Science.gov

Sample records for grim business-as-usual forecast

  1. Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions

    PubMed Central

    Ehrlich, Paul R.; Pringle, Robert M.

    2008-01-01

    The threats to the future of biodiversity are many and well known. They include habitat conversion, environmental toxification, climate change, and direct exploitation of wildlife, among others. Moreover, the projected addition of 2.6 billion people by mid-century will almost certainly have a greater environmental impact than that of the last 2.6 billion. Collectively, these trends portend a grim future for biodiversity under a business-as-usual scenario. These threats and their interactions are formidable, but we review seven strategies that, if implemented soundly and scaled up dramatically, would preserve a substantial portion of global biodiversity. These are actions to stabilize the human population and reduce its material consumption, the deployment of endowment funds and other strategies to ensure the efficacy and permanence of conservation areas, steps to make human-dominated landscapes hospitable to biodiversity, measures to account for the economic costs of habitat degradation, the ecological reclamation of degraded lands and repatriation of extirpated species, the education and empowerment of people in the rural tropics, and the fundamental transformation of human attitudes about nature. Like the carbon “stabilization wedges” outlined by Pacala and Socolow [Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968–972] (1), the science and technologies needed to effect this vision already exist. The remaining challenges are largely social, political, and economic. Although academic conservation biology still has an important role to play in developing technical tools and knowledge, success at this juncture hinges more on a massive mobilization of effort to do things that have traditionally been outside the scope of the discipline. PMID:18695214

  2. Colloquium paper: where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions.

    PubMed

    Ehrlich, Paul R; Pringle, Robert M

    2008-08-12

    The threats to the future of biodiversity are many and well known. They include habitat conversion, environmental toxification, climate change, and direct exploitation of wildlife, among others. Moreover, the projected addition of 2.6 billion people by mid-century will almost certainly have a greater environmental impact than that of the last 2.6 billion. Collectively, these trends portend a grim future for biodiversity under a business-as-usual scenario. These threats and their interactions are formidable, but we review seven strategies that, if implemented soundly and scaled up dramatically, would preserve a substantial portion of global biodiversity. These are actions to stabilize the human population and reduce its material consumption, the deployment of endowment funds and other strategies to ensure the efficacy and permanence of conservation areas, steps to make human-dominated landscapes hospitable to biodiversity, measures to account for the economic costs of habitat degradation, the ecological reclamation of degraded lands and repatriation of extirpated species, the education and empowerment of people in the rural tropics, and the fundamental transformation of human attitudes about nature. Like the carbon "stabilization wedges" outlined by Pacala and Socolow [Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968-972] (1), the science and technologies needed to effect this vision already exist. The remaining challenges are largely social, political, and economic. Although academic conservation biology still has an important role to play in developing technical tools and knowledge, success at this juncture hinges more on a massive mobilization of effort to do things that have traditionally been outside the scope of the discipline.

  3. The "Business-As-Usual" growth of global primary energy use and carbon dioxide emissions - historical trends and near-term forecasts

    NASA Astrophysics Data System (ADS)

    Jarvis, A.; Hewitt, C. N.

    2014-09-01

    We analyse the global primary energy use and total CO2 emissions time series since 1850 and show that their relative growth rates appear to exhibit periodicity with a fundamental timescale of ~60 years and with significant harmonic behaviour. Quantifying the inertia inherent in these dynamics allows forecasting of future "business as usual" energy needs and their associated CO2 emissions. Our best estimates for 2020 are 800 EJ yr-1 for global energy use and 14 Gt yr-1 for global CO2 emissions, with both being above almost all other published forecasts. This suggests the energy and total CO2 emissions landscape in 2020 may be significantly more challenging than currently envisaged.

  4. Geoengineering, Climate Harm, and Business as Usual

    NASA Astrophysics Data System (ADS)

    Jankunis, F. J.; Peacock, K.

    2014-12-01

    We define geoengineering (GE) as the intentional use of technology to change the planet's climate. Many people believe GE is different in kind rather than degree from any other organized activity in human history. In fact, humans caused changes in the planet's climate long before the industrial age, and all organisms engineer their environments directly or indirectly. The relevant difference between this cumulative and generally inadvertent activity and GE is the presence of intention. Now that science has revealed the extent to which humans can change the climate, however, even the continuance of Business as Usual (BAU) is, in effect, a form of intentional GE, albeit one that will cause significant climate harm, defined as effects such as sea level rise that will impact human well-being. But as with all forms of engineering, the devil is in the details: what forms of GE should be tried first? Some methods, such as large-scale afforestation, are low risk but have long-term payoffs; others, such as aerosol injection into the stratosphere, could help buy time in a warming crisis but have unknown side-effects and little long-term future. Climate change is a world-wide, inter-generational tragedy of the commons. Rational choice theory, the spatial and temporal extension of the problem, poorly fitted moral frameworks, and political maneuvering are all factors that inhibit solutions to the climate tragedy of the commons. The longer that such factors are allowed to dominate decision-making (or the lack thereof) the more likely it is that humanity will be forced to resort to riskier and more drastic forms of GE. We argue that this fact brings an additional measure of urgency to the search for ways to engineer the climate differently so as to avoid climate harm in the most lasting and least risky way.

  5. Building Florida's Future: Quality and Access or Business as Usual?

    ERIC Educational Resources Information Center

    Board of Governors, State University System of Florida, 2006

    2006-01-01

    How many of Florida's four million children should expect to attend the State University System someday? And what should they find when they arrive? The bare minimum? Or world-class universities with facilities on a par with the best the nation has to offer? This report states that a "business as usual" approach has corroded the link…

  6. Partner stalking: psychological dominance or "business as usual"?

    PubMed

    Logan, Tk; Walker, Robert

    2009-07-01

    Partner stalking may remain one of the least clearly understood forms of intimate violence. This review examines the literature guided by two main goals: (a) to examine how partner stalking is distinct from nonpartner forms of stalking and (b) to describe areas of research on partner stalking that need to be systematically addressed to deepen the understanding of partner stalking and to craft more effective mental health and criminal justice responses. These areas of research include three overarching questions: (a) Is partner stalking a unique form of psychological dominance or is it just "business as usual"? (b) What components characterize stalking differently from business as usual for women? and (c) How is psychological distress within the context of partner stalking best characterized?

  7. Mortality estimation based on Business as Usual Scenario

    NASA Astrophysics Data System (ADS)

    Pozzer, Andrea; Lelieveld, Jos; Barlas, Ceren

    2013-04-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. Epidemiological studies have shown that these pollutants increase lung cancer, cardiopulmonary and respiratory mortality. The atmospheric chemistry general circulation model EMAC has been used to estimate the concentration of such pollutants in recent and future years (2005, 2010, 2025 and 2050), based on a Business as Usual scenario. The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). Based on the modeled pollutants concentrations and the UN estimates of population growth in the future, we assessed the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 for epidemiological regions defined by the World Health Organization. The premature mortality for people of 30 years and older were estimated using a health impact function using parameters derived from epidemiological studies. Our results suggest that with a Business as Usual scenario, the ratio between mortality and population would increase of ~ 50% by 2050. This ratio, together with the increase of world population, would lead by the year 2050 to 8.9 millions premature deaths, equivalent to 79 millions of YYL.

  8. Doing "Business as Usual": Dynamics of Voice in Community Organizing Talk

    ERIC Educational Resources Information Center

    O'Connor, Kevin; Hanny, Courtney; Lewis, Cameron

    2011-01-01

    This article examines discourse in a community change project committed to undoing "business as usual"--attempts to "fix" problems within the community without involvement of residents in the process. We show how, despite commitments to recognizing community "voice," participants' orientation to powerful "centering institutions" (Jan Blommaert…

  9. Future reef decalcification under a business-as-usual CO2 emission scenario.

    PubMed

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

  10. Future reef decalcification under a business-as-usual CO2 emission scenario

    PubMed Central

    Dove, Sophie G.; Kline, David I.; Pantos, Olga; Angly, Florent E.; Tyson, Gene W.; Hoegh-Guldberg, Ove

    2013-01-01

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  11. Integrating telehealth in to 'business as usual': Is it really possible?

    PubMed

    Jury, Susan C; Kornberg, Andrew J

    2016-12-01

    The Royal Children's Hospital, Melbourne, began offering web-based telehealth video consultation in 2011, with the principle being that telehealth should be integrated into 'business as usual'. In telehealth literature, key differences between telehealth and in-person consultations can make this hard to achieve, so an audit was performed that revealed many small gaps in the process.A total of 125 telehealth appointments were booked during the study period. Of these, 13% (n = 16) were rescheduled, cancelled or changed to face-to-face appointments, and up to two main issues were identified for the remaining appointments. Some 69% of the remaining 108 appointments (n = 75) were completed successfully, with 23% (n = 25) completely seamless end to end. Overall, 39 issues were administrative (40%), 34 technical (35%) and 24 scheduling (25%); nine (8%) required some minor troubleshooting.For long-term sustainability, integrating telehealth into business as usual needs to remain the target. Scheduling and technical glitches were the main barriers to seamless telehealth. Several issues have now been addressed with the introduction of an electronic medical record, and the development of standardised processes and staff training.

  12. Business as Usual: A Lack of Institutional Innovation in Global Health Governance

    PubMed Central

    Lee, Kelley

    2017-01-01

    There were once again high expectations that a major global health event - the Ebola virus outbreak of 2014-2015 - would trigger meaningfully World Health Organization (WHO) reform and strengthen global health governance (GHG). Rather than a "turning point," however, the global community has gone back to business as usual. This has occurred against a backdrop of worldwide political turmoil, characterised by a growing rejection of existing political leaders and state-centric institutions. Debates about GHG so far have given insufficient attention to the need for institutional innovation. This entails rethinking the traditional bureaucratic model of postwar intergovernmental organizations which is disconnected from the transboundary, fast-paced nature of today’s globalizing world.

  13. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average

  14. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-08-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global

  15. Vietnam's forest transition in retrospect: demonstrating weaknesses in business-as-usual scenarios for REDD.

    PubMed

    Ankersen, Jeppe; Grogan, Kenneth; Mertz, Ole; Fensholt, Rasmus; Castella, Jean-Christophe; Lestrelin, Guillaume; Nguyen, Dinh Tien; Danielsen, Finn; Brofeldt, Søren; Rasmussen, Kjeld

    2015-05-01

    One of the prerequisites of the REDD+ mechanism is to effectively predict business-as-usual (BAU) scenarios for change in forest cover. This would enable estimation of how much carbon emission a project could potentially prevent and thus how much carbon credit should be rewarded. However, different factors like forest degradation and the lack of linearity in forest cover transitions challenge the accuracy of such scenarios. Here we predict and validate such BAU scenarios retrospectively based on forest cover changes at village and district level in North Central Vietnam. With the government's efforts to increase the forest cover, land use policies led to gradual abandonment of shifting cultivation since the 1990s. We analyzed Landsat images from 1973, 1989, 1998, 2000, and 2011 and found that the policies in the areas studied did lead to increased forest cover after a long period of decline, but that this increase could mainly be attributed to an increase in open forest and shrub areas. We compared Landsat classifications with participatory maps of land cover/use in 1998 and 2012 that indicated more forest degradation than was captured by the Landsat analysis. The BAU scenarios were heavily dependent on which years were chosen for the reference period. This suggests that hypothetical REDD+ activities in the past, when based on the remote sensing data available at that time, would have been unable to correctly estimate changes in carbon stocks and thus produce relevant BAU scenarios.

  16. Vietnam's Forest Transition in Retrospect: Demonstrating Weaknesses in Business-as-Usual Scenarios for REDD+

    NASA Astrophysics Data System (ADS)

    Ankersen, Jeppe; Grogan, Kenneth; Mertz, Ole; Fensholt, Rasmus; Castella, Jean-Christophe; Lestrelin, Guillaume; Nguyen, Dinh Tien; Danielsen, Finn; Brofeldt, Søren; Rasmussen, Kjeld

    2015-05-01

    One of the prerequisites of the REDD+ mechanism is to effectively predict business-as-usual (BAU) scenarios for change in forest cover. This would enable estimation of how much carbon emission a project could potentially prevent and thus how much carbon credit should be rewarded. However, different factors like forest degradation and the lack of linearity in forest cover transitions challenge the accuracy of such scenarios. Here we predict and validate such BAU scenarios retrospectively based on forest cover changes at village and district level in North Central Vietnam. With the government's efforts to increase the forest cover, land use policies led to gradual abandonment of shifting cultivation since the 1990s. We analyzed Landsat images from 1973, 1989, 1998, 2000, and 2011 and found that the policies in the areas studied did lead to increased forest cover after a long period of decline, but that this increase could mainly be attributed to an increase in open forest and shrub areas. We compared Landsat classifications with participatory maps of land cover/use in 1998 and 2012 that indicated more forest degradation than was captured by the Landsat analysis. The BAU scenarios were heavily dependent on which years were chosen for the reference period. This suggests that hypothetical REDD+ activities in the past, when based on the remote sensing data available at that time, would have been unable to correctly estimate changes in carbon stocks and thus produce relevant BAU scenarios.

  17. The potential of telehealth for 'business as usual' in outpatient clinics.

    PubMed

    Day, Karen; Kerr, Patricia

    2012-04-01

    A six-month pilot study was conducted to ascertain the value of using high-definition videoconferencing equipment in an outpatients' setting. The videoconferencing equipment, which included digital biometric equipment, was installed in the outpatient clinics of a remote health service in New Zealand. Use of the equipment was evaluated using action research techniques. Clinicians were interviewed about their assessment of the equipment's usefulness. Patients and their carers completed questionnaires about their clinic experience. During the pilot trial, 109 patients were seen in 25 clinics of six different specialities. Questionnaire results showed that patients and their companions had a good user experience, similar to a face-to-face appointment. Clinicians found that the large screen, sense of proximity, video clarity and definition, and lack of sound/picture lag worked well for certain types of outpatients' clinics, e.g. methadone maintenance clinics. The need for process changes made it difficult to turn telehealth into business as usual in an environment built for face-to-face appointments. We conclude that videoconference equipment has potential to become integral to outpatients' clinics.

  18. Business as Usual

    ERIC Educational Resources Information Center

    Cohen, Jeremy

    2010-01-01

    Even in an industry where rapid change is the status quo, it takes a special kind of company to handle the training challenges posed by a major corporate acquisition and massive product rollout. No one has ever accused Verizon of thinking small-scale when it comes to training initiatives, but over the last year, the telecommunications giant…

  19. Business as Usual

    ERIC Educational Resources Information Center

    Cohen, Jeremy

    2010-01-01

    Even in an industry where rapid change is the status quo, it takes a special kind of company to handle the training challenges posed by a major corporate acquisition and massive product rollout. No one has ever accused Verizon of thinking small-scale when it comes to training initiatives, but over the last year, the telecommunications giant…

  20. Does environmental certification in coffee promote "business as usual"? A case study from the Western Ghats, India.

    PubMed

    Bose, Arshiya; Vira, Bhaskar; Garcia, Claude

    2016-12-01

    Conservation initiatives are designed to address threats to forests and biodiversity, often through partnerships with natural-resource users who are incentivized to change their land-use and livelihood practices to avoid further biodiversity loss. In particular, direct incentives programmes that provide monetary benefits are commended for being effective in achieving conservation across short timescales. In biodiversity-rich areas, outside protected areas, such as coffee agroforestry systems, direct incentives, such as certification schemes, are used to motivate coffee producers to maintain native tree species, natural vegetation, restrict wildlife hunting, and conserve soil and water, in addition to encouraging welfare of workers. However, despite these claims, there is a lack of strong evidence of the on-ground impact of such schemes. To assess the conservation importance of certification, we describe a case study in the Western Ghats biodiversity hotspot of India, in which coffee growers are provided price incentives to adopt Rainforest Alliance certification standards. We analyse the conservation and social outcomes of this programme by studying peoples' experiences of participating in certification. Despite high compliance and effective implementation, we find a strong case for the endorsement of 'business as usual' with no changes in farm management as a result of certification. We find that such 'business as usual' participation in certification creates grounds for diminishing credibility and local support for conservation efforts. Working towards locally relevant conservation interventions, rather than implementing global blueprints, may lead to more meaningful biodiversity conservation and increased community support for conservation initiatives in coffee landscapes.

  1. Probabilistic Forecast for 21st Century Climate Based on an Ensemble of Simulations using a Business-As-Usual Scenario

    NASA Astrophysics Data System (ADS)

    Scott, J. R.; Forest, C. E.; Sokolov, A. P.; Dutkiewicz, S.

    2011-12-01

    The behavior of the climate system is examined in an ensemble of runs using an Earth System Model of intermediate complexity. Climate "parameters" varied are the climate sensitivity, the aerosol forcing, and the strength of ocean heat uptake. Variations in the latter were accomplished by changing the strength of the oceans' background vertical mixing. While climate sensitivity and aerosol forcing can be varied over rather wide ranges, it is more difficult to create such variation in heat uptake while maintaining a realistic overturning ocean circulation. Therefore, separate ensembles were carried out for a few values of the vertical diffusion coefficient. Joint probability distributions for climate sensitivity and aerosol forcing are constructed by comparing results from 20th century simulations with available observational data. These distributions are then used to generate ensembles of 21st century simulations; results allow us to construct probabilistic distributions for changes in important climate change variables such as surface air temperature, sea level rise, and magnitude of the AMOC. Changes in the rate of air-sea flux of CO2 and the export of carbon into the deep ocean are also examined.

  2. No more 'business as usual' with audit and feedback interventions: towards an agenda for a reinvigorated intervention.

    PubMed

    Ivers, Noah M; Sales, Anne; Colquhoun, Heather; Michie, Susan; Foy, Robbie; Francis, Jill J; Grimshaw, Jeremy M

    2014-01-17

    Audit and feedback interventions in healthcare have been found to be effective, but there has been little progress with respect to understanding their mechanisms of action or identifying their key 'active ingredients.' Given the increasing use of audit and feedback to improve quality of care, it is imperative to focus further research on understanding how and when it works best. In this paper, we argue that continuing the 'business as usual' approach to evaluating two-arm trials of audit and feedback interventions against usual care for common problems and settings is unlikely to contribute new generalizable findings. Future audit and feedback trials should incorporate evidence- and theory-based best practices, and address known gaps in the literature. We offer an agenda for high-priority research topics for implementation researchers that focuses on reviewing best practices for designing audit and feedback interventions to optimize effectiveness.

  3. Greenhouse gas emissions from the waste sector in Argentina in business-as-usual and mitigation scenarios.

    PubMed

    Santalla, Estela; Córdoba, Verónica; Blanco, Gabriel

    2013-08-01

    The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios--business as usual (BAU), and mitigation--and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater. The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of

  4. Changes in snowmelt runoff timing in western North America under a 'business as usual' climate change scenario

    USGS Publications Warehouse

    Stewart, I.T.; Cayan, D.R.; Dettinger, M.D.

    2004-01-01

    Spring snowmelt is the most important contribution of many rivers in western North America. If climate changes, this contribution may change. A shift in the timing of springtime snowmelt towards earlier in the year already is observed during 1948-2000 in many western rivers. Streamflow timing changes for the 1995-2099 period are projected using regression relations between observed streamflow-timing responses in each river, measured by the temporal centroid of streamflow (CT) each year, and local temperature (TI) and precipitation (PI) indices. Under 21st century warming trends predicted by the Parallel Climate Model (PCM) under business-as-usual greenhouse-gas emissions, streamflow timing trends across much of western North America suggest even earlier springtime snowmelt than observed to date. Projected CT changes are consistent with observed rates and directions of change during the past five decades, and are strongest in the Pacific Northwest, Sierra Nevada, and Rocky Mountains, where many rivers eventually run 30-40 days earlier. The modest PI changes projected by PCM yield minimal CT changes. The responses of CT to the simultaneous effects of projected TI and PI trends are dominated by the TI changes. Regression-based CT projections agree with those from physically-based simulations of rivers in the Pacific Northwest and Sierra Nevada.

  5. Regional Assessment of Urban Impacts on Landcover and Open Space Finds a Smart Urban Growth Policy Performs Little Better than Business as Usual

    PubMed Central

    Thorne, James H.; Santos, Maria J.; Bjorkman, Jacquelyn H.

    2013-01-01

    Assessment of landscape change is critical for attainment of regional sustainability goals. Urban growth assessments are needed because over half the global population now lives in cities, which impact biodiversity, ecosystem structure and ecological processes. Open space protection is needed to preserve these attributes, and provide the resources humans need. The San Francisco Bay Area, California, is challenged to accommodate a population increase of 3.07 million while maintaining the region’s ecosystems and biodiversity. Our analysis of 9275 km2 in the Bay Area links historic trends for three measures: urban growth, protected open space, and landcover types over the last 70 years to future 2050 projections of urban growth and open space. Protected open space totaled 348 km2 (3.7% of the area) in 1940, and expanded to 2221 km2 (20.2%) currently. An additional 1038 km2 of protected open space is targeted (35.1%). Urban area historically increased from 396.5 km2 to 2239 km2 (24.1% of the area). Urban growth during this time mostly occurred at the expense of agricultural landscapes (62.9%) rather than natural vegetation. Smart Growth development has been advanced as a preferred alternative in many planning circles, but we found that it conserved only marginally more open space than Business-as-usual when using an urban growth model to portray policies for future urban growth. Scenarios to 2050 suggest urban development on non-urban lands of 1091, 956, or 179 km2, under Business-as-usual, Smart Growth and Infill policy growth scenarios, respectively. The Smart Growth policy converts 88% of natural lands and agriculture used by Business-as-usual, while Infill used only 40% of those lands. Given the historic rate of urban growth, 0.25%/year, and limited space available, the Infill scenario is recommended. While the data may differ, the use of an historic and future framework to track these three variables can be easily applied to other metropolitan areas. PMID

  6. Regional assessment of urban impacts on landcover and open space finds a smart urban growth policy performs little better than business as usual.

    PubMed

    Thorne, James H; Santos, Maria J; Bjorkman, Jacquelyn H

    2013-01-01

    Assessment of landscape change is critical for attainment of regional sustainability goals. Urban growth assessments are needed because over half the global population now lives in cities, which impact biodiversity, ecosystem structure and ecological processes. Open space protection is needed to preserve these attributes, and provide the resources humans need. The San Francisco Bay Area, California, is challenged to accommodate a population increase of 3.07 million while maintaining the region's ecosystems and biodiversity. Our analysis of 9275 km² in the Bay Area links historic trends for three measures: urban growth, protected open space, and landcover types over the last 70 years to future 2050 projections of urban growth and open space. Protected open space totaled 348 km² (3.7% of the area) in 1940, and expanded to 2221 km² (20.2%) currently. An additional 1038 km² of protected open space is targeted (35.1%). Urban area historically increased from 396.5 km² to 2239 km² (24.1% of the area). Urban growth during this time mostly occurred at the expense of agricultural landscapes (62.9%) rather than natural vegetation. Smart Growth development has been advanced as a preferred alternative in many planning circles, but we found that it conserved only marginally more open space than Business-as-usual when using an urban growth model to portray policies for future urban growth. Scenarios to 2050 suggest urban development on non-urban lands of 1091, 956, or 179 km², under Business-as-usual, Smart Growth and Infill policy growth scenarios, respectively. The Smart Growth policy converts 88% of natural lands and agriculture used by Business-as-usual, while Infill used only 40% of those lands. Given the historic rate of urban growth, 0.25%/year, and limited space available, the Infill scenario is recommended. While the data may differ, the use of an historic and future framework to track these three variables can be easily applied to other metropolitan areas.

  7. Effects of "Reduced" and "Business-As-Usual" CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae).

    PubMed

    Bender, Dorothea; Champ, Connor Michael; Kline, David; Diaz-Pulido, Guillermo; Dove, Sophie

    2015-01-01

    Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios.

  8. Business as Usual: A Lack of Institutional Innovation in Global Health Governance Comment on "Global Health Governance Challenges 2016 - Are We Ready?"

    PubMed

    Lee, Kelley

    2016-08-17

    There were once again high expectations that a major global health event - the Ebola virus outbreak of 2014-2015 - would trigger meaningfully World Health Organization (WHO) reform and strengthen global health governance (GHG). Rather than a "turning point," however, the global community has gone back to business as usual. This has occurred against a backdrop of worldwide political turmoil, characterised by a growing rejection of existing political leaders and state-centric institutions. Debates about GHG so far have given insufficient attention to the need for institutional innovation. This entails rethinking the traditional bureaucratic model of postwar intergovernmental organizations which is disconnected from the transboundary, fast-paced nature of today's globalizing world. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  9. Antibiotic research and development: business as usual?

    PubMed

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Business as Usual? Not in Vermont.

    ERIC Educational Resources Information Center

    Proulx, Raymond J.; Jimerson, Lorna

    1998-01-01

    Vermont's Equal Education Opportunity Act of 1997 will radically increase the proportion of state money designated for public education and transform the entire state taxation system. Spurred by a court decision invalidating the state's school finance system, Act 60 establishes a statewide property tax for a general state support grant, includes…

  11. Teaching across Borders: Business as Usual?

    ERIC Educational Resources Information Center

    Allen, Bobbe McGhie

    2011-01-01

    The quest to comprehend how cultural differences can impact learning is one of those intriguing challenges that continue to beguile some scholars and educational leaders even at a time that is characterized as globalized. This dissertation is a qualitative case study about teaching to culturally diverse populations and is primarily based on the…

  12. Business as Usual? Not in Vermont.

    ERIC Educational Resources Information Center

    Proulx, Raymond J.; Jimerson, Lorna

    1998-01-01

    Vermont's Equal Education Opportunity Act of 1997 will radically increase the proportion of state money designated for public education and transform the entire state taxation system. Spurred by a court decision invalidating the state's school finance system, Act 60 establishes a statewide property tax for a general state support grant, includes…

  13. The Escalation of Business as Usual

    ERIC Educational Resources Information Center

    Tuchman, Gaye

    2011-01-01

    An academic plan is a business plan disguised in the regalia donned for significant public ceremonies--black cap and gown, colorful hood, and, of course, gold tassel. Several years ago, the University of Connecticut started to plan for the economic disaster that was at the time so obviously in the future of higher education institutions. A formal…

  14. The Escalation of Business as Usual

    ERIC Educational Resources Information Center

    Tuchman, Gaye

    2011-01-01

    An academic plan is a business plan disguised in the regalia donned for significant public ceremonies--black cap and gown, colorful hood, and, of course, gold tassel. Several years ago, the University of Connecticut started to plan for the economic disaster that was at the time so obviously in the future of higher education institutions. A formal…

  15. GRIM: General Relativistic Implicit Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-02-01

    GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

  16. Business as Usual? Not for These Middle-Grades Students

    ERIC Educational Resources Information Center

    Crawford, Heather; Wiest, Lynda

    2011-01-01

    A perpetual dilemma of schooling is how to help students develop skills needed for everyday life, including the work world. Quantitative literacy, also called numeracy, involves an ability to apply essential mathematics skills to authentic or near-authentic tasks. Carefully planned classroom activities can help students develop these important…

  17. Business as Usual? It's Just Not an Option

    ERIC Educational Resources Information Center

    Blewitt, John

    2010-01-01

    There is no doubt that in order to address the serious challenges arising from anthropogenic--or human-produced--climate change, Britain, along with the rest of the world, needs to adopt policies and develop skills that will create a low-carbon economy with a highly effective use of renewable and natural resources. People need to create the…

  18. Business as Usual: Business Students' Conceptions of Ethics

    ERIC Educational Resources Information Center

    Reid, Anna; Taylor, Paul; Petocz, Peter

    2011-01-01

    There is continuing debate about how best to teach ethics to students in business, that is, how best to help them to develop the ethical aspects of their future profession. This debate has covered whether to teach ethics, what to teach and whether it has any effect on students' views or future behaviour. For the most part, the views of the…

  19. Business as Usual? It's Just Not an Option

    ERIC Educational Resources Information Center

    Blewitt, John

    2010-01-01

    There is no doubt that in order to address the serious challenges arising from anthropogenic--or human-produced--climate change, Britain, along with the rest of the world, needs to adopt policies and develop skills that will create a low-carbon economy with a highly effective use of renewable and natural resources. People need to create the…

  20. Indicators for European Union Policies. Business as Usual?

    ERIC Educational Resources Information Center

    Saltelli, Andrea; D'Hombres, Beatrice; Jesinghaus, Jochen; Manca, Anna Rita; Mascherini, Massimiliano; Nardo, Michela; Saisana, Michaela

    2011-01-01

    This paper looks at the role of "statistics-based knowledge" in the making of EU policy. We highlight "shortcomings" in the use of statistical indicators made in the course of the Lisbon strategy, ended in 2010. In our opinion the shortcomings are: (i) The paradox of the "coexistence" within the same European…

  1. The Learning Outcomes Project: Not Business as Usual

    ERIC Educational Resources Information Center

    Heiland, Linda; Switzer-Kemper, Cathy

    2007-01-01

    Central Arizona College successfully defined student learning outcomes and is building a culture of evidence to support the Learning Paradigm. Recent data indicate great strides in the improvement of student learning. Qualitative research produced meaningful comparisons of leadership and faculty perceptions of the process of developing student…

  2. Business as Usual: Amazon.com and the Academic Library

    ERIC Educational Resources Information Center

    Van Ullen, Mary K.; Germain, Carol Anne

    2002-01-01

    In 1999, Steve Coffman proposed that libraries form a single interlibrary loan based entity patterned after Amazon.com. This study examined the suitability of Amazon.com's Web interface and record enhancements for academic libraries. Amazon.com could not deliver circulating monographs in the University at Albany Libraries' collection quickly…

  3. Working With Suicidal Clients: "Not" Business as Usual

    ERIC Educational Resources Information Center

    Ellis, Thomas E.; Goldston, David B.

    2012-01-01

    In this introduction to a special series of articles on working with suicidal clients, we note that much of the recent growth in theory and research pertaining to suicidal individuals has been contributed by cognitive-behavioral theorists and researchers. This work has established that suicidal people manifest important cognitive vulnerabilities…

  4. Indicators for European Union Policies. Business as Usual?

    ERIC Educational Resources Information Center

    Saltelli, Andrea; D'Hombres, Beatrice; Jesinghaus, Jochen; Manca, Anna Rita; Mascherini, Massimiliano; Nardo, Michela; Saisana, Michaela

    2011-01-01

    This paper looks at the role of "statistics-based knowledge" in the making of EU policy. We highlight "shortcomings" in the use of statistical indicators made in the course of the Lisbon strategy, ended in 2010. In our opinion the shortcomings are: (i) The paradox of the "coexistence" within the same European…

  5. The Learning Outcomes Project: Not Business as Usual

    ERIC Educational Resources Information Center

    Heiland, Linda; Switzer-Kemper, Cathy

    2007-01-01

    Central Arizona College successfully defined student learning outcomes and is building a culture of evidence to support the Learning Paradigm. Recent data indicate great strides in the improvement of student learning. Qualitative research produced meaningful comparisons of leadership and faculty perceptions of the process of developing student…

  6. Establishing Wraparound Fidelity: Not Business as Usual. Symposium.

    ERIC Educational Resources Information Center

    Malysiak, Rosalyn; Duchnowski, Albert J.; Dollard, Norin; Slewczkowski, Robert; Black, Marcia; Greeson, Michael

    Three summaries of papers presented in a symposium examine issues in the wraparound model of providing case management and mental health services to children and adolescents with emotional/behavioral disorders. The papers describe 30 months of participatory program evaluation and simultaneous program development between the University of South…

  7. Insurance benefits under the ADA: Discrimination or business as usual?

    SciTech Connect

    McFadden, M.E.

    1993-12-31

    In December 1987, John McGann discovered he had AIDS. In July 1988, his employer altered his health insurance policy by reducing lifetime coverage for AIDS to $5,000, while maintaining the million-dollar limit for all other health conditions. The United States Court of Appeals for the Fifth Circuit upheld the employer`s right to make that change. The Supreme Court denied certiori. Public outcry was immediate and voluminous. The Solicitor General argued that the new Americans with Disabilities Act would save future John McGanns from the same treatment, but the validity of this optimistic prediction is yet to be determined. The Americans with Disabilities Act of 1990 (ADA) is landmark legislation that bars discrimination against the disabled in all aspects of employment, public services, and accommodations. The Act broadly defines disability to include illnesses such as AIDS and cancer, as well as limitations on mobility, vision, and hearing. The ADA indisputably creates a private cause of action for discrimination on the basis of disability. However, depending on the standard of review chosen by the federal courts, this cause of action may or may not provide much protection to those claiming discrimination on the basis of disability in employee benefits and insurance. This article discusses the ADA`s coverage of insurance and benefits in light of the possible standards courts might use to evaluate actions of parties in suits alleging discrimination in these areas and applies those standards of review to the facts of the McGann case. 146 refs.

  8. Global/Regional Integrated Model System (GRIMs): Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M.; Hong, S.

    2013-12-01

    A multi-scale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. We outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users. In addition to the traditional spherical harmonics (SPH) dynamical core, a new spectral method with a double Fourier series (DFS) is available in the GRIMs (Table 1). The new DFS dynamical core with full physics is evaluated against the SPH dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from the dry primitive equation model framework of Cheong (Fig. 1). The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the grid-point method for high performance computing in the aspect of computational cost. GRIMs dynamical cores

  9. Updates in the Global/Regional Integrated Model system (GRIMs)-Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M. S.; Park, H.; Park, S. H.; Hong, S. Y.

    2014-12-01

    The Global/Regional Integrated Model system (GRIMs)-double Fourier series (DFS) spectral dynamical core has been developed to overcome the limitation of traditional spectral model using spherical harmonics in terms of computational cost at very high resolution. Recently, the GRIMs-DFS dynamical core was updated in two respects: (1) better scalability on high-performance computing platform; and (2) reduction of numerical time-stepping error. To improve the parallel efficiency, the archived wave domain was designed not to be sliced in the meridional direction, but to be decomposed in the horizontal and vertical directions. Although the computational cost slightly increased due to the requirement of temporary work array, the revised DFS dynamical core yielded higher scalability in terms of the wall-clock-time than the original one. In addition, its efficiency gain became greater with the increase of horizontal resolution when the number of processors is increased. The Robert-Asselin-Williams (RAW) time filter has been proposed as a simple improvement to the widely used Robert-Asselin filter, in order to reduce time-stepping errors in semi-implicit leapfrog integration. This new approach was implemented into the GRIMs-DFS dynamical core and its impact was quantitatively evaluated on medium-range forecast and seasonal ensemble prediction frameworks. Preliminary results showed that the RAW time-filter properly reduced spurious light rainfalls that might be produced from unphysical computational mode generated by leap-frog time stepping. Further details will be presented in the conference.

  10. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  11. Forecasting, Forecasting

    Treesearch

    Michael A. Fosberg

    1987-01-01

    Future improvements in the meteorological forecasts used in fire management will come from improvements in three areas: observational systems, forecast techniques, and postprocessing of forecasts and better integration of this information into the fire management process.

  12. Scorched earth strategy: Grim Reaper saves the plant.

    PubMed

    Wrzaczek, Michael; Brosché, Mikael; Kangasjärvi, Jaakko

    2009-07-01

    Programmed cell death is a common feature of developmental processes and responses to environmental cues in many multicellular organisms. Examples of programmed cell death in plants are leaf abscission in autumn and the hypersensitive response during pathogen attack. Reactive oxygen species (ROS) have been implicated in the regulation of various types of cell death. However, the precise mechanics of the involvement of ROS in the processes leading to initiation of cell death and subsequent containment are currently unknown. We recently showed the involvement of an Arabidopsis protein GRIM REAPER in the regulation of ROS-induced cell death under stress conditions. Our results indicated that the presence of a truncated protein primes plants for cell death in the presence of ROS leading to ozone sensitivity and increased resistance to hemibiotrophic pathogens.

  13. GRIM-19 mutations fail to inhibit v-Src-induced oncogenesis.

    PubMed

    Kalakonda, S; Nallar, S C; Lindner, D J; Sun, P; Lorenz, R R; Lamarre, E; Reddy, S P; Kalvakolanu, D V

    2014-06-12

    The non-receptor tyrosine kinase Src is a major player in multiple physiological responses including growth, survival and differentiation. Overexpression and/or oncogenic mutation in the Src gene have been documented in human tumors. The v-Src protein is an oncogenic mutant of Src, which promotes cell survival, migration, invasion and division. GRIM-19 is an antioncogene isolated using a genome-wide knockdown screen. Genes associated with Retinoid-IFN-induced Mortality (GRIM)-19 binds to transcription factor STAT3 and ablates its pro-oncogenic effects while v-Src activates STAT3 to promote its oncogenic effects. However, we found that GRIM-19 inhibits the pro-oncogenic effects of v-Src independently of STAT3. Here, we report the identification of functionally inactivating GRIM-19 mutations in a set of head and neck cancer patients. While wild-type GRIM-19 strongly ablated v-Src-induced cell migration, cytoskeletal remodeling and tumor metastasis, the tumor-derived mutants (L(71)P, L(91)P and A(95)T) did not. These mutants were also incapable of inhibiting the drug resistance of v-Src-transformed cells. v-Src downregulated the expression of Pag1, a lipid raft-associated inhibitor of Src, which was restored by wild-type GRIM-19. The tumor-derived mutant GRIM-19 proteins failed to upregulate Pag1. These studies show a novel mechanism that deregulates Src activity in cancer cells.

  14. Mitochondrial GRIM-19 as a potential therapeutic target for STAT3-dependent carcinogenesis of gastric cancer

    PubMed Central

    Zhao, Xiaodong; Bao, Liming; Huang, Daochao; Song, Lihua; Li, Yang

    2016-01-01

    Aberrant STAT3 activation occurs in most human gastric cancers (GCs) and contributes to the malignant progression of GC, but mechanism(s) underlying aberrant STAT3 remain largely unknown. Here we demonstrated that the gene associated with retinoid interferon-induced mortality 19 (GRIM-19) was severely depressed or lost in GC and chronic atrophic gastritis (CAG) tissues and its loss contributed to GC tumorigenesis partly by activating STAT3 signaling. In primary human GC tissues, GRIM-19 was frequently depressed or lost and this loss correlated with advanced clinical stage, lymph node metastasis, H. pylori infection and poor overall survival of GC patients. In CAG tissues, GRIM-19 was progressively decreased along with its malignant transformation. Functionally, we indentified an oncogenic role of GRIM-19 loss in promoting GC tumorigenesis. Ectopic GRIM-19 expression suppressed GC tumor formation in vitro and in vivo by inducing cell cycle arrest and apoptosis. Moreover, we revealed that GRIM-19 inhibited STAT3 transcriptional activation and its downstream targets by reducing STAT3 nuclear distribution. Conversely, knockdown of GRIM-19 induced aberrant STAT3 activation and accelerated GC cell growth in vitro and in vivo, and this could be partly attenuated by the blockage of STAT3 activation. In addition, we observed subcellular redistributions of GRIM-19 characterized by peri-nuclear aggregates, non-mitochondria cytoplasmic distribution and nuclear invasion, which should be responsible for reduced STAT3 nuclear distribution. Our studies suggest that mitochondrial GRIM-19 could not only serve as an valuable prognostic biomarker for GC development, but also as a potential therapeutic target for STAT3-dependent carcinogenesis of GC. PMID:27167343

  15. It's Not Business as Usual: New and Emerging Career in Marketing, Finance, and Management

    ERIC Educational Resources Information Center

    Miller, April J.

    2010-01-01

    There have been many changes in the field of business as a result of technological advancements, government regulations, and shifts in focus. These new career opportunities have arisen as a result: social media marketers, financial examiners, and project managers. In this article, the author discusses these new and emerging career opportunities in…

  16. Challenges and Hurdles to Business as Usual in Drug Development for Treatment of Rare Diseases.

    PubMed

    Swinney, D C

    2016-10-01

    Only 10-15 first-in-class new medicines are approved each year by the global pharmaceutical industry for all diseases, of which less than a third is for rare (orphan) diseases. The drug discovery processes to identify rare and common diseases are similar, suggesting it will be impossible to discover new drugs for even a small fraction of the rare diseases using the current paradigm. Different approaches are required to address this large unmet medical need.

  17. Beyond Business as Usual? Better Buying Power and the Prospects for Change in Defense Acquisition

    DTIC Science & Technology

    2014-04-30

    Battlefield [Speech]. Washington, DC: DoD. Salamon , L. (2002). The tools of government: A guide to the new governance. Lester Salamon (Ed.), New...partnerships. Indeed, as an intellectual endeavor, policy implementation is at present very “tools-focused” (see Salamon , 2002). Despite its

  18. Is high-quality trauma care "business as usual" in New Zealand?

    PubMed

    Civil, Ian; Isles, Siobhan

    2017-05-12

    New Zealand is on the cusp of establishing a world-class trauma system. Many of the building blocks are in place with national and regional guidelines in both the pre-hospital and hospital phases of care established. A dedicated clinical workforce is available in all DHBs and national data available through the Major Trauma Registry. The greatest threat to achieving high-quality trauma care in New Zealand at this point is governance stability rather than clinical variability. Now is the time to lock the trauma system into a framework not subject to political or bureaucratic whims.

  19. Service user governors in mental health foundation trusts: accountability or business as usual?

    PubMed

    MacDonald, Dee; Barnes, Marian; Crawford, Mike; Omeni, Edward; Wilson, Aaron; Rose, Diana

    2015-12-01

    National Health Foundation Trusts present opportunities for individual mental health service users to be active in the governance of trusts. This is one of a range of mechanisms for patient and public involvement and one which promotes an individual rather than collective approach to involvement. Within the context of a broader study of the impact of service user involvement in mental health services, the objective of this article was to explore the experience of service user governors in foundation trusts and their capacity to hold boards to account. The Council of Governors in three foundation trusts were observed for a year. Focus groups with service user governors were undertaken in each trust. Service users had different expectations and understandings of the role and approached it in different ways. Key themes that emerged concerned: the role of a governor, conduct and content of meetings, agenda setting, relationships and representation. The experiences of mental health service user governors need to be understood within the complex environment of patient and public involvement in general and of mental health service user involvement in particular. The dislocation of the service user governor role from other forms of service user activity and involvement result in confusion about how notions of holding a trust to account and representation of other service users can be addressed within a boundaried institutional environment. © 2014 John Wiley & Sons Ltd.

  20. Interpreted consultations as 'business as usual'? An analysis of organisational routines in general practices.

    PubMed

    Greenhalgh, Trisha; Voisey, Christopher; Robb, Nadia

    2007-09-01

    UK general practices operate in an environment of high linguistic diversity, because of recent large-scale immigration and of the NHS's commitment to provide a professional interpreter to any patient if needed. Much activity in general practice is co-ordinated and patterned into organisational routines (defined as repeated patterns of interdependent actions, involving multiple actors, bound by rules and customs) that tend to be stable and to persist. If we want to understand how general practices are responding to pressures to develop new routines, such as interpreted consultations, we need to understand how existing organisational routines change. This will then help us to address a second question, which is how the interpreted consultation itself is being enacted and changing as it becomes routinised (or not) in everyday general practice. In seeking answers to these two questions, we undertook a qualitative study of narratives of interpreted primary care consultations in three London boroughs with large minority ethnic populations. In 69 individual interviews and two focus groups, we sought accounts of interpreted consultations from service users, professional interpreters, family member interpreters, general practitioners, practice nurses, receptionists, and practice managers. We asked participants to tell us both positive and negative stories of their experiences. We analysed these data by searching for instances of concepts relating to the organisational routine, the meaning of the interpreted consultation to the practice, and the sociology of medical work. Our findings identified a number of general properties of the interpreted consultation as an organisational routine, including the wide variation in the form of adoption, the stability of the routine, the adaptability of the routine, and the strength of the routine. Our second key finding was that this variation could be partly explained by characteristics of the practice as an organisation, especially whether it was traditional (small, family-run, 'personal' identity, typically multilingual, loose division of labour, relatively insular) or contemporary (large, bureaucratic, 'efficient' identity, typically monolingual, clear division of labour, richly networked). We conclude that there is a fruitful research agenda to be explored that links the organisational dimension of interpreting services with studies of clinical care and outcomes.

  1. A Look in the Mirror: Challenging "Business As Usual" in Teacher Preparation

    ERIC Educational Resources Information Center

    Chou, Victoria

    2005-01-01

    The "raison d'etre" for traditional schools of education has radically shifted in recent years. Research demonstrates that schools have been remarkably unsuccessful at reducing the unacceptable achievement gap between black and Latino students, on the one hand, and white students, on the other, and some have laid the blame at the feet of…

  2. India’s Seventh Fire-Year Plan: New Departures or Business as Usual?

    DTIC Science & Technology

    1986-01-01

    output of food faster than the population was growing; (2) creating a solid industrial base across the whole spectrum of productsz- chemicals , electrical...reliance in basic industries, such as steel, machine tools, defense goods, heavy electricals, and primary chemicals , appears in retrospect to have been...tneir tecnnologies are growing obsolete. Hydropower turbines, the steel mills, chemical plants, and the railways all need substantial renovation and

  3. Business as Usual? A Review of Continuing Professional Education and Adult Learning

    ERIC Educational Resources Information Center

    Wittnebel, Leo

    2012-01-01

    The commodification of education in all forms has created a lucrative trade, particularly within the realm of continuing professional education. Mandated across a wide spectrum of industries, and particularly salient in healthcare due to rapid advances in medicine and technology, professional education is said to be the vehicle that keeps…

  4. "No-Business-As-Usual German": A Critical Pedagogy of Business German

    ERIC Educational Resources Information Center

    Robinson, Benjamin

    2004-01-01

    In this article, the author describes his "Business German" course. His course sought to narrate a dialectic of agency and institution. He started by asserting a distinction between the intending subject--with its plural desires, interests, and identifications--and the world it acts in, through and upon. This distinction between acting subject and…

  5. Business as Usual: The Use of English in the Professional World in Hong Kong

    ERIC Educational Resources Information Center

    Evans, Stephen

    2010-01-01

    This article examines the role of written and spoken English vis-a-vis written Chinese, Cantonese and Putonghua in the four key service industries that have driven Hong Kong's economy in the past decade. The study forms part of a long-standing and continuing investigation into the impact of Hong Kong's transition from British colony to Chinese…

  6. Rover Discoveries and Mars Sample Return: Why Analysis will not be Business as Usual

    NASA Astrophysics Data System (ADS)

    Clark, B. C.

    2014-09-01

    Geological samples cached by rovers and returned from the surface of Mars by a MSR mission will be fundamentally different from martian meteorites and must be isolated and given special treatment unlike any previous extraterrestrial materials.

  7. "No-Business-As-Usual German": A Critical Pedagogy of Business German

    ERIC Educational Resources Information Center

    Robinson, Benjamin

    2004-01-01

    In this article, the author describes his "Business German" course. His course sought to narrate a dialectic of agency and institution. He started by asserting a distinction between the intending subject--with its plural desires, interests, and identifications--and the world it acts in, through and upon. This distinction between acting subject and…

  8. The UN Decade of Education for Sustainable Development: Business as Usual in the End

    ERIC Educational Resources Information Center

    Huckle, John; Wals, Arjen E. J.

    2015-01-01

    An analysis of the literature supporting the UN Decade of Education for Sustainable Development and a sample of its key products suggests that it failed to acknowledge or challenge neoliberalism as a hegemonic force blocking transitions towards genuine sustainability. The authors argue that the rationale for the Decade was idealistic and that…

  9. Business as Usual or Brave New World? A College President's Perspective.

    ERIC Educational Resources Information Center

    Keohane, Nannerl O.

    1986-01-01

    The Sloan Foundation's New Liberal Arts Program aims to make a fundamental transformation in the liberal arts curriculum, by infusing applied mathematics and technological literacy. The program is examined by the president of Wellesley College in the context of current philosophical and practical constraints in higher education. (MSE)

  10. Business as Usual? A Review of Continuing Professional Education and Adult Learning

    ERIC Educational Resources Information Center

    Wittnebel, Leo

    2012-01-01

    The commodification of education in all forms has created a lucrative trade, particularly within the realm of continuing professional education. Mandated across a wide spectrum of industries, and particularly salient in healthcare due to rapid advances in medicine and technology, professional education is said to be the vehicle that keeps…

  11. The UN Decade of Education for Sustainable Development: Business as Usual in the End

    ERIC Educational Resources Information Center

    Huckle, John; Wals, Arjen E. J.

    2015-01-01

    An analysis of the literature supporting the UN Decade of Education for Sustainable Development and a sample of its key products suggests that it failed to acknowledge or challenge neoliberalism as a hegemonic force blocking transitions towards genuine sustainability. The authors argue that the rationale for the Decade was idealistic and that…

  12. Student Cheating: As Serious an Academic Integrity Problem as Faculty-Administration Business as Usual?

    ERIC Educational Resources Information Center

    Puka, Bill

    2005-01-01

    Most faculty and administrators rate academic dishonesty a high crime, fatal to education. What cheating shows that merits strong opposition is a student's pride in deceptively "getting over" on professors and "the system," even where both are recognized as fair. This affection for injustice and casual disregard for honest dealings must be trained…

  13. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides.

    PubMed

    Wu, J W; Cocina, A E; Chai, J; Hay, B A; Shi, Y

    2001-07-01

    The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.

  14. Navy Mobility Fuels Forecasting System Phase 6 report: Impacts of a military disruption on Navy fuel availability and quality

    SciTech Connect

    Hadder, G.R.; Davis, R.M.

    1990-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the impacts of a severe military disruption on the production of Navy JP-5 jet fuel and F-76 marine diesel fuel in the year 1995. The global petroleum supply reduction due to the disruption was about 40 percent of the business-as-usual supply. Regional production cost increases for JP-5 were between $3 and $11 per gallon during the disruption. For F-76, the production cost increases were between $3 and $5 per gallon. The disruption caused substantial degradations for certain fuel quality properties of F-76 produced in the Pacific basin and in southern Europe. During both business-as-usual and disruption, the most prevalent Navy fuel quality problem was F-76 instability due to high levels of light cycle oils. 37 refs., 1 fig., 21 tabs.

  15. Acid-Sulfate-Weathering Activity in Shergottite Sites on Mars Recorded in Grim Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Ross, K.; Sutton, S. R.; Schwandt, C. S.

    2011-01-01

    Based on mass spectrometric studies of sulfur species in Shergotty and EET79001, [1] and [2] showed that sulfates and sulfides occur in different proportions in shergottites. Sulfur speciation studies in gas-rich impact-melt (GRIM) glasses in EET79001 by the XANES method [3] showed that S K-XANES spectra in GRIM glasses from Lith A indicate that S is associated with Ca and Al presumably as sulfides/sulfates whereas the XANES spectra of amorphous sulfide globules in GRIM glasses from Lith B indicate that S is associated with Fe as FeS. In these amorphous iron sulfide globules, [4] found no Ni using FE-SEM and suggested that the globules resulting from immiscible sulfide melt may not be related to the igneous iron sulfides having approximately 1-3% Ni. Furthermore, in the amorphous iron sulfides from 507 GRIM glass, [5] determined delta(sup 34)S values ranging from +3.5%o to -3.1%o using Nano-SIMS. These values plot between the delta(sup 34)S value of +5.25%o determined in the sulfate fraction in Shergotty [6] at one extreme and the value of -1.7%o obtained for igneous sulfides in EET79001 and Shergotty [7] at the other. These results suggest that the amorphous Fe-S globules likely originated by shock reduction of secondary iron sulfate phases occurring in the regolith precursor materials during impact [7]. Sulfates in the regolith materials near the basaltic shergottite sites on Mars owe their origin to surficial acid-sulfate interactions. We examine the nature of these reactions by studying the composition of the end products in altered regolith materials. For the parent material composition, we use that of the host shergottite material in which the impact glasses are situated.

  16. Long term fine aerosols at the Cape Grim global baseline station: 1998 to 2016

    NASA Astrophysics Data System (ADS)

    Crawford, Jagoda; Cohen, David D.; Stelcer, Eduard; Atanacio, Armand J.

    2017-10-01

    When air masses were arriving from the baseline sector, the maximum concentration of aged sea salt was 1.3 μg/m3, compared to overall maximum of 4.9 μg/m3. For secondary sulfates and nitrates the maximum concentrations were 2.5 and 7.5 μg/m3 from the baseline sector and overall, respectively. While measurements at Cape Grim can be affected from long range transport from mainland Australia and some local Tasmanian sources, the average concentrations of anthropogenic sources are still considerably lower than those measured at more populated areas. For example, at Lucas Heights (located south-west of the Sydney central business district, with little local sources) the average concentrations of secondary sulfates/nitrates and aged sea air were 1.4 and 1.0 μg/m3, respectively; compared to average concentrations of 0.8 and 0.6 μg/m3, at Cape Grim. The average concentrations of smoke were compatible at the two sites. The impact of primary aerosols from vehicle exhaust at Cape Grim was limited and no corresponding fingerprint was resolved.

  17. Enhanced control of end-group composition in poly(3-hexylthiophene)s prepared by GRIM

    SciTech Connect

    Kochemba, William Michael; Kilbey, II, S Michael; Pickel, Deanna L

    2012-01-01

    The ability to prepare well-defined semiconducting polymers is essential for understanding the link between structure and function in organic photovoltaic devices. A general method for enhanced control of the degree of functionality of end-functionalized poly(3-hexylthiophene)s (P3HT) prepared by Grignard Metathesis (GRIM) polymerization has been developed. In the absence of additives, the degree of functionality of end-functional P3HTs prepared by quenching of the GRIM polymerization with a Grignard reagent is dependent on the Grignard reagent utilized. In this study, additives such as styrene and 1-pentene are shown to alter the end-group composition of tolyl-functionalized P3HTs as determined by MALDI-TOF MS. In particular, when quenching the GRIM polymerization with tolylmagnesium bromide a modest decrease in the difunctional product is observed, and the yield of the monofunctional product increases significantly. Temperature and lithium chloride (LiCl) addition also play impactful roles. Monofunctional P3HT is found to be the major product (65%) when the functionalization is done in the presence of LiCl and styrene at 0oC, whereas in the absence of additives the monofunctional product is present at only 20%.

  18. Laser scan of the Grimming Mts. (Austria) with the latest LiDAR VZ-4000 equipment: preliminary results

    NASA Astrophysics Data System (ADS)

    Bauer, Harald; Hatzenbichler, Georg; Amon, Philipp; Fallah, Mohammad; Tari, Gabor; Grasemann, Bernhard

    2013-04-01

    As part of a cooperation project between OMV, RIEGL and the University of Vienna the new LiDAR (Light Detection and Ranging) VZ-4000 laser scanner was tested at the Grimming Mts. of the Eastern Alps in Austria. The prominent Grimming Mts. lies in the eastern part of the Dachstein Massif at the southern margin of the Northern Calcareous Alps. The Grimming, with a peak of 2,351 m above sea level, is one of the highest isolated mountains in Europe. Because of its spectacular topography, the Grimming has been used as an important surface reference mark since 1822. From a structural geology standpoint, the Grimming forms a huge antiform made up of dominantly well-bedded Triassic Dachstein Limestone. Because of the relatively well exposed bedrock surfaces above the tree-line and the fairly complex internal structure, the Grimming Mts. provides an ideal target for testing new high resolution laser scan techniques and devices. The maximum distance from the scanning positions on the nearby valley floor to the mountain face was about 4,500 m and the generated point cloud has an average resolution of 25 points per square meter. The purpose of this work was to test the latest version of the high resolution LiDAR laser equipment in a setting which falls beyond the capabilities of most existing LiDAR devices. The results of the pilot study include high-resolution spatial data on bedding planes, fault planes and the thickness variations of individual beds within the Dachstein Limestone. For the first time, the data obtained can be directly used to generate the proper 3D geometry of folds and faults observed on the Grimming Mts. This leads to a modern understanding of this prominent Alpine anticline in terms of structural geology.

  19. No more business as usual: enticing companies to sharply lower the public health costs of the products they sell.

    PubMed

    Sugarman, S

    2009-03-01

    Cigarettes, alcohol, junk food and motor vehicles cause a staggeringly high level of death, injury and disease. Business leaders from the industries that make these products currently try to frame these negative outcomes as 'collateral damage' that is someone else's problem. That framing is not only morally objectionable, but also overlooks the possibility that, with proper prodding, industry could substantially mitigate these public health disasters. A promising regulatory tool called 'performance-based regulation' is a new approach to combating the problem. Simply put, performance-based regulation would impose a legal obligation on manufacturers to reduce their negative social costs. Rather than suing the firms for damages, or telling them how they should run their businesses differently (as typical 'command and control' regimes do), performance-based regulation allows the firms to determine how best to decrease today's negative public health consequences. Like other public health strategies, performance-based regulation shifts the focus away from individual consumers on to those who are far more likely to achieve real public health gains. Analogous to a tax on causing harm that exceeds a threshold level, performance-based regulation seeks to harness private initiative in pursuit of the public good.

  20. NDI Acquisition. An Alternative to Business as Usual. Report of the DSMC 1991-1992 Military Research Fellows

    DTIC Science & Technology

    1992-10-01

    future to continued high standard, tem or component is delivered, and technological supremacy demonstrated by U.S. forces. The expanded use of markt ...suppliers. If price analysis out social policy. This is clearly the case alone cannot demonstrate price reason- in the area of developing women-owned...measures are successful, others are sure to fol- evitable as the federal government at- low. tempts to balance social and economic objectives

  1. Earthwatch and the HSBC Climate Partnership: Taking Stock of Forest Carbon Worldwide While Changing Business As Usual

    NASA Astrophysics Data System (ADS)

    Borgatti, R.; Bebber, D. P.; Riutta, T.; Murthy, I.; Ren, H.; Parker, G.; Capretz, R.; Phillips, R.

    2011-12-01

    For the last 40 years, Earthwatch Institute has engaged people and communities in citizen science projects around the world, focusing on topics ranging from climate change in South American rainforests to wildlife conservation on the Mongolian Steppe. In collaboration with the financial institution HSBC and five research partners, Earthwatch has just completed a global, five-year (2007-2012) climate change research project in temperate and tropical forests representative of managed forests worldwide (www.earthwatch.org/hcp). This work was completed in part by more than 2200 HSBC staff members who worked side by side with scientists to collect forest data at five centers, one each in India, China, England, Brazil and the United States. This talk will present findings from this unprecedented climate change research program and highlight research findings specific to each of the countries. In addition to the results from the quantitative research collection, some of the key management outreach and business outcomes resulting from this research will be presented.

  2. Beyond Business as Usual: A Framework and Options for Improving Quality and Containing Costs in California Higher Education.

    ERIC Educational Resources Information Center

    Knutsen, Kirk L.

    This monograph summarizes the current thinking in the national literature on the subject of cost-containment and productivity in higher education and applies findings to higher education in California. It presents a framework for characterizing the major factors driving higher education costs, outlines potentially promising areas in identifying…

  3. Becoming a Truly Helpful Teacher: Considerably More Challenging, and Potentially More Fun, than Merely Doing Business as Usual

    ERIC Educational Resources Information Center

    Jason, Hilliard

    2007-01-01

    Few medical faculty members are adequately prepared for their instructional responsibilities. Our educational traditions were established before we had research-based understandings of the teaching-learning process and before brain research began informing our understandings of how humans achieve lasting learning. Yet, there are several advantages…

  4. Business as Usual: An Assessment of Donald Rumsfeld’s Transformation Vision and Transformation’s Prospects for the Future

    DTIC Science & Technology

    2008-06-01

    and Losing.” OODA stands for “observe-orient-decide-and- act .” As the events of battle are played out, opposing forces, and even individual commanders...must go through the process of observing the events, orienting the events to the current situation, deciding what to do next, and then acting upon...to assess, direct, and act ; thereby creating a “powerful synergy” and enable combat victory.19 Based upon this new synergy, Owens makes the

  5. Becoming a Truly Helpful Teacher: Considerably More Challenging, and Potentially More Fun, than Merely Doing Business as Usual

    ERIC Educational Resources Information Center

    Jason, Hilliard

    2007-01-01

    Few medical faculty members are adequately prepared for their instructional responsibilities. Our educational traditions were established before we had research-based understandings of the teaching-learning process and before brain research began informing our understandings of how humans achieve lasting learning. Yet, there are several advantages…

  6. Morgenröthe or business as usual: a personal account of the 2nd Annual EULAR Congress, Prague

    PubMed Central

    Wollheim, Frank A

    2001-01-01

    The 2nd Annual European League Against Rheumatism (EULAR) Congress, held in Prague, 13–16 June 2001, was an impressive event with a record turnout of 8300 delegates. It offered a large variety of first-class state of the art lectures by some 180 invited worldwide speakers. Several new and ongoing therapeutic developments were discussed. The aim to attract the young scientific community was only partly achieved, and the dependence on industry posed some problems. The organization, however, was a big improvement compared with the previous congress in this series. The number of submitted abstracts was relatively low (1200) compared with the number of delegates. Accommodation of satellite symposia and organization of poster sessions remain problem areas of this meeting. The Annual EULAR Congress emerges as one of the two most important annual congresses of rheumatology, the other being the American College of Rheumatology meeting.

  7. Oxidation States of Grim Glasses in EET79001 Based on Vanadium Valence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.

    2010-01-01

    Gas-rich impact-melt (GRIM) glasses in SNC meteorites are very rich in Martian atmospheric noble gases and sulfur suggesting a possible occurrence of regolith-derived secondary mineral assemblages in these samples. Previously, we have studied two GRIM glasses, 506 and 507, from EET79001 Lith A and Lith B, respectively, for elemental abundances and spatial distribution of sulfur using EMPA (WDS) and FE-SEM (EDS) techniques and for sulfur-speciation using K-edge XANES techniques. These elemental and FE-SEM micro-graph data at several locations in the GRIM glasses from Shergotty (DBS), Zagami 994 and EET79001, Lith B showed that FeO and SO3 are positively correlated (SO3 represents a mixture of sulfide and sulfate). FE-SEM (EDS) study revealed that the sulfur-rich pockets in these glasses contain numerous micron-sized iron-sulfide (Fe-S) globules sequestered throughout the volume. However, in some areas (though less frequently), we detected significant Fe-S-O signals suggesting the occurrence of iron sulfate. These GRIM glasses were studied by K-edge microXANES techniques for sulfur speciation in association with iron in sulfur-rich areas. In both samples, we found the sulfur speciation dominated by sulfide with minor oxidized sulfur mixed in with various proportions. The abundance of oxidized sulfur was greater in 506 than in 507. Based on these results, we hypothesize that sulfur initially existed as sulfate in the glass precursor materials and, on shock-impact melting of the precursor materials producing these glasses, the oxidized sulfur was reduced to predominately sulfide. In order to further test this hypothesis, we have used microXANES to measure the valence states of vanadium in GRIM glasses from Lith A and Lith B to complement and compare with previous analogous measurements on Lith C (note: 506 and 507 contain the largest amounts of martian atmospheric gases but the gas-contents in Lith C measured by are unknown). Vanadium is ideal for addressing this re

  8. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis

    PubMed Central

    Wrzaczek, Michael; Vainonen, Julia P; Stael, Simon; Tsiatsiani, Liana; Help-Rinta-Rahko, Hanna; Gauthier, Adrien; Kaufholdt, David; Bollhöner, Benjamin; Lamminmäki, Airi; Staes, An; Gevaert, Kris; Tuominen, Hannele; Van Breusegem, Frank; Helariutta, Ykä; Kangasjärvi, Jaakko

    2015-01-01

    Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor. PMID:25398910

  9. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis.

    PubMed

    Wrzaczek, Michael; Vainonen, Julia P; Stael, Simon; Tsiatsiani, Liana; Help-Rinta-Rahko, Hanna; Gauthier, Adrien; Kaufholdt, David; Bollhöner, Benjamin; Lamminmäki, Airi; Staes, An; Gevaert, Kris; Tuominen, Hannele; Van Breusegem, Frank; Helariutta, Ykä; Kangasjärvi, Jaakko

    2015-01-02

    Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.

  10. Forecasting forecast skill

    NASA Technical Reports Server (NTRS)

    Kalnay, Eugenia; Dalcher, Amnon

    1987-01-01

    It is shown that it is possible to predict the skill of numerical weather forecasts - a quantity which is variable from day to day and region to region. This has been accomplished using as predictor the dispersion (measured by the average correlation) between members of an ensemble of forecasts started from five different analyses. The analyses had been previously derived for satellite-data-impact studies and included, in the Northern Hemisphere, moderate perturbations associated with the use of different observing systems. When the Northern Hemisphere was used as a verification region, the prediction of skill was rather poor. This is due to the fact that such a large area usually contains regions with excellent forecasts as well as regions with poor forecasts, and does not allow for discrimination between them. However, when regional verifications were used, the ensemble forecast dispersion provided a very good prediction of the quality of the individual forecasts.

  11. Forecasting forecast skill

    NASA Technical Reports Server (NTRS)

    Kalnay, Eugenia; Dalcher, Amnon

    1987-01-01

    It is shown that it is possible to predict the skill of numerical weather forecasts - a quantity which is variable from day to day and region to region. This has been accomplished using as predictor the dispersion (measured by the average correlation) between members of an ensemble of forecasts started from five different analyses. The analyses had been previously derived for satellite-data-impact studies and included, in the Northern Hemisphere, moderate perturbations associated with the use of different observing systems. When the Northern Hemisphere was used as a verification region, the prediction of skill was rather poor. This is due to the fact that such a large area usually contains regions with excellent forecasts as well as regions with poor forecasts, and does not allow for discrimination between them. However, when regional verifications were used, the ensemble forecast dispersion provided a very good prediction of the quality of the individual forecasts.

  12. Observation of sea-salt fraction in sub-100 nm diameter particles at Cape Grim

    NASA Astrophysics Data System (ADS)

    Cravigan, Luke T.; Ristovski, Zoran; Modini, Robin L.; Keywood, Melita D.; Gras, John L.

    2015-03-01

    Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100 nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7-8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF > 2 and another at HGF~1.5. The particles with HGF > 2 displayed a deliquescent transition at 73-75% RH and were nonvolatile up to 280°C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3-13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11-46%. Observed high inorganic fractions in sub-100 nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16-97 nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100 nm particle number, corresponding to concentrations of 110-290 cm-3. Air mass back trajectories indicate that SSA particles were produced 1500 km, 20-40 h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100 nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.

  13. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  14. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  15. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain.

    PubMed

    Tammineni, Prasad; Anugula, Chandrashekhar; Mohammed, Fareed; Anjaneyulu, Murari; Larner, Andrew C; Sepuri, Naresh Babu Venkata

    2013-02-15

    The signal transducer and activator of transcription 3 (STAT3), a nuclear transcription factor, is also present in mitochondria and regulates cellular respiration in a transcriptional-independent manner. The mechanism of STAT3 import into mitochondria remains obscure. In this report we show that mitochondrial-localized STAT3 resides in the inner mitochondrial membrane. In vitro import studies show that the gene associated with retinoid interferon induced cell mortality 19 (GRIM-19), a complex I subunit that acts as a chaperone to recruit STAT3 into mitochondria. In addition, GRIM-19 enhances the integration of STAT3 into complex I. A S727A mutation in STAT3 reduces its import and assembly even in the presence of GRIM-19. Together, our studies unveil a novel chaperone function for GRIM-19 in the recruitment of STAT3 into mitochondria.

  16. Characterisation of J(O1D) at Cape Grim 2000-2005

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.

    2015-07-01

    Estimates of the rate of production of excited oxygen atoms due to the photolysis of ozone (J(O1D)) have been derived from radiation measurements carried out at Cape Grim, Tasmania (40.6° S, 144.7° E). The individual measurements have a total uncertainty of 16 % (1σ). These estimates agree well with model estimates of clear-sky photolysis rates. Observations spanning 2000-2005 have been used to quantify the impact of season, clouds and ozone column amount. The annual cycle of J(O1D) has been investigated via monthly means. These means show an interannual variation (monthly standard deviation) of 9 %, but in midsummer and midwinter this reduces to 3-5 %. Variations in solar zenith angle and total column ozone explain 86 % of the observed variability in the measured photolysis rates. The impact of total column ozone, expressed as a radiation amplification factor (RAF), is found to be ~ 1.53, in agreement with model estimates. This ozone dependence explains 20 % of the variation observed at medium solar zenith angles (30-50°). The impact of clouds results in a median reduction of 30 % in J(O1D) for the same solar zenith angle range. Including estimates of cloudiness derived from long-wave radiation measurements resulted in a statistically significant fit to observations, but the quality of the fit did not increase significantly as measured by the adjusted R2.

  17. Aerosol Optical Depth at Cape Grim 1986 - 2014: What does it tell us?

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen

    2015-04-01

    The Cape Grim Baseline Air Pollution Station is located near the northwest tip of Tasmania (Australia), a site chosen to permit measurement of the atmospheric environment over the southern oceans. Atmospheric measurements began in the late 1970s, and observations of Aerosol Optical Depth (AOD) using automated sunphotometers began in 1986. Since then, measurements have continued with a range of different instruments operating at a varying number of wavelengths. The site is challenging for these measurements as it is exposed to a sea-salt laden atmosphere, which presents both instrumental issues (corrosion) and measurement complications (salt fouling of the windows) in addition to the high frequency of cloud. The dataset has been processed to produce a record of half-hourly AOD for the period 1986 - 2014 and investigated for internal consistency. In general the AOD is small (around 0.05 at 500nm). The impact of the Mount Pinatubo eruption in 1991 can be clearly observed, along with a persistent annual cycle. This has been further analyzed fitting to all wavelengths measured to derive an averaged optical depth (at 500 nm) and some preliminary aerosol size distribution information.

  18. All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) polymerization.

    PubMed

    Holcombe, Thomas W; Woo, Claire H; Kavulak, David F J; Thompson, Barry C; Fréchet, Jean M J

    2009-10-14

    The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 x 10(-4) cm(2)/(V s) and 0.05 cm(2)/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC(61)BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer light absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%.

  19. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Mace, Kimberly A.; Duce, Robert A.; Tindale, Neil W.

    2003-06-01

    During the Southern Hemispheric spring of 2000 (during the months of November and early December), rain, bulk and size-separated aerosol samples were collected at the Cape Grim Baseline Air Pollution Station located on the island of Tasmania, Australia and analyzed for total organic nitrogen (N), urea, and dissolved free amino acids. Rain and bulk aerosol samples contained organic N at concentrations representing, on average, between 19 and 25% of total N. Urea was not detected in the six rain samples analyzed. However, urea represented ˜24% of the organic N contained in nonbaseline aerosol samples, and ˜2% of the organic N contained within baseline samples. Trajectory analysis combined with meteorological data indicated that high concentrations of urea within aerosols were mainly due to Tasmanian sources, likely animal emissions, although the application of urea fertilizers cannot be dismissed as a source. In nonbaseline samples the highest concentrations of urea were associated with the coarse mode aerosol (>1 μm), although urea was also found in the fine mode aerosol (<1 μm), potentially indicating gas-to-particle conversion of urea. Aerosol samples collected in marine air masses contained urea within an intermediate fraction centered at ˜1 μm suggesting the sea surface microlayer as a source. Dissolved free amino acids contributed ˜53% of the organic N in rain, but were not a significant proportion of the total organic N fraction in either nonbaseline or baseline aerosol samples. Due to their presence in rain, amino acids likely exist in aerosols as unhydrolyzed proteins. In cascade impactor samples highly influenced by marine sources, profiles for amino N were inversely related to urea N, possibly indicating live species and the sea surface microlayer as a source for organic N.

  20. The Australian Air Quality Forecasting System: the use of green scenarios of motor vehicle usage as an educational tool.

    PubMed

    Cope, Martin; Hess, Dale; Lee, Sunhee; Tory, Kevin; Burgers, Manuela; Lilley, Bill

    2008-07-01

    The Australian Air Quality Forecasting System (AAQFS) is one of several newly emerging, high-resolution, numerical air quality forecasting systems. The system is briefly described. A public education application of the air quality impact of motor vehicle usage is explored by computing the concentration and dosage of particulate matter less than 10 microm in aerodynamic diameter (PM10) for a commuter traveling to work between Geelong and Melbourne, Victoria, Australia, under "business-as-usual" and "green" scenarios. This application could be routinely incorporated into systems like AAQFS. Two methodologies for calculating the dosage are described: one for operational use and one for more detailed applications. The Clean Air Research Programme-Personal Exposure Study in Melbourne provides support for this operational methodology. The more detailed methodology is illustrated using a system for predicting concentrations due to near-road emissions of PM10 and applied in Sydney.

  1. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  2. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed

  3. Forecasting Skill

    DTIC Science & Technology

    1981-01-01

    and in synoptic meteorology, many feel the improvements in forecasting the weather (clouds, winds , precipitation, and obstructions to vision) have...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I...rate of improve- ment of 10% as roughly comparable to the improvement rate obtained by the numerical models. The following types of forecasts seem to

  4. A Three-Dimensional Coupled Climate-Carbon Simulation of a Business-As-Usual Carbon Emissions Pathway to Year 2300

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Govindasamy, B.; Thompson, S. L.; Mirin, A. A.; Wickett, M. E.; Delire, C.

    2004-12-01

    Eventual emissions from recoverable fossil-fuel carbon resources, if unabated, may exceed 5000 GtC over several centuries, yet most studies of climate change have focused on doubled-CO2 or century scale experiments. Here, we investigate climate change and carbon budget out to year 2300 assuming that humans will continue the current trend using fossil fuels and releasing CO2 to the atmosphere. We use emissions and non-CO2-GHG concentrations from the SRES A2 scenario for the period 2000 to 2100; this trajectory is extended with a smooth logistic curve that eventually releases 5000 GtC to the atmosphere as CO2, with non-CO2-GHG concentration fixed at year 2100 values. Our simulations are performed in a fully-coupled three-dimensional climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA). INCCA is the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-version of the OCMIP ocean biogeochemistry model. By year 2300, atmospheric CO2 reaches 1423 ppm the global climate warms by about 8 K relative to the pre-industrial control run. The climate sensitivity of this model for a doubling of atmospheric CO2 is estimated to be 2.1 K; however, an 8 K response to 1423 ppm of CO2 by year 2300 (with radiative forcing from non-CO2-GHGs) suggests that climate sensitivity may be higher on a warmer planet (i.e., climate may warm more rapidly than the log of CO2 concentration); if so, unrestrained emissions may lead to conditions that are more severe than might be expected by extrapolation of results from doubled-CO2 experiments. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  5. Customer Choice or Business as Usual?: Promoting Innovation in the Design of WIA Training Programs Through the Individual Training Account Experiment.

    ERIC Educational Resources Information Center

    Perez-Johnson, Irma; Decker, Paul

    The Workforce Investment Act (WIA) of 1998 requires that workforce investment areas establish individual training accounts (ITAs) that provide vouchers customers can use to pay for training. The United States Department of Labor is supporting the ITA experiment, during which new customers determined to be eligible for training will be randomly…

  6. Social change or business as usual at city hall? Examining an urban municipal government's response to neighbourhood-level health inequities.

    PubMed

    Cahuas, Madelaine C; Wakefield, Sarah; Peng, Yun

    2015-05-01

    There is a renewed interest in the potential of municipal governments working collaboratively with local communities to address health inequities. A growing body of literature has also highlighted the benefits and limitations of participatory approaches in neighbourhood interventions initiated by municipal governments. However, few studies have investigated how neighbourhood interventions tackling health inequities work in real-time and in context, from the perspectives of Community Developers (CDs) who promote community participation. This study uses a process evaluation approach and semi-structured interviews with CDs to explore the challenges they face in implementing a community development, participatory process in the City of Hamilton's strategy to reduce health inequities - Neighbourhood Action. Findings demonstrate that municipal government can facilitate and suppress community participation in complex ways. CDs serve as significant but conflicted intermediaries as they negotiate and navigate power differentials between city and community actors, while also facing structural challenges. We conclude that community participation is important to bottom-up, resident-led social change, and that CDs are central to this work.

  7. Paradigm Shift or Business as Usual: The Reception and Implementation of the BYU-Idaho Learning Model by Faculty Members--A Mixed Methods Study

    ERIC Educational Resources Information Center

    Thurgood, Larry L.

    2010-01-01

    A mixed methods study examined how a newly developed campus-wide framework for learning and teaching, called the Learning Model, was accepted and embraced by faculty members at Brigham Young University-Idaho from September 2007 to January 2009. Data from two administrations of the Approaches to Teaching Inventory showed that (a) faculty members…

  8. Shaking things up or business as usual? The influence of female corporate executives and board of directors on women's managerial representation.

    PubMed

    Skaggs, Sheryl; Stainback, Kevin; Duncan, Phyllis

    2012-07-01

    Previous theory and research suggests that workplace gender composition at the highest organizational levels should play a crucial role in reducing gender linked inequalities in the workplace. In this article, we examine how the presence of women in top corporate positions influences female managerial representation at the establishment-level. Using a unique multi-level dataset of 5679 establishments nested within 81 Fortune 1000 corporations, we find that having more women on corporate boards, but not in executive positions, at the firm-level is associated with greater female managerial representation at the establishment-level. The results also show that women are more likely to be in management positions when employed in young, large, and managerially intensive workplaces, as well as those with a larger percentage of female non-managers. Implications for future research and policy implementation are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Descriptive analysis and comparison of strategic incremental rehearsal to "Business as Usual" sight-word instruction for an adult nonreader with intellectual disability.

    PubMed

    Richman, David M; Grubb, Laura; Thompson, Samuel

    2016-10-28

    Strategic Incremental Rehearsal (SIR) is an effective method for teaching sight-word acquisition, but has neither been evaluated for use in adults with an intellectual disability, nor directly compared to the ongoing instruction in the natural environment. Experimental analysis of sight word acquisition via an alternating treatment design was conducted with a 23-year-old woman with Down syndrome. SIR was compared to the current reading instruction (CRI) in a classroom for young adults with intellectual disabilities. CRI procedures included non-contingent praise, receptive touch prompts ("touch the word bat"), echoic prompts ("say bat"), textual prompts ("read the word"), and pre-determined introduction of new words. SIR procedures included textual prompts on flash cards, contingent praise, corrective feedback, and mastery-based introduction of new words. The results indicated that SIR was associated with more rapid acquisition of sight words than CRI. Directions for future research could include systematic comparisons to other procedures, and evaluations of procedural permutations of SIR.

  10. One year ago not business as usual: Wound management, infection and psychoemotional control during tertiary medical care following the 2004 Tsunami disaster in southeast Asia

    PubMed Central

    Maegele, Marc; Gregor, Sven; Yuecel, Nedim; Simanski, Christian; Paffrath, Thomas; Rixen, Dieter; Heiss, Markus M; Rudroff, Claudia; Saad, Stefan; Perbix, Walter; Wappler, Frank; Harzheim, Andreas; Schwarz, Rosemarie; Bouillon, Bertil

    2006-01-01

    Introduction Following the 2004 tsunami disaster in southeast Asia severely injured tourists were repatriated via airlift to Germany. One cohort was triaged to the Cologne-Merheim Medical Center (Germany) for further medical care. We report on the tertiary medical care provided to this cohort of patients. Methods This study is an observational report on complex wound management, infection and psychoemotional control associated with the 2004 Tsunami disaster. The setting was an adult intensive care unit (ICU) of a level I trauma center and subjects included severely injured tsunami victims repatriated from the disaster area (19 to 68 years old; 10 females and 7 males with unknown co-morbidities). Results Multiple large flap lacerations (2 × 3 to 60 × 60 cm) at various body sites were characteristic. Lower extremities were mostly affected (88%), followed by upper extremities (29%), and head (18%). Two-thirds of patients presented with combined injuries to the thorax or fractures. Near-drowning involved the aspiration of immersion fluids, marine and soil debris into the respiratory tract and all patients displayed signs of pneumonitis and pneumonia upon arrival. Three patients presented with severe sinusitis. Microbiology identified a variety of common but also uncommon isolates that were often multi-resistant. Wound management included aggressive debridement together with vacuum-assisted closure in the interim between initial wound surgery and secondary closure. All patients received empiric anti-infective therapy using quinolones and clindamycin, later adapted to incoming results from microbiology and resistance patterns. This approach was effective in all but one patient who died due to severe fungal sepsis. All patients displayed severe signs of post-traumatic stress response. Conclusion Individuals evacuated to our facility sustained traumatic injuries to head, chest, and limbs that were often contaminated with highly resistant bacteria. Transferred patients from disaster areas should be isolated until their microbial flora is identified as they may introduce new pathogens into an ICU. Successful wound management, including aggressive debridement combined with vacuum-assisted closure was effective. Initial anti-infective therapy using quinolones combined with clindamycin was a good first-line choice. Psychoemotional intervention alleviated severe post-traumatic stress response. For optimum treatment and care a multidisciplinary approach is mandatory. PMID:16584527

  11. The Transition from Business as Usual to Funding for Results: State Efforts To Integrate Performance Measures in the Higher Education Budgetary Process.

    ERIC Educational Resources Information Center

    Albright, Brenda Norman

    This report describes a 1997 survey which examined performance funding in higher education and offers guidelines for states' and institutions' explorations of performance-based funding. Among highlights of the survey are: 32 states are planning or using performance measures in the state budget process; legislatively mandated initiatives are…

  12. The Role of Chapter Meetings: Business as Usual or a Course in Leadership Development? and Why FBLA-PBL? The Importance of Student Organizations.

    ERIC Educational Resources Information Center

    Fracaroli, Mary Lynn; Fitzhugh-Pemberton, Gladys

    1996-01-01

    Fracaroli describes ways advisors can use vocational student organizations as leadership laboratories. Fitzhugh-Pemberton explains the value to students of joining Future Business Leaders of America-Phi Beta Lambda. (SK)

  13. Claude Bernard Distinguished Lecture. Becoming a truly helpful teacher: considerably more challenging, and potentially more fun, than merely doing business as usual.

    PubMed

    Jason, Hilliard

    2007-12-01

    Few medical faculty members are adequately prepared for their instructional responsibilities. Our educational traditions were established before we had research-based understandings of the teaching-learning process and before brain research began informing our understandings of how humans achieve lasting learning. Yet, there are several advantages you may have. If your expertise is at one of the frontiers of human biology, your teaching can be inherently fascinating to aspiring health professionals. If your work has implications for human health, you have another potential basis for engaging future clinicians. And, thanks to Claude Bernard's influence, you likely are "process oriented," a necessary mindset for being an effective teacher. There are also challenges you may face. Your medical students will mostly become clinicians. Unless you can help them see connections between your offerings and their future work, you may not capture and sustain their interest. To be effective, teachers, like clinicians, need to be interactive, make on-the-spot decisions, and be "emotional literate." If you aren't comfortable with these demands, you may have work to do toward becoming a truly helpful teacher. Program changes may be needed. Might your program need to change 1) from being adversarial and controlling to being supportive and trust based or 2) from mainly dispensing information to mainly asking and inviting questions? In conclusion, making changes toward becoming a truly helpful teacher can bring benefits to your students while increasing your sense of satisfaction and fulfillment as a teacher. If you choose to change, be gentle with yourself, as you should be when expecting your students to make important changes.

  14. Fishing Forecasts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ROFFS stands for Roffer's Ocean Fishing Forecasting Service, Inc. Roffer combines satellite and computer technology with oceanographic information from several sources to produce frequently updated charts sometimes as often as 30 times a day showing clues to the location of marlin, sailfish, tuna, swordfish and a variety of other types. Also provides customized forecasts for racing boats and the shipping industry along with seasonal forecasts that allow the marine industry to formulate fishing strategies based on foreknowledge of the arrival and departure times of different fish. Roffs service exemplifies the potential for benefits to marine industries from satellite observations. Most notable results are reduced search time and substantial fuel savings.

  15. Measurements of HCFC-142b and HCFC-141b in the Cape Grim air Archive: 1978-1993

    NASA Astrophysics Data System (ADS)

    Oram, D. E.; Reeves, C. E.; Penkett, S. A.; Fraser, P. J.

    Stored air samples collected at Cape Grim, Tasmania since 1978, have been analyzed by GC-MS to investigate the change in the tropospheric concentration of HCFC-142b and HCFC-141b over the past 15 years. Between April 1978 and September 1993 the concentration of HCFC-142b rose from 0.20±0.02 pptv to 3.0±0.3 pptv, with the majority of this increase occurring from 1989 onwards. By mid-1993 the rate of increase had reached 0.9±0.1 pptv/yr. From 1982 to 1991 the average concentration of HCFC-141b was 0.08±0.01 pptv. A very sharp increase in concentration began in 1992 however, such that it reached 0.46±0.05 pptv by September 1993. Using a 2-D model of atmospheric chemistry, constrained by these observations, global emissions of these two compounds have been calculated and found to differ from other estimates. This is partly due to the background concentration levels which existed prior to the start of the other estimated emissions.

  16. Treating melancholia at home: theoretical wisdom and grim reality in the career of E.C. Seguin.

    PubMed

    Goetz, Christopher G; Harter, Donald H

    2013-04-30

    E.C. Seguin was one of the early, influential 19th-century neurologists who participated in the development of neurology as a specialty in the United States. Born in France, but raised from early childhood in the United States, Seguin published widely, developed a high-profile New York City practice, and was named Clinical Professor of Diseases of the Mind and Nervous System at the College of Physicians and Surgeons (New York) in 1874. Typical of the era, he studied neurologic disorders, but also several conditions that today would be considered in the realm of psychiatry. One of his seminal papers was titled "The treatment of mild cases of melancholia at home" (1876). Contrary to the widespread practice of isolating patients in either rest homes or asylums, Seguin introduced and formalized treatment of depression within the household. Against this academic backdrop, Seguin returned home on October 31, 1882, to discover that his own wife, afflicted with long-standing depression and treated at home, had committed suicide after murdering their 3 children. The grim dichotomy between the confidently written paper and the reality of the treatment failure is a neurologic lesson in humility regarding diseases and their unpredictable outcomes.

  17. Forecasting Future Social Needs

    ERIC Educational Resources Information Center

    Abt, Clark C.

    1971-01-01

    Describes briefly why social forecasting is easier than technological forecasting, offers four approaches to social forecasting (judgment, extrapolation, speculation, analysis), and suggests a procedure recommended for social forecasting. (CJ)

  18. Information Forecasting.

    ERIC Educational Resources Information Center

    Hanneman, Gerhard J.

    Information forecasting provides a means of anticipating future message needs of a society or predicting the necessary types of information that will allow smooth social functioning. Periods of unrest and uncertainty in societies contribute to "societal information overload," whereby an abundance of information channels can create communication…

  19. Reasonable Forecasts

    ERIC Educational Resources Information Center

    Taylor, Kelley R.

    2010-01-01

    This article presents a sample legal battle that illustrates school officials' "reasonable forecasts" of substantial disruption in the school environment. In 2006, two students from a Texas high school came to school carrying purses decorated with images of the Confederate flag. The school district has a zero-tolerance policy for…

  20. Reasonable Forecasts

    ERIC Educational Resources Information Center

    Taylor, Kelley R.

    2010-01-01

    This article presents a sample legal battle that illustrates school officials' "reasonable forecasts" of substantial disruption in the school environment. In 2006, two students from a Texas high school came to school carrying purses decorated with images of the Confederate flag. The school district has a zero-tolerance policy for…

  1. Turbulence forecasting

    NASA Technical Reports Server (NTRS)

    Chandler, C. L.

    1987-01-01

    In order to forecast turbulence, one needs to have an understanding of the cause of turbulence. Therefore, an attempt is made to show the atmospheric structure that often results when aircraft encounter moderate or greater turbulence. The analysis is based on thousands of hours of observations of flights over the past 39 years of aviation meteorology.

  2. TRAVEL FORECASTER

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E.

    1994-01-01

    Business travel planning within an organization is often a time-consuming task. Travel Forecaster is a menu-driven, easy-to-use program which plans, forecasts cost, and tracks actual vs. planned cost for business-related travel of a division or branch of an organization and compiles this information into a database to aid the travel planner. The program's ability to handle multiple trip entries makes it a valuable time-saving device. Travel Forecaster takes full advantage of relational data base properties so that information that remains constant, such as per diem rates and airline fares (which are unique for each city), needs entering only once. A typical entry would include selection with the mouse of the traveler's name and destination city from pop-up lists, and typed entries for number of travel days and purpose of the trip. Multiple persons can be selected from the pop-up lists and multiple trips are accommodated by entering the number of days by each appropriate month on the entry form. An estimated travel cost is not required of the user as it is calculated by a Fourth Dimension formula. With this information, the program can produce output of trips by month with subtotal and total cost for either organization or sub-entity of an organization; or produce outputs of trips by month with subtotal and total cost for international-only travel. It will also provide monthly and cumulative formats of planned vs. actual outputs in data or graph form. Travel Forecaster users can do custom queries to search and sort information in the database, and it can create custom reports with the user-friendly report generator. Travel Forecaster 1.1 is a database program for use with Fourth Dimension Runtime 2.1.1. It requires a Macintosh Plus running System 6.0.3 or later, 2Mb of RAM and a hard disk. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. Travel Forecaster was developed in 1991. Macintosh is a registered trademark of

  3. TRAVEL FORECASTER

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E.

    1994-01-01

    Business travel planning within an organization is often a time-consuming task. Travel Forecaster is a menu-driven, easy-to-use program which plans, forecasts cost, and tracks actual vs. planned cost for business-related travel of a division or branch of an organization and compiles this information into a database to aid the travel planner. The program's ability to handle multiple trip entries makes it a valuable time-saving device. Travel Forecaster takes full advantage of relational data base properties so that information that remains constant, such as per diem rates and airline fares (which are unique for each city), needs entering only once. A typical entry would include selection with the mouse of the traveler's name and destination city from pop-up lists, and typed entries for number of travel days and purpose of the trip. Multiple persons can be selected from the pop-up lists and multiple trips are accommodated by entering the number of days by each appropriate month on the entry form. An estimated travel cost is not required of the user as it is calculated by a Fourth Dimension formula. With this information, the program can produce output of trips by month with subtotal and total cost for either organization or sub-entity of an organization; or produce outputs of trips by month with subtotal and total cost for international-only travel. It will also provide monthly and cumulative formats of planned vs. actual outputs in data or graph form. Travel Forecaster users can do custom queries to search and sort information in the database, and it can create custom reports with the user-friendly report generator. Travel Forecaster 1.1 is a database program for use with Fourth Dimension Runtime 2.1.1. It requires a Macintosh Plus running System 6.0.3 or later, 2Mb of RAM and a hard disk. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. Travel Forecaster was developed in 1991. Macintosh is a registered trademark of

  4. Forecaster's dilemma: Extreme events and forecast evaluation

    NASA Astrophysics Data System (ADS)

    Lerch, Sebastian; Thorarinsdottir, Thordis; Ravazzolo, Francesco; Gneiting, Tilmann

    2015-04-01

    In discussions of the quality of forecasts in the media and public, attention often focuses on the predictive performance in the case of extreme events. Intuitively, accurate predictions on the subset of extreme events seem to suggest better predictive ability. However, it can be demonstrated that restricting conventional forecast verification methods to subsets of observations might have unexpected and undesired effects and may discredit even the most skillful forecasters. Hand-picking extreme events is incompatible with the theoretical assumptions of established forecast verification methods, thus confronting forecasters with what we refer to as the forecaster's dilemma. For probabilistic forecasts, weighted proper scoring rules provide suitable alternatives for forecast evaluation with an emphasis on extreme events. Using theoretical arguments, simulation experiments and a case study on probabilistic forecasts of wind speed over Germany, we illustrate the forecaster's dilemma and the use of weighted proper scoring rules.

  5. GhMCS1, the Cotton Orthologue of Human GRIM-19, Is a Subunit of Mitochondrial Complex I and Associated with Cotton Fibre Growth

    PubMed Central

    Dong, Chun-Juan; Wu, Ai-Min; Du, Shao-Jun; Tang, Kai; Wang, Yun; Liu, Jin-Yuan

    2016-01-01

    GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a subunit of mitochondrial respiratory complex I in mammalian systems, and it has been demonstrated to be a multifunctional protein involved in the cell cycle, cell motility and innate immunity. However, little is known about the molecular functions of its homologues in plants. Here, we characterised GhMCS1, an orthologue of human GRIM-19 from cotton (Gossypium hirsutum L.), and found that it was essential for maintaining complex integrity and mitochondrial function in cotton. GhMCS1 was detected in various cotton tissues, with high levels expressed in developing fibres and flowers and lower levels in leaves, roots and ovules. In fibres at different developmental stages, GhMCS1 expression peaked at 5–15 days post anthesis (dpa) and then decreased at 20 dpa and diminished at 25 dpa. By Western blot analysis, GhMCS1 was observed to be localised to the mitochondria of cotton leaves and to colocalise with complex I. In Arabidopsis, GhMCS1 overexpression enhanced the assembly of complex I and thus respiratory activity, whereas the GhMCS1 homologue (At1g04630) knockdown mutants showed significantly decreased respiratory activities. Furthermore, the mutants presented with some phenotypic changes, such as smaller whole-plant architecture, poorly developed seeds and fewer trichomes. More importantly, in the cotton fibres, both the GhMCS1 transcript and protein levels were correlated with respiratory activity and fibre developmental phase. Our results suggest that GhMCS1, a functional ortholog of the human GRIM-19, is an essential subunit of mitochondrial complex I and is involved in cotton fibre development. The present data may deepen our knowledge on the potential roles of mitochondria in fibre morphogenesis. PMID:27632161

  6. Today's Grim Jobs Report

    ERIC Educational Resources Information Center

    Fogg, Neeta P.; Harrington, Paul E.

    2010-01-01

    June 2009 is seen by many as the end of the Great Recession. Strong growth in GDP following massive monetary and fiscal responses to the collapse in housing and financial markets meant that the economy was on the mend. Yet a year later, 1.1 million "fewer" people are working, and the unemployment rate is stuck at 9.5%. Worse still, more than one…

  7. Today's Grim Jobs Report

    ERIC Educational Resources Information Center

    Fogg, Neeta P.; Harrington, Paul E.

    2010-01-01

    June 2009 is seen by many as the end of the Great Recession. Strong growth in GDP following massive monetary and fiscal responses to the collapse in housing and financial markets meant that the economy was on the mend. Yet a year later, 1.1 million "fewer" people are working, and the unemployment rate is stuck at 9.5%. Worse still, more than one…

  8. Impacts of an Updated Subgrid Orographic Parameterization Scheme in a Global Spectral Atmospheric Forecast Model

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Joo; Hong, Song-You

    2015-04-01

    The subgrid orographic parameterization scheme implemented in Global/Regional Integrated Model system (GRIMs), which is used as the reference in developing physics schemes of KIAPS Integrated Model, is updated by including effects of flow blocking and orographic anisotropy in addition to existing orographic gravity wave (GW) drag parameterization. The formula of the additional flow-blocking stress follows bulk aerodynamic drag form based in part on scale analysis, and the height of blocked layer is determined according to the dividing streamline theory. The formula of the GW stress is modified by including the effect of orographic anisotropy. To investigate impacts of the updated orographic parameterization scheme, short- and medium-range forecasts for heavy rainfall case over Korea (12 UTC 25 July-12 UTC 4 August 2011) and seasonal simulations (December-February 1996/97) are performed using the GRIMs with the updated scheme. The updated orographic parameterization scheme contributes to alleviate 10m wind speed overestimated over the land in the short- and medium-range forecasts due to the additional flow-blocking drag. In addition, the alleviated wind speed reduces surface fluxes by decreasing exchange coefficients which in turn affects surface temperature and precipitation. The wind forecasts are improved throughout the entire atmosphere from the troposphere to the stratosphere as well as near the surface, which is directly due to the modified GW drag and indirectly due to the interaction of the GW drag with the flow-blocking drag. In particular, the stratospheric winter polar night jet is simulated more realistically in the seasonal forecasts.

  9. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monixide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a four hour enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %), higher during the particle growth event (77 %) and higher still (104 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000-5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001-0.074). A shortlived increase in NMOCs by a factor of 10 corresponded

  10. Forecast Mekong

    USGS Publications Warehouse

    Turnipseed, D. Phil

    2011-01-01

    Forecast Mekong is part of the U.S. Department of State's Lower Mekong Initiative, which was launched in 2009 by Secretary Hillary Clinton and the Foreign Ministers of Cambodia, Laos, Thailand, and Vietnam to enhance partnerships between the U.S. and the Lower Mekong River countries in the areas of environment, health, education, and infrastructure. The U.S. Geological Survey (USGS) is working in close cooperation with the U.S. Department of State to use research and data from the Lower Mekong Basin to provide hands-on results that will help decision makers in Lower Mekong River countries in the planning and design for restoration, conservation, and management efforts in the basin.

  11. Cloud Forecast Simulation Model.

    DTIC Science & Technology

    1981-10-01

    forecasts is described in terms of their "skill." The skill of weather forecasts varies according to the type of forecast being made (e.g., tornado warnings...are more difficult to make than cloud forecasts) and according to the location and time-of-year (because clima - tology exerts such a strong influence

  12. Exposure Forecaster

    EPA Pesticide Factsheets

    The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure predictions. The database currently includes biomonitoring exposure data from three studies: the American Healthy Homes Survey, the First National Environmental Health Survey of Child Care Centers and the Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants study. Data include the amounts of chemicals found in food, drinking water, air, dust indoor surfaces and urine. The database will eventually include high-throughput exposure predictions for thousands of chemicals based on manufacture and use information. EPA researchers developed high-throughput exposure models to predict exposures for 1,763 chemicals using production volume, environmental fate and transport models, and a simple indicator of consumer product use.The model is being improved by adding more refined indoor and consumer use information since these are also large determinants of exposure. As these models are refined and more exposure data is collected, it will be added to ExpoCastDB.

  13. The dREAM/Myb-MuvB complex and Grim are key regulators of the programmed death of neural precursor cells at the Drosophila posterior wing margin.

    PubMed

    Rovani, Margritte K; Brachmann, Carrie Baker; Ramsay, Gary; Katzen, Alisa L

    2012-12-01

    Successful development of a multicellular organism depends on the finely tuned orchestration of cell proliferation, differentiation and apoptosis from embryogenesis through adulthood. The MYB-gene family encodes sequence-specific DNA-binding transcription factors that have been implicated in the regulation of both normal and neoplastic growth. The Drosophila Myb protein, DMyb (and vertebrate B-Myb protein), has been shown to be part of the dREAM/MMB complex, a large multi-subunit complex, which in addition to four Myb-interacting proteins including Mip130, contains repressive E2F and pRB proteins. This complex has been implicated in the regulation of DNA replication within the context of chorion gene amplification and transcriptional regulation of a wide array of genes. Detailed phenotypic analysis of mutations in the Drosophila myb gene, Dm myb, has revealed a previously undiscovered function for the dREAM/MMB complex in regulating programmed cell death (PCD). In cooperation with the pro-apoptotic protein Grim and dREAM/MMB, DMyb promotes the PCD of specified sensory organ precursor daughter cells in at least two different settings in the peripheral nervous system: the pIIIb precursor of the neuron and sheath cells in the posterior wing margin and the glial cell in the thoracic microchaete lineage. Unlike previously analyzed settings, in which the main role of DMyb has been to antagonize the activities of other dREAM/MMB complex members, it appears to be the critical effector in promoting PCD. The finding that Dm myb and grim are both involved in regulating PCD in two distinct settings suggests that these two genes may often work together to mediate PCD. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Improved Anvil Forecasting

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2000-01-01

    This report describes the outcome of Phase 1 of the AMU's Improved Anvil Forecasting task. Forecasters in the 45th Weather Squadron and the Spaceflight Meteorology Group have found that anvil forecasting is a difficult task when predicting LCC and FR violations. The purpose of this task is to determine the technical feasibility of creating an anvil-forecasting tool. Work on this study was separated into three steps: literature search, forecaster discussions, and determination of technical feasibility. The literature search revealed no existing anvil-forecasting techniques. However, there appears to be growing interest in anvils in recent years. If this interest continues to grow, more information will be available to aid in developing a reliable anvil-forecasting tool. The forecaster discussion step revealed an array of methods on how better forecasting techniques could be developed. The forecasters have ideas based on sound meteorological principles and personal experience in forecasting and analyzing anvils. Based on the information gathered in the discussions with the forecasters, the conclusion of this report is that it is technically feasible at this time to develop an anvil forecasting technique that will significantly contribute to the confidence in anvil forecasts.

  15. Verifications of the medium-range forecasts of KIAPS integrated model

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lee, Juwon; Choi, In-Jin

    2016-04-01

    The Korea Institute of Atmospheric Prediction System, KIAPS, was established to carry out a national project in developing a new global forecast system from 2011 to 2019. The initial version of KIAPS Integrated Model, KIM, consisted of a spectral element dynamical core on a cubed sphere and a standard physics package from existing models such as the GRIMs, WRF, and GFS. Then KIM2.0 was released with the advanced or newly developed physics, dynamics, and data assimilation. Last July, its semi-real time forecast for 5 days has been operated every 00 and 12 UTC with the fully coupled 3D Var data assimilation system. Performance of KIM forecasts is evaluated both for the period of the selected testbed cases and for the semi-real time operational period, to examine the model improvement along with the upgrade and to figure out the model bias. Standardized statistical verification is also conducted including verification against analyses and observations (e.g., sonde and precipitation data). These will be summarized in this presentation. Additionally, surface verification using SYNOP observations and spatial verification for precipitation applied to meet the need for more informative forecast evaluations will be discussed.

  16. Forecasting Artificial Intelligence Demand

    NASA Astrophysics Data System (ADS)

    Wheeler, David R.; Shelley, Charles

    1986-03-01

    Forecasts are major components of the decision analysis process. When accurate, estimates of future economic activity associated with specific courses of action can correctly set corporate strategy in an uncertain environment. When inaccurate, they can lead to bankruptcy. The basic trouble with most forecasts is that they are not made by forecasters.

  17. Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Bai, T.; Murdin, P.

    2000-11-01

    Like weather forecasting, solar flare forecasting (or forecasting solar activity in general) is motivated by pragmatic needs. Solar flares, coronal mass ejections, solar winds and other solar activity intimately influence the near-Earth space environment. All kinds of spacecraft including weather and communication satellites are orbiting Earth, and their performance and lifetimes are greatly infl...

  18. Forecasts of land uses

    Treesearch

    David N. Wear

    2013-01-01

    Key FindingsBetween 30 million and 43 million acres of land in the South are forecasted to be developed for urban uses by 2060 from a base of 30 million acres in 1997. These forecasts are based on a continuation of historical development intensities.From 1997 to 2060, the South is forecasted to lose between 11 million acres (7...

  19. Stochastic demographic forecasting.

    PubMed

    Lee, R D

    1992-11-01

    "This paper describes a particular approach to stochastic population forecasting, which is implemented for the U.S.A. through 2065. Statistical time series methods are combined with demographic models to produce plausible long run forecasts of vital rates, with probability distributions. The resulting mortality forecasts imply gains in future life expectancy that are roughly twice as large as those forecast by the Office of the Social Security Actuary.... Resulting stochastic forecasts of the elderly population, elderly dependency ratios, and payroll tax rates for health, education and pensions are presented."

  20. Forecast-skill-based simulation of streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Zhao, Jianshi

    2014-09-01

    Streamflow forecasts are updated periodically in real time, thereby facilitating forecast evolution. This study proposes a forecast-skill-based model of forecast evolution that is able to simulate dynamically updated streamflow forecasts. The proposed model applies stochastic models that deal with streamflow variability to generate streamflow scenarios, which represent cases without forecast skill of future streamflow. The model then employs a coefficient of prediction to determine forecast skill and to quantify the streamflow variability ratio explained by the forecast. By updating the coefficients of prediction periodically, the model efficiently captures the evolution of streamflow forecast. Simulated forecast uncertainty increases with increasing lead time; and simulated uncertainty during a specific future period decreases over time. We combine the statistical model with an optimization model and design a hypothetical case study of reservoir operation. The results indicate the significance of forecast skill in forecast-based reservoir operation. Shortage index reduces as forecast skill increases and ensemble forecast outperforms deterministic forecast at a similar forecast skill level. Moreover, an effective forecast horizon exists beyond which more forecast information does not contribute to reservoir operation and higher forecast skill results in longer effective forecast horizon. The results illustrate that the statistical model is efficient in simulating forecast evolution and facilitates analysis of forecast-based decision making.

  1. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    NASA Astrophysics Data System (ADS)

    Aberson, Sim David

    third limit, though the results are inconclusive. Due to limited aircraft resources, optimal observing strategies for these missions must be developed. Since observations in areas of decaying error modes are unlikely to have large impact on subsequent forecasts, such strategies should be based on taking observations in those geographic locations corresponding to the most rapidly growing error modes in the numerical models and on known deficiencies in current data assimilation systems. Here, the most rapidly growing modes are represented by areas of large forecast spread in the NCEP bred-mode global ensemble forecasting system. The sampling strategy requires sampling the entire target region at approximately the same resolution as the North American rawinsonde network to limit the possibly spurious spread of information from dropwindsonde observations into data-sparse regions where errors are likely to grow. When only the subset of data in these fully-sampled target regions is assimilated into the numerical models, statistically significant reduction of the track forecast errors of up to 25% within the critical first two days of the forecast are seen. These model improvements are comparable with the cumulative business-as-usual track forecast model improvements expected over eighteen years.

  2. No evidence for change of the atmospheric helium isotope composition since 1978 from re-analysis of the Cape Grim Air Archive

    NASA Astrophysics Data System (ADS)

    Mabry, Jennifer C.; Lan, Tefang; Boucher, Christine; Burnard, Peter G.; Brennwald, Matthias S.; Langenfelds, Ray; Marty, Bernard

    2015-10-01

    The helium isotope composition of air might have changed since the industrial revolution due to the release of 4He-rich crustal helium during exploitation of fossil fuels. Thereby, variation of the atmospheric helium isotope ratio (3He/4He) has been proposed as a possible new atmospheric tracer of industrial activity. However, the magnitude of such change is debated, with possible values ranging from 0 to about 2 ‰ /yr (Sano et al., 1989; Hoffman and Nier, 1993; Pierson-Wickmann et al., 2001; Brennwald et al., 2013; Lupton and Evans, 2013). A new analytical facility for high precision (2‰, 2σ) analysis of the 3He/4He ratio of air has been developed at CRPG Nancy (France) capable of investigating permil level variations. Previously, Brennwald et al. (2013) analyzed a selection of air samples archived since 1978 at Cape Grim, Tasmania, by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). They reported a mean temporal decrease of the 3He/4He ratio of 0.23-0.30‰/yr. Re-analysis of aliquots of the same samples using the new high-precision instrument showed no significant temporal decrease of the 3He/4He ratio (0.0095 ± 0.033‰ /yr, 2σ) in the time interval 1978-2011. These new data constrain the mean He content of globally produced natural gas to about 0.034% or less, which is about 3× lower than commonly quoted.

  3. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  4. Future freeze forecasting

    NASA Technical Reports Server (NTRS)

    Bartholic, J. F.; Sutherland, R. A.

    1979-01-01

    Real time GOES thermal data acquisition, an energy balance minimum temperature prediction model and a statistical model are incorporated into a minicomputer system. These components make up the operational "Satellite Freeze Forecast System" being used to aid NOAA, NWS forecasters in developing their freeze forecasts. The general concept of the system is presented in this paper. Specific detailed aspects of the system can be found in the reference cited.

  5. Forecaster priorities for improving probabilistic flood forecasts

    NASA Astrophysics Data System (ADS)

    Wetterhall, Fredrik; Pappenberger, Florian; Alfieri, Lorenzo; Cloke, Hannah; Thielen, Jutta

    2014-05-01

    Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by European hydrometeorological agencies. The most obvious advantage of HEPS is that more of the uncertainty in the modelling system can be assessed. In addition, ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the physical and technical aspects of the model systems, such as increased resolution in time and space and better description of physical processes. Developments like these are certainly needed; however, in this paper we argue that there are other areas of HEPS that need urgent attention. This was also the result from a group exercise and a survey conducted to operational forecasters within the European Flood Awareness System (EFAS) to identify the top priorities of improvement regarding their own system. They turned out to span a range of areas, the most popular being to include verification of an assessment of past forecast performance, a multi-model approach for hydrological modelling, to increase the forecast skill on the medium range (>3 days) and more focus on education and training on the interpretation of forecasts. In light of limited resources, we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them. This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement of EFAS in particular and to spur the development of operational HEPS in general.

  6. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  7. Forecasting Future Trends in Education

    ERIC Educational Resources Information Center

    Collazo, Andres; And Others

    1977-01-01

    Describes a forecasting model sensitive to the major factors influencing educational outcomes, presents several forecasts based on alternative sets of assumptions, and discusses the implications of these forecasts, including ways to subvert them. (Author/JG)

  8. Forecasts of forest conditions

    Treesearch

    Robert Huggett; David N. Wear; Ruhong Li; John Coulston; Shan Liu

    2013-01-01

    Key FindingsAmong the five forest management types, only planted pine is expected to increase in area. In 2010 planted pine comprised 19 percent of southern forests. By 2060, planted pine is forecasted to comprise somewhere between 24 and 36 percent of forest area.Although predicted rates of change vary, all forecasts reveal...

  9. Tornado forecasting: A review

    NASA Astrophysics Data System (ADS)

    Doswell, Charles A., III; Weiss, Steven J.; Johns, Robert H.

    Present-day operational tornado forecasting can be thought of in two parts: anticipation of tornadic potential in the storm environment and recognition of tornadic storms once they develop. The former is a forecasting issue, while the latter is associated with warnings (or so-called nowcasting). This paper focuses on the forecasting aspect of tornadoes by dealing primarily with the relationship between the tornadic storm and its environment (Recognition and detection issues are treated by Burgess et al. [this volume]). We begin with a short history of tornado forecasting and related research in section 2; in section 3 we provide an overview of current tornado forecasting procedures within the Severe Local Storms (SELS) Unit at the National Severe Storms Forecast Center (NSSFC). In section 4 we give a short summary of 35 years of SELS tornado and severe thunderstorm forecast verification. In section 5 we describe our current understanding of the connection between tornadoes and their environment. We conclude in section 6 with our thoughts about the future of tornado forecasting.

  10. Aviation Forecasting in ICAO

    NASA Technical Reports Server (NTRS)

    Mcmahon, J.

    1972-01-01

    Opinions or plans of qualified experts in the field are used for forecasting future requirements for air navigational facilities and services of international civil aviation. ICAO periodically collects information from Stators and operates on anticipated future operations, consolidates this information, and forecasts the future level of activity at different airports.

  11. Forecasting the Cumulative Impacts of Dams on the Mekong Delta: Certainties and Uncertainties

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Rubin, Z.; Schmitt, R. J. P.

    2016-12-01

    The Mekong River basin is undergoing rapid hydroelectric development, with 7 large mainstem dams on the upper Mekong (Lancang) River in China and 133 dams planned for the Lower Mekong River basin (Laos, Cambodia, Thailand, Vietnam), 11 of which are on the mainstem. Prior analyses have shown that all these dams built as initially proposed would trap 96% of the natural sediment load to the Mekong Delta. Such a reduction in sediment supply would compromise the sustainability of the delta itself, but there are many uncertainties in the timing and pattern of land loss. The river will first erode in-channel sediment deposits, partly compensating for upstream sediment trapping until these deposits are exhausted. Other complicating factors include basin-wide accelerated land-use change, road construction, instream sand mining, dyking-off floodplains, and changing climate, accelerated subsidence from groundwater extraction, and sea level rise. It is certain that the Mekong Delta will undergo large changes in the coming decades, changes that will threaten its very existence. However, the multiplicity of compounding drivers and lack of good data lead to large uncertainties in forecasting changes in the sediment balance on the scale of a very large network. We quantify uncertainties in available data and consider changes due to additional, poorly quantified drivers (e.g., road construction), putting these drivers in perspective with the overall sediment budget. We developed a set of most-likely scenarios and their implications for the delta's future. Uncertainties are large, but there are certainties about the delta's future. If its sediment supply is nearly completely cut off (as would be the case with `business-as-usual' ongoing dam construction and sediment extraction), the Delta is certainly doomed to disappear in the face of rising seas, subsidence, and coastal erosion. The uncertainty is only when and how precisely the loss will progress.

  12. A global non-hydrostatic weather forecast model in KIAPS using the spectral element on a cubed sphere

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Jin; Lee, Eun-Hee; Hong, Song-You

    2016-04-01

    This presentation covers an introduction to the current state of a non-hydrostatic global atmospheric model to be named the KIAPS integrated model (KIM). Efforts to resolve an excessive dissipation in small scales in KIM will be discussed. Also, simulated results for several idealized benchmark tests and full-physics forecasts will be shown. The dynamical core of the model is using the Euler equation set in a flux form based on the terrain following mass-based vertical coordinate, which is discretized by horizontal spectral element method (SEM) and the vertical finite difference method (FDM) for the spatial discretization and a time-split third-order Runge-Kutta (RK3) for the time discretization. Owing to the virtue of SEM and the explicit time integrator, KIM can achieve easily a high level of scalability. The physics package coupled with the dynamical core is a standard physics package from existing models such as the GRIMs, WRF, and GFS.

  13. Statistical evaluation of forecasts

    NASA Astrophysics Data System (ADS)

    Mader, Malenka; Mader, Wolfgang; Gluckman, Bruce J.; Timmer, Jens; Schelter, Björn

    2014-08-01

    Reliable forecasts of extreme but rare events, such as earthquakes, financial crashes, and epileptic seizures, would render interventions and precautions possible. Therefore, forecasting methods have been developed which intend to raise an alarm if an extreme event is about to occur. In order to statistically validate the performance of a prediction system, it must be compared to the performance of a random predictor, which raises alarms independent of the events. Such a random predictor can be obtained by bootstrapping or analytically. We propose an analytic statistical framework which, in contrast to conventional methods, allows for validating independently the sensitivity and specificity of a forecasting method. Moreover, our method accounts for the periods during which an event has to remain absent or occur after a respective forecast.

  14. Statistical evaluation of forecasts.

    PubMed

    Mader, Malenka; Mader, Wolfgang; Gluckman, Bruce J; Timmer, Jens; Schelter, Björn

    2014-08-01

    Reliable forecasts of extreme but rare events, such as earthquakes, financial crashes, and epileptic seizures, would render interventions and precautions possible. Therefore, forecasting methods have been developed which intend to raise an alarm if an extreme event is about to occur. In order to statistically validate the performance of a prediction system, it must be compared to the performance of a random predictor, which raises alarms independent of the events. Such a random predictor can be obtained by bootstrapping or analytically. We propose an analytic statistical framework which, in contrast to conventional methods, allows for validating independently the sensitivity and specificity of a forecasting method. Moreover, our method accounts for the periods during which an event has to remain absent or occur after a respective forecast.

  15. Precipitation and temperature ensemble forecasts from single-value forecasts

    NASA Astrophysics Data System (ADS)

    Schaake, J.; Demargne, J.; Hartman, R.; Mullusky, M.; Welles, E.; Wu, L.; Herr, H.; Fan, X.; Seo, D. J.

    2007-04-01

    A procedure is presented to construct ensemble forecasts from single-value forecasts of precipitation and temperature. This involves dividing the spatial forecast domain and total forecast period into a number of parts that are treated as separate forecast events. The spatial domain is divided into hydrologic sub-basins. The total forecast period is divided into time periods, one for each model time step. For each event archived values of forecasts and corresponding observations are used to model the joint distribution of forecasts and observations. The conditional distribution of observations for a given single-value forecast is used to represent the corresponding probability distribution of events that may occur for that forecast. This conditional forecast distribution subsequently is used to create ensemble members that vary in space and time using the "Schaake Shuffle" (Clark et al, 2004). The resulting ensemble members have the same space-time patterns as historical observations so that space-time joint relationships between events that have a significant effect on hydrological response tend to be preserved. Forecast uncertainty is space and time-scale dependent. For a given lead time to the beginning of the valid period of an event, forecast uncertainty depends on the length of the forecast valid time period and the spatial area to which the forecast applies. Although the "Schaake Shuffle" procedure, when applied to construct ensemble members from a time-series of single value forecasts, may preserve some of this scale dependency, it may not be sufficient without additional constraint. To account more fully for the time-dependent structure of forecast uncertainty, events for additional "aggregate" forecast periods are defined as accumulations of different "base" forecast periods. The generated ensemble members can be ingested by an Ensemble Streamflow Prediction system to produce ensemble forecasts of streamflow and other hydrological variables that reflect

  16. AIDS. Grim news for Asia.

    PubMed

    1992-12-04

    While Asia was the last region to be exposed to the global spread of HIV and AIDS, the incidence of HIV infection there is increasing fastest. The Asian Development Bank predicts mortality from AIDS will cause some town and village populations to begin declining by the year 2000. With an estimated 1 million people infected in India, and 400,000 in Thailand, these 2 countries are particularly exposed to the risk of epidemic HIV spread. In 5 years, more people may be affected by AIDS in India than anywhere else in the world. Concern over a growing presence of HIV is also merited for the Philippines, Indonesia, China, and the drug trade's Golden Triangle. The Second International Conference on AIDS in Asia and the Pacific in November 1992 stressed that AIDS no longer affects only homosexual and IV drug using populations. 50% of new infections worldwide in the first half of 1992 were among women, 65% of Thailand's AIDS cases are among heterosexuals, and 3-5% of Thailand's long-haul truck drivers have tested positive for HIV infection. HIV and AIDS robs economies and societies of their best workers. The immediate costs of caring for AIDS patients will pale next to the far greater losses to be realized in private sector economic productivity. Asia's more developed economies will probably be able to survive the epidemic, but small, poor countries like Laos will wilt. Prompt action must be taken to overcome public and religious ignorance and objections to promoting and using condoms throughout the region. For the first time, Beijing has organized an AIDS awareness conference for male homosexuals. Further, Singapore has implemented compulsory testing for lower-income foreign workers. Pakistan has even solicited educational assistance and support from Islamic religious leaders; similar action is being considered in Bangladesh.

  17. Earthquake Forecasting, Validation and Verification

    NASA Astrophysics Data System (ADS)

    Rundle, J.; Holliday, J.; Turcotte, D.; Donnellan, A.; Tiampo, K.; Klein, B.

    2009-05-01

    Techniques for earthquake forecasting are in development using both seismicity data mining methods, as well as numerical simulations. The former rely on the development of methods to recognize patterns in data, while the latter rely on the use of dynamical models that attempt to faithfully replicate the actual fault systems. Testing such forecasts is necessary not only to determine forecast quality, but also to improve forecasts. A large number of techniques to validate and verify forecasts have been developed for weather and financial applications. Many of these have been elaborated in public locations, including, for example, the URL as listed below. Typically, the goal is to test for forecast resolution, reliability and sharpness. A good forecast is characterized by consistency, quality and value. Most, if not all of these forecast verification procedures can be readily applied to earthquake forecasts as well. In this talk, we discuss both methods of forecasting, as well as validation and verification using a number of these standard methods. We show how these test methods might be useful for both fault-based forecasting, a group of forecast methods that includes the WGCEP and simulator-based renewal models, and grid-based forecasting, which includes the Relative Intensity, Pattern Informatics, and smoothed seismicity methods. We find that applying these standard methods of forecast verification is straightforward. Judgments about the quality of a given forecast method can often depend on the test applied, as well as on the preconceptions and biases of the persons conducting the tests.

  18. An overview of health forecasting.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D

    2013-01-01

    Health forecasting is a novel area of forecasting, and a valuable tool for predicting future health events or situations such as demands for health services and healthcare needs. It facilitates preventive medicine and health care intervention strategies, by pre-informing health service providers to take appropriate mitigating actions to minimize risks and manage demand. Health forecasting requires reliable data, information and appropriate analytical tools for the prediction of specific health conditions or situations. There is no single approach to health forecasting, and so various methods have often been adopted to forecast aggregate or specific health conditions. Meanwhile, there are no defined health forecasting horizons (time frames) to match the choices of health forecasting methods/approaches that are often applied. The key principles of health forecasting have not also been adequately described to guide the process. This paper provides a brief introduction and theoretical analysis of health forecasting. It describes the key issues that are important for health forecasting, including: definitions, principles of health forecasting, and the properties of health data, which influence the choices of health forecasting methods. Other matters related to the value of health forecasting, and the general challenges associated with developing and using health forecasting services are discussed. This overview is a stimulus for further discussions on standardizing health forecasting approaches and methods that will facilitate health care and health services delivery.

  19. Proceedings: Eleventh forecasting symposium. Forecasting in a competitive electricity market

    SciTech Connect

    Vogt, T.; Ignelzi, P.

    1998-10-01

    EPRI`s Eleventh Forecasting Symposium: ``Forecasting in a Competitive Electricity Market`` was held in Arlington, Virginia, in November 1997. This proceedings documents the symposium`s wide variety of topics, ranging from very-short-term operations issues to mid-term market planning issues. Speakers described the forecasting practices of other industries, predicted forecasting directions in the electric power industry; related their experiences with new forecasting approaches; and suggested further enhancements to forecasting methods, tools, and data. The objectives of the symposium were to explore the expanding roles of forecasting in a competitive market, to exchange information about forecasting techniques under development, and to discuss the forecasting techniques currently used by the electric power industry in and outside the US and in other industries. The 30 papers are arranged under the following topical sections: restructuring and regulatory issues--implications for forecasting; forecasting experiences in other industries; operations-related forecasting; data warehousing and database marketing; forecasting and risk management; understanding and predicting market prices; forecasting methods for the new environment; predicting customer response; and symposium wrap-up.

  20. Earthquake Prediction and Forecasting

    NASA Astrophysics Data System (ADS)

    Jackson, David D.

    Prospects for earthquake prediction and forecasting, and even their definitions, are actively debated. Here, "forecasting" means estimating the future earthquake rate as a function of location, time, and magnitude. Forecasting becomes "prediction" when we identify special conditions that make the immediate probability much higher than usual and high enough to justify exceptional action. Proposed precursors run from aeronomy to zoology, but no identified phenomenon consistently precedes earthquakes. The reported prediction of the 1975 Haicheng, China earthquake is often proclaimed as the most successful, but the success is questionable. An earthquake predicted to occur near Parkfield, California in 1988±5 years has not happened. Why is prediction so hard? Earthquakes start in a tiny volume deep within an opaque medium; we do not know their boundary conditions, initial conditions, or material properties well; and earthquake precursors, if any, hide amongst unrelated anomalies. Earthquakes cluster in space and time, and following a quake earthquake probability spikes. Aftershocks illustrate this clustering, and later earthquakes may even surpass earlier ones in size. However, the main shock in a cluster usually comes first and causes the most damage. Specific models help reveal the physics and allow intelligent disaster response. Modeling stresses from past earthquakes may improve forecasts, but this approach has not yet been validated prospectively. Reliable prediction of individual quakes is not realistic in the foreseeable future, but probabilistic forecasting provides valuable information for reducing risk. Recent studies are also leading to exciting discoveries about earthquakes.

  1. Lagged average forecasting, an alternative to Monte Carlo forecasting

    NASA Technical Reports Server (NTRS)

    Hoffman, R. N.; Kalnay, E.

    1983-01-01

    A 'lagged average forecast' (LAF) model is developed for stochastic dynamic weather forecasting and used for predictions in comparison with the results of a Monte Carlo forecast (MCF). The technique involves the calculation of sample statistics from an ensemble of forecasts, with each ensemble member being an ordinary dynamical forecast (ODF). Initial conditions at a time lagging the start of the forecast period are used, with varying amounts of time for the lags. Forcing by asymmetric Newtonian heating of the lower layer is used in a two-layer, f-plane, highly truncated spectral model in a test forecasting run. Both the LAF and MCF are found to be more accurate than the ODF due to ensemble averaging with the MCF and the LAF. When a regression filter is introduced, all models become more accurate, with the LAF model giving the best results. The possibility of generating monthly or seasonal forecasts with the LAF is discussed.

  2. Quantifying Regional Greenhouse Gas Emissions of HFC-134a From Atmospheric Measurements at the Trinidad Head (California), Cape Grim (Tasmania) and Mace Head (Ireland) Remote AGAGE Sites.

    NASA Astrophysics Data System (ADS)

    Manning, A. J.; Weiss, R. F.; Mühle, J.; Fraser, P. J.; Krummel, P. B.; O'Doherty, S.; Simmonds, P. G.

    2008-12-01

    Atmospheric measurement-based "top-down" approaches to emissions estimation provide a method of validating reported inventory-based "bottom-up" emissions assessments. At the AGAGE (Advanced Global Atmospheric Gases Experiment) measurement stations at Trinidad Head (THD) on the Northern California coast (41°N, 124°W), Cape Grim (CGM) on the northwestern tip of Tasmania (41°S, 145°E), and Mace Head (MHD) on the western coast of Ireland (53°N, 10°W), Medusa GC/MS and GC/ECD/FID instrumentation measure a wide range of trace gases in ambient air at high temporal resolution and high precision. Here, the western US, northwestern European and southern Australian emissions of the greenhouse gas (GHG) HFC-134a are estimated using the HFC-134a measurements, an atmospheric dispersion model (NAME), and an inversion methodology. NAME (Numerical Atmospheric dispersion Modelling Environment) is a Lagrangian atmospheric dispersion model that uses 3D meteorology from the UK Met Office numerical weather prediction model. Mid-latitude Northern and Southern Hemisphere baseline concentrations of HFC-134a are determined using NAME and statistical post- processing of the observations, and this baseline is used to generate a time series of "polluted" (above baseline) observations. In this application NAME is run backwards in time for ten days for each 3-hour interval in 1995-2008 for MHD, 2003-2008 for CGM and 2005-2008 for THD releasing thousands of model particles at each observing site. A map is then produced estimating all of the surface (0-100m) contributions within ten days of travel arriving at each site during each interval. The resulting matrix describes the dilution in concentration that occurs from a unit release from each grid as it travels to the measurement site. Iterative inversion modeling is then carried out to generate an emission estimate that provides the best statistical match between the modeled time series and the observations. Uncertainty in the emission

  3. Forecasters of earthquakes

    NASA Astrophysics Data System (ADS)

    Maximova, Lyudmila

    1987-07-01

    For the first time Soviet scientists have set up a bioseismological proving ground which will stage a systematic extensive experiment of using birds, ants, mountain rodents including marmots, which can dig holes in the Earth's interior to a depth of 50 meters, for the purpose of earthquake forecasting. Biologists have accumulated extensive experimental data on the impact of various electromagnetic fields, including fields of weak intensity, on living organisms. As far as mammals are concerned, electromagnetic waves with frequencies close to the brain's biorhythms have the strongest effect. How these observations can be used to forecast earthquakes is discussed.

  4. On forecasting mortality.

    PubMed

    Olshansky, S J

    1988-01-01

    Official forecasts of mortality made by the U.S. Office of the Actuary throughout this century have consistently underestimated observed mortality declines. This is due, in part, to their reliance on the static extrapolation of past trends, an atheoretical statistical method that pays scant attention to the behavioral, medical, and social factors contributing to mortality change. A "multiple cause-delay model" more realistically portrays the effects on mortality of the presence of more favorable risk factors at the population level. Such revised assumptions produce large increases in forecasts of the size of the elderly population, and have a dramatic impact on related estimates of population morbidity, disability, and health care costs.

  5. Ecological forecasts: An emerging imperative

    Treesearch

    James S. Clark; Steven R. Carpenter; Mary Barber; Scott Collins; Andy Dobson; Jonathan A. Foley; David M. Lodge; Mercedes Pascual; Roger Pielke; William Pizer; Cathy Pringle; Walter V. Reid; Kenneth A. Rose; Osvaldo Sala; William H. Schlesinger; Diana H. Wall; David Wear

    2001-01-01

    Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts...

  6. Forecasting Methods for Institutional Research.

    ERIC Educational Resources Information Center

    Jennings, Linda W.; Young, Dean M.

    1988-01-01

    Increasing demands for accurate forecasts in such areas as student enrollment, energy expenditures, and facility capacity are placing new demands on the institutional researcher. A variety of forecasting models and methods are available, all to be used with caution in long-range forecasting. (Author/MSE)

  7. Corporate Forecasting: Promise and Reality

    ERIC Educational Resources Information Center

    Wheelwright, Steven C.; Clarke, Darral G.

    1976-01-01

    Discusses a survey of forecast preparers and users in 127 major companies in an attempt to assess underlying problems and identify areas for improvement. Concludes that forecasting responsibilities and tasks must be better defined and that forecast preparers and users must become better informed about one another's roles. (Author/JG)

  8. Forecasting Methods for Institutional Research.

    ERIC Educational Resources Information Center

    Jennings, Linda W.; Young, Dean M.

    1988-01-01

    Increasing demands for accurate forecasts in such areas as student enrollment, energy expenditures, and facility capacity are placing new demands on the institutional researcher. A variety of forecasting models and methods are available, all to be used with caution in long-range forecasting. (Author/MSE)

  9. Corporate Forecasting: Promise and Reality

    ERIC Educational Resources Information Center

    Wheelwright, Steven C.; Clarke, Darral G.

    1976-01-01

    Discusses a survey of forecast preparers and users in 127 major companies in an attempt to assess underlying problems and identify areas for improvement. Concludes that forecasting responsibilities and tasks must be better defined and that forecast preparers and users must become better informed about one another's roles. (Author/JG)

  10. Evolving forecasting classifications and applications in health forecasting

    PubMed Central

    Soyiri, Ireneous N; Reidpath, Daniel D

    2012-01-01

    Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation. PMID:22615533

  11. Asian Battery Forecast Report

    SciTech Connect

    Wyeth, R.

    1995-12-31

    A forecast of battery production in Asia is described. While total consumption of battery units still does not match that of the North American market, Asian economic growth has the potential to result in the battery market matching or possibly exceeding that of North America.

  12. Developing air quality forecasts

    NASA Astrophysics Data System (ADS)

    Lee, Pius; Saylor, Rick; Meagher, James

    2012-05-01

    Third International Workshop on Air Quality Forecasting Research; Potomac, Maryland, 29 November to 1 December 2011 Elevated concentrations of both near-surface ozone (O3) and fine particulate matter smaller than 2.5 micrometers in diameter have been implicated in increased mortality and other human health impacts. In light of these known influences on human health, many governments around the world have instituted air quality forecasting systems to provide their citizens with advance warning of impending poor air quality so that they can take actions to limit exposure. In an effort to improve the performance of air quality forecasting systems and provide a forum for the exchange of the latest research in air quality modeling, the International Workshop on Air Quality Forecasting Research (IWAQFR) was established in 2009 and is cosponsored by the U.S. National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), and the World Meteorological Organization (WMO). The steering committee for IWAQFR's establishment was composed of Véronique Bouchet, Mike Howe, and Craig Stoud (EC); Greg Carmichael (University of Iowa); Paula Davidson and Jim Meagher (NOAA); and Liisa Jalkanen (WMO). The most recent workshop took place in Maryland.

  13. Software Project Forecasting

    DTIC Science & Technology

    1980-10-01

    Edition, MIT Press. [15] Robert Pindyck , Econometric Models and Economic Forecasts, Mc Graw-Hill, 1976. [16] L. Putnam and A. Fitzsimmons, "Estimating...34 Datamation, June, 1980, pp. 180-184. (8] Alan Perlis, Fred Sayward and Mary Shaw, unpublished Notes. [9] Fred Roberts , Measurement Theory, Addison

  14. Education Planning: Pupil Forecasting.

    ERIC Educational Resources Information Center

    Royal Inst. of Public Administration, Reading (England). Local Government Operational Research Unit.

    This computer-based system of enrollment projection predicts up to seven years ahead the number of school children of each age and sex who will be in school. The main distinguishing feature of the system is the ability to detect well in advance small changes in the geographical distribution of children. Forecasts are made for zones that will yield…

  15. Federal Forecasters Directory, 1995.

    ERIC Educational Resources Information Center

    National Center for Education Statistics (ED), Washington, DC.

    This directory lists employees of the federal government who are involved in forecasting for policy formation and trend prediction purposes. Job title, agency, business address, phone or e-mail number, and specialty areas are listed for each employee. Employees are listed for the following agencies: (1) Bureau of the Census; (2) Bureau of Economic…

  16. External Environmental Forecast.

    ERIC Educational Resources Information Center

    Lapin, Joel D.

    Representing current viewpoints of academics, futures experts, and social observers, this external environmental forecast presents projections and information of particular relevance to the future of Catonsville Community College. The following topics are examined: (1) population changes and implications for higher education; (2) state and local…

  17. Small Area Forecast Evaluation.

    ERIC Educational Resources Information Center

    Southeast Michigan Council of Governments, Detroit.

    The results of a small area forecast with regard to household composition, population and employment distribution, development and school costs, environmental impact, and transportation in Southeast Michigan are evaluated in this report. The role of public policy in influencing the community demography by the year 2000 is considered by…

  18. Hydrological Forecast Certainty Using Historical Forecast Skill Curves - For A Forecast-Informed Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Sellars, S. L.; Reynolds, D.; Kawzenuk, B.; Ralph, F. M.

    2016-12-01

    A novel forecast verification ``skill curve" method and associated forecast certainty calculation is presented and applied to historical, daily hydrological streamflow operational forecasts used to manage and operate the Coyote Valley Dam (COY), which forms Lake Mendocino in the Russian River basin in Northern California from 2005 to 2015. The presented skill curves represent the historical forecast skill as a function of forecast lead time skill (in forecast hours) and forecast event values (volumetric inflow in acre-feet) for a range of inflow events. We define skill as the lead time when a forecast event value is more likely to be correct than incorrect by calculating the lead time where the Critical Success Index (CSI) value is equals to .5. We explore other CSI values ranging from .1 to .9. Using the skill curve, we define the Actionable Forecast Certainty (AFC) as a measure of real-time forecast certainty as it is compared to the historical skill derived by the skill curve method. The AFC is quantifiable measure of certainty based on the skill of historical 24 and 72 forecast event volume forecast skill, which indicates the degree of certanty on a range from [1,-1] where particular forecast value and lead time, where 1 being highly certain and -1 having least amount of certainty. In addition, we explore the new skill curve and AFC in developing criteria and applicability for Forecast-Informed Reservoir Operations or FIRO, which is a proposed management strategy that uses data from watershed monitoring and modern weather and water forecasting to help water managers selectively retain or release water from reservoirs in a manner that reflects current and forecasted conditions. Both methods are applied to a case study for a Lake Mendocino major inflow event occurring in December, 2012 and results are presented.

  19. Transportation Workload Forecasting (TWF) Study.

    DTIC Science & Technology

    1984-01-01

    specific forecasts of sealift requirements. (1) On 1 May a preliminary annual forecast (MSC-9) is submitted which states the worldwide MSC surface movement...WORDS (Cbmmwo n ves aide of neesr aum Ide~bapj byeA Transportation Workload Forecasting; Surface Cargo; Winters Method, Box-Jenkins Model, Forecasting...Models. 6L. IL~~ AM"YACr (M m an seve at& N .esft MWN a F 10 ’ The study examined the Army process of forecasting its overocean surface cargo d

  20. Superensemble forecasts of dengue outbreaks

    PubMed Central

    Kandula, Sasikiran; Shaman, Jeffrey

    2016-01-01

    In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698

  1. Probabilistic forecast for climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrei; Monier, Erwan; Kicklighter, David; Scott, Jeffrey; Gao, Xiang; Schlosser, Adam

    2013-04-01

    In this study, we investigate possible climate change over Northern Eurasia and its impact on hydrological and carbon cycles. Northern Eurasia is a major player in the global carbon budget because of boreal forests and wetlands. Permafrost degradation associated with climate change could result in wetlands releasing large amounts of carbon dioxide and methane. Changes in the frequency and magnitude of extreme events, such as extreme precipitation, are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. Since the IGSM includes a human activity model, it is possible to analyze uncertainties in emissions resulting, for example, from different future climate policies. Another major feature is the flexibility to vary key climate parameters controlling the climate response: climate sensitivity, net aerosol forcing and ocean heat uptake rate. The IGSM has long been used to perform probabilistic forecasts based on estimates of probability density functions of climate parameters. The MIT IGSM-CAM framework links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM), with new modules developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations discussed in this paper were carried out for two emission scenarios and three sets of climate parameters. The "business as usual" and a

  2. Forecasting potential crises

    SciTech Connect

    Neufeld, W.P.

    1984-04-01

    Recently, the Trend Analysis Program (TAP) of the American Council of Life Insurance commissioned the Futures Group of Glastonbury, Connecticut, to examine the potential for large-scale catastrophic events in the near future. TAP was specifically concerned with five potential crises: the warming of the earth's atmosphere, the water shortage, the collapse of the physical infrastructure, the global financial crisis, and the threat of nuclear war. We are often unprepared to take action; in these cases, we lose an advantage we might have otherwise had. This is the whole idea behind forecasting: to foresee possibilities and to project how we can respond. If we are able to create forecasts against which we can test policy options and choices, we may have the luxury of adopting policies ahead of events. Rather than simply fighting fires, we have the option of creating a future more to our choosing. Short descriptions of these five potential crises and, in some cases, possible solutions are presented.

  3. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  4. Ensemble global ocean forecasting

    NASA Astrophysics Data System (ADS)

    Brassington, G. B.

    2016-02-01

    A novel time-lagged ensemble system based on multiple independent cycles has been performed in operations at the Australian Bureau of Meteorology for the past 3 years. Despite the use of only four cycles the ensemble mean provided robustly higher skill and the ensemble variance was a reliable predictor of forecast errors. A spectral analysis comparing the ensemble mean with the members demonstrated the gradual increase in power of random errors with wavenumber up to a saturation length scale imposed by the resolution of the observing system. This system has been upgraded to a near-global 0.1 degree system in a new hybrid six-member ensemble system configuration including a new data assimilation system, cycling pattern and initialisation. The hybrid system consists of two ensemble members per day each with a 3 day cycle. We will outline the performance of both the deterministic and ensemble ocean forecast system.

  5. Forecasting Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.

    2015-12-01

    Dynamic models of infectious disease systems abound and are used to study the epidemiological characteristics of disease outbreaks, the ecological mechanisms affecting transmission, and the suitability of various control and intervention strategies. The dynamics of disease transmission are non-linear and consequently difficult to forecast. Here, we describe combined model-inference frameworks developed for the prediction of infectious diseases. We show that accurate and reliable predictions of seasonal influenza outbreaks can be made using a mathematical model representing population-level influenza transmission dynamics that has been recursively optimized using ensemble data assimilation techniques and real-time estimates of influenza incidence. Operational real-time forecasts of influenza and other infectious diseases have been and are currently being generated.

  6. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  7. Frost Forecasting for Fruitgrowers

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  8. Asian battery forecast report

    SciTech Connect

    Wyeth, R.

    1995-08-01

    A forecast battery production in Asia is a particularly relevant subject for an Australian lead man to speak of as the majority of our own business is in the region. While total consumption of battery units still does not match that of the North American market of some 80-85 million units per annum, Asian economic growth in the next decade has the potential to result in the battery market matching or even exceeding the above figures.

  9. NOAA Satellite Requirements Forecast.

    DTIC Science & Technology

    1985-05-01

    sensing includes observing sunspots , magnetohydrodynamic flows, filament disappearances, EUV flux, X-ray coronal holes, and vector solar magnetic...benefits through the analysis, forecast, and study of Earth environmental conditions and the solar influ- ences that impact on them. These NOAA agencies...outgoing longwave flux and incoming available and absorbed solar radiation, using infrared and visible radiances averaged for 50 km regions, are

  10. Frost Forecasting for Fruitgrowers

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  11. Uranium price forecasting methods

    SciTech Connect

    Fuller, D.M.

    1994-03-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again.

  12. Land-Breeze Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Wheeler, Mark M.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    The nocturnal land breeze at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) is both operationally significant and challenging to forecast. The occurrence and timing of land breezes impact low-level winds, atmospheric stability, low temperatures, and fog development. Accurate predictions of the land breeze are critical for toxic material dispersion forecasts associated with space launch missions, since wind direction and low-level stability can change noticeably with the onset of a land breeze. This report presents a seven-year observational study of land breezes over east-central Florida from 1995 to 2001. This comprehensive analysis was enabled by the high-resolution tower observations over KSC/CCAFS. Five-minute observations of winds, temperature, and moisture along with 9 15-MHz Doppler Radar Wind Profiler data were used to analyze specific land-breeze cases, while the tower data were used to construct a composite climatology. Utilities derived from this climatology were developed to assist forecasters in determining the land-breeze occurrence, timing, and movement based on predicted meteorological conditions.

  13. Probabilistic Climate Forecasting

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Aina, T.; Bannerman, S.; Christensen, C.; Collins, M.; Dzbor, M.; Faull, N.; Folgate, V.; Frame, D.; Gault, R.; Kettleborough, J.; Knight, S.; Martin, A.; McPherson, E.; Simpson, A.; Spicer, B.; Stainforth, D.; Piani, C.

    2003-12-01

    As a European record-breaking summer draws to an end, climate `stakeholders' are actively planning for the future, presenting the climate research communtiy with a new challenge. Today's coastal and water-supply engineers do not need `projections' of how the climate might respond to rising levels of greenhouse gases, no matter how detailed and realistic. Rather they need to know what changes can be ruled out at a given level of confidence. This is probabilistic climate forecasting. The correct procedure for probabilistic climate forecasting begins with a perturbation analysis of the model to identify consistent relationships between observable quantities and forecast variables of interest(this is reffered to as: `mapping the response manifold'). The resulting ensemble is weighted to accurately represent both current knowledge and uncertainty in observations and then used to infer future climate change. Mapping the respons manifold in a full-scale, non-linear climate model is a formidable chalenge well beyond the capabilities of conventional supercomputing resources. Today the only adequate resource of this scale is presented by the joint idle processing capacity of home and desktop computers of the general public: this is the climateprediction.net approach.

  14. Global crop forecasting

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.

    1980-01-01

    The needs for and remote sensing means of global crop forecasting are discussed, and key results of the Large Area Crop Inventory Experiment (LACIE) are presented. Current crop production estimates provided by foreign countries are shown often to be inadequate, and the basic elements of crop production forecasts are reviewed. The LACIE project is introduced as a proof-of-concept experiment designed to assimilate remote sensing technology, monitor global wheat production, evaluate key technical problems, modify the technique accordingly and demonstrate the feasibility of a global agricultural monitoring system. The global meteorological data, sampling and aggregation techniques, Landsat data analysis procedures and yield forecast procedures used in the experiment are outlined. Accuracy assessment procedures employed to evaluate LACIE technology performance are presented, and improvements in system efficiency and capacity during the three years of operation are pointed out. Results of LACIE estimates of Soviet, U.S. and Canadian wheat production are presented which demonstrate the feasibility and accuracy of the remote-sensing approach for global food and fiber monitoring.

  15. The forecasting center of Meudon, France. [solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Simon, P.

    1979-01-01

    Main features of solar activity are described in relation to solar and geophysical forecasting. Spectroheliograms, radio and X-ray data, white light coronal observations, particles data, photospheric images, and photospheric magnetic fields are among the types of data used to identify the active centers and flares of the Sun. Forecasting and identification of geomagnetic activity is also discussed. The forecasting technique is described along with the types of users.

  16. EU pharmaceutical expenditure forecast

    PubMed Central

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Method In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012–2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. Results According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (−€9,367 million), France

  17. Consistency among microphysics-convection-radiation processes in a numerical forecasting model

    NASA Astrophysics Data System (ADS)

    Bae, Soo Ya; Park, Raeseol; Hong, Song-You

    2016-04-01

    Radiative fluxes are mainly affected by the cloud optical properties calculated with effective radius, water path of hydrometeors, and cloud fraction. A prognostic cloud fraction scheme, which considers the cloud fraction with increments as a result of each physics process, is implemented in the Global/Regional Integrated Model system (GRIMs) (Park et al., 2016). However, the original RRTMG scheme does not consider the hydrometeor information from convection processes, resulting in inconsistency between cloud process and radiation activity. To ensure consistency among physics processes, the amount of hydrometeors from both the cumulus parameterization scheme (CPS) and microphysics schemes is explicitly taken into account in computing radiative fluxes. The effects of this modification are tested for a heavy rainfall over Korea to identify the feedback between the precipitation and radiation processes. It is found that the information of hydrometeors from CPS tends to increase water path, which leads to larger cloud optical depth and cooling. Skill scores of the simulated precipitation in a medium-range forecast testbed confirm benefits of the consistent treatment of hydrometeors in both CPS and radiation processes.

  18. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge

  19. Forecasting Models for Energy Policymaking

    DTIC Science & Technology

    1983-09-01

    price shock is less than other estimates and contains an important lesson for DoD policymakers: macro - economic analysis highlights the facts that...Conclusions 3. LONG-RANGE ECONOMIC FORECASTS Model Structure Forecasts Review Models that Inform Judgment Conclusion: What Does Analysis ...of Long-Range Forecasts Tell DoD? 3-26 4. DECISION ANALYSIS APPROACHES 4-1 The Teisburg Model 4-1 Conclusion: What Do Decision

  20. Medium-range fire weather forecasts

    Treesearch

    J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka

    1991-01-01

    The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...

  1. Local flood forecasting - From data collection to communicating forecasts

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.

    2013-12-01

    An important aspect of improving resilience to flooding is the provision of timely warnings to flood sensitive locations thus allowing mitigating measures to be implemented. For specific locations such small communities (often in head water catchments) or river side factories the ability of traditional centralised forecasting systems to provide timely & accurate forecasts may be challenged. This is due in part to the finite resources of monitoring agencies which results in courser spatial scales of model and data collection then may be required for the generation of accurate forecasts. One strategy to improve flood resilience at such locations is to develop automated location specific forecasts. In this presentation we outline a methodology to achieve this based on the installation of adequate telemetered monitoring equipment; generally a water level sensor and a rain gauge. This allows the construction of a local flood forecasting model which may be coupled with available precipitation forecasts. The construction of the hydrological forecasting model consists of a guided process which incorporates both data assimilation and the representation of the forecast uncertainty based on post processing. The guided process requires the modeller to make only a few choices thus allowing rapid model deployment and revision. To be of use the derived forecasts must be made available in real time and updated frequently; maybe every five minutes. Traditional practices in issuing warnings dependent on expert interpretation must therefore be altered so that those at the site of interest become their own `experts'. To aid this appropriate presentation of both the predictions and past performance of the model, designed to encourage realistic interpretation of the forecasts and their uncertainties is considered. The resulting forecast chain is demonstrated on UK case studies.

  2. Ensemble flood forecasting: A review

    NASA Astrophysics Data System (ADS)

    Cloke, H. L.; Pappenberger, F.

    2009-09-01

    SummaryOperational medium range flood forecasting systems are increasingly moving towards the adoption of ensembles of numerical weather predictions (NWP), known as ensemble prediction systems (EPS), to drive their predictions. We review the scientific drivers of this shift towards such 'ensemble flood forecasting' and discuss several of the questions surrounding best practice in using EPS in flood forecasting systems. We also review the literature evidence of the 'added value' of flood forecasts based on EPS and point to remaining key challenges in using EPS successfully.

  3. Ensemble flood forecasting: A review

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah; Pappenberger, Florian

    2010-05-01

    Operational medium range flood forecasting systems are increasingly moving towards the adoption of ensembles of numerical weather predictions (NWP), known as ensemble prediction systems (EPS), to drive their predictions. We review the scientific drivers of this shift towards such ‘ensemble flood forecasting' and discuss several of the questions surrounding best practice in using EPS in flood forecasting systems. We also review the literature evidence of the ‘added value' of flood forecasts based on EPS and point to remaining key challenges in using EPS successfully. A continuous review can be found on the website: http://www.floodrisk.net/.

  4. Forecasting droughts in East Africa

    NASA Astrophysics Data System (ADS)

    Mwangi, E.; Wetterhall, F.; Dutra, E.; Di Giuseppe, F.; Pappenberger, F.

    2014-02-01

    The humanitarian crises caused by the recent droughts (2008-2009 and 2010-2011) in East Africa have illustrated that the ability to make accurate drought forecasts with sufficient lead time is essential. The use of dynamical model precipitation forecasts in combination with drought indices, such as the Standardized Precipitation Index (SPI), can potentially lead to a better description of drought duration, magnitude and spatial extent. This study evaluates the use of the European Centre for Medium-Range Weather Forecasts (ECMWF) products in forecasting droughts in East Africa. ECMWF seasonal precipitation shows significant skill for March-May and October-December rain seasons when evaluated against measurements from the available in situ stations from East Africa. The forecast for October-December rain season has higher skill than for the March-May season. ECMWF forecasts add value to the consensus forecasts produced during the Greater Horn of Africa Climate Outlook Forum (GHACOF), which is the present operational product for precipitation forecast over East Africa. Complementing the original ECMWF precipitation forecasts with SPI provides additional information on the spatial extent and intensity of the drought event.

  5. IEA Wind Task 36 Forecasting

    NASA Astrophysics Data System (ADS)

    Giebel, Gregor; Cline, Joel; Frank, Helmut; Shaw, Will; Pinson, Pierre; Hodge, Bri-Mathias; Kariniotakis, Georges; Sempreviva, Anna Maria; Draxl, Caroline

    2017-04-01

    Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Wind Power Forecasting tries to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, UK MetOffice, …) and operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets for verification. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts aiming at industry and forecasters alike. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions, especially probabilistic ones. The Operating Agent is Gregor Giebel of DTU, Co-Operating Agent is Joel Cline of the US Department of Energy. Collaboration in the task is solicited from everyone interested in the forecasting business. We will collaborate with IEA Task 31 Wakebench, which developed the Windbench benchmarking platform, which this task will use for forecasting benchmarks. The task runs for three years, 2016-2018. Main deliverables are an up-to-date list of current projects and main project results, including datasets which can be used by researchers around the world to improve their own models, an IEA Recommended Practice on performance evaluation of probabilistic forecasts, a position paper regarding the use of probabilistic forecasts

  6. Hydrologic Forecasting and Hydropower Production

    NASA Astrophysics Data System (ADS)

    Wigmosta, M. S.; Voisin, N.; Lettenmaier, D. P.; Coleman, A.; Mishra, V.; Schaner, N. A.

    2011-12-01

    Hydroelectric power production is one of many competing demands for available water along with other priority uses such as irrigation, thermoelectric cooling, municipal, recreation, and environmental performance. Increasingly, hydroelectric generation is being used to offset the intermittent nature of some renewable energy sources such as wind-generated power. An accurate forecast of the magnitude and timing of water supply assists managers in integrated planning and operations to balance competing water uses against current and future supply while protecting against the possibility of water or energy shortages and excesses with real-time actions. We present a medium-range to seasonal ensemble streamflow forecasting system where uncertainty in forecasts is addressed explicitly. The integrated forecast system makes use of remotely-sensed data and automated spatial and temporal data assimilation. Remotely-sensed snow cover, observed snow water equivalent, and observed streamflow data are used to update the hydrologic model state prior to the forecast. In forecast mode, the hydrology model is forced by calibrated ensemble weather/climate forecasts. This system will be fully integrated into a water optimization toolset to inform reservoir and power operations, and guide environmental performance decision making. This flow forecast system development is carried out in agreement with the National Weather Service so that the system can later be incorporated into the NOAA eXperimental Ensemble Forecast Service (XEFS).

  7. Solar Indices Forecasting Tool

    NASA Astrophysics Data System (ADS)

    Henney, Carl John; Shurkin, Kathleen; Arge, Charles; Hill, Frank

    2016-05-01

    Progress to forecast key space weather parameters using SIFT (Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model is highlighted in this presentation. Using a magnetic flux transport model, ADAPT, we estimate the solar near-side field distribution that is used as input into empirical models for predicting F10.7(solar 10.7 cm, 2.8 GHz, radio flux), the Mg II core-to-wing ratio, and selected bands of solar far ultraviolet (FUV) and extreme ultraviolet (EUV) irradiance. Input to the ADAPT model includes the inferred photospheric magnetic field from the NISP ground-based instruments, GONG & VSM. Besides a status update regarding ADAPT and SIFT models, we will summarize the findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL. The input data utilized by ADAPT is obtained by NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The 10.7 cm solar radio flux data service, utilized by the ADAPT/SIFT F10.7 forecasting model, is operated by the National Research Council of Canada and National Resources Canada, with the support of the Canadian Space Agency.

  8. Handbook of Forecasting Techniques

    DTIC Science & Technology

    1975-12-01

    SOCIAL POLICYISTANFORD RESEARCH INSTITUTE POLICY RESEARCH, ,R6156T 10 SRI Project VMO-U3738 ~: .. ~ BURNHAM H. DODGE DAVID C. MILLER PETER SCHWARTZ...G.IKruzic, David C.IMillvr DACW 31l75-C-RM7 ~0 IltLATI~ililON NliikAilMMIE AOADORD S0I 0N( LMETPET TASKC Center for the Study of Social Policy A R, I I...methods suitable for a wide range of technological, economic, social , and environmetntal forecasting are selected and discussed. Procedures for using each

  9. Weather Forecasting Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Weather forecasters are usually very precise in reporting such conditions as temperature, wind velocity and humidity. They also provide exact information on barometric pressure at a given moment, and whether the barometer is "rising" or "falling"- but not how rapidly or how slowly it is rising or falling. Until now, there has not been available an instrument which measures precisely the current rate of change of barometric pressure. A meteorological instrument called a barograph traces the historical ups and downs of barometric pressure and plots a rising or falling curve, but, updated every three hours, it is only momentarily accurate at each updating.

  10. FAA Aviation Forecasts

    DTIC Science & Technology

    1992-02-01

    percent decline 22.90 cents in fiscal year 2003. Real in real dollars. Looking at it from a domestic yields are forecast to in- revenue perspective, a...general economy ( real GNP up 1.0 percent). Most of the Revenue Passenger Miles growth, however, is expected to occur during the January to March...operations are in services, finance, insurance, and expected to increase to 393,700 in real estate . 2010, compared to 290,700 in 1990, an increase of 35

  11. Forecasting in Complex Systems

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  12. Operational Geomagnetic Forecast Service

    NASA Astrophysics Data System (ADS)

    Semeniv, O.; Polonska, A.; Parnowski, A.

    2014-12-01

    The operational forecasting service for real-time geomagnetic indices Dst and Kp was described. The warning time for the Earth to the intersection of the Dst index is 1-4 hours, for the Kp index - 3 hours. The skillscore parameter, which is defined as a decrease of the relative mean square error with respect to the trivial model, was approximately 40% for Dst and 15% for Kp. The service works on-line freely available through STAFF http://www.staff.oma.be/ browser.

  13. Utility usage forecasting

    DOEpatents

    Hosking, Jonathan R. M.; Natarajan, Ramesh

    2017-08-22

    The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.

  14. Forecast Mekong: 2011 update

    USGS Publications Warehouse

    Turnipseed, D. Phil

    2011-01-01

    In 2009, U.S. Secretary of State Hillary R. Clinton joined with the Foreign Ministers of Cambodia, Laos, Thailand, and Vietnam in launching the Lower Mekong Initiative to enhance U.S. engagement with the Lower Mekong countries in the areas of environment, health, education, and infrastructure. Part of the Lower Mekong Initiative, the U.S. Geological Survey's Forecast Mekong project is engaging the United States in scientific research relevant to environmental issues in the Lower Mekong River countries and is staying the course in support of the Mekong Nations with a suite of new projects for 2011.

  15. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  16. Social Indicators and Social Forecasting.

    ERIC Educational Resources Information Center

    Johnston, Denis F.

    The paper identifies major types of social indicators and explains how they can be used in social forecasting. Social indicators are defined as statistical measures relating to major areas of social concern and/or individual well being. Examples of social indicators are projections, forecasts, outlook statements, time-series statistics, and…

  17. Regional-seasonal weather forecasting

    SciTech Connect

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  18. The pioneers of weather forecasting

    NASA Astrophysics Data System (ADS)

    Ballard, Susan

    2016-01-01

    In The Weather Experiment author Peter Moore takes us on a compelling journey through the early history of weather forecasting, bringing to life the personalities, lives and achievements of the men who put in place the building blocks required for forecasts to be possible.

  19. Accuracy of Enrollment Forecasting Methods.

    ERIC Educational Resources Information Center

    Shaw, Robert C.; Alspaugh, John; Wat-Aksorn, Patchara

    1997-01-01

    Reviews three special-purpose forecasting methods (population-ratio techniques, Bell Telephone method, method of analogy, and multiple-factor method) and three methods of universal applicability (the cohort-survival, percentage- survival, and law-of-growth methods) to help administrators grasp enrollment forecasting technicalities. A comparison…

  20. Social Indicators and Social Forecasting.

    ERIC Educational Resources Information Center

    Johnston, Denis F.

    The paper identifies major types of social indicators and explains how they can be used in social forecasting. Social indicators are defined as statistical measures relating to major areas of social concern and/or individual well being. Examples of social indicators are projections, forecasts, outlook statements, time-series statistics, and…

  1. Online dissemination of probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Roulston, M. S.; Smith, L. A.

    2003-04-01

    Probabilistic weather forecasts intrinsically contain a much larger amount of information than traditional deterministic forecasts. This greatly increases their potential value to end-users, but also creates an obstacle to their dissemination. Traditional media, such as TV, radio and newspapers, are not suitable for presenting probabilistic forecasts to a large number of users who need predictions concerning a range of variables at a range of locations. The web has the potential to allow probabilistic forecasts to be communicated to users without having to make tacit assumptions about how their individual utility functions depend on weather variables. Unfortunately, the majority of weather forecasts currently available on the web are little more than online renditions of the type of forecasts found in more traditional media. We present a demonstration of how probabilistic forecasts might be effectively disseminated using the web. The graphical user interface allows users to view ensembles of the weather variables of interest to them without having to summarise the probabilistic information in the ensemble, and thus make implicit assumptions about the users weather risk exposure. Such a GUI can also be used to view "end-to-end" ensemble forecasts of non-weather, but weather dependent, variables of direct interest to users (e.g. wind power production).

  2. Now, Here's the Weather Forecast...

    ERIC Educational Resources Information Center

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  3. Now, Here's the Weather Forecast...

    ERIC Educational Resources Information Center

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  4. Statistical Earthquake Focal Mechanism Forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    The new whole Earth focal mechanism forecast, based on the GCMT catalog, has been created. In the present forecast, the sum of normalized seismic moment tensors within 1000 km radius is calculated and the P- and T-axes for the focal mechanism are evaluated on the basis of the sum. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms. This average angle shows tectonic complexity of a region and indicates the accuracy of the prediction. The method was originally proposed by Kagan and Jackson (1994, JGR). Recent interest by CSEP and GEM has motivated some improvements, particularly to extend the previous forecast to polar and near-polar regions. The major problem in extending the forecast is the focal mechanism calculation on a spherical surface. In the previous forecast as our average focal mechanism was computed, it was assumed that longitude lines are approximately parallel within 1000 km radius. This is largely accurate in the equatorial and near-equatorial areas. However, when one approaches the 75 degree latitude, the longitude lines are no longer parallel: the bearing (azimuthal) difference at points separated by 1000 km reach about 35 degrees. In most situations a forecast point where we calculate an average focal mechanism is surrounded by earthquakes, so a bias should not be strong due to the difference effect cancellation. But if we move into polar regions, the bearing difference could approach 180 degrees. In a modified program focal mechanisms have been projected on a plane tangent to a sphere at a forecast point. New longitude axes which are parallel in the tangent plane are corrected for the bearing difference. A comparison with the old 75S-75N forecast shows that in equatorial regions the forecasted focal mechanisms are almost the same, and the difference in the forecasted focal mechanisms rotation angle is close to zero. However, though the forecasted focal mechanisms are similar

  5. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  6. Forecasting global atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N. M.; Engelen, R.; Jones, L.; Kivi, R.; Paris, J.-D.; Peuch, V.-H.; Sherlock, V.; Vermeulen, A. T.; Wennberg, P. O.; Wunch, D.

    2014-11-01

    A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and

  7. Forecasting global atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N. M.; Engelen, R.; Jones, L.; Kivi, R.; Paris, J.-D.; Peuch, V.-H.; Sherlock, V.; Vermeulen, A. T.; Wennberg, P. O.; Wunch, D.

    2014-05-01

    A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they become available in

  8. GALE improves snow forecasting

    NASA Astrophysics Data System (ADS)

    Scientific results from an intensive study of winter storms on the U.S. East Coast last year contributed to improved weather forecasts of two successive snowstorms that virtually closed down Washington, D.C., for several days in January 1987.In the Genesis of Atlantic Lows Experiment (GALE) field project, scientists took detailed measurements simultaneously from the atmosphere and the ocean to study how these features interact at various stages of an East Coast winter storm, according to project director Richard Dirks, who is with the National Center for Atmospheric Research (NCAR) in Boulder, Colo. “It's interesting that we actually had four storms [in the GALE study] that were of similar intensity to the two East Coast storms” in January 1987, Dirks said. “However, last year the temperatures were warmer, and the storm tracks were located somewhat further offshore and therefore did not significantly affect the northeast corridor with heavy snows.”

  9. Tropical forecasting - Predictability perspective

    NASA Technical Reports Server (NTRS)

    Shukla, J.

    1989-01-01

    Results are presented of classical predictability studies and forecast experiments with observed initial conditions to show the nature of initial error growth and final error equilibration for the tropics and midlatitudes, separately. It is found that the theoretical upper limit of tropical circulation predictability is far less than for midlatitudes. The error growth for a complete general circulation model is compared to a dry version of the same model in which there is no prognostic equation for moisture, and diabatic heat sources are prescribed. It is found that the growth rate of synoptic-scale errors for the dry model is significantly smaller than for the moist model, suggesting that the interactions between dynamics and moist processes are among the important causes of atmospheric flow predictability degradation. Results are then presented of numerical experiments showing that correct specification of the slowly varying boundary condition of SST produces significant improvement in the prediction of time-averaged circulation and rainfall over the tropics.

  10. Forecasting droughts in East Africa

    NASA Astrophysics Data System (ADS)

    Mwangi, Emmah; Wetterhall, Fredrik; Dutra, Emanuel; Di Giuseppe, Francesca; Pappenberger, Florian

    2014-05-01

    The humanitarian crisis caused by the recent droughts (2008-2009 and 2010-2011) in East Africa have illustrated that the ability to make accurate drought predictions with sufficient lead time is essential. The use of dynamical model forecasts in combination with drought indices, such as the Standardized Precipitation Index (SPI), can potentially to lead to a better description of drought duration, magnitude and spatial extent. This study evaluates the use of the European Centre for Medium-Range Weather Forecasts (ECMWF) products in forecasting droughts in East Africa. ECMWF seasonal precipitation shows significant skill for both rain seasons when evaluated against measurements from the available in-situ stations from East Africa. The forecast for October-December rain season has higher skill than for the March-May season. ECMWF forecasts add value to the statistical forecasts produced during the Greater Horn of Africa Climate Outlook Forums (GHACOF), which is the present operational product. Complementing the raw precipitation forecasts with SPI provides additional information on the spatial extent and intensity of the drought event.

  11. Probability Forecasting: A Guide for Forecasters and Staff Weather Officers

    DTIC Science & Technology

    1991-12-01

    100% 40 1 1 6 17% 0 20 0 0 1 0 0 0 0 0 9 0% 0 0 0 0 0 0 0 0 0 0 Totals Climo 1 2 3 4 5 6 7 8 9 10 11 12 031 32% Forecast Frequency S- Legend: 1...Corresponding to Expected Brier Scores for Forecasts with Two Categories Shown in Table 4-9. (Multiply by 100 to obtain percentages.) CORRELATION CLIMO % 0

  12. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  13. Application of quantitative precipitation forecasting and precipitation ensemble prediction for hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Tao, P.; Tie-Yuan, S.; Zhi-Yuan, Y.; Jun-Chao, W.

    2015-05-01

    The precipitation in the forecast period influences flood forecasting precision, due to the uncertainty of the input to the hydrological model. Taking the ZhangHe basin as the example, the research adopts the precipitation forecast and ensemble precipitation forecast product of the AREM model, uses the Xin Anjiang hydrological model, and tests the flood forecasts. The results show that the flood forecast result can be clearly improved when considering precipitation during the forecast period. Hydrological forecast based on Ensemble Precipitation prediction gives better hydrological forecast information, better satisfying the need for risk information for flood prevention and disaster reduction, and has broad development opportunities.

  14. Earthquake number forecasts testing

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  15. Value of Wind Power Forecasting

    SciTech Connect

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  16. Method Forecasts Global Energy Substitution

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a model developed to forecast energy demands and determine trends in demand for primary fuels. The energy model essentially considers primary energy sources as competing commodities in a market. (MLH)

  17. Preparing for an Uncertain Forecast

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    Navigating the world of government relations and public policy can be a little like predicting the weather. One can't always be sure what's in store or how it will affect him/her down the road. But there are common patterns and a few basic steps that can help one best prepare for a change in the forecast. Though the forecast is uncertain, early…

  18. Forecast of solar cycle 25

    NASA Astrophysics Data System (ADS)

    Krasotkin, Serge; Shmorgilov, Feodor

    The revised method of equal phase averaging was used to predict the main features of the solar cycle 25. The forecast of Wolf number values was obtained not only for solar cycle maximum but for 16 phases of the cycle. The double-peak structure of the cycle maximum phase is well seen. The problems of the long- and superlong-term forecasts of solar activity are discussed.

  19. Preparing for an Uncertain Forecast

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    Navigating the world of government relations and public policy can be a little like predicting the weather. One can't always be sure what's in store or how it will affect him/her down the road. But there are common patterns and a few basic steps that can help one best prepare for a change in the forecast. Though the forecast is uncertain, early…

  20. Forecasting Thermosphere Density: an Overview

    NASA Astrophysics Data System (ADS)

    Bruinsma, S.

    2015-12-01

    Our knowledge of the thermosphere has improved considerably since 2000 thanks to the availability of high-resolution accelerometer inferred densities. Consequently, precision and shortcomings of thermosphere models are better known. Thermosphere density forecast accuracy is limited by: 1) the accuracy of the thermosphere model 2) the solar and geomagnetic activity forecast 3) the quality of the data assimilation system. The precision of semi-empirical thermosphere models is 10-25%. Solar activity forecasts can be accurate up to 5 days. They become less accurate with time, but some proxies are more forecastable than others. Geomagnetic activity forecasting is more problematic, since in most cases storm events cannot be predicted on any time scale. The forecast accuracy is ultimately bounded by the thermosphere model precision and the (varying) degree to which mainly the solar proxy represents EUV heating of the atmosphere. Both errors can be corrected for by means of near real time (nrt) assimilation of satellite drag data, provided that the data is of high quality. At present, only the classified High Accuracy Satellite Drag Model of the Air Force has that capability operationally, even if other prototype nrt models have been developed. Data assimilation significantly improves density forecasts up to 72-hours out; there is no gain for longer periods due to the short memory of the thermosphere system. Only physical models, e.g. TIMEGCM and CTIPe, can in principle reproduce the dynamic changes in density for example during geomagnetic storms. However, accurate information on atmospheric heating is often missing, or not used. When it is, observed and modeled Traveling Atmospheric Disturbances are very similar. Nonmigrating tides and waves propagating from the lower atmosphere cause longitudinal density variations; sources of geophysical noise for semi-empirical models, they can be predicted qualitatively and sometimes quantitatively with physical models. This

  1. Training Guide for Severe Weather Forecasters

    DTIC Science & Technology

    1979-11-01

    with any type of forecast, the severe weather forecast is only as good as the analyses used in making that forecast. If the parameters (to be discussed... severe weather forecast . Finally, a description of techniques used to evaluate and adjust various AFGWC and National Weather Service (NWS...producers. 2.5.12 Lifted index.. .AWSM 105-124, Chapter 5. When used as a severe weather forecast parameter, consider the following intensity

  2. Survey of air cargo forecasting techniques

    NASA Technical Reports Server (NTRS)

    Kuhlthan, A. R.; Vermuri, R. S.

    1978-01-01

    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling.

  3. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  4. Forecasting droughts in East Africa

    NASA Astrophysics Data System (ADS)

    Mwangi, E.; Wetterhall, F.; Dutra, E.; Di Giuseppe, F.; Pappenberger, F.

    2013-08-01

    The humanitarian crisis caused by the recent droughts (2008-2009 and 2010-2011) in the East African region have illustrated that the ability to make accurate drought predictions with adequate lead time is essential. The use of dynamical model forecasts and drought indices, such as Standardized Precipitation Index (SPI), promises to lead to a better description of drought duration, magnitude and spatial extent. This study evaluates the use of the European Centre for Medium-Range Weather Forecasts (ECMWF) products in forecasting droughts in East Africa. ECMWF seasonal precipitation shows significant skill for both rain seasons when evaluated against measurements from the available in-situ stations from East Africa. The October-December rain season has higher skill that the March-May season. ECMWF forecasts add value to the statistical forecasts produced during the Greater Horn of Africa Climate Outlook Forums (GHACOF) which is the present operational product. Complementing the raw precipitation forecasts with SPI provides additional information on the spatial extend and intensity of the drought event.

  5. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  6. Fields, Flares, And Forecasts

    NASA Astrophysics Data System (ADS)

    Boucheron, L.; Al-Ghraibah, Amani; McAteer, J.; Cao, H.; Jackiewicz, J.; McNamara, B.; Voelz, D.; Calabro, B.; DeGrave, K.; Kirk, M.; Madadi, A.; Petsov, A.; Taylor, G.

    2011-05-01

    Solar active regions are the source of many energetic and geo-effective events such as solar flares and coronal mass ejections (CMEs). Understanding how these complex source regions evolve and produce these events is of fundamental importance, not only to solar physics, but also to the demands of space weather forecasting. We propose to investigate the physical properties of active region magnetic fields using fractal-, gradient-, neutral line-, emerging flux-, wavelet- and general image-based techniques, and to correlate them to solar activity. The combination of these projects with solarmonitor.org and the international Max Millenium Campaign presents an opportunity for accurate and timely flare predictions for the first time. Many studies have attempted to relate solar flares to their concomitant magnetic field distributions. However, a consistent, causal relationship between the magnetic field on the photosphere and the production of solar flares is unknown. Often the local properties of the active region magnetic field - critical in many theories of activity - are lost in the global definition of their diagnostics, in effect smoothing out variations that occur on small spatial scales. Mindful of this, our overall goal is to create measures that are sensitive to both the global and the small-scale nature of energy storage and release in the solar atmosphere in order to study solar flare prediction. This set of active region characteristics will be automatically explored for discriminating features through the use of feature selection methods. Such methods search a feature space while optimizing a criterion - the prediction of a flare in this case. The large size of the datasets used in this project make it well suited for an exploration of a large feature space. This work is funded through a New Mexico State University Interdisciplinary Research Grant.

  7. Statistical earthquake focal mechanism forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2014-04-01

    Forecasts of the focal mechanisms of future shallow (depth 0-70 km) earthquakes are important for seismic hazard estimates and Coulomb stress, and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude and focal mechanism. In previous publications we reported forecasts of 0.5° spatial resolution, covering the latitude range from -75° to +75°, based on the Global Central Moment Tensor earthquake catalogue. In the new forecasts we have improved the spatial resolution to 0.1° and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each gridpoint. Simultaneously, we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method of Kagan & Jackson proposed in 1994. This average angle reveals the level of tectonic complexity of a region and indicates the accuracy of the prediction. The procedure becomes problematical where longitude lines are not approximately parallel, and where shallow earthquakes are so sparse that an adequate sample spans very large distances. North or south of 75°, the azimuths of points 1000 km away may vary by about 35°. We solved this problem by calculating focal mechanisms on a plane tangent to the Earth's surface at each forecast point, correcting for the rotation of the longitude lines at the locations of earthquakes included in the averaging. The corrections are negligible between -30° and +30° latitude, but outside that band uncorrected rotations can be significantly off. Improved forecasts at 0.5° and 0.1° resolution are posted at http://eq.ess.ucla.edu/kagan/glob_gcmt_index.html.

  8. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    strong upslope shifting of open grassland, chaparral and hardwood types, which may be initiated by increased fire frequencies, particularly where fires have not recently burned within normal fire recurrence interval departures (FRID). An evaluation of four fire management strategies (business as usual; resist change; foster orderly change; protect vital resources) across four combinations of future climate and fire frequency found that no single management strategy was uniformly successful in protecting critical resources across the range of future conditions examined. This limitation is somewhat driven by current management constraints on the amount of management available to resource managers, which suggests management will need to use a triage approach to application of proactive fire management strategies, wherein MOC landscape projections can be used in decision support.

  9. Forecasting Brassica rapa: Merging climate models with genotype specific process models for evaluation whole species response to climate change.

    NASA Astrophysics Data System (ADS)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Guadagno, C. L.

    2016-12-01

    Human society has modified agriculture management practices and utilized a variety of breeding approaches to adapt to changing environments. Presently a dual pronged challenge has emerged as environmental change is occurring more rapidly while the demand of population growth on food supply is rising. Knowledge of how current agricultural practices will respond to these challenges can be informed through crafted prognostic modeling approaches. Amongst the uncertainties associated with forecasting agricultural production in a changing environment is evaluation of the responses across the existing genotypic diversity of crop species. Mechanistic models of plant productivity provide a means of genotype level parameterization allowing for a prognostic evaluation of varietal performance under changing climate. Brassica rapa represents an excellent species for this type of investigation because of its wide cultivation as well as large morphological and physiological diversity. We incorporated genotypic parameterization of B. rapa genotypes based on unique CO2 assimilation strategies, vulnerabilities to cavitation, and root to leaf area relationships into the TREES model. Three climate drivers, following the "business-as-usual" greenhouse gas emissions scenario (RCP 8.5) from Coupled Model Intercomparison Project, Phase 5 (CMIP5) were considered: temperature (T) along with associated changes in vapor pressure deficit (VPD), increasing CO2, as well as alternatives in irrigation regime across a temporal scale of present day to 2100. Genotypic responses to these drivers were evaluated using net primary productivity (NPP) and percent loss hydraulic conductance (PLC) as a measure of tolerance for a particular watering regime. Genotypic responses to T were witnessed as water demand driven by increases in VPD at 2050 and 2100 drove some genotypes to greater PLC and in a subset of these saw periodic decreases in NPP during a growing season. Genotypes able to withstand the greater

  10. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  11. An Evaluation of the NOAA Climate Forecast System Subseasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Mass, C.; Weber, N.

    2016-12-01

    This talk will describe a multi-year evaluation of the 1-5 week forecasts of the NOAA Climate Forecasting System (CFS) over the globe, North America, and the western U.S. Forecasts are evaluated for both specific times and for a variety of time-averaging periods. Initial results show a loss of predictability at approximately three weeks, with sea surface temperature retaining predictability longer than atmospheric variables. It is shown that a major CFS problem is an inability to realistically simulate propagating convection in the tropics, with substantial implications for midlatitude teleconnections and subseasonal predictability. The inability of CFS to deal with tropical convection will be discussed in connection with the prediction of extreme climatic events over the midlatitudes.

  12. The Eruption Forecasting Information System: Volcanic Eruption Forecasting Using Databases

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Harpel, C. J.; Pesicek, J. D.; Wellik, J.

    2016-12-01

    Forecasting eruptions, including the onset size, duration, location, and impacts, is vital for hazard assessment and risk mitigation. The Eruption Forecasting Information System (EFIS) project is a new initiative of the US Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) and will advance VDAP's ability to forecast the outcome of volcanic unrest. The project supports probability estimation for eruption forecasting by creating databases useful for pattern recognition, identifying monitoring data thresholds beyond which eruptive probabilities increase, and for answering common forecasting questions. A major component of the project is a global relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest. This module allows us to query eruption chronologies, monitoring data, descriptive information, operational data, and eruptive phases alongside other global databases, such as WOVOdat and the Global Volcanism Program. The EFIS database is in the early stages of development and population; thus, this contribution also is a request for feedback from the community. Preliminary data are already benefitting several research areas. For example, VDAP provided a forecast of the likely remaining eruption duration for Sinabung volcano, Indonesia, using global data taken from similar volcanoes in the DomeHaz database module, in combination with local monitoring time-series data. In addition, EFIS seismologists used a beta-statistic test and empirically-derived thresholds to identify distal volcano-tectonic earthquake anomalies preceding Alaska volcanic eruptions during 1990-2015 to retrospectively evaluate Alaska Volcano Observatory eruption precursors. This has identified important considerations for selecting analog volcanoes for global data analysis, such as differences between

  13. Forecasting seasonal outbreaks of influenza.

    PubMed

    Shaman, Jeffrey; Karspeck, Alicia

    2012-12-11

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003-2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza.

  14. Forecasting seasonal outbreaks of influenza

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia

    2012-01-01

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003–2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza. PMID:23184969

  15. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  16. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  17. Advances in Solar Power Forecasting

    NASA Astrophysics Data System (ADS)

    Haupt, S. E.; Kosovic, B.; Drobot, S.

    2014-12-01

    The National Center for Atmospheric Research and partners are building a blended SunCast Solar Power Forecasting system. This system includes several short-range nowcasting models and improves upon longer range numerical weather prediction (NWP) models as part of the "Public-Private-Academic Partnership to Advance Solar Power Forecasting." The nowcasting models being built include statistical learning models that include cloud regime prediction, multiple sky imager-based advection models, satellite image-based advection models, and rapid update NWP models with cloud assimilation. The team has also integrated new modules into the Weather Research and Forecasting Model (WRF) to better predict clouds, aerosols, and irradiance. The modules include a new shallow convection scheme; upgraded physics parameterizations of clouds; new radiative transfer modules that specify GHI, DNI, and DIF prediction; better satellite assimilation methods; and new aerosol estimation methods. These new physical models are incorporated into WRF-Solar, which is then integrated with publically available NWP models via the Dynamic Integrated Forecast (DICast) system as well as the Nowcast Blender to provide seamless forecasts at partner utility and balancing authority commercial solar farms. The improvements will be described and results to date discussed.

  18. Evaluation Of Ensemble Forecasts By PECA

    NASA Astrophysics Data System (ADS)

    Wei, M.; Toth, Z.

    2002-12-01

    A method called Perturbation vs. Error Correlation Analysis (PECA), which evaluates the ensemble perturbations instead of the forecasts themselves by measuring their ability to explain forecast error variance, is used to evaluate ensemble forecasts from NCEP and ECMWF. Ensemble perturbations from NCEP and ECMWF were found to perform similarly. The error variance explained by either ensemble increases with the number of members and the lead time. The dynamically conditioned NCEP and ECMWF perturbations outperform both randomly chosen perturbations and differences between lagged forecasts ("NMC" method). Thus ensemble forecasts potentially could be used to construct flow dependent short-range forecast error covariance matrices for use in data assimilation schemes.

  19. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  20. Aggregate vehicle travel forecasting model

    SciTech Connect

    Greene, D.L.; Chin, Shih-Miao; Gibson, R.

    1995-05-01

    This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

  1. Forecasting Nutrition Research in 2020

    DTIC Science & Technology

    2014-01-01

    numerous areas of expertise, rather than focus on a single nutrient to define one’s career. The importance of nutrition in treating and preventing acute...JUL 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Forecasting Nutrition Research in 2020. 5a. CONTRACT NUMBER 5b...0 4 Se pt em be r 20 14 Commentary Forecasting Nutrition Research in 2020 Robert M. Hackman, PhD, Bharat B. Aggarwal, PhD, Rhona S. Applebaum, PhD

  2. Acquisition forecast: Fiscal year 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume includes projections of all anticipated FY95, and beyond, NASA contract actions above $25,000 that small and small disadvantaged businesses may be able to perform under direct contract with the government or as subcontractors. The forecast consolidates anticipated procurements at each NASA center into an agencywide report, with the aim of increasing industries' advance knowledge of NASA requirements and enhancing competition in contracting. Each center forecast report is divided into three principal categories of procurement: research and development, services, and supplies and equipment.

  3. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.

  4. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.

  5. Accuracy of forecasts in strategic intelligence

    PubMed Central

    Mandel, David R.; Barnes, Alan

    2014-01-01

    The accuracy of 1,514 strategic intelligence forecasts abstracted from intelligence reports was assessed. The results show that both discrimination and calibration of forecasts was very good. Discrimination was better for senior (versus junior) analysts and for easier (versus harder) forecasts. Miscalibration was mainly due to underconfidence such that analysts assigned more uncertainty than needed given their high level of discrimination. Underconfidence was more pronounced for harder (versus easier) forecasts and for forecasts deemed more (versus less) important for policy decision making. Despite the observed underconfidence, there was a paucity of forecasts in the least informative 0.4–0.6 probability range. Recalibrating the forecasts substantially reduced underconfidence. The findings offer cause for tempered optimism about the accuracy of strategic intelligence forecasts and indicate that intelligence producers aim to promote informativeness while avoiding overstatement. PMID:25024176

  6. Accuracy of forecasts in strategic intelligence.

    PubMed

    Mandel, David R; Barnes, Alan

    2014-07-29

    The accuracy of 1,514 strategic intelligence forecasts abstracted from intelligence reports was assessed. The results show that both discrimination and calibration of forecasts was very good. Discrimination was better for senior (versus junior) analysts and for easier (versus harder) forecasts. Miscalibration was mainly due to underconfidence such that analysts assigned more uncertainty than needed given their high level of discrimination. Underconfidence was more pronounced for harder (versus easier) forecasts and for forecasts deemed more (versus less) important for policy decision making. Despite the observed underconfidence, there was a paucity of forecasts in the least informative 0.4-0.6 probability range. Recalibrating the forecasts substantially reduced underconfidence. The findings offer cause for tempered optimism about the accuracy of strategic intelligence forecasts and indicate that intelligence producers aim to promote informativeness while avoiding overstatement.

  7. Forecast communication through the newspaper Part 1: Framing the forecaster

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.

    2015-04-01

    This review is split into two parts both of which address issues of forecast communication of an environmental disaster through the newspaper during a period of crisis. The first part explores the process by which information passes from the scientist or forecaster, through the media filter, to the public. As part of this filter preference, omission, selection of data, source, quote and story, as well as placement of the same information within an individual piece or within the newspaper itself, can serve to distort the message. The result is the introduction of bias and slant—that is, the message becomes distorted so as to favor one side of the argument against another as it passes through the filter. Bias can be used to support spin or agenda setting, so that a particular emphasis becomes placed on the story which exerts an influence on the reader's judgment. The net result of the filter components is either a negative (contrary) or positive (supportive) frame. Tabloidization of the news has also resulted in the use of strong, evocative, exaggerated words, headlines and images to support a frame. I illustrate these various elements of the media filter using coverage of the air space closure due to the April 2010 eruption of Eyjafjallajökull (Iceland). Using the British press coverage of this event it is not difficult to find examples of all media filter elements, application of which resulted in bias against the forecast and forecaster. These actors then became named and blamed. Within this logic, it becomes only too easy for forecasters and scientists to be framed in a negative way through blame culture. The result is that forecast is framed in such a way so as to cause the forecaster to be blamed for all losses associated with the loss-causing event. Within the social amplification of risk framework (SARF), this can amplify a negative impression of the risk, the event and the response. However, actions can be taken to avoid such an outcome. These actions

  8. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i

  9. Forecasting Consumer Adoption of Information Technology and Services--Lessons from Home Video Forecasting.

    ERIC Educational Resources Information Center

    Klopfenstein, Bruce C.

    1989-01-01

    Describes research that examined the strengths and weaknesses of technological forecasting methods by analyzing forecasting studies made for home video players. The discussion covers assessments and explications of correct and incorrect forecasting assumptions, and their implications for forecasting the adoption of home information technologies…

  10. EnrollForecast for Excel: K-12 Enrollment Forecasting Program. Software & User's Guide. [Computer Diskette].

    ERIC Educational Resources Information Center

    Smith, Curtis A.

    "EnrollForecast for Excel" will generate a 5-year forecast of K-12 student enrollment. It will also work for any combination of grades between kindergarten and twelth. The forecasts can be printed as either a table or a graph. The user must provide birth history (only if forecasting kindergarten) and enrollment history information. The user also…

  11. Forecasting Consumer Adoption of Information Technology and Services--Lessons from Home Video Forecasting.

    ERIC Educational Resources Information Center

    Klopfenstein, Bruce C.

    1989-01-01

    Describes research that examined the strengths and weaknesses of technological forecasting methods by analyzing forecasting studies made for home video players. The discussion covers assessments and explications of correct and incorrect forecasting assumptions, and their implications for forecasting the adoption of home information technologies…

  12. A Delphi forecast of technology in education

    NASA Technical Reports Server (NTRS)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  13. Forecasting for energy and chemical decision analysis

    SciTech Connect

    Cazalet, E.G.

    1984-08-01

    This paper focuses on uncertainty and bias in forecasts used for major energy and chemical investment decisions. Probability methods for characterizing uncertainty in the forecast are reviewed. Sources of forecasting bias are classified based on the results of relevant psychology research. Examples are drawn from the energy and chemical industry to illustrate the value of explicit characterization of uncertainty and reduction of bias in forecasts.

  14. Seasonal Streamflow Forecasts for African Basins

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, A.; Valdes, J. B.; Wi, S.; Roy, T.; Roberts, J. B.; Robertson, F. R.; Demaria, E. M.

    2015-12-01

    Using high resolution downscaled seasonal meteorological forecasts we present the development and evaluation of seasonal hydrologic forecasts with Stakeholder Agencies for selected African basins. The meteorological forecasts are produced using the Bias Correction and Spatial Disaggregation (BCSD) methodology applied to NMME hindcasts (North American Multi-Model Ensemble prediction system) to generate a bootstrap resampling of plausible weather forecasts from historical observational data. This set of downscaled forecasts is then used to drive hydrologic models to produce a range of forecasts with uncertainty estimates suitable for water resources planning in African pilot basins (i.e. Upper Zambezi, Mara Basin). In an effort to characterize the utility of these forecasts, we will present an evaluation of these forecast ensembles over the pilot basins, and discuss insights as to their operational applicability by regional actors. Further, these forecasts will be contrasted with those from a standard Ensemble Streamflow Prediction (ESP) approach to seasonal forecasting. The case studies presented here have been developed in the setting of the NASA SERVIR Applied Sciences Team and within the broader context of operational seasonal forecasting in Africa. These efforts are part of a dialogue with relevant planning and management agencies and institutions in Africa, which are in turn exploring how to best use uncertain forecasts for decision making.

  15. Beat the Instructor: An Introductory Forecasting Game

    ERIC Educational Resources Information Center

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  16. Student Enrollment Forecasting in Georgia: Lessons Learned.

    ERIC Educational Resources Information Center

    Chan, Tak Cheung; Pool, Harbison; Davidson, Ronald

    2002-01-01

    Study of school district enrollment forecasting in Georgia finds, for example, differences in forecasting accuracy between large and small school districts, the widespread use of the Cohort Survival Technique, a lag in small school districts' use of sophisticated, computer-based enrollment forecasting models. (Contains 34 references.) (PKP)

  17. School Roll Forecasting Methods: A Review.

    ERIC Educational Resources Information Center

    Simpson, Stephen

    1987-01-01

    A review of the literature concerning local school roll forecasting describes the theoretical model common to most local education agency (LEA) forecasts, identifies a variety of issues relevant to this area of LEA planning, and suggests some opportunities for improvement in LEA school roll forecasting. (Author/CB)

  18. Can Business Students Forecast Their Own Grade?

    ERIC Educational Resources Information Center

    Hossain, Belayet; Tsigaris, Panagiotis

    2013-01-01

    This study examines grade expectations of two groups of business students for their final course mark. We separate students that are on average "better" forecasters on the basis of them not making significant forecast errors during the semester from those students that are poor forecasters of their final grade. We find that the better…

  19. Student Enrollment Forecasting in Georgia: Lessons Learned.

    ERIC Educational Resources Information Center

    Chan, Tak Cheung; Pool, Harbison; Davidson, Ronald

    2002-01-01

    Study of school district enrollment forecasting in Georgia finds, for example, differences in forecasting accuracy between large and small school districts, the widespread use of the Cohort Survival Technique, a lag in small school districts' use of sophisticated, computer-based enrollment forecasting models. (Contains 34 references.) (PKP)

  20. School Roll Forecasting Methods: A Review.

    ERIC Educational Resources Information Center

    Simpson, Stephen

    1987-01-01

    A review of the literature concerning local school roll forecasting describes the theoretical model common to most local education agency (LEA) forecasts, identifies a variety of issues relevant to this area of LEA planning, and suggests some opportunities for improvement in LEA school roll forecasting. (Author/CB)

  1. Enrollment Trends, Implications and Forecasting Techniques.

    ERIC Educational Resources Information Center

    Finch, Harold L.

    This paper discusses two approaches that are well adapted to school district enrollment forecasting and related planning studies. The author focuses in turn on two enrollment forecasting methods--the Analytical Simulation Approach, and the Modified Cohort Survival Approach. After briefly describing each forecasting method, he presents a short case…

  2. Beat the Instructor: An Introductory Forecasting Game

    ERIC Educational Resources Information Center

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  3. Possible future directions in crop yield forecasting

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.

    1979-01-01

    This paper examines present and future possible applications of remote sensing to crop yield forecasting. It is concluded that there are ways in which Landsat data could be used to assist in crop yield forecasting using present technology. A framework for global crop yield forecasting which uses remote sensing, meteorological, field and ancillary data, as available, is proposed for the future.

  4. A Course in Economic Forecasting: Rationale and Content.

    ERIC Educational Resources Information Center

    Loomis, David G.; Cox, James E., Jr.

    2000-01-01

    Discusses four reasons why economic forecasting courses are important: (1) forecasting skills are in demand by businesses; (2) forecasters are in demand; (3) forecasting courses have positive externalities; (4) and forecasting provides a real-world context. Describes what should be taught in an economic forecasting course. (CMK)

  5. A Course in Economic Forecasting: Rationale and Content.

    ERIC Educational Resources Information Center

    Loomis, David G.; Cox, James E., Jr.

    2000-01-01

    Discusses four reasons why economic forecasting courses are important: (1) forecasting skills are in demand by businesses; (2) forecasters are in demand; (3) forecasting courses have positive externalities; (4) and forecasting provides a real-world context. Describes what should be taught in an economic forecasting course. (CMK)

  6. Worldwide satellite market demand forecast

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-01-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  7. An Experiment in Probabilistic Forecasting.

    ERIC Educational Resources Information Center

    Brown, Thomas A.

    Students were asked to make forecasts of fourteen quantities where true values would not become known for five or six months. The quantities were selected to be typical of the subjects which would be of interest to a decisionmaker in business or government, and included GNP, consumer prices, draft calls, deaths in South Vietnam, and election…

  8. Military needs and forecast, 2

    NASA Technical Reports Server (NTRS)

    Goldstayn, Alan B.

    1986-01-01

    FORECAST 2 has accomplished its objectives of identifying high leverage technologies for corporate Air Force review. Implementation is underway with emphasis on restructuring existing programs and programming resources in the FY88 BES/FY89 POM. Many joint service/agency opportunities exist.

  9. Statistical control in hydrologic forecasting.

    Treesearch

    H.G. Wilm

    1950-01-01

    With rapidly growing development and uses of water, a correspondingly great demand has developed for advance estimates of the volumes or rates of flow which are supplied by streams. Therefore much attention is being devoted to hydrologic forecasting, and numerous methods have been tested in efforts to make increasingly reliable estimates of future supplies.

  10. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark

    2005-01-01

    The Applied Meteorology Unit developed a forecast tool that provides an assessment of the likelihood of local convective severe weather for the day in order to enhance protection of personnel and material assets of the 45th Space Wing Cape Canaveral Air Force Station (CCAFS), and Kennedy Space Center (KSC).

  11. Forecasting College and University Revenues.

    ERIC Educational Resources Information Center

    Primary Research Group, Inc., New York, NY.

    This report examines issues and trends in college and university revenues. An introduction describes the study's organization and identifies data sources. An overview chapter summarizes major findings, including a forecast of college and university revenues from 1997 through 2001; trends in consumer spending on higher education; trends in tuition…

  12. In Brief: Forecasting meningitis threats

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The University Corporation for Atmospheric Research (UCAR), in conjunction with a team of health and weather organizations, has launched a project to provide weather forecasts to medical officials in Africa to help reduce outbreaks of meningitis. The forecasts will enable local health care providers to target vaccination programs more effectively. In 2009, meteorologists with the National Center for Atmospheric Research, which is managed by UCAR, will begin issuing 14-day forecasts of atmospheric conditions in Ghana. Later, UCAR plans to work closely with health experts from several African countries to design and test a decision support system to provide health officials with useful meteorological information. ``By targeting forecasts in regions where meningitis is a threat, we may be able to help vulnerable populations. Ultimately, we hope to build on this project and provide information to public health programs battling weather-related diseases in other parts of the world,'' said Rajul Pandya, director of UCAR's Community Building Program. Funding for the project comes from a $900,000 grant from Google.org, the philanthropic arm of the Internet search company.

  13. Dynamically stratified Monte Carlo forecasting

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Suarez, Max; Schemm, Jae-Kyung; Epstein, Edward

    1992-01-01

    A new method for performing Monte Carlo forecasts is introduced. The method, called dynamic stratification, selects initial perturbations based on a stratification of the error distribution. A simple implementation is presented in which the error distribution used for the stratification is estimated from a linear model derived from a large ensemble of 12-h forecasts with the full dynamic model. The stratification thus obtained is used to choose a small subsample of initial states with which to perform the dynamical Monte Carlo forecasts. Several test cases are studied using a simple two-level general circulation model with uncertain initial conditions. It is found that the method provides substantial reductions in the sampling error of the forecast mean and variance when compared to the more traditional approach of choosing the initial perturbations at random. The degree of improvement, however, is sensitive to the nature of the initial error distribution and to the base state. In practice the method may be viable only if the computational burden involved in obtaining an adequate estimate of the error distribution is shared with the data-assimilation procedure.

  14. Multi-Year Budget Forecasting.

    ERIC Educational Resources Information Center

    Mercure, Donald C.

    1995-01-01

    The multiyear forecasting model is a device to focus on the input side of the educational process--staff, materials, facilities, and services. An annual budget can be developed from the multiyear work plan, with specific policy statements being made to achieve the outcomes initially determined to be the goals and objectives of the district. (MLF)

  15. Understanding and Forecasting Ethnolinguistic Vitality

    ERIC Educational Resources Information Center

    Karan, Mark E.

    2011-01-01

    Forecasting of ethnolinguistic vitality can only be done within a well-functioning descriptive and explanatory model of the dynamics of language stability and shift. It is proposed that the Perceived Benefit Model of Language Shift, used with a taxonomy of language shift motivations, provides that model. The model, based on individual language…

  16. Understanding and Forecasting Ethnolinguistic Vitality

    ERIC Educational Resources Information Center

    Karan, Mark E.

    2011-01-01

    Forecasting of ethnolinguistic vitality can only be done within a well-functioning descriptive and explanatory model of the dynamics of language stability and shift. It is proposed that the Perceived Benefit Model of Language Shift, used with a taxonomy of language shift motivations, provides that model. The model, based on individual language…

  17. Forecasting phenology under global warming

    PubMed Central

    Ibáñez, Inés; Primack, Richard B.; Miller-Rushing, Abraham J.; Ellwood, Elizabeth; Higuchi, Hiroyoshi; Lee, Sang Don; Kobori, Hiromi; Silander, John A.

    2010-01-01

    As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953–2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology. PMID:20819816

  18. Forecasting Enrollment: An Extrapolative Approach.

    ERIC Educational Resources Information Center

    Barenbaum, Lester; Ricci, Raymond

    1982-01-01

    An enrollment projection model designed and implemented at LaSalle College had five phases: establishing clear goals, model construction, model implementation, model estimation and validation, and using the forecast. The history of LaSalle's model and the elements in decision making are outlined. (MSE)

  19. Status of Cycle 23 Forecasts

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.; Reichmann, Edwin J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Forecasts for the amplitude of cycle 23 that were reported prior to the start of, the cycle covered a full range of, values from very small to very large. A forecast reached by the consensus of a panel of forecasters convened at the time of minimum in 1996 [Joselyn et al., 1997] suggested that this cycle would be much larger than average with the smoothed International Sunspot Number reaching a maximum of 160 +/- 30 in the middle of the year 2000. A recent survey of solar cycle prediction techniques [Hathaway et al., 1999] found that the two most reliable techniques for forecasting the cycle prior to its start give similar predictions for this cycle's maximum -- 154 +/- 26 and 153 +/- 33. Curve-fitting and regression techniques can be used with some confidence now that cycle 23 is well underway. These techniques indicate a more modest sunspot cycle with a maximum of 112 + 10 -- only slightly larger than average. The current (May 2000) prediction using the combined predictions from both precursors and curve-fitting gives a cycle amplitude of about 135 +/- 20. This is within the errors given by the consensus and the precursor technique predictions but very close to their lower bounds. Inspection of the characteristics of cycle 23 thus far indicates that in some respects this cycle is an outlier but in other respects it is quite normal.

  20. Forecasting depression in bipolar disorder.

    PubMed

    Moore, Paul J; Little, Max A; McSharry, Patrick E; Geddes, John R; Goodwin, Guy M

    2012-10-01

    Bipolar disorder is characterized by recurrent episodes of mania and depression and affects about 1% of the adult population. The condition can have a major impact on an individual's ability to function and is associated with a long-term risk of suicide. In this paper, we report on the use of self-rated mood data to forecast the next week's depression ratings. The data used in the study have been collected using SMS text messaging and comprises one time series of approximately weekly mood ratings for each patient. We find a wide variation between series: some exhibit a large change in mean over the monitored period and there is a variation in correlation structure. Almost half of the time series are forecast better by unconditional mean than by persistence. Two methods are employed for forecasting: exponential smoothing and Gaussian process regression. Neither approach gives an improvement over a persistence baseline. We conclude that the depression time series from patients with bipolar disorder are very heterogeneous and that this constrains the accuracy of automated mood forecasting across the set of patients. However, the dataset is a valuable resource and work remains to be done that might result in clinically useful information and tools.

  1. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  2. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  3. Adaptive correction of ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Battista Chirico, Giovanni; Van den Bergh, Joris; Vannitsem, Stephane

    2017-04-01

    Forecasts from numerical weather prediction (NWP) models often suffer from both systematic and non-systematic errors. These are present in both deterministic and ensemble forecasts, and originate from various sources such as model error and subgrid variability. Statistical post-processing techniques can partly remove such errors, which is particularly important when NWP outputs concerning surface weather variables are employed for site specific applications. Many different post-processing techniques have been developed. For deterministic forecasts, adaptive methods such as the Kalman filter are often used, which sequentially post-process the forecasts by continuously updating the correction parameters as new ground observations become available. These methods are especially valuable when long training data sets do not exist. For ensemble forecasts, well-known techniques are ensemble model output statistics (EMOS), and so-called "member-by-member" approaches (MBM). Here, we introduce a new adaptive post-processing technique for ensemble predictions. The proposed method is a sequential Kalman filtering technique that fully exploits the information content of the ensemble. One correction equation is retrieved and applied to all members, however the parameters of the regression equations are retrieved by exploiting the second order statistics of the forecast ensemble. We compare our new method with two other techniques: a simple method that makes use of a running bias correction of the ensemble mean, and an MBM post-processing approach that rescales the ensemble mean and spread, based on minimization of the Continuous Ranked Probability Score (CRPS). We perform a verification study for the region of Campania in southern Italy. We use two years (2014-2015) of daily meteorological observations of 2-meter temperature and 10-meter wind speed from 18 ground-based automatic weather stations distributed across the region, comparing them with the corresponding COSMO

  4. Forecasting peaks of seasonal influenza epidemics.

    PubMed

    Nsoesie, Elaine; Mararthe, Madhav; Brownstein, John

    2013-06-21

    We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google Flu Trends for 2004-2005, 2007-2008 and 2012-2013 flu seasons. In some cases, the peak could be forecasted 5-6 weeks ahead. This study adds to existing resources for influenza forecasting and the proposed method can be used in conjunction with other approaches in an ensemble framework.

  5. UK physics council sees grim future

    NASA Astrophysics Data System (ADS)

    Brumfiel, Geoff

    2009-11-01

    Britain's high-energy physicists and astronomers are bracing themselves for budget cuts. The Science and Technology Facilities Council (STFC), which funds the United Kingdom's astronomy, particle- and nuclear-physics communities, is short by roughly £40 million (US$66 million) in its annual £450-million cash budget.

  6. Grim Job Talks Are a Buzz Kill

    ERIC Educational Resources Information Center

    Shapiro, Dan

    2012-01-01

    This article takes a look at five mistakes that candidates should avoid making during their research presentations. These mistakes are the following: (1) they didn't do any research on the norms of the campus culture; (2) they presented a single, well-thought-out project that had no future; (3) they didn't use the opportunity to demonstrate their…

  7. Grim Job Talks Are a Buzz Kill

    ERIC Educational Resources Information Center

    Shapiro, Dan

    2012-01-01

    This article takes a look at five mistakes that candidates should avoid making during their research presentations. These mistakes are the following: (1) they didn't do any research on the norms of the campus culture; (2) they presented a single, well-thought-out project that had no future; (3) they didn't use the opportunity to demonstrate their…

  8. On the reliability of seasonal climate forecasts.

    PubMed

    Weisheimer, A; Palmer, T N

    2014-07-06

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.

  9. On the reliability of seasonal climate forecasts

    PubMed Central

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  10. Environmental forecasting and turbulence modeling

    NASA Astrophysics Data System (ADS)

    Hunt, J. C. R.

    This review describes the fundamental assumptions and current methodologies of the two main kinds of environmental forecast; the first is valid for a limited period of time into the future and over a limited space-time ‘target’, and is largely determined by the initial and preceding state of the environment, such as the weather or pollution levels, up to the time when the forecast is issued and by its state at the edges of the region being considered; the second kind provides statistical information over long periods of time and/or over large space-time targets, so that they only depend on the statistical averages of the initial and ‘edge’ conditions. Environmental forecasts depend on the various ways that models are constructed. These range from those based on the ‘reductionist’ methodology (i.e., the combination of separate, scientifically based, models for the relevant processes) to those based on statistical methodologies, using a mixture of data and scientifically based empirical modeling. These are, as a rule, focused on specific quantities required for the forecast. The persistence and predictability of events associated with environmental and turbulent flows and the reasons for variation in the accuracy of their forecasts (of the first and second kinds) are now better understood and better modeled. This has partly resulted from using analogous results of disordered chaotic systems, and using the techniques of calculating ensembles of realizations, ideally involving several different models, so as to incorporate in the probabilistic forecasts a wider range of possible events. The rationale for such an approach needs to be developed. However, other insights have resulted from the recognition of the ordered, though randomly occurring, nature of the persistent motions in these flows, whose scales range from those of synoptic weather patterns (whether storms or ‘blocked’ anticyclones) to small scale vortices. These eigen states can be predicted

  11. Post Processing Numerical Weather Prediction Model Rainfall Forecasts for Use in Ensemble Streamflow Forecasting in Australia

    NASA Astrophysics Data System (ADS)

    Shrestha, D. L.; Robertson, D.; Bennett, J.; Ward, P.; Wang, Q. J.

    2012-12-01

    Through the water information research and development alliance (WIRADA) project, CSIRO is conducting research to improve flood and short-term streamflow forecasting services delivered by the Australian Bureau of Meteorology. WIRADA aims to build and test systems to generate ensemble flood and short-term streamflow forecasts with lead times of up to 10 days by integrating rainfall forecasts from Numerical Weather Prediction (NWP) models and hydrological modelling. Here we present an overview of the latest progress towards developing this system. Rainfall during the forecast period is a major source of uncertainty in streamflow forecasting. Ensemble rainfall forecasts are used in streamflow forecasting to characterise the rainfall uncertainty. In Australia, NWP models provide forecasts of rainfall and other weather conditions for lead times of up to 10 days. However, rainfall forecasts from Australian NWP models are deterministic and often contain systematic errors. We use a simplified Bayesian joint probability (BJP) method to post-process rainfall forecasts from the latest generation of Australian NWP models. The BJP method generates reliable and skilful ensemble rainfall forecasts. The post-processed rainfall ensembles are then used to force a semi-distributed conceptual rainfall runoff model to produce ensemble streamflow forecasts. The performance of the ensemble streamflow forecasts is evaluated on a number of Australian catchments and the benefits of using post processed rainfall forecasts are demonstrated.

  12. Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Regonda, Satish; Seo, Dong-Jun; Lawrence, Bill

    2010-05-01

    We present a statistical procedure that generates short-term streamflow ensemble forecasts from single-valued, or deterministic, forecasts operationally produced by the National Weather Service (NWS) River Forecast Centers (RFC). The resulting ensemble forecast provides an estimate of the uncertainty in the single-valued forecast to aid risk-based decision making by the emergency managers and by the users of the forecast products and services. The single-valued forecasts are produced at a 6-hr time step for 5 days into the future, and reflect single-valued short-term quantitative precipitation and temperature forecasts (QPF, QTF) and various run-time modifications (MOD), or manual data assimilation, by human forecasters to reduce various sources of error in the end-to-end forecast process. The proposed procedure generates 5 day-ahead ensemble traces of streamflow from a very parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecasts, QPF and recent streamflow observations. For parameter estimation and evaluation, we used a 10-year archive of the single-valued river stage forecasts for six forecast points in Oklahoma produced operationally by the Arkansas-Red River Basin River Forecast Center (ABRFC). To evaluate the procedure, we carried out dependent and leave-one-year-out cross validation. The resulting ensemble hindcasts are then verified using the Ensemble Verification System (EVS) developed at the NWS Office of Hydrologic Development (OHD).

  13. Airfreight forecasting methodology and results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A series of econometric behavioral equations was developed to explain and forecast the evolution of airfreight traffic demand for the total U.S. domestic airfreight system, the total U.S. international airfreight system, and the total scheduled international cargo traffic carried by the top 44 foreign airlines. The basic explanatory variables used in these macromodels were the real gross national products of the countries involved and a measure of relative transportation costs. The results of the econometric analysis reveal that the models explain more than 99 percent of the historical evolution of freight traffic. The long term traffic forecasts generated with these models are based on scenarios of the likely economic outlook in the United States and 31 major foreign countries.

  14. Airfreight forecasting methodology and results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A series of econometric behavioral equations was developed to explain and forecast the evolution of airfreight traffic demand for the total U.S. domestic airfreight system, the total U.S. international airfreight system, and the total scheduled international cargo traffic carried by the top 44 foreign airlines. The basic explanatory variables used in these macromodels were the real gross national products of the countries involved and a measure of relative transportation costs. The results of the econometric analysis reveal that the models explain more than 99 percent of the historical evolution of freight traffic. The long term traffic forecasts generated with these models are based on scenarios of the likely economic outlook in the United States and 31 major foreign countries.

  15. Tsunami Forecast for Galapagos Islands

    NASA Astrophysics Data System (ADS)

    Renteria, W.

    2012-04-01

    The objective of this study is to present a model for the short-term and long-term tsunami forecast for Galapagos Islands. For both cases the ComMIT/MOST(Titov,et al 2011) numerical model and methodology have been used. The results for the short-term model has been compared with the data from Lynett et al, 2011 surveyed from the impacts of the March/11 in the Galapagos Islands. For the case of long-term forecast, several scenarios have run along the Pacific, an extreme flooding map is obtained, the method is considered suitable for places with poor or without tsunami impact information, but under tsunami risk geographic location.

  16. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  17. Mesoscale model forecast verification during monsoon 2008

    NASA Astrophysics Data System (ADS)

    Ashrit, Raghavendra; Mohandas, Saji

    2010-08-01

    There have been very few mesoscale modelling studies of the Indian monsoon, with focus on the verification and intercomparison of the operational real time forecasts. With the exception of Das et al (2008), most of the studies in the literature are either the case studies of tropical cyclones and thunderstorms or the sensitivity studies involving physical parameterization or climate simulation studies. Almost all the studies are based on either National Center for Environmental Prediction (NCEP), USA, final analysis fields (NCEP FNL) or the reanalysis data used as initial and lateral boundary conditions for driving the mesoscale model. Here we present a mesoscale model forecast verification and intercomparison study over India involving three mesoscale models: (i) the Weather Research and Forecast (WRF) model developed at the National Center for Atmospheric Research (NCAR), USA, (ii) the MM5 model developed by NCAR, and (iii) the Eta model of the NCEP, USA. The analysis is carried out for the monsoon season, June to September 2008. This study is unique since it is based entirely on the real time global model forecasts of the National Centre for Medium Range Weather Forecasting (NCMRWF) T254 global analysis and forecast system. Based on the evaluation and intercomparison of the mesoscale model forecasts, we recommend the best model for operational real-time forecasts over the Indian region. Although the forecast mean 850 hPa circulation shows realistic monsoon flow and the monsoon trough, the systematic errors over the Arabian Sea indicate an easterly bias to the north (of mean flow) and westerly bias to the south (of mean flow). This suggests that the forecasts feature a southward shift in the monsoon current. The systematic error in the 850 hPa temperature indicates that largely the WRF model forecasts feature warm bias and the MM5 model forecasts feature cold bias. Features common to all the three models include warm bias over northwest India and cold bias over

  18. Forecasting Space Weather Solar Indices

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Shurkin, K.; Arge, C. N.

    2016-12-01

    Progress towards forecasting key space weather parameters, up to 7 days in advance, using SIFT(Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric fluxTransport) model will be discussed in this presentation. The forecasting method reviewed here,and fully outlined in Henney et al. 2012 and Henney et al. 2015, utilizes the solar near-sidemagnetic field distribution estimated with the ADAPT flux transport model as input to the SIFTempirical models, which predict selected bands (between 0.1 to 175 nm) of solar soft X-ray (XUV),far ultraviolet (FUV), and extreme ultraviolet (EUV) irradiance, along with observed F10.7 (solar10.7 cm, 2.8 GHz, radio flux), sunspot number (SSN), and the Mg II core-to-wing ratio values. TheADAPT model assimilates input magnetogram data from SDO/HMI, NISP/GONG, & NISP/VSM. We will provide a summary of recent updates regarding the ADAPT and SIFT models. The ADAPT model development is supported primarily by AFRL, with additional support from NASA. This work utilizes data produced collaboratively between AFRL and NSO.

  19. Forecasting Hurricane by Satellite Image

    NASA Astrophysics Data System (ADS)

    Liu, M. Y.

    Earth is an endanger planet. Severe weather, especially hurricanes, results in great disaster all the world. World Meteorology Organization and United Nations Environment Program established intergovernment Panel on Climate Change (IPCC) to offer warnings about the present and future disasters of the Earth. It is the mission for scientists to design warning system to predict the severe weather system and to reduce the damage of the Earth. Hurricanes invade all the world every year and made millions damage to all the people. Scientists in weather service applied satellite images and synoptic data to forecast the information for the next hours for warning purposes. Regularly, hurricane hits on Taiwan island directly will pass through her domain and neighbor within 10 hours. In this study, we are going to demonstrate a tricky hurricane NARI invaded Taiwan on September 16, 2000. She wandered in the neighborhood of the island more than 72 hours and brought heavy rainfall over the island. Her track is so tricky that scientists can not forecast her path using the regular method. Fortunately, all scientists in the Central Weather Bureau paid their best effort to fight against the tricky hurricane. Applying the new developed technique to analysis the satellite images with synoptic data and radar echo, scientists forecasted the track, intensity and rainfall excellently. Thus the damage of the severe weather reduced significantly.

  20. Forecast of iceberg ensemble drift

    SciTech Connect

    El-Tahan, M.S.; El-Tahan, H.W.; Venkatesh, S.

    1983-05-01

    The objectives of the study are to gain a better understanding of the characteristics of iceberg motion and the factors controlling iceberg drift, and to develop an iceberg ensemble drift forecast system to be operated by the Canadian Atmospheric Environment Service. An extensive review of field and theoretical studies on iceberg behaviour, and the factors controlling iceberg motion has been carried out. Long term and short term behaviour of icebergs are critically examined. A quantitative assessment of the effects of the factors controlling iceberg motion is presented. The study indicated that wind and currents are the primary driving forces. Coriolis Force and ocean surface slope also have significant effects. As for waves, only the higher waves have a significant effect. Iceberg drift is also affected by iceberg size characteristics. Based on the findings of the study a comprehensive computerized forecast system to predict the drift of iceberg ensembles off Canada's east coast has been designed. The expected accuracy of the forecast system is discussed and recommendations are made for future improvements to the system.

  1. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  2. Using Forecasting to Teach Weather Science

    NASA Astrophysics Data System (ADS)

    Tsubota, Y.; Takahashi, T.

    2009-09-01

    Weather affects our lives and hence, is a popular topic in daily conversations and in the media. Therefore, it is not only important to teach weather, but is also a good idea to use 'weather' as a topic in science teaching. Science education has two main objectives: to acquire scientific concepts and methods. Weather forecasting is an adequate theme to teach scientific methods because it is dependent on observation. However, it is not easy to forecast weather using only temporal observation. We need to know the tendency of 'weather change' via consecutive and/or continuous weather observation. Students will acquire scientific-observation skills through weather observation. Data-processing skills would be enhanced through a weather-forecasting contest. A contest should be announced within 5 days of school events, such as a school excursion and field day. Students submit their own weather forecast by gathering weather information through the internet, news paper and so on. A weather-forecasting contest compels the student to observe the weather more often. We currently have some different weather forecasts. For example, American weather-related companies such as ACCU weather and Weather Channel provide weather forecast for the many locations all over the world. Comparing these weather forecasting with actual weather, participants such as students could evaluate the differences between forecasted and actual temperatures. Participants will judge the best weather forecast based on the magnitude of the difference. Also, participants evaluate the 'hitting ratio' of each weather forecast. Students can learn elementary statistics by comparing various weather forecasts. We have developed our weather web-site that provides our own weather forecasting and observation. Students acquire science skills using our weather web-site. We will report our lessen plans and explain our weather web-site.

  3. Forecasting Space Weather from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, maps of the measured field in the photosphere, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). For each type of event, the expected rate is readily converted to the chance that the active region will produce such an event in any given forward time window of a day or so. If the chance is small enough (e.g. <5%), the forecast is All Clear for that type of event. We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare

  4. [Application of phenological pattern recognition in ecological dynamic forecasting].

    PubMed

    Pei, Tiefan; Jin, Changiie

    2005-09-01

    This paper described the principles, methods, and procedures of ecological dynamic forecasting by the automation techniques of pattern recognition and mathematical logic judgment on the basis of phenological data and model output maps from T42L9 numerical weather prediction model. This new forecasting method proposed on the basis of modern meteorology and automation techniques enables the classic phenology to apply to a new field ecological forecasting. It enables phenological forecasting to develop from single-station forecasting stage to regional forecasting stage, which is greatly corresponded to the development stage from single station forecasting stage to synoptic stage in weather forecasting, and enables agro-meteorological forecasting to develop from qualitative and statistical forecasting stage to ecological dynamic forecasting stage. With this new qualitative forecasting method, both the predicted objective and predictors are of considerable bio-physical interests. The ecological dynamic forecasting method could be applied to crop sowing, crop growth, irrigation and fertilization, and diseases and pests

  5. Optimization of Seismicity-Based Forecasts

    NASA Astrophysics Data System (ADS)

    Tiampo, Kristy F.; Shcherbakov, Robert

    2013-01-01

    In this paper, the extent to which some improvement can be made in seismicity-based earthquake forecasting methods are examined. Two methods that employ the statistics and locations for past smaller earthquakes to determine the location of future large earthquakes, the pattern informatics (PI) index and the Benioff relative intensity (RI), are employed for both global and regional forecasting. Two approaches for forecast parameter estimation, the TM metric and threshold optimization, are applied to these methods and the results evaluated. Application of the TM metric allows for estimation of both the training and forecast time intervals as well as the minimum magnitude cutoff and spatial discretization. The threshold optimization scheme is employed in order to formulate a binary forecast that maximizes the Pierce's skill score. The combined application of these techniques is successful in forecasting those large events that occurred in Haiti, Chile, and California in 2010, on both global and regional scales.

  6. Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Reader, M. C.; Flato, G. M.; Merryfield, W. J.; Tivy, A.

    2016-12-01

    The need for skillful seasonal forecasts of Arctic sea ice is rapidly increasing. Technology to perform such forecasts with coupled atmosphere-ocean-sea ice systems has only recently become available, with previous skill evaluations mainly limited to area-integrated quantities. Here we show, based on a large set of retrospective ensemble model forecasts, that a dynamical forecast system produces skillful seasonal forecasts of local sea ice retreat and advance dates - variables that are of great interest to a wide range of end users. Advance dates can generally be skillfully predicted at longer lead times ( 5 months on average) than retreat dates ( 3 months). The skill of retreat date forecasts mainly stems from persistence of initial sea ice anomalies, whereas advance date forecasts benefit from longer time scale and more predictable variability in ocean temperatures. These results suggest that further investments in the development of dynamical seasonal forecast systems may result in significant socioeconomic benefits.

  7. Seasonal hydrological ensemble forecasts over Europe

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Wetterhall, Fredrik; Pappenberger, Florian

    2015-04-01

    Seasonal forecasts have an important socio-economic value in hydro-meteorological forecasting. The applications are for example hydropower management, spring flood prediction and water resources management. The latter includes prediction of low flows, primordial for navigation, water quality assessment, droughts and agricultural water needs. Traditionally, seasonal hydrological forecasts are done using the observed discharge from previous years, so called Ensemble Streamflow Prediction (ESP). With the recent increasing development of seasonal meteorological forecasts, the incentive for developing and improving seasonal hydrological forecasts is great. In this study, a seasonal hydrological forecast, driven by the ECMWF's System 4 (SEA), was compared with an ESP of modelled discharge using observations. The hydrological model used for both forecasts was the LISFLOOD model, run over a European domain with a spatial resolution of 5 km. The forecasts were produced from 1990 until the present time, with a daily time step. They were issued once a month with a lead time of seven months. The SEA forecasts are constituted of 15 ensemble members, extended to 51 members every three months. The ESP forecasts comprise 20 ensembles and served as a benchmark for this comparative study. The forecast systems were compared using a diverse set of verification metrics, such as continuous ranked probability scores, ROC curves, anomaly correlation coefficients and Nash-Sutcliffe efficiency coefficients. These metrics were computed over several time-scales, ranging from a weekly to a six-months basis, for each season. The evaluation enabled the investigation of several aspects of seasonal forecasting, such as limits of predictability, timing of high and low flows, as well as exceedance of percentiles. The analysis aimed at exploring the spatial distribution and timely evolution of the limits of predictability.

  8. How rolling forecasting facilitates dynamic, agile planning.

    PubMed

    Miller, Debra; Allen, Michael; Schnittger, Stephanie; Hackman, Theresa

    2013-11-01

    Rolling forecasting may be used to replace or supplement the annual budget process. The rolling forecast typically builds on the organization's strategic financial plan, focusing on the first three years of plan projections and comparing the strategic financial plan assumptions with the organization's expected trajectory. Leaders can then identify and respond to gaps between the rolling forecast and the strategic financial plan on an ongoing basis.

  9. Annual FAA Forecast Conference Proceedings (4th).

    DTIC Science & Technology

    1978-10-01

    Mary M. Anderson ................ 8 .~->FAA Aviation Forecasts) .Mr. Gene Mer..................... 10 9 :State System Forecasting. Mr. Jim Goff...forecasting activity much of their impact is derived from their unex- has on planning and management efforts at the pectedness. state and local levels. The...alternatives for their clients. The realities of the fixed-price contracts under which they oper- ate often do not allow both to be done adequately. This is

  10. Probability fire weather forecasts .. show promise in 3-year trial

    Treesearch

    Paul G. Scowcroft

    1970-01-01

    Probability fire weather forecasts were compared with categorical and climatological forecasts in a trial in southern California during the 1965-1967 fire seasons. Equations were developed to express the reliability of forecasts and degree of skill shown by the forecaster. Evaluation of 336 daily reports suggests that probability forecasts were more reliable. For...

  11. Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Crochemore, Louise; Ramos, Maria-Helena; Pappenberger, Florian

    2016-09-01

    Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful, which has the potential to benefit streamflow forecasting. Seasonal streamflow forecasts can help to take anticipatory measures for a range of applications, such as water supply or hydropower reservoir operation and drought risk management. This study assesses the skill of seasonal precipitation and streamflow forecasts in France to provide insights into the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. We apply eight variants of bias correction approaches to the precipitation forecasts prior to generating the streamflow forecasts. The approaches are based on the linear scaling and the distribution mapping methods. A daily hydrological model is applied at the catchment scale to transform precipitation into streamflow. We then evaluate the skill of raw (without bias correction) and bias-corrected precipitation and streamflow ensemble forecasts in 16 catchments in France. The skill of the ensemble forecasts is assessed in reliability, sharpness, accuracy and overall performance. A reference prediction system, based on historical observed precipitation and catchment initial conditions at the time of forecast (i.e. ESP method) is used as benchmark in the computation of the skill. The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are often more skilful than the conventional ESP method in terms of sharpness. However, they are not significantly better in terms of reliability. Forecast skill is generally improved when applying bias correction. Two bias correction methods show the best performance for the studied catchments, each method being more successful in improving specific attributes of the forecasts: the simple linear scaling of monthly values contributes mainly to increasing forecast sharpness and accuracy, while the empirical distribution mapping

  12. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches

    NASA Astrophysics Data System (ADS)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2015-04-01

    Because aftershock occurrences can cause significant seismic risks for a considerable time after the main shock, prospective forecasting of the intermediate-term aftershock activity as soon as possible is important. The epidemic-type aftershock sequence (ETAS) model with the maximum likelihood estimate effectively reproduces general aftershock activity including secondary or higher-order aftershocks and can be employed for the forecasting. However, because we cannot always expect the accurate parameter estimation from incomplete early aftershock data where many events are missing, such forecasting using only a single estimated parameter set (plug-in forecasting) can frequently perform poorly. Therefore, we here propose Bayesian forecasting that combines the forecasts by the ETAS model with various probable parameter sets given the data. By conducting forecasting tests of 1 month period aftershocks based on the first 1 day data after the main shock as an example of the early intermediate-term forecasting, we show that the Bayesian forecasting performs better than the plug-in forecasting on average in terms of the log-likelihood score. Furthermore, to improve forecasting of large aftershocks, we apply a nonparametric (NP) model using magnitude data during the learning period and compare its forecasting performance with that of the Gutenberg-Richter (G-R) formula. We show that the NP forecast performs better than the G-R formula in some cases but worse in other cases. Therefore, robust forecasting can be obtained by employing an ensemble forecast that combines the two complementary forecasts. Our proposed method is useful for a stable unbiased intermediate-term assessment of aftershock probabilities.

  13. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with

  14. Combining forecast weights: Why and how?

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  15. Assessing probabilistic forecasts of volcanic eruption onsets

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.

    2013-12-01

    A method for assessing prospectively the quality of a suite of eruption forecasts is proposed. Any forecast of the next eruption onset from a polygenetic volcano can be converted into a probability distribution for the elapsed time since the forecast is made. This probability distribution, which effectively becomes a statistical P value when the observation is "plugged in," will thus itself have a uniform distribution under the null hypothesis that the forecast correctly describes the process. Given sufficient realizations, which may be on the same or different volcanoes, we can use standard statistical tests, such as the Kolmogorov-Smirnov test, to determine if the forecasts are consistent with the model(s). The use of the Kolmogorov-Smirnov test enables currently open forecasts to be included via the Kaplan-Meier product-limit estimator. While consistent underestimates (or overestimates) of the repose length will result in a median greater (or less) than , the method also assesses whether the method assigns the correct degree of aleatory variability to the forecast. Note that it is possible for the forecasts to be less precise than claimed. This would be indicated by the median of the sample being around , but the quartiles being well outside the interval, for example. The method is illustrated on the author's library of forecasts dating back to 1994, including renewal models and other point processes, on a gallery of approximately 20 volcanoes including Etna, Aso, and Ruapehu.

  16. Wheat yield forecasts using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Rice, D. P.; Nalepka, R. F.

    1977-01-01

    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described.

  17. Visualization of ocean forecast in BYTHOS

    NASA Astrophysics Data System (ADS)

    Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.

    2016-08-01

    The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.

  18. Geothermal wells: a forecast of drilling activity

    SciTech Connect

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  19. Optimized Flood Forecasts Using a Statistical Enemble

    NASA Astrophysics Data System (ADS)

    Silver, Micha; Fredj, Erick

    2016-04-01

    The method presented here assembles an optimized flood forecast from a set of consecutive WRF-Hydro simulations by applying coefficients which we derive from straightforward statistical procedures. Several government and research institutions that produce climate data offer ensemble forecasts, which merge predictions from different models to gain a more accurate fit to observed data. Existing ensemble forecasts present climate and weather predictions only. In this research we propose a novel approach to constructing hydrological ensembles for flood forecasting. The ensemble flood forecast is created by combining predictions from the same model, but initiated at different times. An operative flood forecasting system, run by the Israeli Hydrological Service, produces flood forecasts twice daily with a 72 hour forecast period. By collating the output from consecutive simulation runs we have access to multiple overlapping forecasts. We then apply two statistical procedures to blend these consecutive forecasts, resulting in a very close fit to observed flood runoff. We first employ cross-correlation with a time lag to determine a time shift for each of the original, consecutive forecasts. This shift corrects for two possible sources of error: slow or fast moving weather fronts in the base climate data; and mis-calibrations of the WRF-Hydro model in determining the rate of flow of surface runoff and in channels. We apply this time shift to all consecutive forecasts, then run a linear regression with the observed runoff data as the dependent variable and all shifted forecasts as the predictor variables. The solution to the linear regression equation is a set of coefficients that corrects the amplitude errors in the forecasts. These resulting regression coefficients are then applied to the consecutive forecasts producing a statistical ensemble which, by design, closely matches the observed runoff. After performing this procedure over many storm events in the Negev region

  20. Empirical seasonal forecasts of the NAO

    NASA Astrophysics Data System (ADS)

    Sanchezgomez, E.; Ortizbevia, M.

    2003-04-01

    We present here seasonal forecasts of the North Atlantic Oscillation (NAO) issued from ocean predictors with an empirical procedure. The Singular Values Decomposition (SVD) of the cross-correlation matrix between predictor and predictand fields at the lag used for the forecast lead is at the core of the empirical model. The main predictor field are sea surface temperature anomalies, although sea ice cover anomalies are also used. Forecasts are issued in probabilistic form. The model is an improvement over a previous version (1), where Sea Level Pressure Anomalies were first forecast, and the NAO Index built from this forecast field. Both correlation skill between forecast and observed field, and number of forecasts that hit the correct NAO sign, are used to assess the forecast performance , usually above those values found in the case of forecasts issued assuming persistence. For certain seasons and/or leads, values of the skill are above the .7 usefulness treshold. References (1) SanchezGomez, E. and Ortiz Bevia M., 2002, Estimacion de la evolucion pluviometrica de la Espana Seca atendiendo a diversos pronosticos empiricos de la NAO, in 'El Agua y el Clima', Publicaciones de la AEC, Serie A, N 3, pp 63-73, Palma de Mallorca, Spain

  1. Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2012-03-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather warning system is used. The work reported here tested the relative benefits of several forecast formats, comparing decisions made with and without uncertainty forecasts. In three experiments, participants assumed the role of a manager of a road maintenance company in charge of deciding whether to pay to salt the roads and avoid a potential penalty associated with icy conditions. Participants used overnight low temperature forecasts accompanied in some conditions by uncertainty estimates and in others by decision advice comparable to categorical warnings. Results suggested that uncertainty information improved decision quality overall and increased trust in the forecast. Participants with uncertainty forecasts took appropriate precautionary action and withheld unnecessary action more often than did participants using deterministic forecasts. When error in the forecast increased, participants with conventional forecasts were reluctant to act. However, this effect was attenuated by uncertainty forecasts. Providing categorical decision advice alone did not improve decisions. However, combining decision advice with uncertainty estimates resulted in the best performance overall. The results reported here have important implications for the development of forecast formats to increase compliance with severe weather warnings as well as other domains in which one must act in the face of uncertainty. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  2. National Severe Storms Forecast Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The principal mission of the National Severe Storms Forecast Center (NSSFC) is to maintain a continuous watch of weather developments that are capable of producing severe local storms, including tornadoes, and to prepare and issue messages designated as either Weather Outlooks or Tornado or Severe Thunderstorm Watches for dissemination to the public and aviation services. In addition to its assigned responsibility at the national level, the NSSFC is involved in a number of programs at the regional and local levels. Subsequent subsections and paragraphs describe the NSSFC, its users, inputs, outputs, interfaces, capabilities, workload, problem areas, and future plans in more detail.

  3. Forecast Mekong: navigating changing waters

    USGS Publications Warehouse

    Powell, Janine

    2011-01-01

    The U.S. Geological Survey (USGS) is using research and data from the Mekong River Delta in Southeast Asia to compare restoration, conservation, and management efforts there with those done in other major river deltas, such as the Mississippi River Delta in the United States. The project provides a forum to engage regional partners in the Mekong Basin countries to share data and support local research efforts. Ultimately, Forecast Mekong will lead to more informed decisions about how to make the Mekong and Mississippi Deltas resilient in the face of climate change, economic stresses, and other impacts.

  4. GMENAC: its manpower forecasting framework.

    PubMed Central

    McNutt, D R

    1981-01-01

    The Graduate Medical Education National Advisory Committee (GMENAC) was an advisory group to the Secretary, US Department of Health and Human Services. Its charter ended September 30, 1980. It submitted 107 recommendations to achieve a better balance between future physician requirements and future physician supply, by specialty and geography. Among its contributions were the development of a manpower forecasting framework and series of models which are described here, together with the results of these models. These models may have significant utility in future human resource planning at both national and local levels. PMID:7023258

  5. Mental Models of Software Forecasting

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Griesel, A.; Bruno, K.; Fouser, T.; Tausworthe, R.

    1993-01-01

    The majority of software engineers resist the use of the currently available cost models. One problem is that the mathematical and statistical models that are currently available do not correspond with the mental models of the software engineers. In an earlier JPL funded study (Hihn and Habib-agahi, 1991) it was found that software engineers prefer to use analogical or analogy-like techniques to derive size and cost estimates, whereas curren CER's hide any analogy in the regression equations. In addition, the currently available models depend upon information which is not available during early planning when the most important forecasts must be made.

  6. Mental Models of Software Forecasting

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Griesel, A.; Bruno, K.; Fouser, T.; Tausworthe, R.

    1993-01-01

    The majority of software engineers resist the use of the currently available cost models. One problem is that the mathematical and statistical models that are currently available do not correspond with the mental models of the software engineers. In an earlier JPL funded study (Hihn and Habib-agahi, 1991) it was found that software engineers prefer to use analogical or analogy-like techniques to derive size and cost estimates, whereas curren CER's hide any analogy in the regression equations. In addition, the currently available models depend upon information which is not available during early planning when the most important forecasts must be made.

  7. Earthquake Scaling, Simulation and Forecasting

    NASA Astrophysics Data System (ADS)

    Sachs, Michael Karl

    Earthquakes are among the most devastating natural events faced by society. In 2011, just two events, the magnitude 6.3 earthquake in Christcurch New Zealand on February 22, and the magnitude 9.0 Tohoku earthquake off the coast of Japan on March 11, caused a combined total of $226 billion in economic losses. Over the last decade, 791,721 deaths were caused by earthquakes. Yet, despite their impact, our ability to accurately predict when earthquakes will occur is limited. This is due, in large part, to the fact that the fault systems that produce earthquakes are non-linear. The result being that very small differences in the systems now result in very big differences in the future, making forecasting difficult. In spite of this, there are patterns that exist in earthquake data. These patterns are often in the form of frequency-magnitude scaling relations that relate the number of smaller events observed to the number of larger events observed. In many cases these scaling relations show consistent behavior over a wide range of scales. This consistency forms the basis of most forecasting techniques. However, the utility of these scaling relations is limited by the size of the earthquake catalogs which, especially in the case of large events, are fairly small and limited to a few 100 years of events. In this dissertation I discuss three areas of earthquake science. The first is an overview of scaling behavior in a variety of complex systems, both models and natural systems. The focus of this area is to understand how this scaling behavior breaks down. The second is a description of the development and testing of an earthquake simulator called Virtual California designed to extend the observed catalog of earthquakes in California. This simulator uses novel techniques borrowed from statistical physics to enable the modeling of large fault systems over long periods of time. The third is an evaluation of existing earthquake forecasts, which focuses on the Regional

  8. Improving Precipitation Forecast for Canadian Catchments

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Shrestha, D. L.; Walford, C.; Leong, D. N. S.; Friesenhan, E.; Campbell, D.; Rasmussen, P. F.

    2016-12-01

    In Canada, floods occur frequently along large river systems, causing devastation to lives and infrastructure. Flooding in Canada is often caused by heavy rainfall during the snowmelt period. The flood forecast centres are responsible for providing advanced flood warnings and rely heavily on forecasted precipitation from numerical weather prediction (NWP) model outputs produced by Environment Canada and the National Oceanic and Atmospheric Administration. The uncertainties in NWP model output are enhanced by physiography and orographic effects over diverse landscapes, particularly in the western catchments of Canada. Therefore, post-processing of NWP model output is necessary to obtain better forecasts of rainfall amount, location, timing, and intensity; and to reliably quantify forecast uncertainty. The Rainfall Post Processing (RPP) approach (Robertson et al., 2013) has been successfully applied recently to remove rainfall forecast bias and quantify forecast uncertainty from NWP models in Australian catchments (Shrestha et al., 2015). In principle, the RPP method can be applied to other regions (e.g. cold regions) but has not been tested yet. In this study we will evaluate the performance of the RPP for improving the precipitation forecast in southern catchments in Alberta and British Columbia. The RPP relates raw quantitative precipitation forecasts and observed precipitation using a Bayesian joint probability (BJP) modeling approach, followed by the Schaake shuffle. Precipitation forecasts were analysed from two NWP models, Global Ensemble Forecasting System and Global Deterministic Prediction System. Observed data was collected from the provincial river forecast centres. The study period from Jan 2012 to Dec 2015 covered major flood events in Calgary, Alberta, and floods in coastal watersheds in British Columbia. Rain-gauge observations and forecast grid points were interpolated to obtain an aerial average precipitation in subareas to force the hydrological

  9. A Streamflow Forecast Model for Central Arizona.

    NASA Astrophysics Data System (ADS)

    Young, Kenneth C.; Gall, Robert L.

    1992-05-01

    A spring-runoff forecast model for central Arizona was developed based on multiple discriminant analysis. More than 6500 potential predictor variables were analyzed, including local precipitation and temperature variables, as well as global sea level pressure variables. The forecast model was evaluated on nine years exclusive of the years on which the model was based. Forecasts are provided in the form of a cumulative distribution function (cdf) of the expected runoff, based on analogs. A ranked probability score to evaluate forecast skill for the cdf forecasts was developed. Ranked probability skill scores ranged from 25% to 45%.Local and global forecast models were developed and compared to the combined data source model. The global forecast model was equivalent in skill to the local forecast model. The combined model exhibited a marked improvement in skill over either the local or global models.Three recurrent patterns in the predictor variables used by the forecast model are analyzed in some depth. Above-normal pressure at Raoul Island northeast of New Zealand 14 to 18 months prior to the event forecast was found to be associated with above-normal runoff. A westward shift of the Bermuda high, as evidenced by the pressure change at Charleston, South Carolina, from December to August of the preceding year, was found to be associated with above-normal runoff. Above-normal pressure at Port Moresby, New Guinea coupled with below-normal pressure at San Diego, California, the month prior to the forecast, was found to be associated with above-normal runoff.

  10. Forecasting Influenza Epidemics in Hong Kong.

    PubMed

    Yang, Wan; Cowling, Benjamin J; Lau, Eric H Y; Shaman, Jeffrey

    2015-07-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions.

  11. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  12. The Forecasting Brain: How We See the Future.

    ERIC Educational Resources Information Center

    Loye, David

    1984-01-01

    Forecasts of every conceivable type are made through a sequence of brain activities in which all brain areas interact. The forecasts, however, are warped and distorted by the personality of the forecaster. (RM)

  13. 48 CFR 232.072-3 - Cash flow forecasts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... problems. (c) Single or one-time cash flow forecasts are of limited forecasting power. As such, they should... by comparing a series of previous actual cash flows with the corresponding forecasts and...

  14. [Population forecasts for the Netherlands, 1986-2035].

    PubMed

    Cruijsen, H

    1987-02-01

    Results of the 1986 official population forecasts for the Netherlands are presented, and the assumptions made in their preparation are described. Comparisons are made with forecasts for 1985. Three alternative variations of the forecasts are included. (SUMMARY IN ENG)

  15. Phantosmia as a meteorological forecaster

    NASA Astrophysics Data System (ADS)

    Aiello, S. R.; Hirsch, A. R.

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  16. Streamflow forecasting using functional regression

    NASA Astrophysics Data System (ADS)

    Masselot, Pierre; Dabo-Niang, Sophie; Chebana, Fateh; Ouarda, Taha B. M. J.

    2016-07-01

    Streamflow, as a natural phenomenon, is continuous in time and so are the meteorological variables which influence its variability. In practice, it can be of interest to forecast the whole flow curve instead of points (daily or hourly). To this end, this paper introduces the functional linear models and adapts it to hydrological forecasting. More precisely, functional linear models are regression models based on curves instead of single values. They allow to consider the whole process instead of a limited number of time points or features. We apply these models to analyse the flow volume and the whole streamflow curve during a given period by using precipitations curves. The functional model is shown to lead to encouraging results. The potential of functional linear models to detect special features that would have been hard to see otherwise is pointed out. The functional model is also compared to the artificial neural network approach and the advantages and disadvantages of both models are discussed. Finally, future research directions involving the functional model in hydrology are presented.

  17. Earthquakes - Volcanoes (Causes and Forecast)

    NASA Astrophysics Data System (ADS)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  18. New Methodology of ENSO Forecast

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Gavrilov, A.; Mukhin, D.; Loskutov, E.; Seleznev, A.

    2016-12-01

    We describe methodology of ENSO forecast based on data-driven construction of evolution operator of underlying climate sub-system. The methodology is composed of two key algorithms: (i) space-distributed data preparation aiming to reduce data dimensionality with minimal loss of information about system's dynamics, and (ii) construction of operator that reproduces evolution of the system in reduced data space. The first algorithm combines several known data preprocessing techniques: decomposition via empirical orthogonal function basis, its spatiotemporal generalization as well as singular value decomposition techniques. The second algorithm supposes construction of evolution operator in the form of random dynamical system realized as nonlinear random mapping; the last is parameterized by artificial neural networks. General Bayesian approach is applied for mutual searching optimal parameters of both algorithms: optimal dimensionality of reduced data space and optimal complexity of the evolution operator. Abilities of suggested methodology will be demonstrated via reproduction and forecast of different ENSO related indexes including comparison of prediction skill of new methodology with power of other existing techniques. This research was supported by the Government of the Russian Federation (Agreement No.14.Z50.31.0033 with the Institute of Applied Physics RAS).

  19. Flood Forecasting in Wales: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    How, Andrew; Williams, Christopher

    2015-04-01

    With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping

  20. Chesapeake Bay hypoxic volume forecasts and results

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne

    2013-01-01

    The 2013 Forecast - Given the average Jan-May 2013 total nitrogen load of 162,028 kg/day, this summer’s hypoxia volume forecast is 6.1 km3, slightly smaller than average size for the period of record and almost the same as 2012. The late July 2013 measured volume was 6.92 km3.

  1. Forecasting Workload for Defense Logistics Agency Distribution

    DTIC Science & Technology

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT FORECASTING WORKLOAD FOR DEFENSE LOGISTICS AGENCY...DATE December 2014 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE FORECASTING WORKLOAD FOR DEFENSE LOGISTICS ...maximum 200 words) The Defense Logistics Agency (DLA) predicts issue and receipt workload for its distribution agency in order to maintain

  2. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  3. Econometric Models for Forecasting of Macroeconomic Indices

    ERIC Educational Resources Information Center

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  4. School Science Inspired by Improving Weather Forecasts

    ERIC Educational Resources Information Center

    Reid, Heather; Renfrew, Ian A.; Vaughan, Geraint

    2014-01-01

    High winds and heavy rain are regular features of the British weather, and forecasting these events accurately is a major priority for the Met Office and other forecast providers. This is the challenge facing DIAMET, a project involving university groups from Manchester, Leeds, Reading, and East Anglia, together with the Met Office. DIAMET is part…

  5. Ensemble forecasts of road surface temperatures

    NASA Astrophysics Data System (ADS)

    Sokol, Zbyněk; Bližňák, Vojtěch; Sedlák, Pavel; Zacharov, Petr; Pešice, Petr; Škuthan, Miroslav

    2017-05-01

    This paper describes a new ensemble technique for road surface temperature (RST) forecasting using an energy balance and heat conduction model. Compared to currently used deterministic forecasts, the proposed technique allows the estimation of forecast uncertainty and probabilistic forecasts. The ensemble technique is applied to the METRo-CZ model and stems from error covariance analyses of the forecasted air temperature and humidity 2 m above the ground, wind speed at 10 m and total cloud cover N in octas by the numerical weather prediction (NWP) model. N is used to estimate the shortwave and longwave radiation fluxes. These variables are used to calculate the boundary conditions in the METRo-CZ model. We found that the variable N is crucial for generating the ensembles. Nevertheless, the ensemble spread is too small and underestimates the uncertainty in the RST forecast. One of the reasons is not considering errors in the rain and snow forecast by the NWP model when generating ensembles. Technical issues, such as incorrect sky view factors and the current state of road surface conditions also contribute to errors. Although the ensemble technique underestimates the uncertainty in the RST forecasts, it provides additional information to road authorities who provide winter road maintenance.

  6. Seasonal fire danger forecasts for the USA

    Treesearch

    J. Roads; F. Fujioka; S. Chen; R. Burgan

    2005-01-01

    The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...

  7. Some Initiatives in a Business Forecasting Course

    ERIC Educational Resources Information Center

    Chu, Singfat

    2007-01-01

    The paper reports some initiatives to freshen up the typical undergraduate business forecasting course. These include (1) students doing research and presentations on contemporary tools and industry practices such as neural networks and collaborative forecasting (2) insertion of Logistic Regression in the curriculum (3) productive use of applets…

  8. School Science Inspired by Improving Weather Forecasts

    ERIC Educational Resources Information Center

    Reid, Heather; Renfrew, Ian A.; Vaughan, Geraint

    2014-01-01

    High winds and heavy rain are regular features of the British weather, and forecasting these events accurately is a major priority for the Met Office and other forecast providers. This is the challenge facing DIAMET, a project involving university groups from Manchester, Leeds, Reading, and East Anglia, together with the Met Office. DIAMET is part…

  9. A Delphi Forecast of Technology in Education.

    ERIC Educational Resources Information Center

    Robinson, Burke E.

    The forecast reported here surveys expected utilization levels, organizational structures, and values concerning technology in education in 1990. The focus is upon educational technology and forecasting methodology; televised instruction, computer-assisted instruction (CAI), and information services are considered. The methodology employed…

  10. Forecasting Enrollments with Fuzzy Time Series.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  11. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting.

  12. Analog forecasting with dynamics-adapted kernels

    NASA Astrophysics Data System (ADS)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  13. Methods and Techniques of Revenue Forecasting.

    ERIC Educational Resources Information Center

    Caruthers, J. Kent; Wentworth, Cathi L.

    1997-01-01

    Revenue forecasting is the critical first step in most college and university budget-planning processes. While it seems a straightforward exercise, effective forecasting requires consideration of a number of interacting internal and external variables, including demographic trends, economic conditions, and broad social priorities. The challenge…

  14. Forecaster: Mass and radii of planets predictor

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Kipping, David

    2017-01-01

    Forecaster predicts the mass (or radius) from the radius (or mass) for objects covering nine orders-of-magnitude in mass. It is an unbiased forecasting model built upon a probabilistic mass-radius relation conditioned on a sample of 316 well-constrained objects. It accounts for observational errors, hyper-parameter uncertainties and the intrinsic dispersions observed in the calibration sample.

  15. Occupational Forecasting of Librarians in Australia.

    ERIC Educational Resources Information Center

    Stall, Roy

    This paper reviews the principal sources and methods used by the Manpower Research and Information Branches of the Department of Employment and Industrial Relations (DEIR) to forecast the over or undersupply of librarians in Australia. After differentiating between manpower policy, planning, and forecasting, the role of the commonwealth government…

  16. Resources and Long-Range Forecasts

    ERIC Educational Resources Information Center

    Smith, Waldo E.

    1973-01-01

    The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)

  17. Resources and Long-Range Forecasts

    ERIC Educational Resources Information Center

    Smith, Waldo E.

    1973-01-01

    The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)

  18. Some Initiatives in a Business Forecasting Course

    ERIC Educational Resources Information Center

    Chu, Singfat

    2007-01-01

    The paper reports some initiatives to freshen up the typical undergraduate business forecasting course. These include (1) students doing research and presentations on contemporary tools and industry practices such as neural networks and collaborative forecasting (2) insertion of Logistic Regression in the curriculum (3) productive use of applets…

  19. Forecast of geothermal-drilling activity

    SciTech Connect

    Mansure, A.J.; Brown, G.L.

    1982-07-01

    The number of geothermal wells that will be drilled to support electric power production in the United States through 2000 A.D. are forecasted. Results of the forecast are presented by 5-year periods for the five most significant geothermal resources.

  20. Toward a Marine Ecological Forecasting System

    DTIC Science & Technology

    2010-06-01

    coral bleaching , living resource distribution, and pathogen progression). An operational ecological forecasting system depends upon the assimilation of...space scales (e.g., harmful algal blooms, dissolved oxygen concentration (hypoxia), water quality/beach closures, coral bleaching , living resource...advance. Two beaches in Lake Michigan have been selected for initial implementation. Forecasting Coral Bleaching in relation to Ocean Temperatures

  1. Climate forecasts for corn producer decision making

    USDA-ARS?s Scientific Manuscript database

    Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertai...

  2. Evaluation and first forecasts of the German Climate Forecast System 1 (GCFS1)

    NASA Astrophysics Data System (ADS)

    Fröhlich, Kristina; Baehr, Johanna; Müller, Wolfgang; Bunzel, Felix; Pohlmann, Holger; Dobrynin, Mikhail

    2016-04-01

    We present the near-operational seasonal forecast system GCFS1 (German Climate Forecast System version 1), based on the CMIP5 version of the global coupled climate model MPI-ESM-LR. For GCFS1 we also present a detailed assessment on the predictive skill of the model. GCFS1 has been developed in cooperation between the Max Planck Institute for Meteorology, University of Hamburg and German Meteorological Service (DWD), the forecasts are conducted by DWD. The system is running at ECMWF with a re-forecast ensemble of 15 member and a forecast ensemble of 30 member. The re-forecasts are initialised with full field nudging in the atmosphere (using ERA Interim), in the ocean (using ORAS4) and in the sea-ice component (using NSIDC sea-ice concentration). For the initialization of the forecasts analyses from the ECMWF NWP model and recent ORAS4 analyses are taken. The ensemble perturbations are, for both re-forecasts and forecasts, generated through bred vectors in the ocean which provide initial perturbations for the ensemble in combination with simple physics perturbations in the atmosphere. Evaluation of the re-forecasted climatologies will be presented for different variables, start dates and regions. The first winter forecast during the strong El Niño phase is also subject of evaluation.

  3. Monthly forecasting of agricultural pests in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Dubrovsky, M.; Spirig, C.; Samietz, J.; Calanca, P.; Weigel, A. P.; Fischer, A. M.; Rotach, M. W.

    2012-04-01

    Given the repercussions of pests and diseases on agricultural production, detailed forecasting tools have been developed to simulate the degree of infestation depending on actual weather conditions. The life cycle of pests is most successfully predicted if the micro-climate of the immediate environment (habitat) of the causative organisms can be simulated. Sub-seasonal pest forecasts therefore require weather information for the relevant habitats and the appropriate time scale. The pest forecasting system SOPRA (www.sopra.info) currently in operation in Switzerland relies on such detailed weather information, using hourly weather observations up to the day the forecast is issued, but only a climatology for the forecasting period. Here, we aim at improving the skill of SOPRA forecasts by transforming the weekly information provided by ECMWF monthly forecasts (MOFCs) into hourly weather series as required for the prediction of upcoming life phases of the codling moth, the major insect pest in apple orchards worldwide. Due to the probabilistic nature of operational monthly forecasts and the limited spatial and temporal resolution, their information needs to be post-processed for use in a pest model. In this study, we developed a statistical downscaling approach for MOFCs that includes the following steps: (i) application of a stochastic weather generator to generate a large pool of daily weather series consistent with the climate at a specific location, (ii) a subsequent re-sampling of weather series from this pool to optimally represent the evolution of the weekly MOFC anomalies, and (iii) a final extension to hourly weather series suitable for the pest forecasting model. Results show a clear improvement in the forecast skill of occurrences of upcoming codling moth life phases when incorporating MOFCs as compared to the operational pest forecasting system. This is true both in terms of root mean squared errors and of the continuous rank probability scores of the

  4. Forecasting the Chilean Tsunami, February 27 2010

    NASA Astrophysics Data System (ADS)

    Sterling, K.; Knight, W.; Whitmore, P.

    2010-12-01

    The West Coast and Alaska Tsunami Warning Center (WC/ATWC) is responsible for issuing tsunami warnings, advisories, and watches for the United States and Canadian coastlines. Utilizing well defined criteria related to earthquake magnitude and location an initial alert message is transmitted. The situation is monitored closely and analyzed using forecast models and real-time sea level observations. If a tsunami is detected then a tsunami warning, advisory, or watch is issued. On February 27, 2010 at 06:34:14 UTC, a M8.8 earthquake occurred off the coast of Maule, Chile, initiating a tsunami that propagated throughout the Pacific Ocean. With approximately 13 hours before the tsunami arrived on the US west coast, the WC/ATWC utilized all available forecasting tools to refine predicted tsunami amplitudes and inundation estimates, thereby providing the best possible estimates to emergency managers and the public. The guidance from the tsunami forecast models, used in concurrence with sea-level observations, resulted in a tsunami advisory being issued for the Pacific coastal regions of the United States and Canada, the extent of which was expanded and then decreased as the event evolved. The WC/ATWC used two tsunami forecast models: the Alaska Tsunami Forecast Model (ATFM) and the Short-term Inundation Forecasting for Tsunamis (SIFT) to formulate a solution. Each model provided an initial tsunami forecast based on the earthquake magnitude and location that was subsequently refined over the following hours as Deep-ocean Assessment and Reporting of Tsunamis (DART) observations became available. After the DART data was assimilated into the models, the two forecasts were used in conjunction to publicly issue predicted maximum amplitudes for 77 locations along the US west coast and in Alaska. As the tsunami reached the US coastline, tide gauge observations were used in scaling the forecasted maximum amplitudes from the ATFM, thereby increasing the forecast accuracy

  5. Error models for official mortality forecasts.

    PubMed

    Alho, J M; Spencer, B D

    1990-09-01

    "The Office of the Actuary, U.S. Social Security Administration, produces alternative forecasts of mortality to reflect uncertainty about the future.... In this article we identify the components and assumptions of the official forecasts and approximate them by stochastic parametric models. We estimate parameters of the models from past data, derive statistical intervals for the forecasts, and compare them with the official high-low intervals. We use the models to evaluate the forecasts rather than to develop different predictions of the future. Analysis of data from 1972 to 1985 shows that the official intervals for mortality forecasts for males or females aged 45-70 have approximately a 95% chance of including the true mortality rate in any year. For other ages the chances are much less than 95%."

  6. Uncertainty in dispersion forecasts using meteorological ensembles

    SciTech Connect

    Chin, H N; Leach, M J

    1999-07-12

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes.

  7. Demand forecast model based on CRM

    NASA Astrophysics Data System (ADS)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  8. Improved short range forecasting by blending techniques using extrapolation and NWP model forecasts

    NASA Astrophysics Data System (ADS)

    Jang, M.; Jee, J. B.; Kim, S.; Park, J. G.

    2016-12-01

    Nowcasting and short range forecast rely more and more on "blending" techniques combining several data sources (both in situ and remote sensing observation, NWP, model output statistic data, high resolution topography, etc..) in a seamless way using lead-time-dependent weights. Developed nowcasting techniques blend extrapolation-based forecasts with numerical weather prediction (NWP)-based forecasts, heavily weighting the extrapolation forecasts at 0 3h lead times and transitioning emphasis to the NWP-based forecasts at the later lead times. Korea Meteorological Administration (KMA) employs NOAA's Local Analysis and Prediction System (LAPS) which is called KLAPS. It provides the hot-start initial condition to the very short-range forecasting system called advanced storm-scale analysis and prediction system (ASAPS) based on the Weather Research and Forecasting (WRF) model. MAPLE (McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation) uses radar composite maps to predict the location of precipitation echoes several hours in advance (up to 6 hours) using the variational echo tracking method and a semi-Lagrangian backward advection technique. This system has been operating in real-time since June 2008, the output being used in operations by KMA's weather forecasters and hydrologists. The spatial resolution of both products are 1km. The purpose of this study is to improve the accuracy of short range forecasting using the merging method (distance, similarity) between radar-based extrapolation forecast (MAPLE) and precipitation forecast from NWP model (ASAPS). In this study, a new approach to applying different weights to blend extrapolation and model forecasts based on intensities and forecast times is applied and tested. As a result, very short range forecasts was confirmed the possibility to be improved.

  9. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  10. Space Weather Forecasting: An Enigma

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.

    2012-12-01

    -pipe" disciplines. The perceived progress in space weather understanding differs significantly depending upon which community (scientific, technology, forecaster, society) is addressing the question. Even more divergent are these thoughts when the question is how valuable is the scientific capability of forecasting space weather. This talk will discuss present day as well as future potential for forecasting space weather for a few selected examples. The author will attempt to straddle the divergent community opinions.

  11. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast. Technical Appendix: Volume 1.

    SciTech Connect

    1994-02-01

    This publication documents the load forecast scenarios and assumptions used to prepare BPA's Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  12. Testing the Value of Probability Forecasts for Calibrated Combining

    PubMed Central

    Lahiri, Kajal; Peng, Huaming; Zhao, Yongchen

    2014-01-01

    We combine the probability forecasts of a real GDP decline from the U.S. Survey of Professional Forecasters, after trimming the forecasts that do not have “value”, as measured by the Kuiper Skill Score and in the sense of Merton (1981). For this purpose, we use a simple test to evaluate the probability forecasts. The proposed test does not require the probabilities to be converted to binary forecasts before testing, and it accommodates serial correlation and skewness in the forecasts. We find that the number of forecasters making valuable forecasts decreases sharply as the horizon increases. The beta-transformed linear pool combination scheme, based on the valuable individual forecasts, is shown to outperform the simple average for all horizons on a number of performance measures, including calibration and sharpness. The test helps to identify the good forecasters ex ante, and therefore contributes to the accuracy of the combined forecasts. PMID:25530646

  13. Flare forecasting at the Met Office Space Weather Operations Centre

    NASA Astrophysics Data System (ADS)

    Murray, S. A.; Bingham, S.; Sharpe, M.; Jackson, D. R.

    2017-04-01

    The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end-users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms: forecasts for each active region on the solar disk over the next 24 h and full-disk forecasts for the next 4 days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results and forecasting skill decreasing over longer forecast lead times.

  14. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive

  15. Energy: forecasting, data, and conservation

    SciTech Connect

    Bertram, K.M.; Mannering, F.L.; Harrington, I.E.; Boyce, D.E.; Janson, B.N.

    1981-01-01

    The 14 papers in this report deal with the following areas: projected potential piggyback energy savings through the year 2000; use of density function and Monte Carlo simulation techniques to evaluate policy impacts on travel demand; direct energy consumption for personal travel in the Chicago metropolitan area; short-term forecasting of gasoline demand; issues for developing state energy emergency conservation plans; analysis of long-term transportation energy use; state-level stock system model of gasoline demand; fuel consumption on congested freeways; measures of the impacts of changes in motor-fuel supply in Massachusetts; dual price system for management of gasoline lines; projections of changes in vehicle technology and characteristics to improve fuel economy; framework for analyzing the 1979 summer fuel crisis: the New York state experience; simulating the impact of transportation-related energy policies on travel behavior and transportation demand; and an assessment of games as methods of providing information on gasoline conservation.

  16. Clear air turbulence forecasting techniques

    NASA Technical Reports Server (NTRS)

    Keller, J. L.

    1980-01-01

    A method to improve clear air turbulence (CAT) forecasting by more effectively using the currently operational rawinsonde (RW) system is discussed. The method is called the Diagnostic Richardson Number Tendency (DRT) technique. The technique does not attempt to use the RW as a direct detector of the turbulent motion or even of the CAT mechanism structure but rather senses the synoptic scale centers of action which provide the energy to the CAT mechanism at the mesoscale level. The DRT algorithm is deterministic rather than statistical in nature, using the hydrodynamic equations (equations of motion) relevant to the synoptic scale. However, interpretation, by necessity, is probabilistic. What is most important with respect to its operational implementation is that this method uses the same input data as currently used by the operational National Meteorological Center prognostic models.

  17. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  18. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  19. Decision support for financial forecasting

    SciTech Connect

    Jairam, B.N.; Morris, J.D.; Emrich, M.L.; Hardee, H.K.

    1988-10-01

    A primary mission of the Budget Management Division of the Air Force is fiscal analysis. This involves formulating, justifying, and tracking financial data during budget preparation and execution. An essential requirement of this process is the ready availability and easy manipulation of past and current budget data. This necessitates the decentralization of the data. A prototypical system, BAFS (Budget Analysis and Forecasting System), that provides such a capability is presented. In its current state, the system is designed to be a decision support tool. A brief report of the budget decisions and activities is presented. The system structure and its major components are discussed. An insight into the implementation strategies and the tool used is provided. The paper concludes with a discussion of future enhancements and the system's evolution into an expert system. 4 refs., 3 figs.

  20. Clear air turbulence forecasting techniques

    NASA Technical Reports Server (NTRS)

    Keller, J. L.

    1980-01-01

    A method to improve clear air turbulence (CAT) forecasting by more effectively using the currently operational rawinsonde (RW) system is discussed. The method is called the Diagnostic Richardson Number Tendency (DRT) technique. The technique does not attempt to use the RW as a direct detector of the turbulent motion or even of the CAT mechanism structure but rather senses the synoptic scale centers of action which provide the energy to the CAT mechanism at the mesoscale level. The DRT algorithm is deterministic rather than statistical in nature, using the hydrodynamic equations (equations of motion) relevant to the synoptic scale. However, interpretation, by necessity, is probabilistic. What is most important with respect to its operational implementation is that this method uses the same input data as currently used by the operational National Meteorological Center prognostic models.

  1. Uses and Applications of Climate Forecasts for Power Utilities.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.

  2. Phantosmia as a meteorological forecaster.

    PubMed

    Aiello, S R; Hirsch, A R

    2013-09-01

    In normosmics, olfactory ability has been found to vary with ambient humidity, barometric pressure, and season. While hallucinated sensations of phantom pain associated with changes in weather have been described, a linkage to chemosensory hallucinations has heretofore not been reported. A 64-year-old white male with Parkinson's disease presents with 5 years of phantosmia of a smoky burnt wood which changed to onion-gas and then to a noxious skunk-onion excrement odor. Absent upon waking it increases over the day and persists for hours. When severe, there appears a phantom taste with the same qualities as the odor. It is exacerbated by factors that manipulate intranasal pressure, such as coughing. When eating or sniffing, the actual flavors replace the phantosmia. Since onset, he noted the intensity and frequency of the phantosmia forecasted the weather. Two to 3 h before a storm, the phantosmia intensifies from a level 0 to a 7-10, which persists through the entire thunderstorm. Twenty years prior, he reported the ability to forecast the weather, based on pain in a torn meniscus, which vanished after surgical repair. Extensive olfactory testing demonstrates underlying hyposmia. Possible mechanisms for such chemosensory-meteorological linkage includes: air pressure induced synesthesia, disinhibition of spontaneous olfactory discharge, exacerbation of ectopic discharge, affect mediated somatic sensory amplification, and misattribution error with expectation and recall bias. This is the first reported case of weather-induced exacerbation of phantosmia. Further investigation of the connection between chemosensory complaints and ambient weather is warranted.

  3. MSSM forecast for the LHC

    NASA Astrophysics Data System (ADS)

    Cabrera, Maria Eugenia; Casas, J. Alberto; de Austri, Roberto Ruiz

    2010-05-01

    We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e - data) is considered, the preferred region (for μ > 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative- μ possibilities.

  4. Performance of aftershock forecasts: problem and formulation

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wu, Z.; Li, L.

    2010-12-01

    WFSD project deals with the problems of earthquake physics, in which one of the important designed aims is the forecast of the on-going aftershock activity of the Wenchuan earthquake, taking the advantage of the fast response to great earthquakes. Correlation between fluid measurements and aftershocks provided heuristic clues to the forecast of aftershocks, invoking the discussion on the performance of such ‘precursory anomalies’, even if in a retrospective perspective. In statistical seismology, one of the critical issues is how to test the statistical significance of an earthquake forecast scheme against real seismic activity. Due to the special characteristics of aftershock series and the feature of aftershock forecasts that it deals with a limited spatial range and specific temporal duration, the test of the performance of aftershock forecasts has to be different from the standard tests for main shock series. In this presentation we address and discuss the possible schemes for testing the performance of aftershock forecasts - a seemingly simple but practically important issue in statistical seismology. As a simple and preliminary approach, we use an alternative form of Receiver Operating Characteristic (ROC) test, as well as other similar tests, considering the properties of aftershock series by using Omori law, ETAS model, and/or CFS calculation. We also discussed the lessons and experiences of the Wenchuan aftershock forecasts, exploring how to make full use of the present knowledge of the regularity of aftershocks to serve the earthquake rescue and relief endeavor as well as the post-earthquake reconstruction.

  5. Weather forecasting based on hybrid neural model

    NASA Astrophysics Data System (ADS)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  6. Six rules for accurate effective forecasting.

    PubMed

    Saffo, Paul

    2007-01-01

    The primary goal of forecasting is to identify the full range of possibilities facing a company, society, or the world at large. In this article, Saffo demythologizes the forecasting process to help executives become sophisticated and participative consumers of forecasts, rather than passive absorbers. He illustrates how to use forecasts to at once broaden understanding of possibilities and narrow the decision space within which one must exercise intuition. The events of 9/11, for example, were a much bigger surprise than they should have been. After all, airliners flown into monuments were the stuff of Tom Clancy novels in the 1990s, and everyone knew that terrorists had a very personal antipathy toward the World Trade Center. So why was 9/11 such a surprise? What can executives do to avoid being blind-sided by other such wild cards, be they radical shifts in markets or the seemingly sudden emergence of disruptive technologies? In describing what forecasters are trying to achieve, Saffo outlines six simple, commonsense rules that smart managers should observe as they embark on a voyage of discovery with professional forecasters. Map a cone of uncertainty, he advises, look for the S curve, embrace the things that don't fit, hold strong opinions weakly, look back twice as far as you look forward, and know when not to make a forecast.

  7. Precision Fiber Optic Sensor Market Forecast

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeff D.; Glasco, Jon; Dixon, Frank W.

    1986-01-01

    The worldwide market for precision fiber optic sensors is forecasted, 1984-1994. The forecast is based upon o Analysis of fiber optic sensor and related component current technology, and a forecast of technology advancement o Review and projection of demand for precision sensing, and the penetration which fiber optics will make into this market The analysis and projections are based mainly on interviews conducted worldwide with research teams, government agencies, systems contractors, medical and industrial laboratories, component suppliers and others. The worldwide market for precision (interferometric) fiber optic sensing systems is forecasted to exceed $0.8 billion by 1994. The forecast is segmented by geographical region (Europe, Japan and North America) and by function; o Gyroscope o Sonar o Gradiometer/Magnetometer o Other - Chemical Composition - Atmospheric Acoustic - Temperature - Position - Pressure Requirements for components are reviewed. These include special fiber, emitters and detectors, modulators, couplers, switches, integrated optical circuits and integrated optoelectronics. The advancement in component performance is forecasted. The major driving forces creating fiber optic sensor markets are reviewed. These include fiber optic sensor technical and economic advantages, increasingly stringent operational requirements, and technology evolution. The leading fiber optic sensor and related component development programs are reviewed. Component sources are listed. Funding sources for sensor and component development are outlined, and trends forecasted.

  8. Urban Air Quality Forecasting in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Menard, Sylvain; Cousineau, Sophie; Stroud, Craig; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada has been providing air quality (AQ) forecasts for major Canadian urban centers since 2001. Over this period, the Canadian AQ Forecast Program has expanded and evolved. It currently uses the Regional Air Quality Deterministic Prediction System (RAQDPS) modelling framework. At the heart of the RAQDPS is the GEM-MACH model, an on-line coupled meteorology‒chemistry model configured for a North American domain with 10 km horizontal grid spacing and 80 vertical levels. A statistical post-processing model (UMOS-AQ) is then applied to the RAQDPS hourly forecasts for locations with AQ monitors to reduce point forecast bias and error. These outputs provide the primary guidance from which operational meteorologists disseminate Air Quality Health Index (AQHI) forecasts to the public for major urban centres across Canada. During the 2015 summer Pan Am and Parapan Am Games, which were held in Ontario, Canada, an experimental version of the RAQDPS at 2.5 km horizontal grid spacing was run for a domain over the greater Toronto area. Currently, there is ongoing research to develop and assess AQ systems run at 1 km resolution. This presentation will show analyses of operational AQ forecast performance for several pollutants over the last few years in major Canadian urban centres such as Toronto, Montreal, Vancouver, Ottawa, and Calgary. Trends in observed pollution along with short- and long-term development plans for urban AQ forecasting will also be presented.

  9. A Simulation Optimization Approach to Epidemic Forecasting

    PubMed Central

    Nsoesie, Elaine O.; Beckman, Richard J.; Shashaani, Sara; Nagaraj, Kalyani S.; Marathe, Madhav V.

    2013-01-01

    Reliable forecasts of influenza can aid in the control of both seasonal and pandemic outbreaks. We introduce a simulation optimization (SIMOP) approach for forecasting the influenza epidemic curve. This study represents the final step of a project aimed at using a combination of simulation, classification, statistical and optimization techniques to forecast the epidemic curve and infer underlying model parameters during an influenza outbreak. The SIMOP procedure combines an individual-based model and the Nelder-Mead simplex optimization method. The method is used to forecast epidemics simulated over synthetic social networks representing Montgomery County in Virginia, Miami, Seattle and surrounding metropolitan regions. The results are presented for the first four weeks. Depending on the synthetic network, the peak time could be predicted within a 95% CI as early as seven weeks before the actual peak. The peak infected and total infected were also accurately forecasted for Montgomery County in Virginia within the forecasting period. Forecasting of the epidemic curve for both seasonal and pandemic influenza outbreaks is a complex problem, however this is a preliminary step and the results suggest that more can be achieved in this area. PMID:23826222

  10. National Weather Service Forecast Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Krone-Davis, P.; Melton, F. S.; Hobbins, M.

    2013-12-01

    The National Weather Service (NWS), Weather Forecasting Offices (WFOs) are producing daily reference evapotranspiration (ETrc) forecasts or FRET across the Western Region and in other selected locations since 2009, using the Penman - Monteith Reference Evapotranspiration equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI, 2004). The sensitivity of these daily calculations to fluctuations in temperatures, humidity, winds, and sky cover allows forecasters with knowledge of local terrain and weather patterns to better forecast in the ETrc inputs. The daily FRET product then evolved into a suite of products, including a weekly ETrc forecast for better water planning and a tabular point forecast for easy ingest into local water management-models. The ETrc forecast product suite allows water managers, the agricultural community, and the public to make more informed water-use decisions. These products permit operational planning, especially with the impending drought across much of the West. For example, the California Department of Water Resources not only ingests the FRET into their soil moisture models, but uses the FRET calculations when determining the reservoir releases in the Sacramento and American Rivers. We will also focus on the expansion of FRET verification, which compares the daily FRET to the observations of ETo from the California Irrigation Management Information System (CIMIS) across California's Central Valley for the 2012 water year.

  11. A method for probabilistic flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Hardy, Jill; Gourley, Jonathan J.; Kirstetter, Pierre-Emmanuel; Hong, Yang; Kong, Fanyou; Flamig, Zachary L.

    2016-10-01

    Flash flooding is one of the most costly and deadly natural hazards in the United States and across the globe. This study advances the use of high-resolution quantitative precipitation forecasts (QPFs) for flash flood forecasting. The QPFs are derived from a stormscale ensemble prediction system, and used within a distributed hydrological model framework to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Before creating the PFFFs, it is important to characterize QPF uncertainty, particularly in terms of location which is the most problematic for hydrological use of QPFs. The SAL methodology (Wernli et al., 2008), which stands for structure, amplitude, and location, is used for this error quantification, with a focus on location. Finally, the PFFF methodology is proposed that produces probabilistic hydrological forecasts. The main advantages of this method are: (1) identifying specific basin scales that are forecast to be impacted by flash flooding; (2) yielding probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the QPFs; (3) improving lead time by using stormscale NWP ensemble forecasts; and (4) not requiring multiple simulations, which are computationally demanding.

  12. Seasonal streamflow forecasting with the global hydrological forecasting system FEWS-World

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, N.; Van Beek, L. P.; Winsemius, H.; Bierkens, M. F.

    2011-12-01

    The year-to-year variability of river discharge brings about risks and opportunities in water resources management. Reliable hydrological forecasts and effective communication allow several sectors to make more informed management decisions. In many developing regions of the world, there are no efficient hydrological forecasting systems. For these regions, a global forecasting system which indicates increased probabilities of streamflow excesses or shortages over long lead-times can be of great value. FEWS-World is developed for this purpose. The system incorporates the global hydrological model PCR-GLOBWB and delivers streamflow forecasts on a global scale. This study investigates the skill and value of FEWS-World. Skill is defined as the ability of the system to forecast discharge extremes; and value is its usefulness for possible users and ultimately for affected populations. Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from the European Center for Medium-Range Weather Forecasts (ECMWF). The results will be disseminated on the internet to provide valuable information for users in data and model-poor regions of the world. The preliminary skill assessment of PCR-GLOBWB in reproducing flow extremes is carried out for a selection of 20 large rivers of the world. The model is run for a historical period, with a meteorological forcing data set based on observations from the Climate Research Unit of the University of East Anglia, and the ERA-40 reanalysis of ECMWF. Model skill in reproducing monthly anomalies as well as floods and droughts is assessed by applying verification measures developed for deterministic meteorological forecasts. The results of this preliminary analysis shows that even where the simulated hydrographs are biased, higher skills can be attained in reproducing monthly

  13. Seasonal hydrological ensemble forecasts over Europe

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Wetterhall, Fredrik; Stephens, Elisabeth; Cloke, Hannah; Pappenberger, Florian

    2016-04-01

    This study investigates the limits of predictability in dynamical seasonal discharge forecasting, in both space and time, over Europe. Seasonal forecasts have an important socioeconomic value. Applications are numerous and cover hydropower management, spring flood prediction, low flow prediction for navigation and agricultural water demands. Additionally, the constant increase in NWP skill for longer lead times and the predicted increase in the intensity and frequency of hydro-meteorological extremes, have amplified the incentive to promote and further improve hydrological forecasts on sub-seasonal to seasonal timescales. In this study, seasonal hydrological forecasts (SEA), driven by the ECMWF's System 4 in hindcast mode, were analysed against an Ensemble Streamflow Prediction (ESP) benchmark. The ESP was forced with an ensemble of resampled historical meteorological observations and started with perfect initial conditions. Both forecasts were produced by the LISFLOOD model, run on the pan-European scale with a spatial resolution of 5 by 5 km. The forecasts were issued monthly on a daily time step, from 1990 until the current time, up to a lead time of 7 months. The seasonal discharge forecasts were analysed against the ESP on a catchment scale in terms of their accuracy, skill and sharpness, using a diverse set of verification metrics (e.g. KGE, CRPSS and ROC). Additionally, a reverse-ESP was constructed by forcing the LISFLOOD model with a single perfect meteorological set of observations and initiated from an ensemble of resampled historical initial conditions. The comparison of the ESP with the reverse-ESP approach enabled the identification of the respective contribution of meteorological forcings and hydrologic initial conditions errors to seasonal discharge forecasting uncertainties in Europe. These results could help pinpoint target elements of the forecasting chain which, after being improved, could lead to substantial increase in discharge predictability

  14. Accuracy analysis of TDRSS demand forecasts

    NASA Technical Reports Server (NTRS)

    Stern, Daniel C.; Levine, Allen J.; Pitt, Karl J.

    1994-01-01

    This paper reviews Space Network (SN) demand forecasting experience over the past 16 years and describes methods used in the forecasts. The paper focuses on the Single Access (SA) service, the most sought-after resource in the Space Network. Of the ten years of actual demand data available, only the last five years (1989 to 1993) were considered predictive due to the extensive impact of the Challenger accident of 1986. NASA's Space Network provides tracking and communications services to user spacecraft such as the Shuttle and the Hubble Space Telescope. Forecasting the customer requirements is essential to planning network resources and to establishing service commitments to future customers. The lead time to procure Tracking and Data Relay Satellites (TDRS's) requires demand forecasts ten years in the future a planning horizon beyond the funding commitments for missions to be supported. The long range forecasts are shown to have had a bias toward underestimation in the 1991 -1992 period. The trend of underestimation can be expected to be replaced by overestimation for a number of years starting with 1998. At that time demand from new missions slated for launch will be larger than the demand from ongoing missions, making the potential for delay the dominant factor. If the new missions appear as scheduled, the forecasts are likely to be moderately underestimated. The SN commitment to meet the negotiated customer's requirements calls for conservatism in the forecasting. Modification of the forecasting procedure to account for a delay bias is, therefore, not advised. Fine tuning the mission model to more accurately reflect the current actual demand is recommended as it may marginally improve the first year forecasting.

  15. Tsunami Forecast: Connecting Science with Warning Operations

    NASA Astrophysics Data System (ADS)

    Titov, V. V.

    2014-12-01

    Tsunami modeling capability had been rapidly developing even before the watershed event of the 2004 Sumatra tsunami. During 1990-2000, the International Decade for Natural Disaster Reduction, the tsunami scientific community took on the difficult task of developing the modeling capability that would provide accuracy needed for long-term tsunami forecast — tsunami hazard maps. After exhaustive field, laboratory and modeling efforts by the international scientific community, the modeling capability has been achieved with accuracy deemed sufficient for operational use. Several real-time model forecast tools started to be used at TWCs in the US and Japan. In parallel, the observational component of tsunami warning systems had been improving, including updated existing seismic and coastal sea-level stations array. New early detection and measurement system (DART) has been developed specifically for tsunami forecast applications. The 2004 Sumatra tsunami has triggered the efforts of intensive implementation of science results into operational tsunami warning capabilities. At present, several tsunami forecast systems, based on various modeling and detection capabilities, are operational. Since 2004, over 40 tsunamis, including the 2011 Japanese tsunami, provided real-time tests for the tsunami forecast system capabilities. Preliminary assessment of tsunami forecast performance will be presented based on the analysis of the U.S. operational tsunami inundation forecast. Assessing forecast performance is important to evaluate the needs for improvement and further research. Baseline of the tsunami forecast skills has now been established and will be presented based on the data from the tsunamis during the decade. Future improvements and future challenges will also be discussed.

  16. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  17. Radiation Belt and Ring Current Forecasting Model

    NASA Astrophysics Data System (ADS)

    Fok, M.; Khazanov, G. V.

    2001-12-01

    A model has been developed to predict the radiation belt and ring current environment. The core of this forecasting model is a kinetic model, which solves the convection-diffusion equation of particle distributions at 10 keV to MeV energy range. This forecasting model is solely driven by the solar wind and IMF conditions. We will present the model logic, and the model validation by comparing measured particle fluxes during several magnetic storms with model calculations. In addition, we will estimate the radiation dose collected during these active periods. Finally, future development of this forecasting model will be discussed.

  18. Methodological Approaches to Forecasting the Development of Higher Education

    ERIC Educational Resources Information Center

    Glukhov, A. A.; Zaslavskii, D. P.

    1978-01-01

    Identifies two major directions in forecasting higher education in the Soviet Union: forecasting specific subsystems such as financing, materials, physical plants, and organization; and forecasting the system as a whole. Discusses the need for integration within these two areas of forecasting. (Author/DB)

  19. Weather forecast needs from the viewpoint of hydrology

    USGS Publications Warehouse

    Thomas, Donald M.; Buchanan, Thomas J.

    1980-01-01

    Hydrologists now depend on directly observed data in their forecasting and only infrequently use meteorological forecasts. Case studies show how reliable meteorological forecasts could be beneficial in flood and drought situations. Hydrologists need meteorological forecasts that recognize spatial variability, that are unbiased, and that have a specified degree of uncertainty. (USGS)

  20. A Complex Adaptive System Approach to Forecasting Hurricane Tracks

    DTIC Science & Technology

    2005-06-01

    improve hurricane track forecasting. The objective of this study is two fold. The first objective is to create a hurricane forecast that will produce... Hurricane forecast errors for the five models and the consensus ensemble were gathered using software from the ATCF system. The TAF forecast errors

  1. An Econometric Model for Forecasting Income and Employment in Hawaii.

    ERIC Educational Resources Information Center

    Chau, Laurence C.

    This report presents the methodology for short-run forecasting of personal income and employment in Hawaii. The econometric model developed in the study is used to make actual forecasts through 1973 of income and employment, with major components forecasted separately. Several sets of forecasts are made, under different assumptions on external…

  2. Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast

    SciTech Connect

    Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle Scott; Osthus, Dave Allen; Priedhorsky, Reid; Hyman, James M.; Del Valle, Sara Yermimah

    2016-11-14

    Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.

  3. Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast

    DOE PAGES

    Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas; ...

    2016-11-14

    Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less

  4. Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human Behavior and Internet Data Streams in Epidemic Forecast.

    PubMed

    Moran, Kelly R; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle; Osthus, Dave; Priedhorsky, Reid; Hyman, James; Del Valle, Sara Y

    2016-12-01

    Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Hydrocarbon Rocket Technology Impact Forecasting

    NASA Technical Reports Server (NTRS)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  6. Ensemble Forecasts with Useful Skill-Spread Relationships for African meningitis and Asia Streamflow Forecasting

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.

    2014-12-01

    One potential benefit of an ensemble prediction system (EPS) is its capacity to forecast its own forecast error through the ensemble spread-error relationship. In practice, an EPS is often quite limited in its ability to represent the variable expectation of forecast error through the variable dispersion of the ensemble, and perhaps more fundamentally, in its ability to provide enough variability in the ensembles dispersion to make the skill-spread relationship even potentially useful (irrespective of whether the EPS is well-calibrated or not). In this paper we examine the ensemble skill-spread relationship of an ensemble constructed from the TIGGE (THORPEX Interactive Grand Global Ensemble) dataset of global forecasts and a combination of multi-model and post-processing approaches. Both of the multi-model and post-processing techniques are based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. The methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. A context for these concepts is provided by assessing the constructed ensemble in forecasting district-level humidity impacting the incidence of meningitis in the meningitis belt of Africa, and in forecasting flooding events in the Brahmaputra and Ganges basins of South Asia.

  7. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.

    2015-12-01

    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  8. From short term power forecasting to nowcasting - Benefiting from meteorological forecasts and measurements

    NASA Astrophysics Data System (ADS)

    Mey, Britta; Braun, Axel; Good, Garrett; Vogt, Stephan; Wessel, Arne; Dobschinski, Jan

    2016-04-01

    Today, wind and solar power forecasts with time horizons from zero to about three hours are essential for the reliable grid and market integration of wind and solar energy. With respect to closure times of German intra-day markets, power forecasts with time horizons of about one to two hours and an update frequency of 15 minutes are required for final trading activities, reducing the uncertainty of the day-ahead forecast of the previous day. Regarding grid security aspects, grid operators utilize such forecasts to create continuous intra-day grid congestion forecasts. In addition to these preventive measures, wind and solar power become more and more important for the provision of ancillary services by wind and solar farm operators. This use case mainly requires power forecasts with time horizons of less than one hour. In general, forecasts with time horizons below three hours are investigated within the nowcasting research area. Nowcasting models are mainly based on current observations and extrapolation methods. With respect to wind and solar power forecasts with horizons of up to three hours, it has been shown in studies that real-time power measurements have the highest information content as compared to other potential model input parameters. We will present results from studies focusing on the benefit of meteorological data (forecasts and/or measurements) in the field of solar and wind power forecasts with time horizons of up to a few hours. Wind farm forecast errors are for example reduced by using numerical weather prediction (NWP) data in the wind power prediction model along with real-time wind farm power measurements. Furthermore, spatially distributed NWP data in combination with German total wind power measurements helped in the reduction of extreme forecast errors. By using global radiation forecasts as an input for wind power forecasts, forecast error during sunrise and sunset could be reduced. In the field of German total solar power, nowcasting

  9. Probabilistic regional wind power forecasts based on calibrated Numerical Weather Forecast ensembles

    NASA Astrophysics Data System (ADS)

    Späth, Stephan; von Bremen, Lueder; Junk, Constantin; Heinemann, Detlev

    2014-05-01

    With increasing shares of installed wind power in Germany, accurate forecasts of wind speed and power get increasingly important for the grid integration of Renewable Energies. Applications like grid management and trading also benefit from uncertainty information. This uncertainty information can be provided by ensemble forecasts. These forecasts often exhibit systematic errors such as biases and spread deficiencies. The errors can be reduced by statistical post-processing. We use forecast data from the regional Numerical Weather Prediction model COSMO-DE EPS as input to regional wind power forecasts. In order to enhance the power forecast, we first calibrate the wind speed forecasts against the model analysis, so some of the model's systematic errors can be removed. Wind measurements at every grid point are usually not available and as we want to conduct grid zone forecasts, the model analysis is the best target for calibration. We use forecasts from the COSMO-DE EPS, a high-resolution ensemble prediction system with 20 forecast members. The model covers the region of Germany and surroundings with a vertical resolution of 50 model levels and a horizontal resolution of 0.025 degrees (approximately 2.8 km). The forecast range is 21 hours with model output available on an hourly basis. Thus, we use it for shortest-term wind power forecasts. The COSMO-DE EPS was originally designed with a focus on forecasts of convective precipitation. The COSMO-DE EPS wind speed forecasts at hub height were post-processed by nonhomogenous Gaussian regression (NGR; Thorarinsdottir and Gneiting, 2010), a calibration method that fits a truncated normal distribution to the ensemble wind speed forecasts. As calibration target, the model analysis was used. The calibration is able to remove some deficits of the COSMO-DE EPS. In contrast to the raw ensemble members, the calibrated ensemble members do not show anymore the strong correlations with each other and the spread-skill relationship

  10. Flood Forecasting in River System Using ANFIS

    SciTech Connect

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  11. Global Forecasting of Coral Bleaching Events

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Liu, G.; Matrosova, L. E.; Penland, M. C.; Gledhill, D. K.; Webb, R. S.; Christensen, T. R.; Heron, S. F.; Morgan, J. A.; Parker, B. A.; Skirving, W. J.; Strong, A. E.

    2009-05-01

    In July 2008, NOAA Coral Reef Watch launched a new seasonal prediction tool for coral bleaching conditions to augment its real-time satellite monitoring. A model of thermal stress from two to 16 weeks in the future was developed through collaboration with the Physical Sciences Division of the NOAA Earth System Research Laboratory, to forecast the risk of coral bleaching well in advance. The system is built on sea surface temperature forecasts provided by NOAA's Linear Inverse Model (LIM) that has successfully produced predictions of tropical Pacific and Atlantic SST anomalies. This presentation will outline this product, and compare the forecast with satellite observations of actual thermal stress. Such forecasting tools provide critical and timely decision support for coral reef managers and scientists worldwide.

  12. Predictability Assessment and Improving Ensemble Forecasts

    DTIC Science & Technology

    2001-09-30

    system (EFS) output by artificial neural networks . c) Design of optimal EFS’s, with an emphasis on precipitation forecasts. d) Design of stochastic physics parameterizations that improve under-dispersion in EFS s.

  13. AIR QUALITY FORECAST VERIFICATION USING SATELLITE DATA

    EPA Science Inventory

    NOAA 's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) experimental (research mode) particulate matter (PM2.5) forecast guidance issued during the summer 2004 International Consortium for Atmosp...

  14. Forecasting residential electricity demand in provincial China.

    PubMed

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  15. Forecasting in the presence of expectations

    NASA Astrophysics Data System (ADS)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  16. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Image and Video Library

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  17. AIR QUALITY FORECAST VERIFICATION USING SATELLITE DATA

    EPA Science Inventory

    NOAA 's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) experimental (research mode) particulate matter (PM2.5) forecast guidance issued during the summer 2004 International Consortium for Atmosp...

  18. Moisture Forecast Bias Correction in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  19. Flood Forecasting in River System Using ANFIS

    NASA Astrophysics Data System (ADS)

    Ullah, Nazrin; Choudhury, P.

    2010-10-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  20. Prediction Techniques in Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  1. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  2. Operational foreshock forecasting: Fifteen years after

    NASA Astrophysics Data System (ADS)

    Ogata, Y.

    2010-12-01

    We are concerned with operational forecasting of the probability that events are foreshocks of a forthcoming earthquake that is significantly larger (mainshock). Specifically, we define foreshocks as the preshocks substantially smaller than the mainshock by a magnitude gap of 0.5 or larger. The probability gain of foreshock forecast is extremely high compare to long-term forecast by renewal processes or various alarm-based intermediate-term forecasts because of a large event’s low occurrence rate in a short period and a narrow target region. Thus, it is desired to establish operational foreshock probability forecasting as seismologists have done for aftershocks. When a series of earthquakes occurs in a region, we attempt to discriminate foreshocks from a swarm or mainshock-aftershock sequence. Namely, after real time identification of an earthquake cluster using methods such as the single-link algorithm, the probability is calculated by applying statistical features that discriminate foreshocks from other types of clusters, by considering the events' stronger proximity in time and space and tendency towards chronologically increasing magnitudes. These features were modeled for probability forecasting and the coefficients of the model were estimated in Ogata et al. (1996) for the JMA hypocenter data (M≧4, 1926-1993). Currently, fifteen years has passed since the publication of the above-stated work so that we are able to present the performance and validation of the forecasts (1994-2009) by using the same model. Taking isolated events into consideration, the probability of the first events in a potential cluster being a foreshock vary in a range between 0+% and 10+% depending on their locations. This conditional forecasting performs significantly better than the unconditional (average) foreshock probability of 3.7% throughout Japan region. Furthermore, when we have the additional events in a cluster, the forecast probabilities range more widely from nearly 0% to

  3. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2016-10-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  4. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  5. Why Don't We Learn to Accurately Forecast Feelings? How Misremembering Our Predictions Blinds Us to Past Forecasting Errors

    ERIC Educational Resources Information Center

    Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan

    2010-01-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…

  6. Why Don't We Learn to Accurately Forecast Feelings? How Misremembering Our Predictions Blinds Us to Past Forecasting Errors

    ERIC Educational Resources Information Center

    Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan

    2010-01-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…

  7. CBO’s Revenue Forecasting Record

    DTIC Science & Technology

    2015-11-01

    about as many relatively large errors as small ones. The mean absolute error and the RMSE show some signs of stabilizing at the six-year horizon, measur ...Other Factors 16 Errors in Projections of Different Sources of Federal Revenues 17 About This Document 21 Tables 1. Summary Measures of the Accuracy of...Revenues 19Figures 1. Forecast Errors for CBO’s and the Administration’s Two-Year Revenue Projections 22. A Timeline for Measuring the Forecast Errors

  8. Multispectral satellite training for inexperienced Navy forecasters

    NASA Astrophysics Data System (ADS)

    Kuciauskas, Arunas P.; Lee, Thomas F.; Durkee, Philip A.; Ledesma, Roy

    2004-10-01

    Recent advancements of meteorology and oceanography (METOC) satellite products has resulted from a surge in computing resources and expanded communications via the Internet. Greater tactical demands in military operations are placed on Navy and Marine METOC personnel to provide better atmospheric depictions and forecasts in support of helicopter, fighter jet and ground troop operations, as was experienced in Operation Enduring Freedom and Operation Iraqi Freedom. Unfortunately, US military weather forecasters are often limited in their abilities to provide state of the art products and forecasts. One reason for these inefficiencies are that oftentimes, daily forecasting tasks are left to non-commissioned personnel (e.g., AG"s and ET"s) who receive little or no classroom training in this area, nor are there continuing education/training available. METOC forecast centers vary greatly and might not have access to the appropriate information base to answer ongoing questions. Additionally, the typical tour of duty at a particular forecast center is 2 years, resulting in a stressful environment to bring new forecasters up to speed in demanding forecast operations. The result is that the user is often confined to image looping and basic image enhancements to convey the general environmental conditions over the region of interest. To facilitate the learning process, the Naval Research Laboratory and the Naval Postgraduate School have developed a 3 day intensive laboratory and lecture course in satellite remote sensing, focusing on topics vital to military operations such as smoke and fire detection, coastal maritime layer analysis, snow, fog, haze, tropical cyclones, hazardous wind conditions, etc. A wealth of satellite data is provided from MODIS, AVHRR, DMSP and Geostationary satellite data. Background satellite remote sensing topics such as radiative transfer theory is also presented. This report presents a sample of the material used within the training.

  9. Improved Forecasting Methods for Naval Manpower Studies

    DTIC Science & Technology

    2015-03-25

    NOTES 14. ABSTRACT Forecasted manpower inventory , the number of individuals available in a given time period, are derived from stay/loss models...manpower and personnel enterprise relies on the accuracy of forecast models to manage end-strength, skill inventories , promotions, and recruiting...separations from a group’s beginning inventory during the sampling period. Separations include those individuals who have a change in PG, EMC, YOS or who

  10. Forecasting Tools Point to Fishing Hotspots

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Private weather forecaster WorldWinds Inc. of Slidell, Louisiana has employed satellite-gathered oceanic data from Marshall Space Flight Center to create a service that is every fishing enthusiast s dream. The company's FishBytes system uses information about sea surface temperature and chlorophyll levels to forecast favorable conditions for certain fish populations. Transmitting the data to satellite radio subscribers, FishBytes provides maps that guide anglers to the areas they are most likely to make their favorite catch.

  11. Influenza Forecasting with Google Flu Trends

    PubMed Central

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E.

    2013-01-01

    Background We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Methods Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004–2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. Results A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Conclusions Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and

  12. Towards seasonal forecasting of malaria in India.

    PubMed

    Lauderdale, Jonathan M; Caminade, Cyril; Heath, Andrew E; Jones, Anne E; MacLeod, David A; Gouda, Krushna C; Murty, Upadhyayula Suryanarayana; Goswami, Prashant; Mutheneni, Srinivasa R; Morse, Andrew P

    2014-08-10

    Malaria presents public health challenge despite extensive intervention campaigns. A 30-year hindcast of the climatic suitability for malaria transmission in India is presented, using meteorological variables from a state of the art seasonal forecast model to drive a process-based, dynamic disease model. The spatial distribution and seasonal cycles of temperature and precipitation from the forecast model are compared to three observationally-based meteorological datasets. These time series are then used to drive the disease model, producing a simulated forecast of malaria and three synthetic malaria time series that are qualitatively compared to contemporary and pre-intervention malaria estimates. The area under the Relative Operator Characteristic (ROC) curve is calculated as a quantitative metric of forecast skill, comparing the forecast to the meteorologically-driven synthetic malaria time series. The forecast shows probabilistic skill in predicting the spatial distribution of Plasmodium falciparum incidence when compared to the simulated meteorologically-driven malaria time series, particularly where modelled incidence shows high seasonal and interannual variability such as in Orissa, West Bengal, and Jharkhand (North-east India), and Gujarat, Rajastan, Madhya Pradesh and Maharashtra (North-west India). Focusing on these two regions, the malaria forecast is able to distinguish between years of "high", "above average" and "low" malaria incidence in the peak malaria transmission seasons, with more than 70% sensitivity and a statistically significant area under the ROC curve. These results are encouraging given that the three month forecast lead time used is well in excess of the target for early warning systems adopted by the World Health Organization. This approach could form the basis of an operational system to identify the probability of regional malaria epidemics, allowing advanced and targeted allocation of resources for combatting malaria in India.

  13. Influenza forecasting with Google Flu Trends.

    PubMed

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by

  14. Short-term solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Xie-Zhen, C.; Ai-Di, Z.

    1979-01-01

    A method of forecasting the level of activity of every active region on the surface of the Sun within one to three days is proposed in order to estimate the possibility of the occurrence of ionospheric disturbances and proton events. The forecasting method is a probability process based on statistics. In many of the cases, the accuracy in predicting the short term solar activity was in the range of 70%, although there were many false alarms.

  15. Tropical Cyclone Wave and Intensity Forecasts

    DTIC Science & Technology

    2009-09-30

    conclusion cannot be reached for Cyclone Nargis in the Northern Indian Ocean in 2008. Nargis has a two-day period when the NOGAPS and JTWC forecasts...1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Tropical Cyclone Wave and Intensity Forecasts Charles...improve guidance for the prediction of waves and intensity associated with tropical cyclones . OBJECTIVES The objectives of this project are to

  16. Thunderstorm Forecast Study for Eglin AFB, FL

    DTIC Science & Technology

    1993-03-01

    forecast model and the Brier skill scores (BSS) for this model compared to persistance (Pers) and climatology ( Climo ) for indicated upper- and lower-level...discriminant analysis forecast model and Brer skill scores (BSS) for this model compared to persistence (Pers) and climatology ( Climo ) for indicated upper...and lower-level winds and 3-hour time periods beginning with stated hour (Z). Eglin Range Eglin Main Wnd Hr BS BSS vs Climo BSS vs Pers BS BSS vs

  17. Maintaining Realistic Uncertainty in Model and Forecast

    DTIC Science & Technology

    2000-09-30

    Maintaining Realistic Uncertainty in Model and Forecast Leonard Smith Pembroke College Oxford University St. Aldates Oxford OX1 1DW United Kingdom...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Pembroke College, Oxford University ,,St...evaluation: l-shadowing, probabilistic prediction and weather forecasting. D.Phil Thesis, Oxford University . Lorenz, E. (1995) Predictability-a Partially

  18. Seamless Probabilistic Forecasting of Convective Storms

    NASA Astrophysics Data System (ADS)

    Craig, G. C.

    2009-04-01

    Different methods are used to provide forecasts of precipitation with different lead times, and a major challenge is to provide seamless forecasts across the range of times of interest to a decision maker. Firstly, the detailed precipitation map obtained from Radar can be extrapolated into the future by advecting the precipitation pattern ("Nowcasting"), although the forecast quality degrades rapidly in the first hours because the dynamics of the storm are not accurately represented. At longer lead times numerical weather prediction ("NWP") is superior since it includes dynamical effects, but cannot match the skill of nowcasting in the first few hours due to the difficulty of assimilating precipitation observations. A seamless combination of these methods requires knowledge of their errors, and is difficult because the predictability depends strongly on the meteorological situation. However it is now becoming possible with the availability of probabilistic predictions from ensembles of high resolution forecasts. These concepts will be illustrated using ensemble forecasts of convective events with the 2.8 km resolution COSMO-DE model nested within different forecasts from the COSMO-LEPS ensemble. Probabilistic nowcasts are produced using the Cb-TRAM system that tracks convective a convective cloud field using an optical flow method. The images are then extrapolated forward in time and probabilistic forecasts are generated using the local Lagrangian method. Examples will be shown to illustrate how the forecast skill of the two methods is influenced by the inherent predictability of the meteorological situation, in particular the degree of control of convective by the synoptic flow.

  19. Forecasting Hurricane Tracks Using a Complex Adaptive System

    DTIC Science & Technology

    2005-06-01

    Hurricane forecast errors for the five models and the consensus ensemble were gathered using software from the ATCF system. The TAF forecast...adaptive software, to improve hurricane track forecasting. The objective of this study is two fold. The first objective is to create a hurricane ... forecast that will produce smaller errors than a consensus forecast of dynamical models. The second objective is to prove an adaptive system is capable

  20. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  1. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  2. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  3. Analogue Downscaling of Seasonal Rainfall Forecasts

    NASA Astrophysics Data System (ADS)

    Charles, A. N.; Timbal, B.; Hendon, H.

    2010-12-01

    We have taken an existing statistical downscaling model (SDM), based on meteorological analogues that was developed for downscaling climate change projections (Timbal et al 2009), and applied it in the seasonal forecasting context to produce downscaled rainfall hindcasts from a coupled model seasonal forecast system (POAMA). Downscaling of POAMA forecasts is required to provide seasonal climate information at local scales of interest. Analogue downscaling is a simple technique to generate rainfall forecasts appropriate to the local scale by conditioning on the large scale predicted GCM circulation and the local topography and climate. Analogue methods are flexible and have been shown to produce good results when downscaling 20th century South Eastern Australian rainfall output from climate models. A set of re-forecasts for three month rainfall at 170 observing stations in the South Murray Darling region of Australia were generated using predictors from the POAMA re-forecasts as input for the analogue SDM. The predictors were optimised over a number of different GCMS in previous climate change downscaling studies. Downscaling with the analogue SDM results in predicted rainfall with realistic variance while maintaining the modest predictive skill of the dynamical model. Evaluation of the consistency between the large scale mean of downscaled and direct GCM output precipitation is encouraging.

  4. Empirical prediction intervals improve energy forecasting.

    PubMed

    Kaack, Lynn H; Apt, Jay; Morgan, M Granger; McSharry, Patrick

    2017-08-15

    Hundreds of organizations and analysts use energy projections, such as those contained in the US Energy Information Administration (EIA)'s Annual Energy Outlook (AEO), for investment and policy decisions. Retrospective analyses of past AEO projections have shown that observed values can differ from the projection by several hundred percent, and thus a thorough treatment of uncertainty is essential. We evaluate the out-of-sample forecasting performance of several empirical density forecasting methods, using the continuous ranked probability score (CRPS). The analysis confirms that a Gaussian density, estimated on past forecasting errors, gives comparatively accurate uncertainty estimates over a variety of energy quantities in the AEO, in particular outperforming scenario projections provided in the AEO. We report probabilistic uncertainties for 18 core quantities of the AEO 2016 projections. Our work frames how to produce, evaluate, and rank probabilistic forecasts in this setting. We propose a log transformation of forecast errors for price projections and a modified nonparametric empirical density forecasting method. Our findings give guidance on how to evaluate and communicate uncertainty in future energy outlooks.

  5. Nonlinear forecasting of intertidal shoreface evolution

    NASA Astrophysics Data System (ADS)

    Grimes, D. J.; Cortale, N.; Baker, K.; McNamara, D. E.

    2015-10-01

    Natural systems dominated by sediment transport are notoriously difficult to forecast. This is particularly true along the ocean coastline, a region that draws considerable human attention as economic investment and infrastructure are threatened by both persistent, long-term and acute, event driven processes (i.e., sea level rise and storm damage, respectively). Forecasting the coastline's evolution over intermediate time (daily) and space (tens of meters) scales is hindered by the complexity of sediment transport and hydrodynamics, and limited access to the detailed local forcing that drives fast scale processes. Modern remote sensing systems provide an efficient, economical means to collect data within these regions. A solar-powered digital camera installation is used to capture the coast's evolution, and machine learning algorithms are implemented to extract the shoreline and estimate the daily mean intertidal coastal profile. Methods in nonlinear time series forecasting and genetic programming applied to these data corroborate that coastal morphology at these scales is predominately driven by nonlinear internal dynamics, which partially mask external forcing signatures. Results indicate that these forecasting techniques achieve nontrivial predictive skill for spatiotemporal forecast of the upper coastline profile (as much as 43% of variance in data explained for one day predictions). This analysis provides evidence that societally relevant coastline forecasts can be achieved without knowing the forcing environment or the underlying dynamical equations that govern coastline evolution.

  6. Radar Based Precipitation Forecasting for Flood Warning

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2007-12-01

    Precipitation is one of the most important inputs for flood warning. The accuracy of the measured precipitation controls the effectiveness of flood warning, while the forecasted precipitation increases the lead time of flood warning, this is vital for catastrophically flood warning as it provides time for flood management, such as the emergency evacuation of the people and properties within the flood prone area, so to avoid flood damages. This paper presents an algorithm for forecasting precipitation based on Chinese next generation weather radar- CINRAD for catastrophically flood warning. This algorithm includes radar data quality control, precipitation estimation and forecasting, result correction. The radar data, received at every 5-6 minutes, is quality controlled first to delete the data noises, the pre-processed radar data then is used to estimate the precipitation, which will be employed to calibrate the radar equation parameters, then the pre-processed radar data and calibrated radar equation parameters will be input to the precipitation procedure to forecast precipitation. A software based on the above algorithm is developed that can be used to forecast precipitation on real ¡§Ctime. The radar in Guangzhou city, the biggest city in southern China is studied and the precipitation in 2005 and 2006 in Liuxihe River Basin in southern China were forecasted to validate the effectiveness, the results show this algorithm is encouraging and will be put into real-time operation in the flood warning of Liuxihe River in 2007.

  7. Nonlinear forecasting of intertidal shoreface evolution.

    PubMed

    Grimes, D J; Cortale, N; Baker, K; McNamara, D E

    2015-10-01

    Natural systems dominated by sediment transport are notoriously difficult to forecast. This is particularly true along the ocean coastline, a region that draws considerable human attention as economic investment and infrastructure are threatened by both persistent, long-term and acute, event driven processes (i.e., sea level rise and storm damage, respectively). Forecasting the coastline's evolution over intermediate time (daily) and space (tens of meters) scales is hindered by the complexity of sediment transport and hydrodynamics, and limited access to the detailed local forcing that drives fast scale processes. Modern remote sensing systems provide an efficient, economical means to collect data within these regions. A solar-powered digital camera installation is used to capture the coast's evolution, and machine learning algorithms are implemented to extract the shoreline and estimate the daily mean intertidal coastal profile. Methods in nonlinear time series forecasting and genetic programming applied to these data corroborate that coastal morphology at these scales is predominately driven by nonlinear internal dynamics, which partially mask external forcing signatures. Results indicate that these forecasting techniques achieve nontrivial predictive skill for spatiotemporal forecast of the upper coastline profile (as much as 43% of variance in data explained for one day predictions). This analysis provides evidence that societally relevant coastline forecasts can be achieved without knowing the forcing environment or the underlying dynamical equations that govern coastline evolution.

  8. Solar Energy Forecast System Development and Implementation

    NASA Astrophysics Data System (ADS)

    Jascourt, S. D.; Kirk-Davidoff, D. B.; Cassidy, C.

    2012-12-01

    Forecast systems for predicting real-time solar energy generation are being developed along similar lines to those of more established wind forecast systems, but the challenges and constraints are different. Clouds and aerosols play a large role, and for tilted photovoltaic panels and solar concentrating plants, the direct beam irradiance, which typically has much larger forecast errors than global horizontal irradiance, must be utilized. At MDA Information Systems, we are developing a forecast system based on first principles, with the well-validated REST2 clear sky model (Gueymard, 2008) at its backbone. In tuning the model and addressing aerosol scattering and surface albedo, etc., we relied upon the wealth of public data sources including AERONET (aerosol optical depth at different wavelengths), Suominet (GPS integrated water vapor), NREL MIDC solar monitoring stations, SURFRAD (includes upwelling shortwave), and MODIS (albedo in different wavelength bands), among others. The forecast itself utilizes a blend of NWP model output, which must be brought down to finer time resolution based on the diurnal cycle rather than simple interpolation. Many models currently do not output the direct beam irradiance, and one that does appears to have a bias relative to its global horizontal irradiance, with equally good performance attained by utilizing REST2 and the model global radiation to estimate the direct component. We will present a detailed assessment of various NWP solar energy products, evaluating forecast skill at a range of photovoltaic installations.

  9. Configurational entropy theory for streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Cui, Huijuan; Singh, Vijay P.

    2015-02-01

    This study develops configurational entropy theory (CET) for monthly streamflow forecasting. The theory is comprised of three main parts: (1) determination of spectral density (2) determination of parameters by cepstrum analysis, and (3) extension of autocorrelation function. Comparison with the Burg entropy theory (BET) shows that CET yields higher resolution spectral density with more accurate location of spectral peaks. Cepstrum analysis yields more accurate parameters than the Levinson algorithm in the autoregressive (AR) method and the Levinson-Burg algorithm in BET. CET is tested using monthly streamflow data from 19 river basins covering a broad range of physiographic characteristics. Testing shows that CET captures streamflow seasonality and satisfactorily forecasts both high and low flows. High flows are satisfactorily forecasted with the coefficient of determination (r2) higher than 0.92 for one year ahead of time, with r2 higher than 0.85 for two years ahead of time, and up to 60 months ahead with r2 higher than 0.80. However, low flows are forecasted with r2 higher than 0.50 for one year ahead time. When relative drainage area is considered for analyzing streamflow characteristics and spectral patterns, it is found that upstream streamflow is forecasted more accurately (r2 = 0.84) than downstream streamflow (r2 = 0.75). Residuals of forecasted values relative to observed values are found to follow normal distribution.

  10. Status and Future of Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Westphal, D. L.

    2002-12-01

    In recent years, increased attention has been given to the large amounts of airborne dust derived from the deserts and desertified areas of the world and transported over scales ranging from local to global. This dust can have positive and negative impacts on human activities and the environment, including modifying cloud formation, fertilizing the ocean, degrading air quality, reducing visibility, transporting pathogens, and inducing respiratory problems. The atmospheric radiative forcing by the dust has implications for global climate change and presently is one of the largest unknowns in climate models. These uncertainties have lead to much of the funding for research into the sources, properties, and fate of atmospheric dust. As a result of advances in numerical weather prediction over the past decades and the recent climate research, we are now in a position to produce operational dust storm forecasts. International organizations and national agencies are developing programs for dust forecasting. The approaches and applications of dust detection and forecasting are as varied as the nations that are developing the models. The basic components of a dust forecasting system include atmospheric forcing, dust production, and dust microphysics. The forecasting applications include air and auto traffic safety, shipping, health, national security, climate and weather. This presentation will summarize the methods of dust storm forecasting and illustrate the various applications. The major remaining uncertainties (e.g. sources and initialization) will be discussed as well as approaches for solving those problems.

  11. Scintillation Forecasting Using NPOESS Data

    NASA Astrophysics Data System (ADS)

    Basu, B.; Retterer, J.; Demajistre, R.; de La Beaujardiere, O.; Scro, K.

    2005-12-01

    We have conducted a theoretical study of the use of NPOESS data for the forecasting of equatorial radio scintillation using knowledge of the equatorial Appleton anomaly, e.g., the peak-to-valley ratio of TEC (Total Electron Content) between the anomaly crests and the magnetic equator. The peak-to-valley ratio can be obtained from the UV (ultraviolet) imagery of the anomaly region that will be provided by the NPOESS sensors. The post-sunset enhancement of the upward drift velocity of the equatorial plasma has been shown, both theoretically and observationally, to be an important determinant of both the onset of scintillation and the strength of the anomaly. The technical approach is to run PBMOD, the AFRL low-latitude ionosphere model, with a range of post-sunset vertical drift velocities to determine the quantitative relationship between the peak-to-valley ratio and the maximum value of the pot-sunset upward drift velocity of equatorial plasma. Once the relationship is validated, it will be used to estimate the maximum value of the drift velocity from the peak-to-valley ratio, which is derived from the UV imagery data provided by NPOESS-like sensor, such as GUVI on TIMED satellite. The drift velocity will then be used in PBMOD to simulate the formation and evolution of equatorial plasma `bubbles' and calculate the distribution of the amplitude scintillation index S4. Results of the study will be discussed.

  12. Application of hydrologic forecast model.

    PubMed

    Hua, Xu; Hengxin, Xue; Zhiguo, Chen

    2012-01-01

    In order to overcome the shortcoming of the solution may be trapped into the local minimization in the traditional TSK (Takagi-Sugeno-Kang) fuzzy inference training, this paper attempts to consider the TSK fuzzy system modeling approach based on the visual system principle and the Weber law. This approach not only utilizes the strong capability of identifying objects of human eyes, but also considers the distribution structure of the training data set in parameter regulation. In order to overcome the shortcoming of it adopting the gradient learning algorithm with slow convergence rate, a novel visual TSK fuzzy system model based on evolutional learning is proposed by introducing the particle swarm optimization algorithm. The main advantage of this method lies in its very good optimization, very strong noise immunity and very good interpretability. The new method is applied to long-term hydrological forecasting examples. The simulation results show that the method is feasible and effective, the new method not only inherits the advantages of traditional visual TSK fuzzy models but also has the better global convergence and accuracy than the traditional model.

  13. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  14. Quantifying model uncertainty in seasonal Arctic sea-ice forecasts

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin

    2017-04-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  15. Monitoring and seasonal forecasting of meteorological droughts

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Pozzi, Will; Wetterhall, Fredrik; Di Giuseppe, Francesca; Magnusson, Linus; Naumann, Gustavo; Barbosa, Paulo; Vogt, Jurgen; Pappenberger, Florian

    2015-04-01

    Near-real time drought monitoring can provide decision makers valuable information for use in several areas, such as water resources management, or international aid. Unfortunately, a major constraint in current drought outlooks is the lack of reliable monitoring capability for observed precipitation globally in near-real time. Furthermore, drought monitoring systems requires a long record of past observations to provide mean climatological conditions. We address these constraints by developing a novel drought monitoring approach in which monthly mean precipitation is derived from short-range using ECMWF probabilistic forecasts and then merged with the long term precipitation climatology of the Global Precipitation Climatology Centre (GPCC) dataset. Merging the two makes available a real-time global precipitation product out of which the Standardized Precipitation Index (SPI) can be estimated and used for global or regional drought monitoring work. This approach provides stability in that by-passes problems of latency (lags) in having local rain-gauge measurements available in real time or lags in satellite precipitation products. Seasonal drought forecasts can also be prepared using the common methodology and based upon two data sources used to provide initial conditions (GPCC and the ECMWF ERA-Interim reanalysis (ERAI) combined with either the current ECMWF seasonal forecast or a climatology based upon ensemble forecasts. Verification of the forecasts as a function of lead time revealed a reduced impact on skill for: (i) long lead times using different initial conditions, and (ii) short lead times using different precipitation forecasts. The memory effect of initial conditions was found to be 1 month lead time for the SPI-3, 3 to 4 months for the SPI-6 and 5 months for the SPI-12. Results show that dynamical forecasts of precipitation provide added value, a skill similar to or better than climatological forecasts. In some cases, particularly for long SPI time

  16. Total probabilities of ensemble runoff forecasts

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2017-04-01

    Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes

  17. Total probabilities of ensemble runoff forecasts

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2016-04-01

    Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative

  18. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  19. More intense experiences, less intense forecasts: why people overweight probability specifications in affective forecasts.

    PubMed

    Buechel, Eva C; Zhang, Jiao; Morewedge, Carey K; Vosgerau, Joachim

    2014-01-01

    We propose that affective forecasters overestimate the extent to which experienced hedonic responses to an outcome are influenced by the probability of its occurrence. The experience of an outcome (e.g., winning a gamble) is typically more affectively intense than the simulation of that outcome (e.g., imagining winning a gamble) upon which the affective forecast for it is based. We suggest that, as a result, experiencers allocate a larger share of their attention toward the outcome (e.g., winning the gamble) and less to its probability specifications than do affective forecasters. Consequently, hedonic responses to an outcome are less sensitive to its probability specifications than are affective forecasts for that outcome. The results of 6 experiments provide support for our theory. Affective forecasters overestimated how sensitive experiencers would be to the probability of positive and negative outcomes (Experiments 1 and 2). Consistent with our attentional account, differences in sensitivity to probability specifications disappeared when the attention of forecasters was diverted from probability specifications (Experiment 3) or when the attention of experiencers was drawn toward probability specifications (Experiment 4). Finally, differences in sensitivity to probability specifications between forecasters and experiencers were diminished when the forecasted outcome was more affectively intense (Experiments 5 and 6).

  20. Uncertainty Forecasts Improve Weather-Related Decisions and Attenuate the Effects of Forecast Error

    ERIC Educational Resources Information Center

    Joslyn, Susan L.; LeClerc, Jared E.

    2012-01-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather…

  1. Uncertainty Forecasts Improve Weather-Related Decisions and Attenuate the Effects of Forecast Error

    ERIC Educational Resources Information Center

    Joslyn, Susan L.; LeClerc, Jared E.

    2012-01-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather…

  2. More Intense Experiences, Less Intense Forecasts: Why People Overweight Probability Specifications in Affective Forecasts

    PubMed Central

    Buechel, Eva C.; Zhang, Jiao; Morewedge, Carey K.; Vosgerau, Joachim

    2014-01-01

    We propose that affective forecasters overestimate the extent to which experienced hedonic responses to an outcome are influenced by the probability of its occurrence. The experience of an outcome (e.g., winning a gamble) is typically more affectively intense than the simulation of that outcome (e.g., imagining winning a gamble) upon which the affective forecast for it is based. We suggest that, as a result, experiencers allocate a larger share of their attention toward the outcome (e.g., winning the gamble) and less to its probability specifications than do affective forecasters. Consequently, hedonic responses to an outcome are less sensitive to its probability specifications than are affective forecasts for that outcome. The results of 6 experiments provide support for our theory. Affective forecasters overestimated how sensitive experiencers would be to the probability of positive and negative outcomes (Experiments 1 and 2). Consistent with our attentional account, differences in sensitivity to probability specifications disappeared when the attention of forecasters was diverted from probability specifications (Experiment 3) or when the attention of experiencers was drawn toward probability specifications (Experiment 4). Finally, differences in sensitivity to probability specifications between forecasters and experiencers were diminished when the forecasted outcome was more affectively intense (Experiments 5 and 6). PMID:24128184

  3. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  4. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  5. 1994 Solid waste forecast container volume summary

    SciTech Connect

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  6. WOD - Weather On Demand forecasting system

    NASA Astrophysics Data System (ADS)

    Rognvaldsson, Olafur; Ragnarsson, Logi; Stanislawska, Karolina

    2017-04-01

    The backbone of the Belgingur forecasting system (called WOD - Weather On Demand) is the WRF-Chem atmospheric model, with a number of in-house customisations. Initial and boundary data are taken from the Global Forecasting System, operated by the National Oceanic and Atmospheric Administration (NOAA). Operational forecasts use cycling of a number of parameters, mainly deep soil and surface fields. This is done to minimise spin-up effects and to ensure proper book-keeping of hydrological fields such as snow accumulation and runoff, as well as the constituents of various chemical parameters. The WOD system can be used to create conventional short- to medium-range weather forecasts for any location on the globe. The WOD system can also be used for air quality purposes (e.g. dispersion forecasts from volcanic eruptions) and as a tool to provide input to other modelling systems, such as hydrological models. A wide variety of post-processing options are also available, making WOD an ideal tool for creating highly customised output that can be tailored to the specific needs of individual end-users. The most recent addition to the WOD system is an integrated verification system where forecasts can be compared to surface observations from chosen locations. Forecast visualisation, such as weather charts, meteograms, weather icons and tables, is done via number of web components that can be configured to serve the varying needs of different end-users. The WOD system itself can be installed in an automatic way on hardware running a range of Linux based OS. System upgrades can also be done in semi-automatic fashion, i.e. upgrades and/or bug-fixes can be pushed to the end-user hardware without system downtime. Importantly, the WOD system requires only rudimentary knowledge of the WRF modelling, and the Linux operating systems on behalf of the end-user, making it an ideal NWP tool in locations with limited IT infrastructure.

  7. Optimal Lead Time for Dengue Forecast

    PubMed Central

    Hii, Yien Ling; Rocklöv, Joacim; Wall, Stig; Ng, Lee Ching; Tang, Choon Siang; Ng, Nawi

    2012-01-01

    Background A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak. Methodology and Findings We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1–5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4–20 and 8–20 weeks, respectively. These lag times provided a forecast window of 1–5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1–3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak. Conclusions Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model. PMID:23110242

  8. Air Quality Forecast Verification using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kondragunta, S.; Lee, P.; McQueen, J.; Kittaka, C.; Prados, A.; Ciren, P.; Laszlo, I.; Pierce, R. B.; Hoff, R.; Szykman, J. J.

    2006-05-01

    NOAA's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) developmental (research mode) particulate matter (PM2.5) predictions tested during the summer 2004 International Consortium for Atmospheric Research on Transport and Transformation/New England Air Quality Study (ICARTT/NEAQS) field campaign. The forecast period was encompassed by long range transport of smoke from fires burning in Canada and Alaska and a regional-scale sulfate event over the Gulf of Mexico and the eastern United States (U.S). Over the 30-day time period for which daytime hourly forecasts were compared to observations, the categorical (event defined as AOD greater than 0.65) forecast accuracy was between 60% and 99% with a mean of ~80%. Hourly normalized mean bias (forecasts -" observations) ranged between -50% and +50% with forecasts being biased high when observed AODs were small and biased low when observed AODs were high. Normalized Mean Errors are between 50% and 100% with the errors on the lower end during July 18-22, 2004 time period when a regional scale sulfate event occurred. Spatially, the errors are small over the regions where sulfate plumes were present. The correlation coefficient (r) also showed similar features (spatially and temporally) with a peak value of ~0.6 during July 18-22, 2004 time period. The dominance of long-range transport of smoke into the US during the summer of 2004, neglected in the model predictions, skewed the model forecast performance. Enhanced accuracy and reduced normalized mean errors during the time period when a sulfate event prevailed shows that the forecast system is capable of skill in predicting PM2.5 associated with urban/industrial pollution events.

  9. Automated time series forecasting for biosurveillance.

    PubMed

    Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit

    2007-09-30

    For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.

  10. Customer Requirements for Hydrologic Forecast Uncertainty Information

    NASA Astrophysics Data System (ADS)

    Mullusky, M. G.; Teodoru, S.; Richards, F.

    2006-12-01

    The National Weather Service (NWS) issues long-term probabilistic streamflow forecasts through the NWS Advanced Hydrologic Prediction Service (AHPS) web site and is developing methods to issue short-term probabilistic streamflow forecasts. Through customer evaluations of the AHPS web site it became clear that customers do not fully understand the probabilistic graphics and how the information conveyed could be used to make decisions. This is consistent with the quantitative results from the 2004 NWS Hydrology Program Customer Satisfaction Survey, where the probabilistic streamflow forecast graphics received lower marks relative to other graphics. In an effort to better communicate hydrologic forecast uncertainty information, NWS contracted with the CFI Group to conduct four focus group discussions during various customer/partner conferences. The focus group discussions included (1) Water Resources Managers, (2) Emergency Managers, (3) Media representatives, and (4) private sector, value-added partners. The purpose of these groups was to understand the underlying need for probabilistic forecast information among the various groups and gather feedback regarding how best to convey probabilistic information. The focus group study showed that the use and need for probabilistic streamflow forecasts varied widely across the four customer groups. The study also indicated some common themes between the customer groups and presented some clear next steps for the NWS to meet customer requirements for hydrologic forecast uncertainty information. The qualitative findings from these focus groups were incorporated into the 2006 NWS Hydrology Program Customer Satisfaction Survey to quantitatively assess if these findings are representative of all NWS customers. The findings from the four focus groups and the Customer Satisfaction Survey will be presented.

  11. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  12. Seamless hydrological forecasts from daily to seasonal scale for Europe

    NASA Astrophysics Data System (ADS)

    Wetterhall, Fredrik; Arnal, Louise; Krzeminski, Blazej

    2017-04-01

    Seasonal hydrological forecasts are a useful tool to asses water resources management on longer time scales. Applications are for example water power production, transport, drought forecasting and reservoir management. Seasonal forecasts are typically issued once a month which limits the possibility of more frequent updates. In this study the ECMWF extended ensemble forecast with a 46-day lead time was merged with the seasonal ensemble forecast from ECMWF to create a seamless forecasting system updated biweekly. The forecast was then used as input to the LISFLOOD model to create a probabilistic sub-seasonal to seasonal hydrological outlook on a pan-European scale. The model system was evaluated on a basin scale against a water balance run using observed meteorological input as forcing. The advantages with the merged system over using the seasonal forecast system was an improvement in skill as well as providing more frequent forecasts.

  13. On the assessment of reliability in probabilistic hydrometeorological event forecasting

    NASA Astrophysics Data System (ADS)

    DeChant, Caleb M.; Moradkhani, Hamid

    2015-06-01

    Probabilistic forecasts are commonly used to communicate uncertainty in the occurrence of hydrometeorological events. Although probabilistic forecasting is common, conventional methods for assessing the reliability of these forecasts are approximate. Among the most common methods for assessing reliability, the decomposed Brier Score and Reliability Diagram treat an observed string of events as samples from multiple Binomial distributions, but this is an approximation of the forecast reliability, leading to unnecessary loss of information. This article suggests testing the hypothesis of reliability via the Poisson-Binomial distribution, which is a generalized solution to the Binomial distribution, providing a more accurate model of the probabilistic event forecast verification setting. Further, a two-stage approach to reliability assessment is suggested to identify errors in the forecast related to both bias and overly/insufficiently sharp forecasts. Such a methodology is shown to more effectively distinguish between reliable and unreliable forecasts, leading to more robust probabilistic forecast verification.

  14. Seasonal UK hydrological forecasts using rainfall forecasts - what level of skill?

    NASA Astrophysics Data System (ADS)

    Bell, Victoria; Davies, Helen; Kay, Alison; Scaife, Adam

    2017-04-01

    Skilful winter seasonal predictions for the North Atlantic circulation and Northern Europe, including the UK have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. The Hydrological Outlook UK (HOUK: www.hydoutuk.net) is the first operational hydrological forecast system for the UK that delivers monthly outlooks of the water situation for both river flow and groundwater levels. The output from the HOUK are publicly available and used each month by government agencies, practitioners and academics alongside other sources of information such as flood warnings and meteorological forecasts. The HOUK brings together information on current and forecast weather conditions, and river flows, and uses several modelling approaches to explore possible future hydrological conditions. One of the techniques combines ensembles of monthly-resolution seasonal rainfall forecasts provided by the Met Office GloSea5 forecast system with hydrological modelling tools to provide estimates of river flows up to a few months ahead. The approach combines a high resolution, spatially distributed hydrological initial condition (HIC) provided by a hydrological model (Grid-to-Grid) driven by weather observations up to the forecast time origin. Considerable efforts have been made to accommodate the temporal and spatial resolution of the GloSea5 rainfall forecasts (monthly time-step and national-scale) in a spatially distributed forecasting system, leading to the development of a monthly resolution water balance model (WBM) to forecast regional mean river flows for the next 1 and 3 months ahead. The work presented here provides the first assessment of the skill in the HOUK national-scale flow forecasts using an ensemble of rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009). The skill in the combined modelling system has been assessed for different seasons and regions of Britain, and compared to what might be achieved using

  15. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  16. Impact of the assimilation of lightning data on the precipitation forecast at different forecast ranges

    NASA Astrophysics Data System (ADS)

    Federico, Stefano; Petracca, Marco; Panegrossi, Giulia; Transerici, Claudio; Dietrich, Stefano

    2017-06-01

    This study investigates the impact of the assimilation of total lightning data on the precipitation forecast of a numerical weather prediction (NWP) model. The impact of the lightning data assimilation, which uses water vapour substitution, is investigated at different forecast time ranges, namely 3, 6, 12, and 24 h, to determine how long and to what extent the assimilation affects the precipitation forecast of long lasting rainfall events (> 24 h). The methodology developed in a previous study is slightly modified here, and is applied to twenty case studies occurred over Italy by a mesoscale model run at convection-permitting horizontal resolution (4 km). The performance is quantified by dichotomous statistical scores computed using a dense raingauge network over Italy. Results show the important impact of the lightning assimilation on the precipitation forecast, especially for the 3 and 6 h forecast. The probability of detection (POD), for example, increases by 10 % for the 3 h forecast using the assimilation of lightning data compared to the simulation without lightning assimilation for all precipitation thresholds considered. The Equitable Threat Score (ETS) is also improved by the lightning assimilation, especially for thresholds below 40 mm day-1. Results show that the forecast time range is very important because the performance decreases steadily and substantially with the forecast time. The POD, for example, is improved by 1-2 % for the 24 h forecast using lightning data assimilation compared to 10 % of the 3 h forecast. The impact of the false alarms on the model performance is also evidenced by this study.

  17. Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data

    NASA Astrophysics Data System (ADS)

    Haile, Alemseged Tamiru; Tefera, Fekadu Teshome; Rientjes, Tom

    2016-10-01

    Availability of reliable, timely and accurate rainfall data is constraining the establishment of flood forecasting and early warning systems in many parts of Africa. We evaluated the potential of satellite and weather forecast data as input to a parsimonious flood forecasting model to provide information for flood early warning in the central part of Nigeria. We calibrated the HEC-HMS rainfall-runoff model using rainfall data from post real time Tropical Rainfall Measuring Mission (TRMM) Multi satellite Precipitation Analysis product (TMPA). Real time TMPA satellite rainfall estimates and European Centre for Medium-Range Weather Forecasts (ECMWF) rainfall products were tested for flood forecasting. The implication of removing the systematic errors of the satellite rainfall estimates (SREs) was explored. Performance of the rainfall-runoff model was assessed using visual inspection of simulated and observed hydrographs and a set of performance indicators. The forecast skill was assessed for 1-6 days lead time using categorical verification statistics such as Probability Of Detection (POD), Frequency Of Hit (FOH) and Frequency Of Miss (FOM). The model performance satisfactorily reproduced the pattern and volume of the observed stream flow hydrograph of Benue River. Overall, our results show that SREs and rainfall forecasts from weather models have great potential to serve as model inputs for real-time flood forecasting in data scarce areas. For these data to receive application in African transboundary basins, we suggest (i) removing their systematic error to further improve flood forecast skill; (ii) improving rainfall forecasts; and (iii) improving data sharing between riparian countries.

  18. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  19. Timetable of an operational flood forecasting system

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Jaun, Simon; Zappa, Massimiliano

    2010-05-01

    At present a new underground part of Zurich main station is under construction. For this purpose the runoff capacity of river Sihl, which is passing beneath the main station, is reduced by 40%. If a flood is to occur the construction site is evacuated and gates can be opened for full runoff capacity to prevent bigger damages. However, flooding the construction site, even if it is controlled, is coupled with costs and retardation. The evacuation of the construction site at Zurich main station takes about 2 to 4 hours and opening the gates takes another 1 to 2 hours each. In the upper part of the 336 km2 Sihl catchment the Sihl lake, a reservoir lake, is situated. It belongs and is used by the Swiss Railway Company for hydropower production. This lake can act as a retention basin for about 46% of the Sihl catchment. Lowering the lake level to gain retention capacity, and therewith safety, is coupled with direct loss for the Railway Company. To calculate the needed retention volume and the water to be released facing unfavourable weather conditions, forecasts with a minimum lead time of 2 to 3 days are needed. Since the catchment is rather small, this can only be realised by the use of meteorological forecast data. Thus the management of the construction site depends on accurate forecasts to base their decisions on. Therefore an operational hydrological ensemble prediction system (HEPS) was introduced in September 2008 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). It delivers daily discharge forecasts with a time horizon of 5 days. The meteorological forecasts are provided by MeteoSwiss and stem from the operational limited-area COSMO-LEPS which downscales the ECMWF ensemble prediction system to a spatial resolution of 7 km. Additional meteorological data for model calibration and initialisation (air temperature, precipitation, water vapour pressure, global radiation, wind speed and sunshine duration) and radar data are also provided by

  20. Tsunami Forecasting in the Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre