, Barbara H.; Bryant, Donna M.
This document provides information on three adult problem-solving measures developed to assess the effects of participating in a problem-solving training program. Each measure is accompanied by a manual describing the purpose, administrative procedures, psychometric properties, and use in research studies. The first measure is the Parent Means-End…
Interpersonal Problem Solving Intervention for Mother and Child.
ERIC Educational Resources Information Center
Shure, Myrna, B.; Spivack, George
This study examined the effects of interpersonal cognitive problem solving (ICPS) training for inner city mothers on the problem-solving skills and behaviors of their children. Twenty black mother-child pairs received training and 20 pairs matched in ICPS ability served as controls. The children were of comparable mean age (4.3 years), school…
A Markov Model Analysis of Problem-Solving Progress.
ERIC Educational Resources Information Center
Vendlinski, Terry
This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…
Fostering Problem-Solving in a Virtual Environment
ERIC Educational Resources Information Center
Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George
2015-01-01
This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…
An Iterative Method for Solving Variable Coefficient ODEs
ERIC Educational Resources Information Center
Deeba, Elias; Yoon, Jeong-Mi; Zafiris, Vasilis
2003-01-01
In this classroom note, the authors present a method to solve variable coefficients ordinary differential equations of the form p(x)y([squared])(x) + q(x)y([superscript 1])(x) + r(x)y(x) = 0. They propose an iterative method as an alternate method to solve the above equation. This iterative method is accessible to an undergraduate student studying…
Students' Use of Technological Features while Solving a Mathematics Problem
ERIC Educational Resources Information Center
Lee, Hollylynne Stohl; Hollebrands, Karen F.
2006-01-01
The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…
Problem Solving in Social Studies: Concepts and Critiques.
ERIC Educational Resources Information Center
Van Sickle, Ronald L.; Hoge, John D.
Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…
Computer-Based Inquiry into Scientific Problem Solving.
ERIC Educational Resources Information Center
Berkowitz, Melissa S.; Szabo, Michael
1979-01-01
Problem solving performance of individuals was compared with that of dyads at three levels of mental ability using a computer-based inquiry into the riddle of the frozen Wooly Mammoth. Results indicated significant interactions between grouping and mental ability for certain problem solving internal measures. (RAO)
Phenomenographic Study of Students' Problem Solving Approaches in Physics
ERIC Educational Resources Information Center
Walsh, Laura N.; Howard, Robert G.; Bowe, Brian
2007-01-01
This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…
Solving Graphics Tasks: Gender Differences in Middle-School Students
ERIC Educational Resources Information Center
Lowrie, Tom; Diezmann, Carmel M.
2011-01-01
The capacity to solve tasks that contain high concentrations of visual-spatial information, including graphs, maps and diagrams, is becoming increasingly important in educational contexts as well as everyday life. This research examined gender differences in the performance of students solving graphics tasks from the Graphical Languages in…
Problem-Solving without Awareness: An ERP Investigation
ERIC Educational Resources Information Center
Paynter, Christopher A.; Kotovsky, Kenneth; Reder, Lynne M.
2010-01-01
When subjects are given the balls-and-boxes problem-solving task (Kotovsky & Simon, 1990), they move rapidly towards the goal after an extended exploratory phase, despite having no awareness of how to solve the task. We investigated possible non-conscious learning mechanisms by giving subjects three runs of the task while recording ERPs. Subjects…
Prospective Teachers' Problem Solving Skills and Self-Confidence Levels
ERIC Educational Resources Information Center
Gursen Otacioglu, Sena
2008-01-01
The basic objective of the research is to determine whether the education that prospective teachers in different fields receive is related to their levels of problem solving skills and self-confidence. Within the mentioned framework, the prospective teachers' problem solving and self-confidence levels have been examined under several variables.…
Problem Solving and Decision Making: A Review of the Literature.
ERIC Educational Resources Information Center
Steve, Michael
Part of a collection of papers commissioned by Foundations, a project designed to identify the career development needs of students entering the National Technical Institute for the Deaf, this paper examines research on problem solving and decision making. The section on problem solving reviews various models and concepts associated with problem…
Procedural and Conceptual Changes in Young Children's Problem Solving
ERIC Educational Resources Information Center
Voutsina, Chronoula
2012-01-01
This study analysed the different types of arithmetic knowledge that young children utilise when solving a multiple-step addition task. The focus of the research was on the procedural and conceptual changes that occur as children develop their overall problem solving approach. Combining qualitative case study with a micro-genetic approach,…
A Tool for Helping Veterinary Students Learn Diagnostic Problem Solving.
ERIC Educational Resources Information Center
Danielson, Jared A.; Bender, Holly S.; Mills, Eric M.; Vermeer, Pamela J.; Lockee, Barbara B.
2003-01-01
Describes the result of implementing the Problem List Generator, a computer-based tool designed to help clinical pathology veterinary students learn diagnostic problem solving. Findings suggest that student problem solving ability improved, because students identified all relevant data before providing a solution. (MES)
Measuring Problem Solving Skills in Plants vs. Zombies 2
ERIC Educational Resources Information Center
Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin
2015-01-01
We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…
Peer Instruction Enhanced Meaningful Learning: Ability to Solve Novel Problems
ERIC Educational Resources Information Center
Cortright, Ronald N.; Collins, Heidi L.; DiCarlo, Stephen E.
2005-01-01
Students must be able to interpret, relate, and incorporate new information with existing knowledge and apply the new information to solve novel problems. Peer instruction is a cooperative learning technique that promotes critical thinking, problem solving, and decision-making skills. Therefore, we tested the hypothesis that peer instruction…
New Testing Methods to Assess Technical Problem-Solving Ability.
ERIC Educational Resources Information Center
Hambleton, Ronald K.; And Others
Tests to assess problem-solving ability being provided for the Air Force are described, and some details on the development and validation of these computer-administered diagnostic achievement tests are discussed. Three measurement approaches were employed: (1) sequential problem solving; (2) context-free assessment of fundamental skills and…
Assessing Creative Problem-Solving with Automated Text Grading
ERIC Educational Resources Information Center
Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen
2008-01-01
The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…
Problem Solving and Collaboration Using Mobile Serious Games
ERIC Educational Resources Information Center
Sanchez, Jaime; Olivares, Ruby
2011-01-01
This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…
Theory of Constructions and Set in Problem Solving.
ERIC Educational Resources Information Center
Greeno, James G.; And Others
Hierarchically organized knowledge about actions has been postulated to explain planning in problem solving. Perdix, a simulation of problem solving in geometry with schematic planning knowledge, is described. Perdix' planning knowledge enables it to augment the problem space it is given by constructing auxiliary lines. The planning system also…
Monitoring Affect States during Effortful Problem Solving Activities
ERIC Educational Resources Information Center
D'Mello, Sidney K.; Lehman, Blair; Person, Natalie
2010-01-01
We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…
A Semantic-Linguistic Method of Solving Verbal Problems.
ERIC Educational Resources Information Center
Hoggard, Franklin R.
1987-01-01
Suggests a method for solving verbal problems in chemistry using a linguistic algorithm that is partly adapted from two artificial intelligence languages. Provides examples of problems solved using the mental concepts of translation, rotation, mirror image symmetry, superpositioning, disjoininng, and conjoining. (TW)
The Effect of Strategy on Problem Solving: An FMRI Study
ERIC Educational Resources Information Center
Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.
2010-01-01
fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…
Designing Computer Software for Problem-Solving Instruction.
ERIC Educational Resources Information Center
Duffield, Judith A.
1991-01-01
Discusses factors that might influence the effectiveness of computer software designed to teach problem solving. Topics discussed include the structure of knowledge; transfer of training; computers and problem solving instruction; human-computer interactions; and types of software, including drill and practice programs, tutorials, instructional…
High School Students' Use of Meiosis When Solving Genetics Problems.
ERIC Educational Resources Information Center
Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy
2001-01-01
Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…
Connectedness Indicators and the Prediction of Problem Solving Success
ERIC Educational Resources Information Center
Yu-Shattuck, Sharon X.
2009-01-01
In this study, it was hypothesized that problem solving success is dependent upon two related but district types of mathematical knowledge, content indicators and connectedness indicators. Results did indeed display that the problem solving success of 188 undergraduate students was related to these two indicators. The correlations of content…
Complex Mathematical Problem Solving by Individuals and Dyads.
ERIC Educational Resources Information Center
Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan; Cognition and Technology Group at Vanderbilt University
1997-01-01
Describes two studies of mathematical problem solving using an episode from "The Adventures of Jasper Woodbury," a set of curriculum materials that afford complex problem-solving opportunities. Discussion focuses on characteristics of problems that make solutions difficult, kinds of reasoning that dyadic interactions support, and…
Computers and Problem Solving for Sixth-Grade.
ERIC Educational Resources Information Center
Oughton, John M.
1995-01-01
Presents a curriculum unit designed for average sixth-grade students intended to engage them in problem-solving experiences and to teach them problem-solving strategies. The curriculum consists of 20 sessions in which students engage in various activities using the following software packages: The Adventures of Jasper Woodbury, Rescue at Boone's…
Learning from Examples versus Verbal Directions in Mathematical Problem Solving
ERIC Educational Resources Information Center
Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.
2015-01-01
This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…
Conceptual Learning in a Principled Design Problem Solving Environment
ERIC Educational Resources Information Center
Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.
2013-01-01
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…
The Effects of Age on Perceptual Problem-Solving Strategies.
ERIC Educational Resources Information Center
Lee, Jo Ann; Pollack, Robert H.
Witkin's Embedded Figures Test (EFT) was used to measure the changes with age in field dependence and problem-solving ability. Qualitative data concerning problem-solving strategies and quantitative data were collected. EFT was administered to 12 females in each of the following decades: 20s, 30s, 40s, 50s, 60s, 70s. All subjects were moderately…
Problem Solving: Getting to the Heart of Mathematics.
ERIC Educational Resources Information Center
Jarrett, Denise, Ed.
2000-01-01
This publication features articles that illustrate how several Northwest teachers are using problem solving to achieve rigorous and imaginative learning in their classrooms. Articles include: (1) "Open-Ended Problem Solving: Weaving a Web of Ideas" (Denise Jarrett); (2) "Teenager or Tyke, Students Learn Best by Tackling Challenging Math" (Suzie…
Relationship between Problem-Solving Style and Mathematical Literacy
ERIC Educational Resources Information Center
Tai, Wen-Chun; Lin, Su-Wei
2015-01-01
Currently, mathematics education is focused on ensuring that students can apply the knowledge and skills they learn to everyday life; students are expected to develop their problem-solving abilities to face challenges by adopting various perspectives. When faced with a problem, students may employ different methods or patterns to solve it. If this…
The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers
ERIC Educational Resources Information Center
Le Doux, Joseph M.; Waller, Alisha A.
2016-01-01
This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…
Collaborative Everyday Problem Solving: Interpersonal Relationships and Problem Dimensions
ERIC Educational Resources Information Center
Strough, Jonell; Patrick, Julie Hicks; Swenson, Lisa M.; Cheng, Suling; Barnes, Kristi A.
2003-01-01
Older adults' preferred partners for collaborative everyday problem solving and the types of everyday problems solved alone and with others were examined in a sample of community dwelling older adults (N = 112, M age = 71.86 yrs., SD = 5.92 yrs.). Family members (i.e., spouses, adult children) were the most frequently nominated partners for…
The Method To Acquire the Strategic Knowledge on Problem Solving.
ERIC Educational Resources Information Center
Takaoka, Ryo; Okamoto, Toshio
As a person learns, his problem solving ability improves and one reason for this is the increased acquisition of "macro-rules" which make problem solving more efficient. An intelligent computer assisted learning (ICAI) system is being developed which automatically acquires the useful knowledge from the domain experts; as experts give the learning…
Reading-Enhanced Word Problem Solving: A Theoretical Model
ERIC Educational Resources Information Center
Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.
2012-01-01
There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…
The Effects of Service Learning on Student Problem Solving
ERIC Educational Resources Information Center
Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan; Zong, Xiaoli
2016-01-01
Previous research indicated that service learning (SL) is an effective pedagogy to improve students' problem-solving ability and increase their classroom engagement. However, studies on SL are rare in China. This study examined the effects of SL on the problem solving of Chinese undergraduate students as well as the mechanism through which it…
Social Problem Solving and Aggression: The Role of Depression
ERIC Educational Resources Information Center
Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin
2013-01-01
The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…
Introduction to LogoWriter and Problem Solving for Educators.
ERIC Educational Resources Information Center
Yoder, Sharon Burrowes; Moursund, Dave
This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…
A Longitudinal Study of Database-Assisted Problem Solving.
ERIC Educational Resources Information Center
Wildemuth, Barbara M.; Friedman, Charles P.; Keyes, John; Downs, Stephen M.
2000-01-01
Examines the effects of database assistance on clinical problem solving across three cohorts of medical students and two database interfaces. Discusses the relationship between personal domain knowledge and problem solving, personal domain knowledge and database searching, and comparisons of different interface styles in information retrieval…
Solving L-L Extraction Problems with Excel Spreadsheet
ERIC Educational Resources Information Center
Teppaitoon, Wittaya
2016-01-01
This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…
Problem-Solving Support for English Language Learners
ERIC Educational Resources Information Center
Wiest, Lynda R.
2008-01-01
Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…
Glogs as Non-Routine Problem Solving Tools in Mathematics
ERIC Educational Resources Information Center
Devine, Matthew T.
2013-01-01
In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…
Assessing Expertise in Economic Problem Solving: A Model.
ERIC Educational Resources Information Center
Miller, Steven L.; VanFossen, Phillip J.
1994-01-01
Examines research literature and schematic models associated with the expert-novice model in cognitive psychology. Describes a model for rendering expertise in problem solving within economics. Reports that a preliminary study indicates that this model effectively rendered both expert and novice problem solving in economics. (CFR)
A New Approach: Computer-Assisted Problem-Solving Systems
ERIC Educational Resources Information Center
Gok, Tolga
2010-01-01
Computer-assisted problem solving systems are rapidly growing in educational use and with the advent of the Internet. These systems allow students to do their homework and solve problems online with the help of programs like Blackboard, WebAssign and LON-CAPA program etc. There are benefits and drawbacks of these systems. In this study, the…
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions.
Role of Multiple Representations in Physics Problem Solving
ERIC Educational Resources Information Center
Maries, Alexandru
2013-01-01
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…
Solving Information-Based Problems: Evaluating Sources and Information
ERIC Educational Resources Information Center
Brand-Gruwel, Saskia; Stadtler, Marc
2011-01-01
The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…
Problem Solving Treatment for Intellectually Disabled Sex Offenders
ERIC Educational Resources Information Center
Nezu, Christine Maguth; Fiore, Alicia A.; Nezu, Arthur M.
2006-01-01
Over the past thirty years, Problem Solving Therapy (PST) has been shown to be an effective treatment for many different problems and patient populations (Nezu, 2004). Among its many clinical applications, PST interventions were developed for persons with intellectually disabilities (ID), where improving problem-solving skills led to adaptive…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
LANZ: Software solving the large sparse symmetric generalized eigenproblem
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1990-01-01
A package, LANZ, for solving the large symmetric generalized eigenproblem is described. The package was tested on four different architectures: Convex 200, CRAY Y-MP, Sun-3, and Sun-4. The package uses a Lanczos' method and is based on recent research into solving the generalized eigenproblem.
ASA's Chandra Neon Discovery Solves Solar Paradox
NASA Astrophysics Data System (ADS)
2005-07-01
NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas
Behavioral flexibility and problem solving in an invasive bird.
Logan, Corina J
2016-01-01
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.
THE ROLE OF PROBLEM SOLVING IN COMPLEX INTRAVERBAL REPERTOIRES
Sautter, Rachael A; LeBlanc, Linda A; Jay, Allison A; Goldsmith, Tina R; Carr, James E
2011-01-01
We examined whether typically developing preschoolers could learn to use a problem-solving strategy that involved self-prompting with intraverbal chains to provide multiple responses to intraverbal categorization questions. Teaching the children to use the problem-solving strategy did not produce significant increases in target responses until problem solving was modeled and prompted. Following the model and prompts, all participants showed immediate significant increases in intraverbal categorization, and all prompts were quickly eliminated. Use of audible self-prompts was evident initially for all participants, but declined over time for 3 of the 4 children. Within-session response patterns remained consistent with use of the problem-solving strategy even when self-prompts were not audible. These findings suggest that teaching and prompting a problem-solving strategy can be an effective way to produce intraverbal categorization responses. PMID:21709781
Behavioral flexibility and problem solving in an invasive bird
2016-01-01
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984
Thinking can cause forgetting: memory dynamics in creative problem solving.
Storm, Benjamin C; Angello, Genna; Bjork, Elizabeth Ligon
2011-09-01
Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found that attempting to generate a novel common associate to 3 cue words caused the forgetting of other strong associates related to those cue words. This problem-solving-induced forgetting effect occurred even when participants failed to generate a viable solution, increased in magnitude when participants spent additional time problem solving, and was positively correlated with problem-solving success on a separate set of RAT problems. These results implicate a role for forgetting in overcoming fixation in creative problem solving.
The role of conceptual understanding in children's addition problem solving.
Canobi, K H; Reeve, R A; Pattison, P E
1998-09-01
The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.
Inquiry-based problem solving in introductory physics
NASA Astrophysics Data System (ADS)
Koleci, Carolann
What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).
ERIC Educational Resources Information Center
Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.
2009-01-01
This study investigates the effectiveness of computer-delivered hints in relation to problem-solving abilities in two alternative indirect instruction schemes. In one instruction scheme, hints are available to students immediately after they are given a new problem to solve as well as after they have completed the problem. In the other scheme,…
ERIC Educational Resources Information Center
Mills, Nadia Monrose
2015-01-01
The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…
ERIC Educational Resources Information Center
Barak, Moshe
2013-01-01
This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…
ERIC Educational Resources Information Center
Bilgin, Ibrahim
2006-01-01
The purpose of this study was to investigate the effects of pair problem solving technique incorporating Polya's problem solving strategy on undergraduate students' performance in conceptual and algorithmic questions in chemistry. The subjects of this study were 89 students enrolled from two first year chemistry classes. The experimental group was…
ERIC Educational Resources Information Center
Leikin, Roza; Waisman, Ilana; Leikin, Mark
2016-01-01
We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…
ERIC Educational Resources Information Center
Olowa, O. W.
2009-01-01
The approach used by teachers is very important to the success of the teaching process. This is why this study seeks to determine which teaching approaches--problem solving and subject-matter, would best improve the problem solving ability of selected secondary agricultural education students in Ikorodu Local Government Area. Ten classes and 150…
ERIC Educational Resources Information Center
Griesser, Sara Anne
Current mathematics education emphasizes the importance of a problem solving mindset in the classroom. Students need to know how they are going to use what they are learning in real life. The purpose of this study was to determine the effect of anchored problem solving instruction on middle school students' mathematical abilities. The researcher…
ERIC Educational Resources Information Center
Yakubova, Gulnoza
2013-01-01
Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…
Yang, Chi; Ma, Lu; Ying, Zhenghe; Jiang, Xiaoling; Lin, Yanquan
2017-04-01
Light is a necessary environmental factor for fruit body formation and development of the cauliflower mushroom Sparassis latifolia, a well-known edible and medicinal fungus. In this study, we firstly characterized the SP-C strain, which belonged to S. latifolia. And then we cloned and sequenced a photoreceptor gene (Slwc-1) from S. latifolia. The product of Slwc-1, SlWC-1 (872 aa residues) contained a coiled-coil region, a LOV domain, and two PAS domains. Phylogenetic tree result showed that SLWC-1 was most close to GfWC-1 from Grifola frondosa in edible and medicinal fungus. The Slwc-1 gene was found to be enhanced by light. This report will help to open the still-unexplored field of fruit body development for this fungus.
Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology
Guggenheim, Alena G.; Wright, Kirsten M.; Zwickey, Heather L.
2014-01-01
This review discusses the immunological roles of 5 major mushrooms in oncology: Agaricus blazei, Cordyceps sinensis, Grifola frondosa, Ganoderma lucidum, and Trametes versicolor. These mushrooms were selected based on the body of research performed on mushroom immunology in an oncology model. First, this article focuses on how mushrooms modify cytokines within specific cancer models and on how those cytokines affect the disease process. Second, this article examines the direct effect of mushrooms on cancer. Finally, this article presents an analysis of how mushrooms interact with chemotherapeutic agents, including their effects on its efficacy and on the myelosuppression that results from it. For these 5 mushrooms, an abundance of in vitro evidence exists that elucidates the anticancer immunological mechanisms. Preliminary research in humans is also available and is promising for treatment. PMID:26770080
Sequencing Lys-N Proteolytic Peptides by ESI and MALDI Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Dupré, Mathieu; Cantel, Sonia; Verdié, Pascal; Martinez, Jean; Enjalbal, Christine
2011-02-01
In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.
Chien, Rao-Chi; Lin, Lan-Min; Chang, Yuan-Hua; Lin, Yu-Chieh; Wu, Pei-Hsuan; Asatiani, Mikheil D; Wasser, Sophie-Gabrielle; Krakhmalnyi, Maxim; Agbarya, Abed; Wasser, Solomon P; Mau, Jeng-Leun
2016-01-01
This research shows the phenolic composition and anti-inflammation properties of fruiting bodies and mycelia of 15 strains of 12 species of higher Basidiomycetes medicinal mushrooms. In this research, 15 extracts were prepared and their effects on inflammation-related mediators in RAW 264.7 cells were evaluated. In the extracts, amounts of total phenols ranged from 8.47 to 70.32 gallic acid equivalents mg/g and amounts of flavonoids ranged from 0.13 to 15.21 rutin equivalents mg/g. The production of nitric oxide, tumor necrosis factor-α, and interleukin-6 was decreased at different levels by these extracts, whereas the production of interleukin-10 was increased by 6 of the extracts. Overall, Cordyceps militaris fruiting bodies, Grifola frondosa fruiting bodies, and Ophiocordyceps sinensis mycelia might be used to ameliorate inflammatory responses.
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled
Escaping mental fixation: incubation and inhibition in creative problem solving.
Koppel, Rebecca H; Storm, Benjamin C
2014-01-01
The inhibition underlying retrieval-induced forgetting has been argued to play a crucial role in the ability to overcome interference in memory and cognition. Supporting this conjecture, recent research has found that participants who exhibit greater levels of retrieval-induced forgetting are better at overcoming fixation on the Remote Associates Test (RAT) than are participants who exhibit reduced levels of retrieval-induced forgetting. If the ability to inhibit inappropriate responses improves the ability to solve fixated RAT problems, then reducing the fixation caused by inappropriate responses should reduce the correlation between retrieval-induced forgetting and problem solving. We tested this hypothesis by inserting an incubation period between two 30-second problem-solving attempts: half of the participants were given an incubation period (distributed condition), half were not (continuous condition). In the continuous condition retrieval-induced forgetting correlated positively with problem-solving performance during both the initial and final 30 seconds of problem solving. In the distributed condition retrieval-induced forgetting only correlated with problem-solving performance during the first 30 seconds of problem solving. This finding suggests that incubation reduces the need for inhibition by reducing the extent to which problem solvers suffer fixation.
[Investigation of problem solving skills among psychiatric patients].
Póos, Judit; Annus, Rita; Perczel Forintos, Dóra
2008-01-01
According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.
Internet computer coaches for introductory physics problem solving
NASA Astrophysics Data System (ADS)
Xu Ryan, Qing
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.
Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems
Saberi Nik, Hassan; Rebelo, Paulo
2014-01-01
We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624
Dedalus: Flexible framework for spectrally solving differential equations
NASA Astrophysics Data System (ADS)
Burns, Keaton J.; Vasil, Geoffrey M.; Oishi, Jeffrey S.; Lecoanet, Daniel; Brown, Benjamin
2016-03-01
Dedalus solves differential equations using spectral methods. It implements flexible algorithms to solve initial-value, boundary-value, and eigenvalue problems with broad ranges of custom equations and spectral domains. Its primary features include symbolic equation entry, multidimensional parallelization, implicit-explicit timestepping, and flexible analysis with HDF5. The code is written primarily in Python and features an easy-to-use interface. The numerical algorithm produces highly sparse systems for many equations which are efficiently solved using compiled libraries and MPI.
Diversity and Evaluation in Creative Problem-Solving
NASA Astrophysics Data System (ADS)
Suzuki, Hiroaki
The dynamic constraint relaxation theory predicts crucial roles of the initial diversity and evaluation in creative problem-solving. We reported the experimental evidence supporting these predictions, using an insight problem. The experiments showed that the degrees of making different types of trials and the appropriate evaluation were closely related to individual differences in insight problem-solving, and that evaluation became more appropriate by making the problem-solving goal explicit. The review of the research in related fields showed that these experimental findings were in congruent with the evidence obtained from different types of creative activities.
Metacognitive decision making and social interactions during paired problem solving
NASA Astrophysics Data System (ADS)
Goos, Merrilyn
1994-12-01
The study described in this paper investigated the metacognitive strategies used by a pair of senior secondary school students while working together on mechanics problems. Verbal protocols from think-aloud paired problem-solving sessions were analysed in order to examine the monitoring contributions of each individual student, and the significance of student-student interactions. Although the students were generally successful in coordinating their different, yet complementary, problem-solving roles, their metacognitive decision making was sometimes adversely affected by the social interaction between them. The findings suggest some potential benefits and pitfalls of using small group work for problem solving.
Calculus students' ability to solve geometric related-rates problems
NASA Astrophysics Data System (ADS)
Martin, Tami
2000-09-01
This study assessed the ability of university students enrolled in an introductory calculus course to solve related-rates problems set in geometric contexts. Students completed a problem-solving test and a test of performance on the individual steps involved in solving such problems. Each step was characterised as primarily relying on procedural knowledge or conceptual understanding. Results indicated that overall performance on the geometric related-rates problems was poor. The poorest performance was on steps linked to conceptual understanding, specifically steps involving the translation of prose to geometric and symbolic representations. Overall performance was most strongly related to performance on the procedural steps.
Multistage spectral relaxation method for solving the hyperchaotic complex systems.
Saberi Nik, Hassan; Rebelo, Paulo
2014-01-01
We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.
Meshless method for solving fixed boundary problem of plasma equilibrium
NASA Astrophysics Data System (ADS)
Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi
2015-07-01
This study solves the Grad-Shafranov equation with a fixed plasma boundary by utilizing a meshless method for the first time. Previous studies have utilized a finite element method (FEM) to solve an equilibrium inside the fixed separatrix. In order to avoid difficulties of FEM (such as mesh problem, difficulty of coding, expensive calculation cost), this study focuses on the meshless methods, especially RBF-MFS and KANSA's method to solve the fixed boundary problem. The results showed that CPU time of the meshless methods was ten to one hundred times shorter than that of FEM to obtain the same accuracy.
NASA Astrophysics Data System (ADS)
Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee
2005-10-01
This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.
The Environmental Justice Collaborative Problem-Solving Cooperative Agreement Program
The Environmental Justice Collaborative Problem-Solving (CPS) Cooperative Agreement Program provides financial assistance to eligible organizations working on or planning to work on projects to address local environmental and/or public health issues
Swinging into thought: directed movement guides insight in problem solving.
Thomas, Laura E; Lleras, Alejandro
2009-08-01
Can directed actions unconsciously influence higher order cognitive processing? We investigated how movement interventions affected participants' ability to solve a classic insight problem. The participants attempted to solve Maier's two-string problem while occasionally taking exercise breaks during which they moved their arms either in a manner related to the problem's solution (swing group) or in a manner inconsistent with the solution (stretch group). Although most of the participants were unaware of the relationship between their arm movement exercises and the problem-solving task, the participants who moved their arms in a manner that suggested the problem's solution were more likely to solve the problem than were those who moved their arms in other ways. Consistent with embodied theories of cognition, these findings show that actions influence thought and, furthermore, that we can implicitly guide people toward insight by directing their actions.
The Association of DRD2 with Insight Problem Solving
Zhang, Shun; Zhang, Jinghuan
2016-01-01
Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings. PMID:27933030
Assessing Student's Ability to Solve Textbook Style Problems
NASA Astrophysics Data System (ADS)
Cummings, Karen
2015-04-01
Can We Really Measure Problem Solving Ability? The answer to this question may depend on how we define problem solving ability. But, if we care about students' ability to solve novel textbook style problems, the answer to this question seems to be ``yes.'' In this talk I will discuss a pre-/post- instruction assessment that was recently developed to assess students' ability to solve fairly standard textbook style problems within the domains of Newton's second law, conservation of energy and conservation of momentum. The instrument is designed for large-scale use in typical university classrooms, has already been used in a variety of institutions and appears to be both valid and robust. Data collected with this instrument can help guide curricular improvements and provide important insights relevant to most departments for program review.
Solving mazes with memristors: A massively parallel approach
NASA Astrophysics Data System (ADS)
Pershin, Yuriy V.; di Ventra, Massimiliano
2011-10-01
Solving mazes is not just a fun pastime: They are prototype models in several areas of science and technology. However, when maze complexity increases, their solution becomes cumbersome and very time consuming. Here, we show that a network of memristors—resistors with memory—can solve such a nontrivial problem quite easily. In particular, maze solving by the network of memristors occurs in a massively parallel fashion since all memristors in the network participate simultaneously in the calculation. The result of the calculation is then recorded into the memristors’ states and can be used and/or recovered at a later time. Furthermore, the network of memristors finds all possible solutions in multiple-solution mazes and sorts out the solution paths according to their length. Our results demonstrate not only the application of memristive networks to the field of massively parallel computing, but also an algorithm to solve mazes, which could find applications in different fields.
From Students' Problem-Solving Strategies to Connections in Fractions
ERIC Educational Resources Information Center
Flores, Alfinio; Klein, Erika
2005-01-01
Strategies that children used to solve a fraction problem are presented, and an insight into how students think about divisions and fractions is described. Teachers can use these strategies to help students establish connections related to fractions.
Verbal Cues as an Interfering Factor in Verbal Problem Solving
ERIC Educational Resources Information Center
Nesher, Perla; Teubal, Eva
1975-01-01
Two experiments on the translation of verbal expressions into mathematical expressions are described. The author concludes that the usual way of training students to solve arithmetic word problems is inadequate. (SD)
Averaging schemes for solving fixed point and variational inequality problems
Magnanti, T.L.; Perakis, G.
1994-12-31
In this talk we develop and study averaging schemes for solving fixed point and variational inequality problems. Typically, researchers have established convergence results for methods that solve these problems by establishing contractive estimates for the underlying algorithmic maps. In this talk we establish global convergence results using nonexpansive estimates. After first establishing convergence for a general iterative scheme for computing fixed points, we consider applications to projection and relaxation algorithms for solving variational inequality problems and to a generalized steepest descent method for solving systems of equations. As part of our development, we also establish a new interpretation of a norm condition typically used for establishing convergence of linearization schemes, by associating it with a strong-f-monotonicity condition. We conclude by applying these results to congested transportation networks.
The Intermediate Impossible: A Prewriting Activity for Creative Problem Solving.
ERIC Educational Resources Information Center
Karloff, Kenneth
1985-01-01
Adapts Edward de Bono's "Intermediate Impossible" strategy--for considering ideas that normally would be discarded as stepping-stones to new ideas--for use as a prewriting activity to enhance creative problem solving. (HTH)
Problem solving as intelligent retrieval from distributed knowledge sources
NASA Technical Reports Server (NTRS)
Chen, Zhengxin
1987-01-01
Distributed computing in intelligent systems is investigated from a different perspective. From the viewpoint that problem solving can be viewed as intelligent knowledge retrieval, the use of distributed knowledge sources in intelligent systems is proposed.
The Association of DRD2 with Insight Problem Solving.
Zhang, Shun; Zhang, Jinghuan
2016-01-01
Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.
A Problem-Solving Alternative to Using Key Words
ERIC Educational Resources Information Center
Clement, Lisa L.; Bernhard, Jamal Z.
2005-01-01
This article describes the pitfalls of using key words to support students when problem solving, and provides an alternative way (quantitative analysis) to support students' sense-making. (Contains 1 table and 2 figures.)
Open-Ended, Problem-Solving Investigations--Getting Started.
ERIC Educational Resources Information Center
Lock, Roger
1991-01-01
Ways in which linear lesson sequences can be modified to provide increased opportunities for open-ended activities especially with problem solving are considered. Examples drawn from chemistry and plant reproduction, seeds, and germination are given. (KR)
Permanency of Gains for Children's Problem Solving Processes and Subabilities.
ERIC Educational Resources Information Center
Lundsteen, Sara W.; Wilson, John A. R.
1979-01-01
Results of an investigation of the permanency of gains in problem solving, listening, and abstract thinking among fifth graders are reported. Findings indicate that the experimental group with listening training shows greatest gains. (MH)
Teaching Clinical Problem Solving in a Preclinical Operative Dentistry Course.
ERIC Educational Resources Information Center
Silvestri, Anthony R., Jr.; Cohen, Steven N.
1981-01-01
A method developed at Tufts University School of Dental Medicine for teaching modification of cavity design to large numbers of preclinical students in operative dentistry is reported. It standardizes the learning process for this complex problem-solving skill. (MLW)
Retention of Problem-Solving Performance in School Contexts.
ERIC Educational Resources Information Center
Ross, John A.; Maynes, Florence J.
1985-01-01
This article reports data on the retention of problem-solving performance after one month, four months, and six months, in three separate studies conducted in school settings involving a variety of grades and subjects. (Author/LMO)
Solving Problems: How Does the Family Physician Do It?
Feightner, J. W.; Barrows, H. S.; Neufeld, V. R.; Norman, G. R.
1977-01-01
Objective evidence exists for a model of clinical problem solving by family physicians. Previous studies have examined the activities of family physicians, but there have been no data indicating the mental process behind these activities. This study, exploring the thought processes of family physicians engaged in clinical problem solving, has lead to the model described in this paper. Its educational and clinical implications are considered. PMID:21304873
Computer-Based Job Aiding: Problem Solving at Work.
1984-01-01
KEY .ORDS (CUMue M mum. Wif. of aeeeM. am 8 F Wp Wi MMW) technical literacy , problem solving, computer based job aiding comliute~r based instruction...discourse processes, although those notions are opera- tionalized in a new way. Infomation Search in Technical Literacy as Problem Solving The dimensions of...computer-assisted technical literacy , information seeking strategies employed during an assembly task were analyzed in terms of overall group frequencies
Cognitive functioning in mathematical problem solving during early adolescence
NASA Astrophysics Data System (ADS)
Collis, Kevin F.; Watson, Jane M.; Campbell, K. Jennifer
1993-12-01
Problem-solving in school mathematics has traditionally been considered as belonging only to the concrete symbolic mode of thinking, the mode which is concerned with making logical, analytical deductions. Little attention has been given to the place of the intuitive processes of the ikonic mode. The present study was designed to explore the interface between logical and intuitive processes in the context of mathematical problem solving. Sixteen Year 9 and 10 students from advanced mathematics classes were individually assessed while they solved five mathematics problems. Each student's problem-solving path, for each problem, was mapped according to the type of strategies used. Strategies were broadly classified into Ikonic (IK) or Concrete Symbolic (CS) categories. Students were given two types of problems to solve: (i) those most likely to attract a concrete symbolic approach; and (ii) problems with a significant imaging or intuitive component. Students were also assessed as to the vividness and controllability of their imaging ability, and their creativity. Results indicated that the nature of the problem is a basic factor in determining the type of strategy used for its solution. Students consistently applied CS strategies to CS problems, and IK strategies to IK problems. In addition, students tended to change modes significantly more often when solving CS-type problems than when solving IK-type problems. A switch to IK functioning appeared to be particularly helpful in breaking an unproductive set when solving a CS-type problem. Individual differences in strategy use were also found, with students high on vividness of imagery using IK strategies more frequently than students who were low on vividness. No relationship was found between IK strategy use and either students' degree of controllability of imagery or their level of creativity. The instructional implications of the results are discussed.
Problem solving stages in the five square problem.
Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael
2015-01-01
According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.
Consider a spherical cow: A course in environmental problem solving
Harte, J.
1985-01-01
This book explores a variety of techniques for approaching contemporary environmental issues and provides a diverse course of participatory training in environmental problem solving. Using a case study method, the book describes challenging, real-world situations and provides worked-out solutions to illustrate the heuristics of environmental problem solving and to stimulate thinking - both quantitative and creative - across a broad range of environmental concerns, including energy and water resources, food production, indoor air pollution, and acid rain.
Problem solving stages in the five square problem
Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael
2015-01-01
According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794
ENGAGE: A Game Based Learning and Problem Solving Framework
2012-07-13
game websites and in hands- on playtests with students. In particular, Treefrog Treasure was released online in a limited form and experienced a...From - To) 6/1/2012 – 6/30/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b...Popović ENGAGE: A Game Based Learning and Problem Solving Framework (Task 1 Month 4) Progress, Status and Management Report Monthly Progress
Numerical Testing of Parameterization Schemes for Solving Parameter Estimation Problems
2008-12-01
1 NUMERICAL TESTING OF PARAMETERIZATION SCHEMES FOR SOLVING PARAMETER ESTIMATION PROBLEMS L. Velázquez*, M. Argáez and C. Quintero The...performance computing (HPC). 1. INTRODUCTION In this paper we present the numerical performance of three parameterization approaches, SVD...wavelets, and the combination of wavelet-SVD for solving automated parameter estimation problems based on the SPSA described in previous reports of this
Teaching science problem solving: An overview of experimental work
NASA Astrophysics Data System (ADS)
Taconis, R.; Ferguson-Hessler, M. G. M.; Broekkamp, H.
2001-04-01
The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the characteristics of good and innovative problem-solving teaching strategies, we performed an analysis of a number of articles published between 1985 and 1995 in high-standard international journals, describing experimental research into the effectiveness of a wide variety of teaching strategies for science problem solving. To characterize the teaching strategies found, we used a model of the capacities needed for effective science problem solving, composed of a knowledge base and a skills base. The relations between the cognitive capacities required by the experimental or control treatments and those of the model were specified and used as independent variables. Other independent variables were learning conditions such as feedback and group work. As a dependent variable we used standardized learning effects. We identified 22 articles describing 40 experiments that met the standards we deemed necessary for a meta-analysis. These experiments were analyzed both with quantitative (correlational) methods and with a systematic qualitative method. A few of the independent variables were found to characterize effective strategies for teaching science problem solving. Effective treatments all gave attention to the structure and function (the schemata) of the knowledge base, whereas attention to knowledge of strategy and the practice of problem solving turned out to have little effect. As for learning conditions, both providing the learners with guidelines and criteria they can use in judging their own problem-solving process and products, and providing immediate feedback to them were found to be important prerequisites for the acquisition of problem-solving skills. Group work did not lead to
Self-Affirmation Improves Problem-Solving under Stress
Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751
Personality and problem-solving in common mynas (Acridotheres tristis).
Lermite, Françoise; Peneaux, Chloé; Griffin, Andrea S
2017-01-01
Animals show consistent individual differences in behaviour across time and/or contexts. Recently, it has been suggested that proactive personality types might also exhibit fast cognitive styles. The speed with which individuals sample environmental cues is one way in which correlations between personality and cognition might arise. Here, we measured a collection of behavioural traits (competitiveness, neophobia, neophilia, task-directed motivation and exploration) in common mynas (Acridotheres tristis) and measured their relationship with problem solving. We predicted that fast solving mynas would interact with (i.e. sample) the problem solving task at higher rates, but also be more competitive, less neophobic, more neophilic, and more exploratory. Mynas that were faster to solve a novel foraging problem were no more competitive around food and no more inclined to take risks. Unexpectedly, these fast-solving mynas had higher rates of interactions with the task, but also displayed lower levels of exploration. It is possible that a negative relation between problem solving and spatial exploration arose as a consequence of how inter-individual variation in exploration was quantified. We discuss the need for greater consensus on how to measure exploratory behaviour before we can advance our understanding of relationships between cognition and personality more effectively.
Review on solving the forward problem in EEG source analysis
Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace
2007-01-01
Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving
Reflection on problem solving in introductory and advanced physics
NASA Astrophysics Data System (ADS)
Mason, Andrew J.
Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was
Problem solving and chemical equilibrium: Successful versus unsuccessful performance
NASA Astrophysics Data System (ADS)
Camacho, Moises; Good, Ron
The purpose of this study was to describe the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Thirteen novices (five high-school students, five undergraduate majors, and three nonmajors) and ten experts (six doctoral students and four faculty members) were videotaped as they individually solved standard chemical equilibrium problems. The nature of the problems was such that they required more than mere recall or algorithmic learning and yet simple enough to provide the novices a reasonable chance of solving them. Extensive analysis of the think-aloud protocols produced 27 behavioral tendencies that can be used to describe and differentiate between successful and unsuccessful problem solvers. Successful solvers' perceptions of the problem were characterized by careful analysis and reasoning of the task, use of related principles and concepts to justify their answers, frequent checks of the consistency of answers and reasons, and better quality of procedural and strategic knowledge. Unsuccessful subjects had many knowledge gaps and misconceptions about the nature of chemical equilibrium. Even faculty experts were sometimes unable to correctly apply common chemical principles during the problem-solving process. Important theoretical concepts such as molar enthalpy, heat of reaction, free energy of formation, and free energy of reaction were rarely used by novices in explaining problems.
A Problem Solving Intervention for hospice caregivers: a pilot study.
Demiris, George; Oliver, Debra Parker; Washington, Karla; Fruehling, Lynne Thomas; Haggarty-Robbins, Donna; Doorenbos, Ardith; Wechkin, Hope; Berry, Donna
2010-08-01
The Problem Solving Intervention (PSI) is a structured, cognitive-behavioral intervention that provides people with problem-solving coping skills to help them face major negative life events and daily challenges. PSI has been applied to numerous settings but remains largely unexplored in the hospice setting. The aim of this pilot study was to demonstrate the feasibility of PSI targeting informal caregivers of hospice patients. We enrolled hospice caregivers who were receiving outpatient services from two hospice agencies. The intervention included three visits by a research team member. The agenda for each visit was informed by the problem-solving theoretical framework and was customized based on the most pressing problems identified by the caregivers. We enrolled 29 caregivers. Patient's pain was the most frequently identified problem. On average, caregivers reported a higher quality of life and lower level of anxiety postintervention than at baseline. An examination of the caregiver reaction assessment showed an increase of positive esteem average and a decrease of the average value of lack of family support, impact on finances, impact on schedules, and on health. After completing the intervention, caregivers reported lower levels of anxiety, improved problem solving skills, and a reduced negative impact of caregiving. Furthermore, caregivers reported high levels of satisfaction with the intervention, perceiving it as a platform to articulate their challenges and develop a plan to address them. Findings demonstrate the value of problem solving as a psycho-educational intervention in the hospice setting and call for further research in this area.
The effects of cumulative practice on mathematics problem solving.
Mayfield, Kristin H; Chase, Philip N
2002-01-01
This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.
Science Teachers and Problem Solving in Elementary Schools in Singapore
NASA Astrophysics Data System (ADS)
Lee, Kam-Wah L.; Tan, Li-Li; Goh, Ngoh-Khang; Lee, Kam-Wah L.; Chia, Lian-Sai; Chin, Christine
2000-01-01
The purpose of this study was to investigate the extent to which science teachers taught problem solving in elementary science. The survey involved 348 teachers in 36 Singapore elementary schools. The study investigated the science teachers' views about their use of science instructional techniques in general and the problem-solving teaching approach in particular. It also focused on the difficulties faced by science teachers in implementing the problem-solving teaching approach in the science classroom. It was found that the most emphasised activities were completion of science workbooks, teachers' explanation of concepts, and hands-on activities. The least emphasised activities were computer-based learning, activities beyond the textbook and workbook, and visits to the ecology garden and other parts of the school. Only about one-third of the teachers often conducted activities pertaining to problem solving. Most of them were more concerned about covering the science syllabus for examinations, the physical constraints of the learning environment, and pupils' abilities and motivation. On the other hand, teacher-related factors ranked low: these included teachers' preference for teaching and learning outcomes, their ability to maintain control over pupils' learning, feelings of inadequacy of science knowledge, and insufficient understanding of the pedagogical method of teaching problem solving.
Preconditioning projection methods for solving algebraic linear systems
NASA Astrophysics Data System (ADS)
García-Palomares, Ubaldo
1999-09-01
Numerical experiments have shown that projection methods are robust for solving the problem of finding a point satisfying a linear system of n variables and m equations; however, their qualities of convergence depend on certain parameters: an n n symmetric positive definite matrix M, and a vector u with m components. We are concerned here with the choice of M. Through a link with Conjugate Gradient methods we determine an expedient M. Preliminary numerical results on a hard 3D partial differential equation are highly promising. We solve a discretized system that could not be solved by conventional methods. We also give hints on how to adapt our findings to the solution of a linear system of inequalities. This is the first stage of a forthcoming research.