Science.gov

Sample records for grit-blasted titanium stems

  1. Metallurgical Evaluation of Grit Blasted Versus Non-Grit Blasted Iridium Alloy Clad Vent Set Cup Surfaces

    SciTech Connect

    Ulrich, George B; Longmire, Hu Foster

    2010-02-01

    Metallurgical evaluations were conducted to determine what, if any, grain size differences exist between grit blasted and non-grit blasted DOP-26 iridium alloy cup surfaces and if grit blasting imparts sufficient compressive cold work to induce abnormal grain growth during subsequent temperature exposures. Metallographic measurements indicated that grit blasting cold worked the outside cup surface to a depth of approximately 19 {micro}m. Subsequent processing through the air burn-off (635 C/4h) and vacuum outgassing (1250 C/1h) operations was found to uniformly recrystallize the cold worked surface to produce grains with an average diameter of approximately 8.5 {micro}m (American Society for Testing and Materials (ASTM) grain size number 11). Follow-on heat treatments at 1375 C, 1500 C, and 1900 C for durations ranging from 1 min to 70 h yielded uniform grain sizes and no abnormal grain growth from grit blasting. Abnormal grain growth was noted at the 1500 C and 1900 C heat treatments in areas of cold work from excessive clamping during sample preparation.

  2. SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING

    SciTech Connect

    Donna Post Guillen; D. J. Varacalle, Jr.; D. Deason; W. Rhodaberger; E. Sampson

    2005-05-01

    The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.

  3. Mechanical assessment of grit blasting surface treatments of dental implants.

    PubMed

    Shemtov-Yona, K; Rittel, D; Dorogoy, A

    2014-11-01

    This paper investigates the influence of surface preparation treatments of dental implants on their potential (mechanical) fatigue failure, with emphasis on grit-blasting. The investigation includes limited fatigue testing of implants, showing the relationship between fatigue life and surface damage condition. Those observations are corroborated by a detailed failure analysis of retrieved fracture dental implants. In both cases, the negative effect of embedded alumina particles related to the grit-blasting process is identified. The study also comprises a numerical simulation part of the grit blasting process that reveals, for a given implant material and particle size, the existence of a velocity threshold, below which the rough surface is obtained without damage, and beyond which the creation of significant surface damage will severely reduce the fatigue life, thus increasing fracture probability. The main outcome of this work is that the overall performance of dental implants comprises, in addition to the biological considerations, mechanical reliability aspects. Fatigue fracture is a central issue, and this study shows that uncontrolled surface roughening grit-blasting treatments can induce significant surface damage which accelerate fatigue fracture under certain conditions, even if those treatments are beneficial to the osseointegration process.

  4. Grit Blasting Scribes Coats For Tests Of Adhesion

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    1991-01-01

    Grit-blasting technique for cutting line gaps in paints, hard coats, lubricants, and other coating films undergoing development. Line gaps cut in chevron patterns, groups of parallel lines, or other prescribed patterns, in preparation for testing adhesions of coats to substrates by attempting to peel patterned areas off with adhesive tapes. Damage to substrate reduced.

  5. Diffuse reflectance FTIR of stains on grit blasted metals

    SciTech Connect

    Powell, G.L.; Hallman, R.L. Jr.; Cox, R.L.

    1997-08-09

    Diffuse reflectance mid-infrared Fourier transform (DRIFT) spectroscopy has been applied to the detection of oil contamination on grit-blasted metals. The object of this application is to detect and discriminate between silicone and hydrocarbon oil contamination at levels approaching 10 mg/m{sup 2}. A portable FTIR spectrometer with dedicated diffuse reflectance optics was developed for this purpose. Using translation devices positioned by instructions from the spectrometer operating system, images of macroscopic substrates were produced with millimeter spatial resolution. The pixels that comprise an image are each a full mid-infrared spectrum with excellent signal-to-noise, each determined as individual files and uniquely saved to disc. Reduced spectra amplitudes, based on peak height, area, or other chemometric techniques, mapped as a function of the spatial coordinates of the pixel are used to display the image. This paper demonstrates the application of the technique to the analysis of stains on grit-blasted metals, including the calibration of the method, the inspection of substrates, and the migration of oil contamination.

  6. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    PubMed

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  7. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  8. Alumina grit blasting parameters for surface preparation in the plasma spraying operation

    NASA Astrophysics Data System (ADS)

    Mellali, M.; Grimaud, A.; Leger, A. C.; Fauchais, P.; Lu, J.

    1997-06-01

    This paper examines how the grit blasting process influences the surface roughness of different sub-strates, the grit residue, and the grit erosion. The influence of grit blasting conditions on induced sub-strate residual stresses is also discussed. Aluminum alloy, cast iron, and hard steel were blasted with white alumina grits of 0.5,1, and 1.4 mm mean diameters. Grit blasting was performed using either a suction-type or a pressure-type machine equipped with straight nozzles made of B4C. The influence of the follow-ing parameters was studied: grit blasting distance (56 to 200 mm), blasting time (3 to 30 s), angle between nozzle and blasted surface (30°, 60°, 90°), and blasting pressure (0.2 to 0.7 MPa). The roughness of the substrate was characterized either by using a perthometer or by image analysis. The grit residue remain-ing at the blasted surface was evaluated after cleaning by image analysis. The residual stresses induced by grit blasting were determined by using the incremental hole drilling method and by measuring the de-flection of grit-blasted beams. Grit size was determined to be the most important influence on roughness. The average values of Ra and Rt and the percentage of grit residue increased with grit size as well as the depth of the plastic zone under the substrate. An increase of the pressure slightly increased the values of Äa and Rt but also promoted grit breakdown and grit residue. A blasting time of 3 to 6 s was sufficient to obtain the highest roughness and limit the grit breakdown. The residual stresses generated under the blasted surface were compressive, and the depth of the affected zone depended on the grit diameter, the blasting pressure, and the Young’s modulus of the substrate. More-over, the maximum residual stress was reached at the limit of the plastic zone (i.e., several tenths of a mil-limeter below the substrate surface).

  9. Grit blast/silane surface treatment for structural bonding of aluminum

    SciTech Connect

    Mazza, J.J.

    1996-12-31

    The use of silane coupling agents as prebond surface treatments for aluminum aircraft structure is not new. The Royal Australian Air Force (RAAF) has extensively used a silane surface preparation in applications of bonded composite repairs to aircraft structure. Recently, the USAF has begun to employ bonded composite repair technology as a means to extend the service lives of its aging aircraft. A grit blast/silane surface treatment optimized by the USAF Wright Laboratory Materials Directorate (ML) has been used in many of the applications, most notably on the C-141 aircraft. The ML process is desirable for many USAF applications since it does not contain acids which could harm aircraft structure, and it is similar to the Australian technique which has claimed years of success. The ML grit blast/silane surface treatment was inspired by the Australian process which was developed by the Aeronautical and Maritime Research Laboratory (AMRL). The Australians generated considerable interest in their process, however, several key organizations were unable to duplicate the performance cited by AMRL. Some questioned the viability of the Australian silane process. To resolve this question for Warner Robins Air Logistics Center (WR-ALC) personnel, as well as continue ML`s ongoing silane work, a program was run to understand the AMRL surface prep. This led to the development of the ML grit blast/silane process and its on-aircraft applications.

  10. Nondestructive thermoelectric evaluation of the grit blasting induced effects in metallic biomaterials

    NASA Astrophysics Data System (ADS)

    Carreon, H.; Ruiz, A.; Barriuso, S.; González-Carrasco, J. L.; Caballero, F. G.; Lieblich, M.

    2013-01-01

    Grit blasting is a surface treatment process widely used to enhance mechanical fixation of the implants through increasing their roughness. Test samples of two metallic biomaterial alloys such 316LVM and Ti6Al4V were blasted by projecting Al2O3 and ZrO2 particles which yield a coarse and a fine rough surface. Then, the blasted samples were thermally treated before and after partial stress relaxation and measured by non-destructive thermoelectric techniques (NDTT), the non-contacting and contacting thermoelectric power (TEP) measurements respectively. It has been found that the TEP measurements are associated directly with the subtle material variations such as cold work and compressive residual stresses due to plastic deformation produced by grit blasting. The TEP measurements clearly demonstrate that the non-contact NDTT technique is very sensitive to the reverse transformation of the α'-martensite (blasted 316LVM) and the expected relaxation of compressive residual stresses with increasing the severity of the thermal treatment (blasted 316LVM and Ti-6Al-4V), while the contact NDTT results are closely related to grain size refinement and work hardening.

  11. Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy

    NASA Astrophysics Data System (ADS)

    Price, T. S.; Shipway, P. H.; McCartney, D. G.

    2006-12-01

    The deposition of titanium on a titanium alloy substrate is being examined for potential use as a surface treatment for medical prostheses. A Ti6Al4V alloy was coated with pure titanium by cold gas dynamic spraying. Coatings were deposited onto samples with two different surface preparation methods (as-received and grit-blasted). The fatigue life of the as-received and grit-blasted materials, both before and after coating, was measured with a rotating-bend fatigue rig. A 15% reduction in fatigue endurance limit was observed after application of the coating to the as-received substrate, but no significant reduction was observed on its application to the grit-blasted substrate. The reduction in fatigue endurance limit has been related to the substrate-coating interface properties, the elastic modulus, and the residual stress states.

  12. Grit Blasting for Removal of Recast Layer from EDM Process on Inconel 718 Shaft: An Evaluation of Surface Integrity

    NASA Astrophysics Data System (ADS)

    Holmberg, Jonas; Wretland, Anders; Berglund, Johan

    2016-12-01

    The heat generated during EDM melts the work material and thereby allows large amounts to be removed, but an unfavorable surface of a recast layer (RCL) will also be created. This layer has entirely different properties compared to the bulk. Hence, it is of great interest to efficiently remove this layer and to verify that it has been removed. The main objective of this work has been to study the efficiency of grit blasting for removal of RCL on an EDM aero space shaft. Additionally, x-ray fluorescence (XRF) has been evaluated as a nondestructive measurement to determine RCL presence. The results show that the grit-blasting processing parameters have strong influence on the ability to remove RCL and at the same time introduce beneficial compressive stresses even after short exposure time. Longer exposure will remove the RCL from the surface but also increase the risk that a larger amount of the blasting medium will get stuck into the surface. This investigation shows that a short exposure time in combination with a short grit-blasting nozzle distance is the most preferable process setting. It was further found that handheld XRF equipment can be used as a nondestructive measurement in order to evaluate the amount of RCL present on an EDM surface. This was realized by analyzing the residual elements from the EDM wire.

  13. Significance of the contacting and no contacting thermoelectric power measurements applied to grit blasted medical Ti6Al4V.

    PubMed

    Carreon, H; Barriuso, S; Lieblich, M; González-Carrasco, J L; Jimenez, J A; Caballero, F G

    2013-04-01

    Grit blasting is a surface plastic deformation technique aimed to increase the surface area available for bone/implant apposition, which contributes to improve fixation and mechanical stability of Ti-6Al-4V implants. Besides roughening, grit blasting also causes surface contamination with embedded grit particles and subtle subsurface microstructural changes that, although does not challenge their biocompatibility, might influence other surface dominated properties like corrosion and ion release. Additional benefits are expected due to the induced compressive residual stresses, hence enhancing fatigue strength. The net effect depends on the type of particles used for blasting, but also on the amount of the subsurface cold work associated to the severe surface plastic deformation. In this work we study the potential of the non-contacting and contacting thermoelectric power (TEP) measurements in the analysis of the global changes induced in the Ti6Al4V when blasting the alloy with Al2O3 or ZrO2 particles, which yields a coarse and a fine rough surface, respectively. To reveal the effect of residual stresses, a set of specimens were thermally treated. The study proves that the non-contacting technique is more sensitive to the presence of residual stresses, whereas the contact technique is strongly influenced by the grain size refinements, work hardening and changes in solute.

  14. Optimization of Grit-Blasting Process Parameters for Production of Dense Coatings on Open Pores Metallic Foam Substrates Using Statistical Methods

    NASA Astrophysics Data System (ADS)

    Salavati, S.; Coyle, T. W.; Mostaghimi, J.

    2015-10-01

    Open pore metallic foam core sandwich panels prepared by thermal spraying of a coating on the foam structures can be used as high-efficiency heat transfer devices due to their high surface area to volume ratio. The structural, mechanical, and physical properties of thermally sprayed skins play a significant role in the performance of the related devices. These properties are mainly controlled by the porosity content, oxide content, adhesion strength, and stiffness of the deposited coating. In this study, the effects of grit-blasting process parameters on the characteristics of the temporary surface created on the metallic foam substrate and on the twin-wire arc-sprayed alloy 625 coating subsequently deposited on the foam were investigated through response surface methodology. Characterization of the prepared surface and sprayed coating was conducted by scanning electron microscopy, roughness measurements, and adhesion testing. Using statistical design of experiments, response surface method, a model was developed to predict the effect of grit-blasting parameters on the surface roughness of the prepared foam and also the porosity content of the sprayed coating. The coating porosity and adhesion strength were found to be determined by the substrate surface roughness, which could be controlled by grit-blasting parameters. Optimization of the grit-blasting parameters was conducted using the fitted model to minimize the porosity content of the coating while maintaining a high adhesion strength.

  15. On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening.

    PubMed

    Lieblich, M; Barriuso, S; Ibáñez, J; Ruiz-de-Lara, L; Díaz, M; Ocaña, J L; Alberdi, A; González-Carrasco, J L

    2016-10-01

    Flat fatigue specimens of biomedical Ti6Al4V ELI alloy were surface-processed by high pressure waterjet peening (WJP) without abrasive particles using moderate to severe conditions that yield roughness values in the range of those obtained by commercial grit blasting (BL) with alumina particles. Fatigue behavior of WJP and BL specimens was characterized under cyclical uniaxial tension tests (R=0.1). The emphasis was put on a comparative analysis of the surface and subsurface induced effects and in their relevance on fatigue behavior. Within the experimental setup of this investigation it resulted that blasting with alumina particles was less harmful for fatigue resistance than abrasiveless WJP. BL specimens resulted in higher subsurface hardening and compressive residual stresses. Specimens treated with more severe WJP parameters presented much higher mass loss and lower compressive residual stresses. From the analysis performed in this work, it follows that, in addition to roughness, waviness emerges as another important topographic parameter to be taken into account to try to predict fatigue behavior. It is envisaged that optimization of WJP parameters with the aim of reducing waviness and mass loss should lead to an improvement of fatigue resistance.

  16. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    SciTech Connect

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

  17. Evaluation and comparison of the effect of different surface treatment modifications on the shear bond strength of a resin cement to titanium: An in vitro study

    PubMed Central

    Veljee, Tahsin Mansur; Shruthi, C. S.; Poojya, R.

    2015-01-01

    The purpose of this study was to evaluate and compare the effect of grit blasting, chemical treatment, and application of alloy primer combinations on the shear bond strength (SBS) of a self-cure resin cement to titanium surface. Materials and Methods: Fifty cast commercially pure titanium discs (9 mm × 2 mm) were divided into five groups (n = 10), which received the following surface treatments: Control group (no surface treatment), group 1 (grit blasting using 110 µm Al2O3 particles and application of alloy primer), group 2 (grit blasting using 110 µm Al2O3 particles and chemical treatment using 1N HCl), group 3 (chemical treatment using 1N HCl and application of alloy primer), and group 4 (Grit blasting using 110 µm Al2O3 particles, chemical treatment using 1N HCl and application of alloy primer). Superbond C and B resin cement was applied to the treated titanium surfaces including controls. SBSs were determined after thermocycling for 5000 cycles. Data (megapascal) were analyzed by ANOVA and Bonferroni test. Results: Group 4 (grit blasting using 110 µm Al2O3 particles, chemical treatment using 1N hydrochloric acid, and application of alloy primer) produced the highest bond strength followed by group 1, group 3, group 2, and the control group which showed the least bond strength. Conclusion: (1) Air-abrasion with alumina particles increases the micromechanical retention of the resin to titanium. (2) The alloy primer promotes wettability, which increases the adhesive bonding of resin cement to titanium. (3) Chemical treatment using hydrochloric acid effectively pretreats the titanium surface thereby increasing the SBS values. PMID:26929532

  18. Morphometric and mechanical evaluation of titanium implant integration: comparison of five surface structures.

    PubMed

    Svehla, M; Morberg, P; Zicat, B; Bruce, W; Sonnabend, D; Walsh, W R

    2000-07-01

    Achieving a stable bone-implant interface is an important factor in the long-term outcome of joint arthroplasty. In this study, we employed an ovine bicortical model to compare the bone-healing response to five different surfaces on titanium alloy implants: grit blasted (GB), grit blasted plus hydroxyapatite (50 microm thick) coating (GBHA), Porocoat(R) (PC), Porocoat(R) with HA (PCHA) and smooth (S). Push-out testing, histology, and backscatter scanning electron microscope (SEM) imaging were employed to assess the healing response at 4, 8, and 12 weeks. Push-out testing revealed PC and PCHA surfaces resulted in significantly greater mechanical fixation over all other implant types at all time points (p <.05). HA coating on the grit-blasted surface significantly improved fixation at 8 and 12 weeks (p <.05). The addition of HA onto the porous coating did not significantly improve fixation in this model. Quantification of ingrowth/ongrowth from SEM images revealed that HA coating of the grit-blasted surfaces resulted in significantly more ongrowth at 4 weeks (p <.05).

  19. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    SciTech Connect

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2010-10-04

    Laboratory tests were conducted to determine the fatigue performance of AWJ-machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results not only confirmed the findings of the aluminum dog-bone specimens but also further enhance the fatigue performance. In addition, titanium is known to be notoriously difficult to cut with contact tools while AWJs cut it 34% faster than stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred combination for processing aircraft titanium that is fatigue critical.

  20. Elevated Serum Titanium Level as a Marker for Failure in a Titanium Modular Fluted Tapered Stem.

    PubMed

    McAlister, Ian P; Abdel, Matthew P

    2016-07-01

    Serum ion concentrations of cobalt and chromium are commonly used to monitor for the development of local metal reactions in metal-on-metal total hip arthroplasties, as well as dual-modular constructs. Although rarely used in clinical practice, elevated serum titanium levels have the ability to indicate a failure with contemporary revision constructs, such as with titanium modular fluted tapered (TMFT) stems. The authors report the case of a 64-year-old man with a TMFT stem after revision total hip arthroplasty for a dual-modular neck construct who had set screw disengagement with subsequent proximal body loosening. The patient's serum cobalt and chromium levels were normal, but he had a markedly elevated serum titanium level, indicating failure of the titanium modular junction. Implant failures at modular junctions in femoral components are well described. Although several different failure mechanisms have been defined, to the authors' knowledge this is the first reported failure of this particular TMFT stem. In addition, this is the first report describing the use of serum titanium levels in identifying a novel failure mechanism. With the popularity of this stem, surgeons should be aware that an elevated serum titanium level may aid in the diagnosis of this unique complication. [Orthopedics. 2016; 39(4):e768-e770.].

  1. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  2. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    PubMed

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants.

  3. The durability of adhesively bonded titanium: Performance of plasma-sprayed polymeric coating pretreatments

    SciTech Connect

    Jackson, F.; Dillard, J.; Dillard, D.

    1996-12-31

    The role of a surface treatment of an adherend is to promote highly stable adhesive-adherend interactions; high stability is accomplished by making the chemistry of the adherend and adhesive compatible. The common surface preparations used to enhance durability include grit blasting, chromic acid or sodium hydroxide anodization, and other chemical treatments for titanium. As interest has grown in the development of environmentally benign surface treatments, other methods have been explored. In this study, plasma-sprayed polymeric materials have been evaluated as a surface coating pretreatment for adhesively bonding titanium alloy. Polyimide and polyether powders were plasm-sprayed onto grit-blasted titanium-6Al-4V. The alloy was adhesively bonded using a high performance polyimide adhesive. The coating was characterized using surface sensitive analytical measurements. The durability performance of the plasma-sprayed adherends was compared to the performance for chromic acid anodized titanium. Among the plasma-sprayed coatings, a LaRC-TPI polyimide-based coating exhibited performance comparable to that for chromic acid anodized specimens.

  4. Preliminary Investigation of the Effect of Surface Treatment on the Strength of a Titanium Carbide - 30 Percent Nickel Base Cermet

    NASA Technical Reports Server (NTRS)

    Robins, Leonard; Grala, Edward M

    1957-01-01

    Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.

  5. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    PubMed

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications.

  6. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    PubMed

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  7. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    PubMed Central

    Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  8. Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning

    2016-12-01

    Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.

  9. Titanium

    SciTech Connect

    Fox, G.J.

    1997-01-01

    The article contains a summary of factors pertinent to titanium use. Geology and exploitation, production processes, global production, titanium dioxide and alloy applications, and the titanium market are reviewed. Potential applications outlined are for oil and gas equipment and for the automotive industry. Titanium alloys were selected for drilling risers for North Sea oil and gas drilling platforms due to a high strength-to-weight ratio and corrosion resistance. These properties also make titanium alloys attractive for auto parts, although the cost is currently prohibitive.

  10. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  11. Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda

    2005-01-01

    Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.

  12. Neutron radiography and tomography investigations on the porosity of the as-cast titanium femoral stem

    NASA Astrophysics Data System (ADS)

    Sutiyoko; Suyitno; Mahardika, M.; Akbar, F.; Juliani; Setiawan; Baroto

    2017-02-01

    Gating system design in the centrifugal casting is one of the factors that influence the porosity of the femoral stem. The objective of this research is to analysis the porosity in the as-cast titanium femoral stem by neutron radiography and tomography. Three gating system designs which in three-ingates, four-ingates, and four-ingates by inversed position of the femoral stem were casted by a vertical centrifugal casting in investment mold. The porosity distribution in the titanium femoral stem was investigated by the neutron radiography film and followed by neutron tomography. The results indicate that there are large internal porosity in the subsurface region on both of the four-ingates designs but only small internal porosity on the three-ingates design. The large porosity also takes place in largest part of the femoral stem at all of the gating system designs. The product may be rejected due to the sub-surface porosity. The three-ingates design has the smallest risk on the reject product.

  13. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.

    PubMed

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.

  14. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells

    PubMed Central

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    2016-01-01

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue. PMID:27789947

  15. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media.

    PubMed

    Leinenbach, Christian; Eifler, Dietmar

    2006-03-01

    In this investigation, the cyclic deformation behaviour of the binary titanium alloys Ti-6Al-4V and Ti-6Al-7Nb was characterized in axial stress-controlled constant amplitude and load increase tests as well as in rotating bending tests. The influence of different clinically relevant surface treatments (polishing, corundum grit blasting, thermal and anodic oxidizing) on the fatigue behaviour was investigated. All tests were realized in oxygen-saturated Ringer's solution. The cyclic deformation behaviour was characterized by mechanical hysteresis measurements. In addition, the change of the free corrosion potential and the corrosion current during testing in simulated physiological media indicated surface damages such as slip bands, intrusions and extrusions or finally microcracks. Microstructural changes on the specimen surfaces were examined by scanning electron microscopy (SEM).

  16. Particulate endocytosis mediates biological responses of human mesenchymal stem cells to titanium wear debris.

    PubMed

    Okafor, Chukwuka C; Haleem-Smith, Hana; Laqueriere, Patrice; Manner, Paul A; Tuan, Rocky S

    2006-03-01

    Continual loading and articulation cycles undergone by metallic (e.g., titanium) alloy arthroplasty prostheses lead to liberation of a large number of metallic debris particulates, which have long been implicated as a primary cause of periprosthetic osteolysis and postarthroplasty aseptic implant loosening. Long-term stability of total joint replacement prostheses relies on proper integration between implant biomaterial and osseous tissue, and factors that interfere with this integration are likely to cause osteolysis. Because multipotent mesenchymal stem cells (MSCs) located adjacent to the implant have an osteoprogenitor function and are critical contributors to osseous tissue integrity, when their functions or activities are compromised, osteolysis will most likely occur. To date, it is not certain or sufficiently confirmed whether MSCs endocytose titanium particles, and if so, whether particulate endocytosis has any effect on cellular responses to wear debris. This study seeks to clarify the phenomenon of titanium endocytosis by human MSCs (hMSCs), and investigates the influence of endocytosis on their activities. hMSCs incubated with commercially pure titanium particles exhibited internalized particles, as observed by scanning electron microscopy and confocal laser scanning microscopy, with time-dependent reduction in the number of extracellular particles. Particulate endocytosis was associated with reduced rates of cellular proliferation and cell-substrate adhesion, suppressed osteogenic differentiation, and increased rate of apoptosis. These cellular effects of exposure to titanium particles were reduced when endocytosis was inhibited by treatment with cytochalasin D, and no significant effect was seen when hMSCs were treated only with conditioned medium obtained from particulate-treated cells. These findings strongly suggest that the biological responses of hMSCs to wear debris are triggered primarily by the direct endocytosis of titanium particulates, and

  17. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    PubMed Central

    Lakhkar, Nilay J; M Day, Richard; Kim, Hae-Won; Ludka, Katarzyna; Mordan, Nicola J; Salih, Vehid; Knowles, Jonathan C

    2015-01-01

    In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications. PMID:26668711

  18. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests.

    PubMed

    Aparicio, Conrado; Padrós, Alejandro; Gil, Francisco-Javier

    2011-11-01

    We report on the in vivo histological and mechanical performance of titanium dental implants with a new surface treatment (2Step) consisting of an initial grit-blasting process to produce a micro-rough surface, followed by a combined chemical and thermal treatment that produces a potentially bioactive surface, i.e., that can form an apatitic layer when exposed to biomimetic conditions in vitro. Our aim was to assess the short- and mid-term bone regenerative potential and mechanical retention of 2Step implants in mandible and maxilla of minipigs and compare them with micro-rough grit-blasted, micro-rough acid-etched, and smooth as-machined titanium implants. The percent of bone-to-implant contact after 2, 4, 6, and 10 weeks of implantation as well as the mechanical retention after 4, and 6 weeks of implantation were evaluated with histometric and pull-out tests, respectively, as a measure of the osseointegration of the implants. We also aimed to assess the bioactive nature of 2Step surfaces in vivo. Our results demonstrated that the 2Step treatment produced micro-rough and bioactive implants that accelerated bone tissue regeneration and increased mechanical retention in the bone bed at short periods of implantation in comparison with all other implants tested. This was mostly attributed to the ability of 2Step implants to form in vivo a layer of apatitic mineral that coated the implant and could rapidly stimulate (a) bone nucleation directly on the implant surface, and (b) bone growing from the implant surface. We also proved that roughness values of Ra≈4.5 μm favoured osseointegration of dental implants at short- and mid-term healing periods, as grit-blasted implants and 2Step implants had higher retention values than as machined and acid-etched implants. The surface quality resulting from the 2Step treatment applied on cpTi provided dental implants with a unique combination of rapid bone regeneration and high mechanical retention.

  19. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    PubMed

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  20. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment.

    PubMed

    Dumas, Virginie; Guignandon, Alain; Vico, Laurence; Mauclair, Cyril; Zapata, Ximena; Linossier, Marie Thérèse; Bouleftour, Wafa; Granier, Julien; Peyroche, Sylvie; Dumas, Jean-Claude; Zahouani, Hassan; Rattner, Aline

    2015-09-03

    Surface improvement of implants is essential for achieving a fast osseo-integration. Technically, the creation of a precise pattern on a titanium alloy surface is challenging. Here, the femtosecond laser was chosen as an innovative technology for texturing with accuracy a nano-micro topography. By adjusting the laser parameters, three biomimetic textures were fabricated on the titanium surface: micropits with nano-ripples in the pits, micropits with nano-ripples around the pits, and a texture with only nano-ripples. Mesenchymal stem cells (MSCs, C3H10T1/2) grown on these surfaces displayed altered morphometric parameters, and modified their focal adhesions in term of number, size, and distribution depending on surface type. These results indicate that the MSCs perceived subtle differences in topography. Dynamic analyses of early cellular events showed a higher speed of spreading on all the textured surfaces as opposed to the polished titanium. Concerning commitment, all the laser-treated surfaces strongly inhibited the expression of adipogenic-related genes (PPARϒ2, C/EBPα) and up-regulated the expression of osteoblastic-related genes (RUNX2, osteocalcin). Interestingly, the combination of micropits to nano-ripples enhanced their osteogenic potential as seen by a twofold increase in osteocalcin mRNA. Alkaline phosphatase activity was increased on all the textured surfaces, and lipid production was down-regulated. The functionalization of metallic surfaces by this high-resolution process will help us understand the MSCs' interactions with substrates for the development of textured implants with predictable tissue integrative properties.

  1. The Effect of Taper Angle and Spline Geometry on the Initial Stability of Tapered, Splined Modular Titanium Stems.

    PubMed

    Pierson, Jeffery L; Small, Scott R; Rodriguez, Jose A; Kang, Michael N; Glassman, Andrew H

    2015-07-01

    Design parameters affecting initial mechanical stability of tapered, splined modular titanium stems (TSMTSs) are not well understood. Furthermore, there is considerable variability in contemporary designs. We asked if spline geometry and stem taper angle could be optimized in TSMTS to improve mechanical stability to resist axial subsidence and increase torsional stability. Initial stability was quantified with stems of varied taper angle and spline geometry implanted in a foam model replicating 2cm diaphyseal engagement. Increased taper angle and a broad spline geometry exhibited significantly greater axial stability (+21%-269%) than other design combinations. Neither taper angle nor spline geometry significantly altered initial torsional stability.

  2. Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates.

    PubMed

    Shen, Xinkun; Ma, Pingping; Hu, Yan; Xu, Gaoqiang; Zhou, Jun; Cai, Kaiyong

    2015-03-01

    Surface topography of an orthopedic implant plays an essential role in the regulation of bone formation with surrounding bone tissue. To investigate the effects of surface topography of titanium (Ti) substrates on cellular behavior of mesenchymal stem cells (MSCs), a series of micro/nano hierarchical structures were fabricated onto micro-structured titanium (Micro-Ti) substrates via a sol-gel method with spin-coat technique. Scanning electron microscopy (SEM), surface profiler, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement were employed to certify the successful fabrication of micro/nano hierarchical structures with the presence of various nano-sized TiO2 grains (20 nm, 40 nm and 80 nm, respectively) onto micro-structured surfaces. The formation mechanism of the micro/nano hierarchical structures was proposed. Moreover, the effects of those hierarchical structures on the growth behavior of MSCs were evaluated both on cellular and molecular levels in vitro. The results confirmed that micro/nano hierarchical structures with large grains (80 nm) greatly promoted the proliferation and differentiation of MSCs comparing with other small grains (20 nm and 40 nm). The study provides an alternative for the fabrication of hierarchically structured Ti implants for potential orthopedic application.

  3. Selective fibronectin adsorption against albumin and enhanced stem cell attachment on helium atmospheric pressure glow discharge treated titanium

    NASA Astrophysics Data System (ADS)

    Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul

    2011-06-01

    Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.

  4. Comparative effects of chlorhexidine and essential oils containing mouth rinse on stem cells cultured on a titanium surface.

    PubMed

    Park, Jun-Beom; Lee, Gil; Yun, Byeong Gon; Kim, Chang-Hyen; Ko, Youngkyung

    2014-04-01

    Chlorhexidine (CHX) and Listerine (LIS), an essential oil compound, are the two commonly used adjunctive agents for mechanical debridement, for reducing the bacterial load in the treatment of peri-implant inflammation. However, antimicrobial agents have been reported to be cytotoxic to the alveolar bone cells and gingival epithelial cells. The present study was performed to examine the effects of antiseptics CHX and LIS, on the morphology and proliferation of stem cells. Stem cells derived from the buccal fat pad were grown on machined titanium discs. Each disc was immersed in CHX or LIS for 30 sec, 1.5 min or 4.5 min. Cell morphology was evaluated with a confocal laser microscope and the viability of the cells was quantitatively analyzed with the cell counting kit-8 (CCK-8). The untreated cells attached to the titanium discs demonstrated well-organized actin cytoskeletons. No marked alterations in the cytoskeletal organization were observed in any of the treated groups. The treatment with CHX and LIS of the titanium discs decreased the viability of the cells grown on the treated discs (P<0.05). The stem cells derived from the buccal fat pad were sensitive to CHX and LIS, and a reduction in cellular viability was observed when these agents were applied to the discs for 30 sec. Further studies are required to determine the optimal application time and concentration of this antimicrobial agent for maximizing the reduction of the bacterial load and minimizing the cytotoxicity to the surrounding cells.

  5. Zinc-modified titanium surface enhances osteoblast differentiation of dental pulp stem cells in vitro

    PubMed Central

    Yusa, Kazuyuki; Yamamoto, Osamu; Takano, Hiroshi; Fukuda, Masayuki; Iino, Mitsuyoshi

    2016-01-01

    Zinc is an essential trace element that plays an important role in differentiation of osteoblasts and bone modeling. This in vitro study aimed to evaluate the osteoblast differentiation of human dental pulp stem cells (DPSCs) on zinc-modified titanium (Zn-Ti) that releases zinc ions from its surface. Based on real-time PCR, alkaline phosphatase (ALP) activity and Western blot analysis data, we investigated osteoblast differentiation of DPSCs cultured on Zn-Ti and controls. DPSCs cultured on Zn-Ti exhibited significantly up-regulated gene expression levels of osteoblast-related genes of type I collagen (Col I), bone morphogenetic protein 2 (BMP2), ALP, runt-related transcription factor 2 (Runx2), osteopontin (OPN), and vascular endothelial growth factor A (VEGF A), as compared with controls. We also investigated extracellular matrix (ECM) mineralization by Alizarin Red S (ARS) staining and found that Zn-Ti significantly promoted ECM mineralization when compared with controls. These findings suggest that the combination of Zn-Ti and DPSCs provides a novel approach for bone regeneration therapy. PMID:27387130

  6. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis

    PubMed Central

    ABUNA, Rodrigo Paolo Flores; STRINGHETTA-GARCIA, Camila Tami; FIORI, Leonardo Pimentel; DORNELLES, Rita Cassia Menegati; ROSA, Adalberto Luiz; BELOTI, Marcio Mateus

    2016-01-01

    ABSTRACT Aging negatively affects bone/titanium implant interactions. Our hypothesis is that the unbalance between osteogenesis and adipogenesis induced by aging may be involved in this phenomenon. Objective We investigated the osteoblast and adipocyte differentiation of mesenchymal stem cells (MSCs) from young and aged rats cultured on Ti. Material and Methods Bone marrow MSCs derived from 1-month and 21-month rats were cultured on Ti discs under osteogenic conditions for periods of up to 21 days and osteoblast and adipocyte markers were evaluated. Results Cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of RUNX2, osterix, ALP, bone sialoprotein, osteopontin, and osteocalcin were reduced in cultures of 21-month rats compared with 1-month rats grown on Ti. Gene expression of PPAR-γ , adipocyte protein 2, and resistin and lipid accumulation were increased in cultures of 21-month rats compared with 1-month rats grown on the same conditions. Conclusions These results indicate that the lower osteogenic potential of MSCs derived from aged rats compared with young rats goes along with the higher adipogenic potential in cultures grown on Ti surface. This unbalance between osteoblast and adipocyte differentiation should be considered in dental implant therapy to the elderly population. PMID:27556209

  7. Mapping the strain distribution on the proximal femur with titanium and flexible-stemmed implants using digital image correlation.

    PubMed

    Tayton, E; Evans, S; O'Doherty, D

    2010-08-01

    We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.

  8. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro

    PubMed Central

    Chen, Chun-Ju; Chen, Chun-Cheng; Ding, Shinn-Jyh

    2016-01-01

    Chemotherapeutic agents have been used as an adjunct to mechanical debridement for peri-implantitis treatment. The present in vitro study evaluated and compared the effectiveness of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), and chlorhexidine (CHX) at eliminating Gram-negative (E. coli and P. gingivalis) and Gram-positive (E. faecalis and S. sanguinis) bacteria. The effect of irrigating volume and exposure time on the antimicrobial efficacy of HOCl was evaluated, and a durability analysis was completed. Live/dead staining, morphology observation, alamarBlue assay, and lipopolysaccharide (LPS) detection were examined on grit-blasted and biofilm-contaminated titanium alloy discs after treatment with the three chemotherapeutic agents. The results indicated that HOCl exhibited better antibacterial efficacy with increasing irrigating volumes. HOCl achieved greater antibacterial efficacy as treatment time was increased. A decrease in antimicrobial effectiveness was observed when HOCl was unsealed and left in contact with the air. All the irrigants showed antibacterial activity and killed the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants. Moreover, HOCl significantly lowered the LPS concentration of P. gingivalis when compared with NaOCl and CHX. Thus, a HOCl antiseptic may be effective for cleaning biofilm-contaminated implant surfaces. PMID:27447617

  9. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro.

    PubMed

    Chen, Chun-Ju; Chen, Chun-Cheng; Ding, Shinn-Jyh

    2016-07-19

    Chemotherapeutic agents have been used as an adjunct to mechanical debridement for peri-implantitis treatment. The present in vitro study evaluated and compared the effectiveness of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), and chlorhexidine (CHX) at eliminating Gram-negative (E. coli and P. gingivalis) and Gram-positive (E. faecalis and S. sanguinis) bacteria. The effect of irrigating volume and exposure time on the antimicrobial efficacy of HOCl was evaluated, and a durability analysis was completed. Live/dead staining, morphology observation, alamarBlue assay, and lipopolysaccharide (LPS) detection were examined on grit-blasted and biofilm-contaminated titanium alloy discs after treatment with the three chemotherapeutic agents. The results indicated that HOCl exhibited better antibacterial efficacy with increasing irrigating volumes. HOCl achieved greater antibacterial efficacy as treatment time was increased. A decrease in antimicrobial effectiveness was observed when HOCl was unsealed and left in contact with the air. All the irrigants showed antibacterial activity and killed the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants. Moreover, HOCl significantly lowered the LPS concentration of P. gingivalis when compared with NaOCl and CHX. Thus, a HOCl antiseptic may be effective for cleaning biofilm-contaminated implant surfaces.

  10. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    PubMed

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues.

  11. In vivo evaluation of bone deposition in macroporous titanium implants loaded with mesenchymal stem cells and strontium-enriched hydrogel.

    PubMed

    Lovati, Arianna B; Lopa, Silvia; Talò, Giuseppe; Previdi, Sara; Recordati, Camilla; Mercuri, David; Segatti, Francesco; Zagra, Luigi; Moretti, Matteo

    2015-02-01

    Bone-implant integration represents a major requirement to grant implant stability and reduce the risk of implant loosening. This study investigates the effect of progenitor cells and strontium-enriched hydrogel on the osseointegration of titanium implants. To mimic implant-bone interaction, an ectopic model was developed grafting Trabecular Titanium(™) (TT) implants into decellularized bone seeded with human bone marrow mesenchymal stem cells (hBMSCs). TT was loaded or not with strontium-enriched amidated carboxymethylcellulose (CMCA) hydrogel and/or hBMSCs. Constructs were implanted subcutaneously in athymic mice and osteodeposition was investigated with microcomputed tomography (micro-CT), scanning electron microscopy (SEM), and pull-out test at 4, 8, and 12 weeks. Fluorescence imaging was performed at 8 and 12 weeks, histology at 4 and 8 weeks. Micro-CT demonstrated the homogeneity of the engineered bone in all groups, supporting the reproducibility of the ectopic model. Fluorescence imaging, histology, SEM and pull-out mechanical testing showed superior tissue ingrowth in TT implants loaded with both strontium-enriched CMCA and hBMSCs. In our model, the synergic action of the bioactive hydrogel and hBMSCs increased both the bone deposition and TT integration. Thus, we suggest that using orthopedic prosthetic implant preloaded with strontium-enriched CMCA and seeded with BMSCs could represent a valid single-step surgical strategy to improve implant osseointegration.

  12. Erosion-Resistant Water-And-Grit-Blasting Assembly

    NASA Technical Reports Server (NTRS)

    Roberts, Marion L.; Rice, R. M.; Cosby, S. A.

    1988-01-01

    Nozzle assembly adds abrasive particles to high-pressure water jet. Abrasive nozzle combined with high-pressure tapered stripping nozzle and standard connector. Partial vacuum in relatively large chamber of abrasive-injector housing entrains grit particles from abrasive supply.

  13. In vitro osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-L-lysine-treated titanium-6-aluminium-4-vanadium.

    PubMed

    Galli, Daniela; Benedetti, Laura; Bongio, Matilde; Maliardi, Valentina; Silvani, Giulia; Ceccarelli, Gabriele; Ronzoni, Flavio; Conte, Silvio; Benazzo, Francesco; Graziano, Antonio; Papaccio, Gianpaolo; Sampaolesi, Maurilio; De Angelis, Maria Gabriella Cusella

    2011-05-01

    Three-dimensional (3D) titanium-6-aluminium-4-vanadium (Ti6Al4V) is a widely used biomaterial for orthopedic prosthesis and dental implants; thanks to its very high-mechanical strength and resistance to corrosion. Human mesenchymal stem cells (hMSCs) and dental pulp stem cells (hDPSCs) are responsible for bone regeneration following colonization of prosthesis or dental implants. Both hMSCs and hDPSCs have lower ability to colonize this biomaterial in comparison with tissue culture-treated plastic. Both hMSCs and hDPSCs show lack of focal adhesion kinase (FAK) activation when grown on Ti6Al4V. This signal is restored in the presence of poly-L-lysine (poly-L-lys). Poly-L-lys has been used as part of organoapatite or together with zinc and calcium ions. Our results suggest that poly-L-lys alone induces FAK activation through β1-INTEGRIN, because the presence of β1-INTEGRIN blocking antibody avoided FAK autophosphorylation. Presence of poly-L-lys also increases expression of osteoblastic differentiation marker genes in hMSCs and hDPSCs grown on Ti6Al4V.

  14. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds.

    PubMed

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eblenkamp, Markus; Wintermantel, Erich; Eissner, Günther

    2010-12-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  15. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium.

    PubMed

    Hu, H; Zhang, W; Qiao, Y; Jiang, X; Liu, X; Ding, C

    2012-02-01

    In this work, zinc was incorporated into TiO2 coatings on titanium by plasma electrolytic oxidation to obtain the implant with good bacterial inhibition ability and bone-formability. The porous and nanostructured Zn-incorporated TiO2 coatings are built up from pores smaller than 5 μm and grains 20-100 nm in size, in which the element Zn exists as ZnO. The results obtained from the antibacterial studies suggest that the Zn-incorporated TiO2 coatings can greatly inhibit the growth of both Staphylococcus aureus and Escherichia coli, and the ability to inhibit bacteria can be improved by increasing the Zn content in the coatings. Moreover, the in vitro cytocompatibility evaluation demonstrates that the adhesion, proliferation and differentiation of rat bone marrow stem cells (bMSC) on Zn-incorporated coatings are significantly enhanced compared with Zn-free coating and commercially pure Ti plate, and no cytotoxicity appeared on any of the Zn-incorporated TiO2 coatings. Moreover, bMSC express higher level of alkaline phosphatase activity on Zn-incorporated TiO2 coatings and are induced to differentiate into osteoblast cells. The better antibacterial activity, cytocompatibility and the capability to promote bMSC osteogenic differentiation of Zn-incorporated TiO2 coatings may be attributed to the fact that Zn ions can be slowly and constantly released from the coatings. In conclusion, innovative Zn-incorporated TiO2 coatings on titanium with excellent antibacterial activity and biocompatibility are promising candidates for orthopedic and dental implants.

  16. Proliferation, behavior, and cytokine gene expression of human umbilical vascular endothelial cells in response to different titanium surfaces.

    PubMed

    An, Na; Schedle, Andreas; Wieland, Marco; Andrukhov, Oleh; Matejka, Michael; Rausch-Fan, Xiaohui

    2010-04-01

    Success of dental implantation is initially affected by wound healing of both, hard and soft tissues. Endothelial cells (ECs) are involved as crucial cells in the angiogenesis and inflammation process of wound healing. In the present study, proliferation, mobility, cluster formation, and gene expression of angiogenesis-related molecules of human umbilical vascular endothelial cells (HUVECs) were investigated on titanium surfaces with different roughnesses: acid-etched (A), coarse-grit-blasted and acid-etched (SLA) surfaces, as well as on hydrophilic modified modA and modSLA surfaces. Cell behaviors were analyzed by proliferation assay and time-lapse microscopy, gene expression was analyzed by real time PCR. Results showed that cell proliferation, mobility, and cluster formation were highest on modA surfaces compared with all other surfaces. HUVECs moved slowly and exhibited seldom cell aggregation on SLA and modSLA surfaces during the whole observing period of 120 h. The gene expressions of the angiogenesis-related factors von Willebrand factor, thrombomodulin, endothelial cell protein C receptor, and adhesion molecules intercellular adhesion molecule-1 and E-selectin were most enhanced on modSLA surfaces. These results suggest that modA surface is optimal for proliferation and angiogenic behavior of ECs. However, modSLA surface seems to promote ECs to express angiogenesis-related factor genes, which play essential roles in controlling inflammation and revascularization of wound healing.

  17. Targeting neural stem cells with titanium dioxide nanoparticles coupled to specific monoclonal antibodies.

    PubMed

    Elvira, Gema; Moreno, Berta; Valle, Ignacio Del; Garcia-Sanz, Jose A; Canillas, María; Chinarro, Eva; Jurado, José R; Silva, Augusto

    2012-05-01

    Aiming to characterize the use of biomaterials in cancer therapy, we took advantage of the n-type semiconductor properties, which upon irradiation excite their electrons into the conduction band to induce photoelectrochemical reactions generating oxygen reactive species (ROS). Indeed, photoactivated TiO(2) nanoparticles have been shown to kill in vitro either bacteria or tumor cells in culture following UV irradiation, as a consequence of the ROS levels generated; the killing was highly effective although devoid of specificity. In this report, we have directed the TiO(2) nanoparticles to particular targets by coupling them to the monoclonal antibody (mAb) Nilo1, recognizing a surface antigen in neural stem cells within a cell culture, to explore the possibility of making this process specific. TiO(2) nanoparticles generated with particular rutile/anatase ratios were coupled to Nilo1 antibody and the complexes formed were highly stable. The coupled antibody retained the ability to identify neural stem cells and upon UV irradiation, the TiO(2) nanoparticles were activated, inducing the selective photokilling of the antibody-targeted cells. Thus, these data indicate that antibody-TiO(2) complexes could be used to specifically remove target cell subpopulations, as demonstrated with neural stem cells. The possible applications in cancer therapy are discussed.

  18. Proliferation and osteogenic differentiation of human mesenchymal stem cells on zirconia and titanium with different surface topography.

    PubMed

    Hirano, Tomoki; Sasaki, Hodaka; Honma, Shinya; Furuya, Yoshitaka; Miura, Tadashi; Yajima, Yasutomo; Yoshinari, Masao

    2015-01-01

    The purpose of this study was to elucidate behavior of human mesenchymal stem cells (hMSCs) on yttria stabilized tetragonal zirconia polycrystals (TZP) and commercial pure titanium (CpTi) with different surface topography. Mirror-polished (MS), sandblasted with 150-μm alumina (SB150) and SB150 acid-etched (SB150E) were prepared on TZP and CpTi. Proliferation, osteogenic differentiation of hMSCs was evaluated. The scanning electron microscopy showed that micro- and nano-topographies were created on both TZP and CpTi SB150E surfaces. The proliferation ability, ALP activity, expression of Runx2 on the both SB150E specimens was significantly higher than those on the other specimens. These results suggested that creation of micro- and nano-topographies on TZP and CpTi by blast and acid-etching may offer a promising method for enhancing the proliferation and differentiation of hMSCs in clinical application.

  19. Silencing tumor necrosis factor-alpha in vitro from small interfering RNA-decorated titanium nanotube array can facilitate osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Wang, Zhenlin; Hu, Zhiqiang; Zhang, Dawei; Zhuo, Mengchuan; Cheng, Jiwei; Xu, Xingping; Xing, Yongming; Fan, Jie

    2016-01-01

    Titanium implants are known for their bone bonding ability. However, the osseointegration may be severely disturbed in the inflammation environment. In order to enhance osseointegration of the implant in an inflamed environment, the small interfering RNA (siRNA) targeting tumor necrosis factor alpha (TNF-α) was used to functionalize titanium surface for gene silencing. The chitosan–tripolyphosphate–hyaluronate complexes were used to formulate nanoparticles (NPs) with siRNA, which were adsorbed directly by the anodized titanium surface. The surface characterization was analyzed by scanning electron microscope, atomic force microscopy, as well as contact angle measurement. The fluorescence microscope was used to monitor the degradation of the layer. The coculture system was established with mesenchymal stem cells (MSCs) grown directly on functionalized titanium surface and RAW264.7 cells (preactivated by lipopolysaccharide) grown upside in a transwell chamber. The transfection and knockdown efficiency of TNF-α in RAW264.7 cells were determined by fluorescence microscope, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. The cytoskeleton and osteogenic differentiation of MSCs were also analyzed. Regular vertical aligned nanotubes (~100 nm diameter and ~300 nm length) were generated after anodization of polished titanium. After loading with NPs, the nanotubes were filled and covered by a layer of amorphous particles. The surface topography changed and wettability decreased after covering with NPs. As expected, a burst degradation of the film was observed, which could provide sufficient NPs in the released supernatant and result in transfection and knockdown effects in RAW264.7 cells. The cytoskeleton arrangement of MSCs was elongated and the osteogenic differentiation was also significantly improved on NPs loading surface. In conclusion, the siRNA decorated titanium implant could simultaneously suppress inflammation and improve

  20. Silencing tumor necrosis factor-alpha in vitro from small interfering RNA-decorated titanium nanotube array can facilitate osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Wang, Zhenlin; Hu, Zhiqiang; Zhang, Dawei; Zhuo, Mengchuan; Cheng, Jiwei; Xu, Xingping; Xing, Yongming; Fan, Jie

    2016-01-01

    Titanium implants are known for their bone bonding ability. However, the osseointegration may be severely disturbed in the inflammation environment. In order to enhance osseointegration of the implant in an inflamed environment, the small interfering RNA (siRNA) targeting tumor necrosis factor alpha (TNF-α) was used to functionalize titanium surface for gene silencing. The chitosan-tripolyphosphate-hyaluronate complexes were used to formulate nanoparticles (NPs) with siRNA, which were adsorbed directly by the anodized titanium surface. The surface characterization was analyzed by scanning electron microscope, atomic force microscopy, as well as contact angle measurement. The fluorescence microscope was used to monitor the degradation of the layer. The coculture system was established with mesenchymal stem cells (MSCs) grown directly on functionalized titanium surface and RAW264.7 cells (preactivated by lipopolysaccharide) grown upside in a transwell chamber. The transfection and knockdown efficiency of TNF-α in RAW264.7 cells were determined by fluorescence microscope, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. The cytoskeleton and osteogenic differentiation of MSCs were also analyzed. Regular vertical aligned nanotubes (~100 nm diameter and ~300 nm length) were generated after anodization of polished titanium. After loading with NPs, the nanotubes were filled and covered by a layer of amorphous particles. The surface topography changed and wettability decreased after covering with NPs. As expected, a burst degradation of the film was observed, which could provide sufficient NPs in the released supernatant and result in transfection and knockdown effects in RAW264.7 cells. The cytoskeleton arrangement of MSCs was elongated and the osteogenic differentiation was also significantly improved on NPs loading surface. In conclusion, the siRNA decorated titanium implant could simultaneously suppress inflammation and improve

  1. Combined effect of grain refinement and surface modification of pure titanium on the attachment of mesenchymal stem cells and osteoblast-like SaOS-2 cells.

    PubMed

    Medvedev, A E; Neumann, A; Ng, H P; Lapovok, R; Kasper, C; Lowe, T C; Anumalasetty, V N; Estrin, Y

    2017-02-01

    Surface modification is an important step in production of medical implants. Surface roughening creates additional surface area to enhance the bonding between the implant and the bone. Recent research provided a means to alter the microstructure of titanium by severe plastic deformation (SPD) in order to increase its strength, and thereby reduce the size of the implants (specifically, their diameter). The purpose of the present study was to examine the effect of bulk microstructure of commercially pure titanium with coarse-grained (CG) and ultrafine-grained (UFG) bulk structure on the surface state of these materials after surface modification by sand blasting and acid etching (SLA). It was shown that SLA-modified surface characteristics, in particular, roughness, chemistry, and wettability, were affected by prior SPD processing. Additionally, biocompatibility of UFG titanium was examined using osteosarcoma cell line SaOS-2 and primary human adipose-derived mesenchymal stem cell (adMSC) cultures. Enhanced cell viability as well as increased matrix mineralization during osteogenic differentiation of MSCs on the surface of ultrafine-grained titanium was shown.

  2. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing.

    PubMed

    Bezuidenhout, Martin B; Dimitrov, Dimitar M; van Staden, Anton D; Oosthuizen, Gert A; Dicks, Leon M T

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.

  3. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Elizabeth, Elmy; Baranwal, Gaurav; Krishnan, Amit G.; Menon, Deepthy; Nair, Manitha

    2014-03-01

    Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.

  4. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell.

    PubMed

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3×10(16) ions/cm(2) was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity.

  5. Tuning Mesenchymal Stem Cell Response onto Titanium-Niobium-Hafnium Alloy by Recombinant Fibronectin Fragments.

    PubMed

    Herranz-Diez, C; Mas-Moruno, C; Neubauer, S; Kessler, H; Gil, F J; Pegueroles, M; Manero, J M; Guillem-Marti, J

    2016-02-03

    Since metallic biomaterials used for bone replacement possess low bioactivity, the use of cell adhesive moieties is a common strategy to improve cellular response onto these surfaces. In recent years, the use of recombinant proteins has emerged as an alternative to native proteins and short peptides owing to the fact that they retain the biological potency of native proteins, while improving their stability. In the present study, we investigated the biological effect of two different recombinant fragments of fibronectin, spanning the 8-10th and 12-14th type III repeats, covalently attached to a new TiNbHf alloy using APTES silanization. The fragments were studied separately and mixed at different concentrations and compared to a linear RGD, a cyclic RGD and the full-length fibronectin protein. Cell culture studies using rat mesenchymal stem cells demonstrated that low to medium concentrations (30% and 50%) of type III 8-10th fragment mixed with type III 12-14th fragment stimulated cell spreading and proliferation compared to RGD peptides and the fragments separately. On the other hand, type III 12-14th fragment alone or mixed at low volume percentages ≤50% with type III 8-10th fragment increased alkaline phosphatase levels compared to the other molecules. These results are significant for the understanding of the role of fibronectin recombinant fragments in cell responses and thus to design bioactive coatings for biomedical applications.

  6. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing

    PubMed Central

    Bezuidenhout, Martin B.; Dimitrov, Dimitar M.; van Staden, Anton D.; Oosthuizen, Gert A.; Dicks, Leon M. T.

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research. PMID:26504776

  7. A quantitative study of exocytosis of titanium dioxide nanoparticles from neural stem cells

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Wu, Qiuxia; Sui, Keke; Chen, Xin-Xin; Fang, Jie; Hu, Xuefeng; Wu, Minghong; Liu, Yuanfang

    2013-05-01

    Nanoparticles (NPs) have been widely studied and applied in biomedicine and other fields. It is important to know the basic process of interaction between NPs and cells in terms of cellular endocytosis and exocytosis. However, little attention has been paid to the cellular exocytosis of NPs. Herein, using a multi-step cellular subculture method, we ascertain quantitatively the endocytosis and exocytosis of widely used TiO2 NPs using the neural stem cells (NSC) as a cellular model and ICP-AES as an analytic measure. Irrespective of the type and dose of TiO2 NPs, approximately 30% of the total TiO2 NPs entered NSCs after 48 h incubation. In the first 24 h after removing TiO2NPs, from the culture medium, about 35.0%, 34.6% and 41.7% of NP1 (50 nm), NP2 (30 nm) and NTs (nanotubes, 100 nm × 4-6 nm) were released (exocytosed) from cells, respectively. The release decreased over time, and became negligible at 72 h. Exocytosis did not happen during cell division. In addition, our results suggested that both endocytosis and exocytosis of TiO2NPs were energy-dependent processes, and NPs uptake by cells was influenced by serum proteins. Furthermore, we achieved primary dynamic confocal imaging of the exocytosis, allowing tracking of TiO2 NPs from NSCs. These findings may benefit studies on nanotoxicology and nanomedicine of TiO2 NPs.Nanoparticles (NPs) have been widely studied and applied in biomedicine and other fields. It is important to know the basic process of interaction between NPs and cells in terms of cellular endocytosis and exocytosis. However, little attention has been paid to the cellular exocytosis of NPs. Herein, using a multi-step cellular subculture method, we ascertain quantitatively the endocytosis and exocytosis of widely used TiO2 NPs using the neural stem cells (NSC) as a cellular model and ICP-AES as an analytic measure. Irrespective of the type and dose of TiO2 NPs, approximately 30% of the total TiO2 NPs entered NSCs after 48 h incubation. In the

  8. Mesenchymal Stem Cells Increase Collagen Infiltration and Improve Wound Healing Response to Porous Titanium Percutaneous Implants

    PubMed Central

    Isackson, Dorthyann; Cook, Kevin J.; McGill, Lawrence D.; Bachus, Kent N.

    2012-01-01

    Epidermal downgrowth, commonly associated with long-term percutaneous implants, weakens the skin-implant seal and greatly increases the vulnerability of the site to infection. To improve the skin attachment and early tissue integration with porous metal percutaneous implants, we evaluated the effect of bone marrow-derived mesenchymal stem cells (BMMSCs) to provide wound healing cues and vascularization to the dermal and epidermal tissues in establishing a barrier with the implant. Two porous metal percutaneous implants, one treated with BMMSCs and one untreated, were placed subdermally on the dorsum of Lewis rats. Implants were evaluated at 0, 3, 7, 28, and 56 days after implantation. Histological analyses evaluated cellular infiltrates, vascularization, quantity and quality of tissue ingrowth, epidermal downgrowth, and fibrous encapsulation. The amount of collagen infiltrating the porous coating was significantly greater for the BMMSC-treated implants at 3 and 28 days post implantation compared to untreated implants. There was an early influx and resolution of cellular inflammatory infiltrates in the treated implants compared to the untreated, though not statistically significant. Vascularization increased over time in both treated and untreated implants, with no statistical significance. Epidermal downgrowth was minimally observed in all implants with or without the BMMSC treatment. Our results suggest that BMMSCs can influence an early and rapid resolution of acute and chronic inflammation in wound healing, and can stimulate early collagen deposition and granulation tissue associated with later stages of wound repair. These findings provide evidence that BMMSCs can stimulate a more rapid and improved barrier between the skin and porous metal percutaneous implant. PMID:22940446

  9. Hydroxyapatite in total hip arthroplasty. Our experience with a plasma spray porous titanium alloy/hydroxyapatite double-coated cementless stem

    PubMed Central

    Castellini, Iacopo; Andreani, Lorenzo; Parchi, Paolo Domenico; Bonicoli, Enrico; Piolanti, Nicola; Risoli, Francesca; Lisanti, Michele

    2016-01-01

    Summary Purpose Total hip arthroplasty could fail due to many factors and one of the most common is the aseptic loosening. In order to achieve an effective osseointegration and reduce risk of lossening, the use of cemented implant, contact porous bearing surface and organic coating were developed. Aim of this study was to evaluate clinical and radiological mid-term outcomes of a porous titanium alloy/hydroxyapatite double coating manufactured cementless femoral stem applied with “plasma spray” technique and to demonstrate the possibility to use this stem in different types of femoral canals. Methods Between January 2008 and December 2012, 240 consecutive primary total hip arthroplasties (THAs) were performed using a porous titanium alloy/hydroxyapatite double coating manufactured cementless femoral stem. 182 patients were examined: 136 were females (74.7%) and 46 males (25.2%); average age was 72 years old (ranging from 26 to 92 years old). For each patient, Harris Hip Scores (HHS) and Womac Scores were collected. All X-ray images were analyzed in order to demonstrate stem survival rate and subsidence. Results Harris Hip Score was good or excellent in 85% of the cases (average 90%) and mean WOMAC score was 97.5 (ranging from 73.4 to 100). No cases of early/late infection or periprosthetic fracture were noticed, with an excellent implant survival rate (100%) in a mean period of 40 months (ranging from 24 and 84 months). 5 cases presented acute implant dislocation, 2 due to wrong cup positioning in a dysplastic acetabulum and 3 after ground level fall. Dorr classification of femoral geometry was uses and the results were: 51 type A bone, 53 type B bone and 78 type C bone. Stem subsidence over 2 mm was considered as a risk factor of future implant loosening and was evidenced in 3 female patients with type C of Dorr classification. No radiolucencies signs around the proximally coated portion of stem or proximal reabsorption were visible during the radiographic

  10. Effects of silica and titanium oxide particles on a human neural stem cell line: morphology, mitochondrial activity, and gene expression of differentiation markers.

    PubMed

    Fujioka, Kouki; Hanada, Sanshiro; Inoue, Yuriko; Sato, Keisuke; Hirakuri, Kenji; Shiraishi, Kouichi; Kanaya, Fumihide; Ikeda, Keiichi; Usui, Ritsuko; Yamamoto, Kenji; Kim, Seung U; Manome, Yoshinobu

    2014-07-02

    Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 µm) and two types of titanium oxide particles (80 nm and < 44 µm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations = 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations =62.5 µg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.

  11. Excessive distal migration of fiber-mesh coated femoral stems

    PubMed Central

    2011-01-01

    Background The surface texture, localization, and magnitude of the surface material applied to the femoral stem can facilitate bone ingrowth and influence the survival of total hip arthroplasties. Clinical and radiographic studies have shown superior bone ingrowth in proximally porous-coated stems with a diaphyseal grit-blasted surface in comparison to a smooth diaphyseal surface. Surface textures—especially porous surface material—have been suggested to have a sealing effect against migration of polyethylene debris along the implant-bone interface and to reduce the inflammatory response, leading to a prolonged implant survival. Patients and methods Between 2004 and 2006, we conducted a randomized, controlled trial (RCT) involving 50 patients with non-inflammatory arthritis. They received either a distally tapered, extended coated stem or a straight, proximally coated stem. During surgery, tantalum markers were inserted into the greater and lesser trochanter. Implant migration was evaluated at 3, 12, and 24 months postoperatively by radiostereometric analysis. The primary endpoint was stem migration 2 years after surgery. Results All femoral components in both groups showed pronounced distal translation, with the highest rate of translation occurring between 0 and 3 months. After 2 years, the mean distal translation was 2.67 (95% CI: –3.93 to –1.42) mm for the tapered, extended coated stem and 1.80 (–2.45 to –1.15) mm for the straight, proximally coated stem. Half of the tapered, extended coated stems and two-thirds of the straight, proximally coated stems had migrated more than 1 mm. No difference between the 2 stems could be seen with regard to translation or rotation at any time point. After 2 years, 2 hips have been reoperated due to mechanical loosening of the stem. Interpretation An excessive amount of migration of both stem types was seen 2 years postoperatively. It is of vital importance to follow this patient cohort since radiostereometric

  12. Titanium dental implant surfaces obtained by anodic spark deposition - From the past to the future.

    PubMed

    Kaluđerović, Milena R; Schreckenbach, Joachim P; Graf, Hans-Ludwig

    2016-12-01

    Commercial titanium-based dental implants are obtained applying various methods such as machining, acid etching, anodization, plasma spraying, grit blasting or combination techniques yielding materials with smooth or micro-roughened surfaces. Those techniques are used to optimize the surface properties and to maximize biocompatibility and bioactivity with bone tissue. Present review is focused on the material surfaces obtained by anodic spark deposition (ASD). From the early 1980s till present, the results of numerous studies have shown that anodically oxidized surfaces with different dopants express a positive effect on osteoblasts behavior in vitro and osseointegration in vivo. Those surfaces demonstrated a high biocompatibility and rapid osseointegration in clinical application. This paper provides an overview of the preparation of implant surfaces by employing ASD process. Moreover, reviewed are clinically used ASD implant surfaces (Ticer, TiUnite, Osstem, etc.). The electrolyte variations in ASD process and their influence on surface properties are given herein. Using different electrolytes, anode voltages and temperatures, the above fabrication process can yield various surface morphologies from smooth to rough, porous surfaces. Furthermore, ASD enables thickening of oxide layers and enrichment with different dopands from used electrolyte, which hinder release of potentially toxic titanium ions in surrounding tissue. Particularly exciting results were achieved by calcium and phosphorus doping of the oxide layer (Ticer, ZL Microdent; TiUnite, Nobel Biocare Holding AB) which significantly increased the osteocompatibility. Ticer, a dental implant with anodically oxidized surface and the first among similar materials employed in clinical practice, was found to promote fast osteoblast cell differentiation and mineralization processes. Moreover, Ticer accelerate the integration with the bone, increase the bone/implant contact and improve primary and secondary

  13. Fatigue Debonding of the Roughened Stem–Cement Interface: Effects of Surface Roughness and Stem Heating Conditions

    PubMed Central

    Damron, Leatha A.; Kim, Do-Gyoon; Mann, Kenneth A.

    2007-01-01

    The aim of this study was to determine the effects of cyclic loading on the debond process of a roughened stem– cement interface used in total hip arthroplasty. The specific goals were to assess the effects of two surgeon-controlled variables (stem heating and degree of stem surface roughness) and to determine if an independent finite element-based fracture mechanics model could be used to predict the debond response. A clamped cantilever beam geometry was used to determine the fatigue debond response of the stem– cement interface and was created using an experimental mold that simulated in vivo cementing conditions. A second experiment was performed using a torsion-loading model representative of the stem– cement–bone composite. For both experiments, two stem heating (room temperature and 50°C) and surface roughness conditions (grit blasted: Ra = 2.3 and 5.1 μm) were used. Finally, a finite element model of the torsion experiment with provision for crack growth was developed and compared with the experimental results. Results from both experiments revealed that neither stem preheating nor use of a stem with a greater surface roughness had a marked effect on the fatigue debond response. There was substantial variability in the debond response for all cases; this may be due to microscopic gaps at the interface for all interface conditions. The debond rate from the finite element simulation (10−7.31 m/cycle) had a magnitude similar to the experimental torsion model (10− (6.77 ± 1.25) m/cycle). This suggests that within the context of the experimental conditions studied here that the debond response could be assessed using a linear elastic fracture mechanics-type approach. PMID:16292769

  14. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  15. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells

    PubMed Central

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration. PMID:26604744

  16. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  17. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.

    PubMed

    Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano

    2016-09-24

    Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  18. STEM?!?!

    ERIC Educational Resources Information Center

    Merrill, Jen

    2012-01-01

    The author's son has been an engineer since birth. He never asked "why" as a toddler, it was always "how's it work?" So that he wanted a STEM-based home education was no big surprise. In this article, the author considers what kind of curricula would work best for her complex kid.

  19. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  20. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  1. Grit-Blast/Silane (GBS) Aluminum Surface Preparation for Structural Adhesive Bonding

    DTIC Science & Technology

    2007-11-02

    average of at least five specimens (one panel) and in most cases , including 200°F, are the average of 20 specimens (four panels). Figure 3.1-1...Table 3.1-2. The results shown are an average of five specimens (one panel) for three of the cases (175°F, 180°F, and 240°F) and an average of 10...hour hydrolysis time had a significantly larger initial crack length, so the test was not as stringent as for the 1-hour case . 18 Table 3.4

  2. Proteomic Profiling of Hematopoietic Stem/Progenitor Cells after a Whole Body Exposure of CBA/CaJ Mice to Titanium ((48)Ti) Ions.

    PubMed

    Rithidech, Kanokporn Noy; Tungjai, Montree; Jangiam, Witawat; Honikel, Louise; Gordon, Chris; Lai, Xianyin; Witzmann, Frank

    2015-07-21

    Myeloid leukemia (ML) is one of the major health concerns from exposure to radiation. However, the risk assessment for developing ML after exposure to space radiation remains uncertain. To reduce the uncertainty in risk prediction for ML, a much increased understanding of space radiation-induced changes in the target cells, i.e., hematopoietic stem/progenitor cells (HSPCs), is critically important. We used the label-free quantitative mass spectrometry (LFQMS) proteomic approach to determine the expression of protein in HSPC-derived myeloid colonies obtained at an early time-point (one week) and a late time-point (six months) after an acute whole body exposure of CBA/CaJ mice to a total dose of 0, 0.1, 0.25, or 0.5 Gy of heavy-ion titanium ((48)Ti ions), which are the important component of radiation found in the space environment. Mice exposed to 0 Gy of (48)Ti ions served as non-irradiated sham controls. There were five mice per treatment groups at each harvest time. The Trans-Proteomic Pipeline (TPP) was used to assign a probability of a particular protein being in the sample. A proof-of-concept based Ingenuity Pathway Analysis (IPA) was used to characterize the functions, pathways, and networks of the identified proteins. Alterations of expression levels of proteins detected in samples collected at one week (wk) post-irradiation reflects acute effects of exposure to (48)Ti ions, while those detected in samples collected at six months (mos) post-irradiation represent protein expression profiles involved in the induction of late-occurring damage (normally referred to as genomic instability). Our results obtained by using the IPA analyses indicate a wide array of signaling pathways involved in response to 1 GeV/n (48)Ti ions at both harvest times. Our data also demonstrate that the patterns of protein expression profiles are dose and time dependent. The majority of proteins with altered expression levels are involved in cell cycle control, cellular growth and

  3. Proteomic Profiling of Hematopoietic Stem/Progenitor Cells after a Whole Body Exposure of CBA/CaJ Mice to Titanium (48Ti) Ions

    PubMed Central

    Rithidech, Kanokporn Noy; Tungjai, Montree; Jangiam, Witawat; Honikel, Louise; Gordon, Chris; Lai, Xianyin; Witzmann, Frank

    2015-01-01

    Myeloid leukemia (ML) is one of the major health concerns from exposure to radiation. However, the risk assessment for developing ML after exposure to space radiation remains uncertain. To reduce the uncertainty in risk prediction for ML, a much increased understanding of space radiation-induced changes in the target cells, i.e., hematopoietic stem/progenitor cells (HSPCs), is critically important. We used the label-free quantitative mass spectrometry (LFQMS) proteomic approach to determine the expression of protein in HSPC-derived myeloid colonies obtained at an early time-point (one week) and a late time-point (six months) after an acute whole body exposure of CBA/CaJ mice to a total dose of 0, 0.1, 0.25, or 0.5 Gy of heavy-ion titanium (48Ti ions), which are the important component of radiation found in the space environment. Mice exposed to 0 Gy of 48Ti ions served as non-irradiated sham controls. There were five mice per treatment groups at each harvest time. The Trans-Proteomic Pipeline (TPP) was used to assign a probability of a particular protein being in the sample. A proof-of-concept based Ingenuity Pathway Analysis (IPA) was used to characterize the functions, pathways, and networks of the identified proteins. Alterations of expression levels of proteins detected in samples collected at one week (wk) post-irradiation reflects acute effects of exposure to 48Ti ions, while those detected in samples collected at six months (mos) post-irradiation represent protein expression profiles involved in the induction of late-occurring damage (normally referred to as genomic instability). Our results obtained by using the IPA analyses indicate a wide array of signaling pathways involved in response to 1 GeV/n 48Ti ions at both harvest times. Our data also demonstrate that the patterns of protein expression profiles are dose and time dependent. The majority of proteins with altered expression levels are involved in cell cycle control, cellular growth and proliferation

  4. Titanium Coating of the Boston Keratoprosthesis

    PubMed Central

    Salvador-Culla, Borja; Jeong, Kyung Jae; Kolovou, Paraskevi Evi; Chiang, Homer H.; Chodosh, James; Dohlman, Claes H.; Kohane, Daniel S.

    2016-01-01

    Purpose We tested the feasibility of using titanium to enhance adhesion of the Boston Keratoprosthesis (B-KPro), ultimately to decrease the risk of implant-associated complications. Methods Cylindrical rods were made of poly(methyl methacrylate) (PMMA), PMMA coated with titanium dioxide (TiO2) over a layer of polydopamine (PMMATiO2), smooth (Ti) and sandblasted (TiSB) titanium, and titanium treated with oxygen plasma (Tiox and TiSBox). Topography and surface chemistry were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Adhesion force between rods and porcine corneas was measured ex vivo. Titanium sleeves, smooth and sandblasted, were inserted around the stem of the B-KPro and implanted in rabbits. Tissue adhesion to the stem was assessed and compared to an unmodified B-Kpro after 1 month. Results X-ray photoelectron spectroscopy demonstrated successful deposition of TiO2 on polydopamine-coated PMMA. Oxygen plasma treatment did not change the XPS spectra of titanium rods (Ti and TiSB), although it increased their hydrophilicity. The materials did not show cell toxicity. After 14 days of incubation, PMMATiO2, smooth titanium treated with oxygen plasma (Tiox), and sandblasted titanium rods (TiSB, TiSBox) showed significantly higher adhesion forces than PMMA ex vivo. In vivo, the use of a TiSB sleeve around the stem of the B-KPro induced a significant increase in tissue adhesion compared to a Ti sleeve or bare PMMA. Conclusions Sandblasted titanium sleeves greatly enhanced adherence of the B-KPro to the rabbit cornea. This approach may improve adhesion with the donor cornea in humans as well. Translational Relevance This approach may improve adhesion with donor corneas in humans. PMID:27152247

  5. Titanium Cranioplasty

    PubMed Central

    Gordon, D. S.; Blair, G. A. S.

    1974-01-01

    The technique of repairing defects of the skull with titanium is described. The skull contour can be accurately reproduced. The technique is simpler than wiring or suturing methods. The material is inert, radiolucent, and rigid. ImagesFIG. 1FIG. 2FIG. 3FIG. 5FIG. 6FIG. 7 PMID:4834099

  6. Titanium nanostructures for biomedical applications.

    PubMed

    Kulkarni, M; Mazare, A; Gongadze, E; Perutkova, Š; Kralj-Iglič, V; Milošev, I; Schmuki, P; A Iglič; Mozetič, M

    2015-02-13

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  7. Titanium nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  8. An Assessment of the Biological Fixation of a Retrieved Mayo Femoral Component

    PubMed Central

    Meldrum, Russell D; Willie, Bettina M; Bloebaum, Roy D

    2003-01-01

    Implant analysis was conducted on a retrieved Mayo femoral prosthesis that has a non-anatomic design with two distinct surfaces intended for osseous fixation. The prosthesis itself has a circumferential grit-blasted region interposed with the porous surfaces and involving the entire proximal stem. In addition, there are pads of mesh porous coating on the anterior, posterior, and medial surfaces proximally. A single, radiographically stable stem retrieved after 18 months secondary to recurrent dislocations was examined for osseous fixation by measurement of trabecular bone into the porous-coated and onto the grit-blasted surfaces of the stem. Results showed 17% ± 7% bone ingrowth into the porous coated areas and 20% ± 16% osseointegration onto the grit-blasted surfaces. These results are similar to percentages of ingrowth seen with more conventional, anatomic design prostheses. PMID:14575260

  9. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  10. Metal Bonded Titanium Diboride

    DTIC Science & Technology

    1952-03-01

    of specimens made from titanium diboride plus 10 percent titanium and 30 percent zirconium . X 100. 22 6. Microstructures of specimens made from...chromium. X 1000 26 10. Microstructures of specimens made from titanium diboride plus 10 percent titanium and 30 percent zirconium . X 1200 27 11. Gain in...shock resistance and oxidation resistance of titanium diboride but zirconium diboride which is isomorphous with titanium diboride has been reported6

  11. Ice as an Abrading Agent

    NASA Technical Reports Server (NTRS)

    Blow, R. K.

    1984-01-01

    Grit-blasting method makes unnecessary to disassemble equipment for cleaning. Stream of small, frozen pellets directed at assembly to be cleaned. Pellets consist of deionized-water ice, carbon dioxide ice, or another substance that does not react chemically with parts to be cleaned and leaves no residue. Method suited to cleaning titanium and parts that touch liquid oxygen.

  12. Hydriding of Titanium.

    DTIC Science & Technology

    1998-03-01

    hole. The metals used to make these couples with titanium included HY80 steel , 316 stainless steel , five-nines aluminum, 6061 aluminum, and zinc. All...the other surfaces. Titanium Coupled With Other Metals The corrosion potentials of grade 2 titanium galvanically coupled with naval brass, HY80 steel ...2 titanium; naval brass caused titanium to become an anode. At room temperature, HY80 steel and 316 stainless steel couples exhibited corrosion

  13. Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.

    PubMed

    Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B

    2015-01-01

    The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p < 0.05), but BIC and MI data did not differ significantly. Thus, the results partly indicate improved bone formation at blasted and hydrogen fluoride treated implants, compared to blasted implants. The 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies.

  14. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  15. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  16. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  17. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  18. Titanium Nitride Cermets

    DTIC Science & Technology

    1952-07-01

    7696i ’-Brewer, L., et al. Thermodynamic and Physical Properties of Nitrides. Carbides, Sulfides, i1licides, and Phosphides, Chemistry and Metallurgy of...12 Referen eCs 0 . ...................... • • • 14 WADC TR 52-155 iv LIST OF TABLES I Properties of Titanium Nitride Bodies...15 II Properties of Titanium Nitride-Nickel Bodies............16 III Properties of Titanium Nitride Cermets with Nickel,..... 17 Cobalt, and

  19. An Eiganstrain Analysis of Mechanical Properties of Nanostructured Ceramic Coatings by Synchrotron Probe

    DTIC Science & Technology

    2010-06-01

    shot $ laser peening , & other. Measurement of microscopic stresses within each phase due to mismatch stresses and or thermal effects. x3 Ti-[110] γ...1) 1020 Steel (with a Ni bond coat) 2) Titanium (with a Ti bond coat) Varying thickness of micro- and nano- coatings were applied. Substrates...were grit blasted (compressive stresses). Table 1, summarizes the coating samples produced with 1020 steel. Table 2 is similar for the titanium

  20. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  1. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  2. Sprayable titanium composition

    DOEpatents

    Tracy, Chester E.; Kern, Werner; Vibronek, Robert D.

    1980-01-01

    The addition of 2-ethyl-1-hexanol to an organometallic titanium compound dissolved in a diluent and optionally containing a lower aliphatic alcohol spreading modifier, produces a solution that can be sprayed onto a substrate and cured to form an antireflection titanium oxide coating having a refractive index of from about 2.0 to 2.2.

  3. Titanium aluminide automotive engine valves

    SciTech Connect

    Hartfield-Wuensch, S.E.; Sperling, A.A.; Morrison, R.S.; Dowling, W.E. Jr.; Allison, J.E.

    1995-12-31

    The low density and high elevated temperature strength make titanium aluminide alloys an excellent candidate for automotive exhaust valve applications. Lighter weight valve train components allow either improved performance or reduction of valve spring loads which reduce noise and friction, thereby improving fuel economy. The key to successful application of TiAl alloys for automotive engine valves is not optimization of strength and ductility, but rather the development of a low-cost, high-volume manufacturing method. Different manufacturing approaches will be discussed in this paper, along with their advantages and disadvantages. Currently, casting appears to be the lowest-cost alternative that produces adequate material properties and emphasis is being placed on this manufacturing approach. The results of several successful engine tests will also be discussed, including results on a binary TiAl alloy. However, these engine tests have indicated that TiAl alloy valves will require tip protection and stem coating.

  4. Titanium and titanium alloys as dental materials.

    PubMed

    Lautenschlager, E P; Monaghan, P

    1993-06-01

    Because of light weight, high strength to weight ratio, low modulus of elasticity, and excellent corrosion resistance, titanium and some of its alloys have been important materials for the aerospace industry since the 1950s. Now, with the additional advantages of excellent biocompatibility, good local spot weldability, and easy shaping and finishing by a number of mechanical and electrochemical processes, these materials are finding uses in dental applications, such as implants and restorative castings. Although more research is still needed in areas such as development of optimal casting investments, porcelain veneering systems, device designs, and controlled biological responses, the present and future uses of titanium appear bright for dentistry.

  5. Formation of an ascorbate-apatite composite layer on titanium.

    PubMed

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-09-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  6. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  7. STEM, STEM Education, STEMmania

    ERIC Educational Resources Information Center

    Sanders, Mark

    2009-01-01

    In this article, the author introduces integrative STEM (science, technology, engineering, and/or mathematics) education and discusses the importance of the program. The notion of integrative STEM education includes approaches that explore teaching and learning between/among any two or more of the STEM subject areas, and/or between a STEM subject…

  8. Titanium by design: TRIP titanium alloy

    NASA Astrophysics Data System (ADS)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  9. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  10. Cuprate superconductors on titanium substrates

    NASA Astrophysics Data System (ADS)

    Mitterbauer, Christina; Gritzner, Gerhard

    2007-09-01

    The applicability of titanium as substrate material for coated conductors was investigated. Titanium metal was rolled to a thickness of 1 mm and mechanically polished. The titanium sheets were oxidized in air at 1000 °C for 1 h. A dense oxide layer was formed. YBCO superconducting layers were applied to the oxidized titanium surface via screen printing from a suspension in acetone-terpineol. The YBCO layers were characterized by X-ray diffraction and by scanning electron microscopy.

  11. Weld-bonded titanium structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Creedon, J. F. (Inventor)

    1976-01-01

    Structurally stronger titanium articles are produced by a weld-bonding technique comprising fastening at least two plates of titanium together using spotwelding and curing an adhesive interspersed between the spot-weld nuggets. This weld-bonding may be employed to form lap joints or to stiffen titanium metal plates.

  12. Mineral of the month: titanium

    USGS Publications Warehouse

    Gambogi, Joseph

    2004-01-01

    From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.

  13. Titanium metal: extraction to application

    SciTech Connect

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  14. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  15. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  16. Development and Differentiation of Mesenchymal Bone Marrow Cells in Porous Permeable Titanium Nickelide Implants In Vitro and In Vivo.

    PubMed

    Kokorev, O V; Khodorenko, V N; Radkevich, A A; Dambaev, G Ts; Gunter, V E

    2016-08-01

    We studied the structure of porous permeable titanium nickelide used as the scaffold. In vitro population of the porous scaffold with multipotent mesenchymal stem bone marrow cells on days 7, 14, 21, and 28 was analyzed by scanning electron microscopy. Stage-by-stage histogenesis of the tissues formed from the bone marrow cells in the titanium nickelide scaffold in vivo is described in detail. Using mesenchymal stem cells, we demonstrated that porous permeable titanium nickelide scaffolds are unique incubators for cell cultures applicable for tissue engineering.

  17. Titanium alkoxide compound

    DOEpatents

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  18. Sorting Titanium Welding Rods

    NASA Technical Reports Server (NTRS)

    Ross, W. D., Jr.; Brown, R. L.

    1985-01-01

    Three types of titanium welding wires identified by their resistance to current flow. Welding-wire tester quickly identifies unknown titaniumalloy wire by touching wire with test probe, and comparing meter response with standard response. Before touching wire, tip of test probe dipped into an electrolyte.

  19. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  20. Bioactive macroporous titanium surface layer on titanium substrate.

    PubMed

    Kim, H M; Kokubo, T; Fujibayashi, S; Nishiguchi, S; Nakamura, T

    2000-12-05

    A macroporous titanium surface layer is often formed on titanium and titanium alloy implants for morphological fixation of the implants to bone via bony ingrowth into the porous structure. The surface of titanium metal was recently shown to become highly bioactive by being subjected to 5.0 M-NaOH treatment at 60 degrees C for 24 h and subsequent heat treatment at 600 degrees C for 1 h. In the present study, the NaOH and heat treatments were applied to a macroporous titanium surface layer formed on titanium substrate by a plasma spraying method. The NaOH and heat treatments produced an uniform amorphous sodium titanate layer on the surface of the porous titanium. The sodium titanate induced a bonelike apatite formation in simulated body fluid at an early soaking period, whereby the apatite layer grew uniformly along the surface and cross-sectional macrotextures of the porous titanium. This indicates that the NaOH and heat treatments lead to a bioactive macroporous titanium surface layer on titanium substrate. Such a bioactive macroporous layer on an implant is expected not only to enhance bony ingrowth into the porous structure, but also to provide a chemical integration with bone via apatite formation on its surface in the body.

  1. Titanium Honeycomb Panel Testing

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  2. Titanium: light, strong, and white

    USGS Publications Warehouse

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  3. Titanium fasteners. [for aircraft industry

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  4. Titanium Optics for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.; Rawlin, Vincent K.

    1999-01-01

    Ion thruster total impulse capability is limited, in part, by accelerator grid sputter erosion. A development effort was initiated to identify a material with a lower accelerator grid volumetric sputter erosion rate than molybdenum, but that could utilize the present NSTAR thruster grid design and fabrication techniques to keep development costs low, and perform as well as molybdenum optics. After comparing the sputter erosion rates of several atomic materials to that of molybdenum at accelerator voltages, titanium was found to offer a 45% reduction in volumetric erosion rates. To ensure that screen grid sputter erosion rates are not higher at discharge chamber potentials, titanium and molybdenum sputter erosion rates were measured at these potentials. Preliminary results showed only a slightly higher volumetric erosion rate for titanium, so that screen grid erosion is insignificant. A number of material, thermal, and mechanical properties were also examined to identify any fabrication, launch environment, and thruster operation issues. Several titanium grid sets were successfully fabricated. A titanium grid set was mounted onto an NSTAR 30 cm engineering model ion thruster and tested to determine optics performance. The titanium optics operated successfully over the entire NSTAR power range of 0.5 to 2.3 kW. Differences in impingement-limited perveances and electron backstreaming limits were found to be due to a larger cold gap for the titanium optics. Discharge losses for titanium grids were lower than those for molybdenum, likely due to a slightly larger titanium screen grid open area fraction. Radial distributions of beam current density with titanium optics were very similar to those with molybdenum optics at all power levels. Temporal electron backstreaming limit measurements showed that titanium optics achieved thermal equilibrium faster than molybdenum optics.

  5. Novel surface modifications of carbon fiber-reinforced polyetheretherketone hip stem in an ovine model.

    PubMed

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko

    2012-01-01

    A carbon fiber-reinforced polymer (CFRP) is theoretically a suitable material for use in an uncemented hip prosthesis considering it can provide isoelastic environment with the surrounding bone, adequate fatigue strength, and a metal-free radiographic evaluation. To date, the selection of polymer material and optimization of both design and surface finish of the prostheses for osseointegration has not been accomplished. This study examined radiographic and histologic results of an uncemented CFRP stem manufactured from carbon fiber-reinforced polyetheretherketone (CFR/PEEK) with a roughened surface and a bioactive treatment in an adult ovine model following a 12-month implantation period. A unilateral hemiarthroplasty of the hip was performed using the CFRP stem or a titanium stem as a control. Four cases with the CFRP stem and five cases with titanium stem were evaluated. Bone on-growth fixation was achieved in two cases with the CFRP stem and in all the cases with the titanium stem. The CFRP cases showed minimal stress shielding while three of five cases with the titanium stem demonstrated typical osteopenia associated with stiff metal stems. Bone on-growth to the uncemented CFRP stem was achieved by using the CFR/PEEK for the material and modifying the surface design and the bioactive surface finish. Bone resorption and osteopenia observed with the Ti stems was not found with the CFRP design.

  6. Precision Cleaning Titanium Components

    SciTech Connect

    Hand, T.E.; Bohnert, G.W.

    2000-02-02

    Clean bond surfaces are critical to the operation of diffusion bonded titanium engine components. These components can be contaminated with machining coolant, shop dirt, and fingerprints during normal processing and handling. These contaminants must be removed to achieve acceptable bond quality. As environmental concerns become more important in manufacturing, elimination of the use of hazardous materials is desired. For this reason, another process (not using nitric-hydrofluoric acid solution) to clean titanium parts before bonding was sought. Initial cleaning trials were conducted at Honeywell to screen potential cleaning techniques and chemistries. During the initial cleaning process screening phase, Pratt and Whitney provided Honeywell with machined 3 inch x 3 inch x 1 inch titanium test blocks. These test blocks were machined with a water-based machining coolant and exposed to a normal shop environment and handling. (Honeywell sectioned one of these blocks into smaller samples to be used for additional cleanliness verification analyses.) The sample test blocks were ultrasonically cleaned in alkaline solutions and AUGER analysis was used by Honeywell FM and T to validate their cleanliness. This information enabled selection of final cleaning techniques and solutions to be used for the bonding trials. To validate Honeywell's AUGER data and to verify the cleaning processes in actual situations, additional sample blocks were cleaned (using the chosen processes) and then bonded. The bond quality of the test blocks was analyzed according to Pratt and Whitney's requirements. The Charpy impact testing was performed according to ASTM procedure {number_sign}E-23. Bond quality was determined by examining metallographic samples of the bonded test blocks for porosity along the bondline.

  7. Polyisocyanides of titanium.

    PubMed

    Rayón, Víctor M; Redondo, Pilar; Valdés, Haydee; Barrientos, Carmen; Largo, Antonio

    2009-02-26

    Neutral Ti[CN](n) complexes have been investigated with quantum chemistry techniques. According to our theoretical predictions, these complexes are shown to prefer isocyanide arrangements. Therefore, these compounds are good candidates to be the first polyisocyanides to be characterized. The theoretical calculations predict Ti(NC)(4), a methane-like tetrahedral structure with four isocyanide ligands, as the most stable neutral complex. The fact that the isocyanide ligand is a better pi-donor than the cyanide one seems to be the key factor for the preference for isocyanides in neutral titanium complexes.

  8. Process for stabilization of titanium silicide particulates within titanium aluminide containing metal matrix composites

    SciTech Connect

    Christodoulou, L.; Williams, J.C.; Riley, M.A.

    1990-04-10

    This paper describes a method for forming a final composite material comprising titanium silicide particles within a titanium aluminide containing matrix. It comprises: contacting titanium, silicon and aluminum at a temperature sufficient to initiate a reaction between the titanium and silicon to thereby form a first composite comprising titanium silicide particles dispersed within an aluminum matrix; admixing the first composite with titanium and zirconium to form a mixture; heating the mixture to a temperature sufficient to convert at least a portion of the aluminum matrix to titanium aluminide; and recovering a final composite material comprising titanium silicide particles dispersed within a titanium aluminide containing matrix.

  9. Electrorotation of titanium microspheres.

    PubMed

    Arcenegui, Juan J; Ramos, Antonio; García-Sánchez, Pablo; Morgan, Hywel

    2013-04-01

    Electrorotation (ROT) data for solid titanium micrometer-sized spheres in an electrolyte are presented for three different ionic conductivities, over the frequency range of 10 Hz to 100 kHz. The direction of rotation was found to be opposite to the direction of rotation of the electric field vector (counterfield electrorotation), with a single rotation peak. The maximum rotation rate occurs at a frequency of the order of the reciprocal RC time constant for charging the particle double layer capacitance through the resistor of the electrolyte bulk. A model for the electrical torque acting on a metallic sphere is presented, using a constant phase element impedance to describe the metal/electrolyte interface. The titanium spheres are much denser than the electrolyte and rest on the bottom substrate. Therefore, the electrical and viscous torques near a wall are considered in the analysis. Good agreement is found between the predicted and measured rotational speed as a function of frequency. Theory shows that there is no effect of induced charge electroosmotic flow on the ROT, as observed experimentally.

  10. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  11. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  12. Diffusion bonding of titanium-titanium aluminide-alumina sandwich

    SciTech Connect

    Wickman, H.A.; Chin, E.S.C.; Biederman, R.R.

    1995-12-31

    Diffusion bonding of a metallic-intermetallic-ceramic sandwich is of interest for potential armor applications. Low cost titanium, titanium diboride reinforced titanium aluminide (Ti-48at.%Al), and aluminum oxide are diffusion bonded in a vacuum furnace between 1,000 C and 1,400 C. Metallographic examination of the prior bonding interface showed excellent metallurgical coupling between the Ti-48at.%Al composite and the low cost Ti. A series of microstructures representative of phases consistent with a hypothetical Ti-Al-B phase diagram is visible. The alumina-Ti-48at.%Al interfacial bond is achieved through penetration of titanium-aluminum phases into the existing alumina porosity. A detailed microstructural analysis identifying mechanisms of interfacial bonding will be presented for each interfacial zone.

  13. Beta titanium alloys and their role in the titanium industry

    NASA Astrophysics Data System (ADS)

    Bania, Paul J.

    1994-07-01

    The class of titanium alloys generically referred to as the beta alloys is arguably the most versatile in the titanium family. Since these alloys offer the highest strength-to-weight ratios and deepest hardenability of all titanium alloys, one might expect them to compete favorably for a variety of aerospace applications. To the contrary, however, except for one very successful application (Ti-13V-11Cr-3Al on the SR-71), the beta alloys have remained a very small segment of the industry. As a perspective on this situation, this article reviews some past and present applications of titanium alloys. It also descibes some unique new alloys and applications that promise to reverse historical trends.

  14. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  15. Advanced titanium processing

    SciTech Connect

    Hartman, Alan D.; Gerdemann, Stephen J.; Schrems, Karol K.; Holcomb, Gordon R.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2001-01-01

    The Albany Research Center of the U.S. Department of Energy has been investigating a means to form useful wrought products by direct and continuous casting of titanium bars using cold-wall induction melting rather than current batch practices such as vacuum arc remelting. Continuous ingots produced by cold-wall induction melting, utilizing a bottomless water-cooled copper crucible, without slag (CaF2) additions had minor defects in the surface such as ''hot tears''. Slag additions as low as 0.5 weight percent were used to improve the surface finish. Therefore, a slag melted experimental Ti-6Al-4V alloy ingot was compared to a commercial Ti-6Al-4V alloy ingot in the areas of physical, chemical, mechanical, and corrosion attributes to address the question, ''Are any detrimental effects caused by slag addition''?

  16. Hemocompatibility of titanium nitride.

    PubMed

    Dion, I; Baquey, C; Candelon, B; Monties, J R

    1992-10-01

    The left ventricular assist device is based on the principle of the Maillard-Wenkel rotative pump. The materials which make up the pump must present particular mechanical, tribological, thermal and chemical properties. Titanium nitride (TiN) because of its surface properties and graphite because of its bulk characteristics have been chosen. The present study evaluated the in vitro hemocompatibility of TiN coating deposited by the chemical vapor deposition process. Protein adsorption, platelet retention and hemolysis tests have been carried out. In spite of some disparities, the TiN behavior towards albumin and fibrinogen is interesting, compared with the one of a reference medical grade elastomer. The platelet retention test gives similar results as those achieved with the same elastomer. The hemolysis percentage is near to zero. TiN shows interesting characteristics, as far as mechanical and tribological problems are concerned, and presents very encouraging blood tolerability properties.

  17. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  18. A "clickable" titanium surface platform.

    PubMed

    Watson, Matthew A; Lyskawa, Joël; Zobrist, Cédric; Fournier, David; Jimenez, Maude; Traisnel, Michel; Gengembre, Léon; Woisel, Patrice

    2010-10-19

    A straightforward functionalization of a titanium surface using "click" chemistry is reported. A "clickable" titanium surface platform was prepared by the immobilization of an azide-functionalized electroactive catechol anchor and was subsequently derivatized with an electroactive or fluorinated probe via the CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction. The course of the reaction was investigated by contact angle, XPS, and electrochemical measurements.

  19. Low cost titanium--myth or reality

    SciTech Connect

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  20. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai

    2015-04-01

    We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP.

  1. Types of Stem Cells

    MedlinePlus

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  2. Interfacial reactions in titanium-matrix composites

    SciTech Connect

    Yang, J.M.; Jeng, S.M. )

    1989-11-01

    A study of the interfacial reaction characteristics of SiC fiber-reinforced titanium aluminide and disordered titanium alloy composites has determined that the matrix alloy compositions affect the microstructure and the distribution of the reaction products, as well as the growth kinetics of the reaction zones. The interfacial reaction products in the ordered titanium aluminide composite are more complicated than those in the disordered titanium-alloy composite. The activation energy of the interfacial reaction in the ordered titanium aluminide composite is also higher than that in the disordered titanium alloy composite. Designing an optimum interface is necessary to enhance the reliability and service life at elevated temperatures. 16 refs.

  3. Cell response of anodized nanotubes on titanium and titanium alloys.

    PubMed

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells.

  4. Method for Surface Texturing Titanium Products

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1998-01-01

    The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.

  5. Titanium diaphragm makes excellent amplitron cathode support

    NASA Technical Reports Server (NTRS)

    Teich, W. W.

    1965-01-01

    Cathode support structure designed around a titanium diaphragm prevents radial misalignment between the cathode and anode in amplitrons. The titanium exhibits low thermal conductivity, tolerates lateral thermal expansion of the cathode, and is a poor primary and secondary emission medium.

  6. Titanium pigmentation. An electron probe microanalysis study

    SciTech Connect

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-05-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.

  7. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  8. Development of Lightweight Titanium Base Alloys

    DTIC Science & Technology

    1989-04-15

    program on Development of Lightweight Titanium Base Alloys was to develop new titanium alloys with 10% lower density, 50% higher elastic modulus, and...program. permitted the cvaluation of a low-dc-isity. dislicrsion-strengthcnicd 02 + y titanium aluminide , which has excellent high temperature strength...713e alloy has significantly higher strength than the titanium aluminides . The limited data for ’i-34AI-4Be show it to be very strong above 7(X)°C

  9. Process for reproducibly preparing titanium subhydride

    DOEpatents

    Carlson, Richard S.

    1982-01-01

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.

  10. Lightweight Protective Coatings For Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  11. STEM Sell

    ERIC Educational Resources Information Center

    Pantic, Zorica

    2007-01-01

    Between 1994 and 2003, employment in science, technology, engineering and math (STEM) fields grew by a remarkable 23 percent, compared with 17 percent in non-STEM fields, according to federal data. The Bureau of Labor Statistics predicts continued strong growth in STEM job openings through 2014, with emphasis on life sciences, environmental…

  12. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  13. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  14. 21 CFR 73.575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2)...

  15. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  16. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  17. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  18. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  19. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  20. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  1. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  2. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  3. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide (CAS Reg. No. 13463-67-7) is exempted from the requirement of...

  4. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  5. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  6. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  7. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  8. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  9. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  10. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide (CAS Reg. No. 13463-67-7) is exempted from the requirement of...

  11. Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

    DTIC Science & Technology

    2011-09-01

    nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3

  12. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  13. Adaptive mesh refinement in titanium

    SciTech Connect

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  14. Thermal Stir Welds in Titanium

    NASA Astrophysics Data System (ADS)

    Fonda, Richard W.; Knipling, Keith E.; Pilchak, Adam L.

    2016-01-01

    Although conventional friction stir welding (FSW) has proven unsuccessful in joining thick sections of alpha and near-alpha titanium alloys, thermal stir welding, a variant of the FSW process in which an external heat source is used to preheat the workpiece, is demonstrated to be able to reliably join 12.3-mm-thick plates of CP titanium. This paper describes the microstructures and textures that develop in these thermal stir welds. The observed microstructure was used to reconstruct the high-temperature microstructure and texture present during the welding process and therefore reveal the genesis of the welding structures.

  15. Improve the performance of coated cemented hip stem through the advanced composite materials.

    PubMed

    Hedia, H S; Fouda, N

    2015-01-01

    Design of hip joint implant using functionally graded material (FGM) (advanced composite material) has been used before through few researches. It gives great results regarding the stress distribution along the implant and bone interfaces. However, coating of orthopaedic implants has been widely investigated through many researches. The effect of using advanced composite stem material, which mean by functionally graded stem material, in the total hip replacement coated with the most common coated materials has not been studied yet. Therefore, this study investigates the effect of utilizing these two concepts together; FGM and coating, in designing new stem material. It is concluded that the optimal FGM cemented stem is consisting from titanium at the upper stem layers graded to collagen at a lower stem layers. This optimal graded stem coated with hydroxyapatite found to reduce stress shielding by 57% compared to homogenous titanium stem coated with hydroxyapatite. However, the optimal functionally graded stem coated with collagen reduced the stress shielding by 51% compared to homogenous titanium stem coated with collagen.

  16. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    PubMed

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  17. Effect of whitening toothpaste on titanium and titanium alloy surfaces.

    PubMed

    Faria, Adriana Cláudia Lapria; Bordin, Angelo Rafael de Vito; Pedrazzi, Vinícius; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-01-01

    Dental implants have increased the use of titanium and titanium alloys in prosthetic applications. Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium is prone to fluoride ion attack. Thus, the aim of the present study was to compare Ti-5Ta alloy to cp Ti after toothbrushing with whitening and conventional toothpastes. Ti-5Ta (%wt) alloy was melted in an arc melting furnace and compared with cp Ti. Disks and toothbrush heads were embedded in PVC rings to be mounted onto a toothbrushing test apparatus. A total of 260,000 cycles were carried out at 250 cycles/minute under a load of 5 N on samples immersed in toothpaste slurries. Surface roughness and Vickers microhardness were evaluated before and after toothbrushing. One sample of each material/toothpaste was analyzed by Scanning Electron Microscopy (SEM) and compared with a sample that had not been submitted to toothbrushing. Surface roughness increased significantly after toothbrushing, but no differences were noted after toothbrushing with different toothpastes. Toothbrushing did not significantly affect sample microhardness. The results suggest that toothpastes that contain and those that do not contain peroxides in their composition have different effects on cp Ti and Ti-5Ta surfaces. Although no significant difference was noted in the microhardness and roughness of the surfaces brushed with different toothpastes, both toothpastes increased roughness after toothbrushing.

  18. Research and Development on Titanium Alloys

    DTIC Science & Technology

    1949-10-31

    svmym lIfe. Th~e rAnge of cOmposila Ivwstpted in the bin"rtniaum-stiver sistems was extended to 5% snw an M~an~Ajmm loy cntprn 0.1 Is beryllium were...extended to 5,0 per cent silverl and titanium- beryllium alloys containing 0.1 to-1.0 per cent berylliuma were inveitiga~ted. None of~ these alloys had...of: 1. Binary titanium-germanium alloys. 2. Binary titanium-nickel alloys. 3, Binary titanium-silver alloys. 4. Binary titanium- beryllium alloys. 5

  19. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  20. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  1. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  2. Histomorphometric and biomechanical analyses of osseointegration of four different orthodontic mini implant surfaces

    NASA Astrophysics Data System (ADS)

    Yadav, Sumit

    Objective: To evaluate the osseointegration potential of four different surfaces of mini-implants. We hypothesized that mini-implants surface roughness alters the intrinsic biomechanical properties of the bone integrated to titanium. Materials and Methods: Mini implants and circular discs were made from alloy Ti6Al4V grade 5. On the basis of surface treatment study was divided into 4 groups: Group 1: Machined: no surface treatment, Group 2: Acid etched: with hydrochloric acid, Group 3: Grit Blasted with alumina and Group 4: Grit blasted +Acid etched. Surface roughness parameters (mean surface roughness: Ra and Quadratic Average roughness: Rq) of the four discs from each group were measured by the optical profilometer. Contact angle measurement of 3 discs from each group was done with a Goniometer. Contact angle of liquids with different hydrophobicity and hydrophilicity were measured. 128 mini implants, differing in surface treatment, were placed into the tibias and femurs of 8 adult male New Zealand white rabbits. Biomechanical properties (Removal torque and hardness) measurements and histomorphometric observations were measured. Results: Ra and Rq of groups were: Machined (1.17+/-0.11, 2.59+/-0.09) Acid etched (1.82+/-0.04, 3.17+/-0.13), Grit blasted (4.83+/-0.23, 7.04+/-0.08), Grit blasted + Acid etched (3.64+/-0.03, 4.95+/-0.04) respectively. Group 4 had significantly (p=0.000) lower Ra and Rq than Group 3. The interaction between the groups and liquid was significant. Group 4 had significantly lower contact angle measurements (40.4°, 26.9°), both for blood and NaCl when compared to other three groups (p≤0.01). Group 4 had significantly higher torque than Group 3 (Tibia: 13.67>9.07N-cm; Femur: 18.21>14.12N-cm), Group 4 (Tibia: 13.67>9.78N-cm; Femur: 18.21>12.87N-cm), and machined (Tibia: 13.67>4.08N-cm; Femur: 18.21>6.49N-cm). SEM analysis reveals significantly more bone implant gap in machined implant surfaces than treated implant surfaces. Bone to implant

  3. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  4. Hydrogen content in titanium and a titanium-zirconium alloy after acid etching.

    PubMed

    Frank, Matthias J; Walter, Martin S; Lyngstadaas, S Petter; Wintermantel, Erich; Haugen, Håvard J

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium-zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p<0.01) on the titanium-zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium.

  5. Lactobacillusassisted synthesis of titanium nanoparticles

    PubMed Central

    2007-01-01

    An eco-friendlylactobacillussp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  6. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  7. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  8. Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications

    PubMed Central

    Hasan, Jafar; Jain, Shubham; Chatterjee, Kaushik

    2017-01-01

    We have developed a chlorine based reactive ion etching process to yield randomly oriented anisotropic nanostructures that render the titanium metal surface ‘black’ similar to that of black silicon. The surface appears black due to the nanostructures in contrast to the conventional shiny surface of titanium. The nanostructures were found to kill bacteria on contact by mechanically rupturing the cells as has been observed previously on wings of certain insects. The etching was optimized to yield nanostructures of ≈1 μm height for maximal bactericidal efficiency without compromising cytocompatibility. Within 4 hours of contact with the black titanium surface, 95% ± 5% of E. coli, 98% ± 2% of P. aeruginosa, 92% ± 5% of M. smegmatis and 22% ± 8% of S. aureus cells that had attached were killed. The killing efficiency for the S. aureus increased to 76% ± 4% when the cells were allowed to adhere up to 24 hours. The black titanium supported the attachment and proliferation of human mesenchymal stem cells and augmented osteogenic lineage commitment in vitro. Thus, the bioinspired nanostructures on black titanium impart multi-biofunctional properties toward engineering the next-generation biomaterials for orthopedic implants. PMID:28112235

  9. Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    Hasan, Jafar; Jain, Shubham; Chatterjee, Kaushik

    2017-01-01

    We have developed a chlorine based reactive ion etching process to yield randomly oriented anisotropic nanostructures that render the titanium metal surface ‘black’ similar to that of black silicon. The surface appears black due to the nanostructures in contrast to the conventional shiny surface of titanium. The nanostructures were found to kill bacteria on contact by mechanically rupturing the cells as has been observed previously on wings of certain insects. The etching was optimized to yield nanostructures of ≈1 μm height for maximal bactericidal efficiency without compromising cytocompatibility. Within 4 hours of contact with the black titanium surface, 95% ± 5% of E. coli, 98% ± 2% of P. aeruginosa, 92% ± 5% of M. smegmatis and 22% ± 8% of S. aureus cells that had attached were killed. The killing efficiency for the S. aureus increased to 76% ± 4% when the cells were allowed to adhere up to 24 hours. The black titanium supported the attachment and proliferation of human mesenchymal stem cells and augmented osteogenic lineage commitment in vitro. Thus, the bioinspired nanostructures on black titanium impart multi-biofunctional properties toward engineering the next-generation biomaterials for orthopedic implants.

  10. Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation.

    PubMed

    Nie, Bin'en; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing

    2016-09-01

    Titanium has been widely used in the orthopedic and dental fields, however, the inert nature of Ti makes it unsuitable for application in promoting bone cell growth,osteogenic differentiation and antibacterial ability. The aims of the current study were to investigate the antimicrobial activity and biofunction of the polypeptide antibiotic bacitracin, and obtain a multi-biofunctional titanium implant by covalently-immobilizing titanium with the bacitracin. The results showed that the bacitracin possessed low minimum inhibitory concentration (MIC) to both Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with the non-cytotoxicity concentration up to 500μg/mL to human bone marrow mesenchymal stem cells (hBMSCs), furthermore, the bacitracin could improve the osteogenic differentiation of hBMSCs. The results of Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) indicated that bacitracin had been covalently immobilized on the surface of titanium. Immobilized bacitracin could improve the hydrophilic of immobilized titanium. The results of antimicrobial assay demonstrated that the covalently-immobilized bacitracin also had excellent antimicrobial property, and the bacitracin immobilized titanium could inhibit bacterial adhesion and colonization. The results of cell biology experiments proved that the bacitracin immobilized titanium could improve hBMSCs' adhesion, proliferation and osteogenic differentiation. We also found that the macrophages were difficult to spread or activate on the surface of bacitracin immobilized titanium, and the secretion of inflammatory factors had been inhibited. In conclusion, the novel bacitracin immobilized titanium has multi-biofunctions including outstanding antibacterial properties, excellent cell biology performance, and restraining inflammation, which has exciting application prospect.

  11. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  12. Antimicrobial titanium/silver PVD coatings on titanium

    PubMed Central

    Ewald, Andrea; Glückermann, Susanne K; Thull, Roger; Gbureck, Uwe

    2006-01-01

    Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb) when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces. PMID:16556327

  13. Formation of crystalline titanium(IV) phosphates from titanium(III) solutions

    SciTech Connect

    Bortun, A.; Jaimez, E.; Llavona, R.; Garcia, J.R.; Rodriguez, J.

    1995-04-01

    Crystalline phases of titanium (IV) phosphate have been obtained from titanium(III) chloride in phosphoric acid solutions. The {alpha}-titanium phosphate synthesis is possible at low temperature (60--80 C). {gamma}-Titanium phosphate is obtained by reflux with very concentrated phosphoric acid in 3--5 hours by oxidation with O{sub 2}. The influence in these reactions of several factors (concentration of reagents, molar ratio P:Ti in the reaction mixture, temperature and reaction) was studied. The {alpha}-titanium phosphate formation takes place in several steps through the sequential formation of amorphous titanium(IV) phosphate, {gamma}-titanium phosphate and/or a semicrystalline titanium(IV) hydroxophosphate, Ti(OH){sub 2}(HPO{sub 4}){center_dot}H{sub 2}O.

  14. STEM Education

    PubMed Central

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-01-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.’s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches. PMID:26778893

  15. STEM Education.

    PubMed

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-08-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.'s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches.

  16. Nucleation mechanisms of refined alpha microstructure in beta titanium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    Due to a great combination of physical and mechanical properties, beta titanium alloys have become promising candidates in the field of chemical industry, aerospace and biomedical materials. The microstructure of beta titanium alloys is the governing factor that determines their properties and performances, especially the size scale, distribution and volume fraction of precipitate phase in parent phase matrix. Therefore in order to enhance the performance of beta titanium alloys, it is critical to obtain a thorough understanding of microstructural evolution in beta titanium alloys upon various thermal and/or mechanical processes. The present work is focusing on the study of nucleation mechanisms of refined alpha microstructure and super-refined alpha microstructure in beta titanium alloys in order to study the influence of instabilities within parent phase matrix on precipitates nucleation, including compositional instabilities and/or structural instabilities. The current study is primarily conducted in Ti-5Al-5Mo-5V-3Cr (wt%, Ti-5553), a commercial material for aerospace application. Refined and super-refined precipitates microstructure in Ti-5553 are obtained under specific accurate temperature controlled heat treatments. The characteristics of either microstructure are investigated in details using various characterization techniques, such as SEM, TEM, STEM, HRSTEM and 3D atom probe to describe the features of microstructure in the aspect of morphology, distribution, structure and composition. Nucleation mechanisms of refined and super-refined precipitates are proposed in order to fully explain the features of different precipitates microstructure in Ti-5553. The necessary thermodynamic conditions and detailed process of phase transformations are introduced. In order to verify the reliability of proposed nucleation mechanisms, thermodynamic calculation and phase field modeling simulation are accomplished using the database of simple binary Ti-Mo system

  17. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium...

  18. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium...

  19. Superplastic Forming of Titanium Structures

    DTIC Science & Technology

    1975-04-01

    configurations. These configurations included rectangular and circular pan sections, stepped side walls, beads, joggles , and multiple parts formed at one...capability of being formed to a complex configuration with well-formed beads and Joggles , tight bend radii, and 90-degree return flanges. Since titanium...Coming operation. The configuration consists of joggles and steps positioned into the basic forming box to produce a four-cavity tool symmetrical about

  20. Free Form Low Cost Fabrication Using Titanium

    DTIC Science & Technology

    2007-06-29

    nickel-base superalloys . "* The tensile strength as an alloy of titanium can be comparable to that of lower-strength marterisitic stainless and is...better than that of austenitic or ferritic stainless. Alloys can have ultimate strengths comparable to iron base superalloys , such as A286, or cobalt...dependent on composition. Some alloy systems (titanium aluminides ) may have useful strengths above this temperature. "* The cost of titanium, while

  1. Production of titanium from ilmenite: a review

    SciTech Connect

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  2. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  3. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    SciTech Connect

    Gerdemann, S.J.; White, J.C.

    1999-10-19

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  4. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  5. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  6. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  7. Reduction of titanium dioxide to metallic titanium conducted under the autogenic pressure of the reactants.

    PubMed

    Eshed, Michal; Irzh, Alexander; Gedanken, Aharon

    2009-08-03

    We report on a reaction to convert titanium dioxide to titanium. The reduction reaction was done under the autogenic pressure of the reactants at 750 degrees C for 5 h. The MgO, a by-product, was removed by acids to obtain pure metallic titanium.

  8. Visible Spectra of Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Nagarajan, R.; Maier, J. P.; Zhuang, X.; Le, A.; Steimle, T. C.

    2011-05-01

    Titanium oxide (TiO) has been extensively studied spectroscopically due to its astrophysical relevance. TiO is the main opacity source in the atmospheres of cool M-type stars in the visible and near infrared. In view of the high cosmic abundance of Ti and O, titanium dioxide (TiO2) is believed to play an important role in dust formation processes from the gas-phase in circumstellar shells of oxygen-rich stars. The electronic spectra of a cold molecular beam of TiO2 have been investigated using mass-resolved resonance enhanced multi-photon ionization and laser induced fluorescence spectroscopy. TiO2 was produced by laser ablation of a pure titanium rod in the presence of a supersonic expanding mixture of approximately 5% O2 in either helium or argon. The spectra were recorded in the region 17500 cm-1 to 22500 cm-1 and the bands assigned to the A1B2 ← X1A1 transition. The origin and harmonic vibrational constants for the A1B2 state were determined to be: T000 = 17593(5) cm-1, ω1 = 876(3) cm-1, ω2 = 184(1) cm-1, and ω3 = 316(2) cm-1. Further, the dispersed fluorescence of a few bands were recorded to obtain vibrational parameters for the X1A1 state.

  9. Welded Permanent Fittings for Titanium Hydraulic Tubing.

    DTIC Science & Technology

    FITTINGS, *HYDRAULIC EQUIPMENT, RIVETED JOINTS, TITANIUM ALLOYS, PIPES , JET TRANSPORT AIRCRAFT, COLD WORKING, PRESSURE, RUPTURE, ARC WELDING , INERT...GAS WELDING , RADIOGRAPHY, STRESS RELIEVING, SUPERSONIC AIRCRAFT, COMMERCIAL AIRCRAFT.

  10. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  11. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model.

    PubMed

    An, Y H; Bradley, J; Powers, D L; Friedman, R J

    1997-09-01

    We evaluated the effects of a serum protein coating on prosthetic infection in 29 adult male rabbits divided into three groups: control, albumin-coated and uncoated. We used 34 grit-blasted, commercially pure titanium implants. Eleven were coated with cross-linked albumin. All the implants were exposed to a suspension of Staphylococcus epidermidis before implantation. Our findings showed that albumin-coated implants had a much lower infection rate (27%) than the uncoated implants (62%). This may be a useful method of reducing the infection of prostheses.

  12. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment.

    PubMed

    Li, Guanglong; Cao, Huiliang; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Qiao, Yuqin; Liu, Xuanyong; Jiang, Xinquan

    2016-02-17

    Rapid osseointegration is recognized as a critical factor in determining the success rate of orthopedic and dental implants. Microarc oxidation (MAO) fabricated titanium oxide coatings with a porous topography have been proven to be a potent approach to enhance osteogenic capacity. Now we report two kinds of new hierarchical coatings with similar micromorphologies but different nanotopographies (i.e., MAO and MAO-AK coatings), and both coatings significantly promote cell attachment and osteogenic differentiation through mediating the integrin β1 signaling pathway. In this study, titanium with a unique hierarchical micro/nanomorphology surface was fabricated by a novel duplex coating process, that is, the first a titanium oxide layer was coated by MAO, and then the coating was electrochemically reduced in alkaline solution (MAO-AK). A series of in vitro stem cell differentiation and in vivo osseointegration experiments were carried out to evaluate the osteogenic capacity of the resulting coatings. In vitro, the initial adhesion of the canine bone marrow stem cells (BMSCs) seeded on the MAO and MAO-AK coatings was significantly enhanced, and cell proliferation was promoted. In addition, the expression levels of osteogenesis-related genes, osteorix, alkaline phosphates (ALP), osteopontin, and osteocalcin, in the canine BMSCs, were all up-regulated after incubation on these coatings, especially on the MAO-AK coating. Also, the in vitro ALP activity and mineralization capacity of canine BMSC cultured on the MAO-AK group was better than that on the MAO group. Furthermore, 6 weeks after insertion of the titanium implants into canine femurs, both the bone formation speed and the bone-implant contact ratio of the MAO-AK group were significantly higher than those of the MAO group. All these results suggest that this duplex coating process is promising for engineering titanium surfaces to promote osseointegration for dental and orthopedic applications.

  13. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  14. Tribological evaluation of diamond coating on pure titanium in comparison with plasma nitrided titanium and uncoated titanium

    SciTech Connect

    Yan, B.; Loh, N.L.; Fu, Y.; Sun, C.Q.; Hing, P.

    1999-12-01

    Titanium alloys are characterized by poor tribological properties, and the traditional use of titanium alloys has been restricted to nontribological applications. The deposition of a well adherent diamond coating is a promising way to solve this problem. In this study, the tribological properties of diamond-coated titanium were studied using a pin-on-disk tribometer, and the results were compared with those of pure titanium and plasma nitrided titanium. The tribological behavior of pure titanium was characterized by high coefficient of friction and rapid wear of materials. Plasma nitriding improved the wear resistance only under low normal load; however, this hardened layer was not efficient in improving the wear resistance and the friction properties under high normal load. Diamond coating on pure titanium improved the wear resistance of titanium significantly. Surface profilometry measurement indicated that little or no wear of the diamond coating occurred under the test conditions loads. The roughness of the diamond coating was critical because it controlled the amount of abrasive damage on the counterface. Reducing the surface roughness by polishing led to the reductions in both the friction and wear of the counterface.

  15. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.

    PubMed

    Nicula, R; Lüthen, F; Stir, M; Nebe, B; Burkel, E

    2007-11-01

    The reason for the extended use of titanium and its alloys as implant biomaterials stems from their lower elastic modulus, their superior biocompatibility and improved corrosion resistance compared to the more conventional stainless steel and cobalt-based alloys [Niinomi, M., Hattori, T., Niwa, S., 2004. Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications. In: Jaszemski, M.J., Trantolo, D.J., Lewandrowski, K.U., Hasirci, V., Altobelli, D.E., Wise, D.L. (Eds.), Biomaterials in Orthopedics. Marcel Dekker Inc., New York, pp. 41-62]. Nanostructured titanium-based biomaterials with tailored porosity are important for cell-adhesion, viability, differentiation and growth. Newer technologies like foaming or low-density core processing were recently used for the surface modification of titanium alloy implant bodies to stimulate bone in-growth and improve osseointegration and cell-adhesion, which in turn play a key role in the acceptance of the implants. We here report preliminary results concerning the synthesis of mesoporous titanium alloy bodies by spark plasma sintering. Nanocrystalline cp Ti, Ti-6Al-4V, Ti-Al-V-Cr and Ti-Mn-V-Cr-Al alloy powders were prepared by high-energy wet-milling and sintered to either full-density (cp Ti, Ti-Al-V) or uniform porous (Ti-Al-V-Cr, Ti-Mn-V-Cr-Al) bulk specimens by field-assisted spark plasma sintering (FAST/SPS). Cellular interactions with the porous titanium alloy surfaces were tested with osteoblast-like human MG-63 cells. Cell morphology was investigated by scanning electron microscopy (SEM). The SEM analysis results were correlated with the alloy chemistry and the topographic features of the surface, namely porosity and roughness.

  16. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  17. Fungal leaching of titanium from rock.

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1971-01-01

    Penicillium simplicissimum is found to solubilize up to 80% of the titanium in granitic rocks but less than 2% of the titanium in basaltic rocks. These findings were made in investigating the interactions of microorganisms with rocks and minerals of the biosphere in studies aimed at developing experiments for the detection of extraterrestrial life.

  18. 21 CFR 73.575 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... additive mixtures for food use made with titanium dioxide may contain only those diluents that are suitable and that are listed in this subpart as safe in color additive mixtures for coloring foods, and the... solution obtained by boiling 10 grams of the titanium dioxide for 15 minutes in 50 milliliters of...

  19. Titanium Carbide Bipolar Plate for Electrochemical Devices

    SciTech Connect

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    1998-05-08

    Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  20. High-niobium titanium aluminide alloys

    SciTech Connect

    Huang, S.C.

    1992-02-18

    This patent describes an aged niobium modified titanium aluminum alloy, the alloy consisting essentially of titanium, aluminum, and niobium in the following atomic ratio: Ti{sub 48-37}Al{sub 46-49}Nb{sub 6-14}, the alloy having been prepared by ingot metallurgy.

  1. Titanium carbide bipolar plate for electrochemical devices

    DOEpatents

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    2000-07-04

    A corrosion resistant, electrically conductive, non-porous bipolar plate is made from titanium carbide for use in an eletrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  2. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  3. Wettability studies of topologically distinct titanium surfaces.

    PubMed

    Kulkarni, Mukta; Patil-Sen, Yogita; Junkar, Ita; Kulkarni, Chandrashekhar V; Lorenzetti, Martina; Iglič, Aleš

    2015-05-01

    Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the protein binding, cell adhesion and proliferation, thereby reducing post-operative complications with increased lifespan of biomedical implants. The novelty of our TiO2 nanostructures lies mainly in the high level control over their morphology and roughness by mere compositional change and optimisation of the experimental parameters. The present work focuses on the wetting behaviour of various nanostructured titanium surfaces towards water. Kinetics of contact area of water droplet on macroscopically flat, nanoporous and nanotubular titanium surface topologies was monitored under similar evaporation conditions. The contact area of the water droplet on hydrophobic titanium planar surface (foil) was found to decrease during evaporation, whereas the contact area of the droplet on hydrophobic nanorough titanium surfaces practically remained unaffected until the complete evaporation. This demonstrates that the surface morphology and roughness at the nanoscale level substantially affect the titanium dioxide surface-water droplet interaction, opposing to previous observations for microscale structured surfaces. The difference in surface topographic nanofeatures of nanostructured titanium surfaces could be correlated not only with the time-dependency of the contact area, but also with time-dependency of the contact angle and electrochemical properties of these surfaces.

  4. Mineral resource of the month: titanium

    USGS Publications Warehouse

    Gambogi, Joseph

    2011-01-01

    Titanium is hip - at least when it comes to airplanes and jewelry. Known for its high strength-to weight ratio and its resistance to corrosion, titanium and its alloys can also be found in everything from knee replacements to eyeglass frames to baseball bats to fighter planes.

  5. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  6. Titanium oral implants: surface characteristics, interface biology and clinical outcome

    PubMed Central

    Palmquist, Anders; Omar, Omar M.; Esposito, Marco; Lausmaa, Jukka; Thomsen, Peter

    2010-01-01

    Bone-anchored titanium implants have revolutionized oral healthcare. Surface properties of oral titanium implants play decisive roles for molecular interactions, cellular response and bone regeneration. Nevertheless, the role of specific surface properties, such as chemical and phase composition and nanoscale features, for the biological in vivo performance remains to be established. Partly, this is due to limited transfer of state-of-the-art preparation techniques to complex three-dimensional geometries, analytical tools and access to minute, intact interfacial layers. As judged by the available results of a few randomized clinical trials, there is no evidence that any particular type of oral implant has superior long-term success. Important insights into the recruitment of mesenchymal stem cells, cell–cell communication at the interface and high-resolution imaging of the interface between the surface oxide and the biological host are prerequisites for the understanding of the mechanisms of osseointegration. Strategies for development of the next generation of material surface modifications for compromised tissue are likely to include time and functionally programmed properties, pharmacological modulation and incorporation of cellular components. PMID:20591849

  7. Weld-brazing of titanium

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1974-01-01

    A joining process, designated weld-brazing, which combines resistance spotwelding and brazing has been developed at the NASA Langley Research Center. Resistance spot-welding is employed to position and align the parts and to establish a suitable faying surface gap for brazing; it contributes to the integrity of the joint. Brazing enhances the properties of the joint and reduces the stress concentrations normally associated with spotwelds. Ti-6Al-4V titanium alloy joints have been fabricated using 3003 aluminum braze both in a vacuum furnace and in a retort containing an inert gas environment.

  8. [After titanium, peek ?].

    PubMed

    Meningaud, J-P; Spahn, F; Donsimoni, J-M

    2012-11-01

    The PEEK-Optima(®), composite mixture of polyetheretherketon and inert materials, is used in orthopedics, spinal surgery and cranio-facial surgery. It could be used in dental implantology because of its biological and mechanical properties. The results of an experimental and finite element study made on basal implant prototypes, on basal implantology show that PEEK, contrary to titanium, has a compound structure that allows to optimize the distribution of masticatory forces around the implant. These results should be confirmed by a clinical study according to research regulation.

  9. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  10. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-01-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices. PMID:26899567

  11. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants.

    PubMed

    Bedi, Rajwant S; Beving, Derek E; Zanello, Laura P; Yan, Yushan

    2009-10-01

    Titanium alloy, Ti6Al4V, is widely used in dental and orthopedic implants. Despite its excellent biocompatibility, Ti6Al4V releases toxic Al and V ions into the surrounding tissue after implantation. In addition, the elastic modulus of Ti6Al4V ( approximately 110GPa) is significantly higher than that of bone (10-40GPa), leading to a modulus mismatch and consequently implant loosening and deosteointegration. Zeolite coatings are proposed to prevent the release of the toxic ions into human tissue and enhance osteointegration by matching the mechanical properties of bone. Zeolite MFI coatings are successfully synthesized on commercially pure titanium and Ti6Al4V for the first time. The coating shows excellent adhesion by incorporating titanium from the substrate within the zeolite framework. Higher corrosion resistance than the bare titanium alloy is observed in 0.856M NaCl solution at pHs of 7.0 and 1.0. Zeolite coatings eliminate the release of cytotoxic Al and V ions over a 7 day period. Pluripotent mouse embryonic stem cells show higher adhesion and cell proliferation on the three-dimensional zeolite microstructure surface compared with a two-dimensional glass surface, indicating that the zeolite coatings are highly biocompatible.

  12. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  13. Titanium in Engine Valve Systems

    NASA Astrophysics Data System (ADS)

    Allison, J. E.; Sherman, A. M.; Bapna, M. R.

    1987-03-01

    Titanium alloys offer a unique combination of high strength-to-weight ratio, good corrosion resistance and favorable high temperature mechanical properties. Still, their relatively high cost has discouraged consideration for widespread use in automotive components. Recent demands for increased fuel economy have led to the consideration of these alloys for use as valve train materials where higher costs might be offset by improvements in performance and fuel economy. Lighter weight valve train components permit the use of lower spring loads, thus reducing friction and increasing fuel economy. Camshaft friction measurements made on a typical small displacement engine indicate that a twoto-four percent increase in fuel economy can be achieved. Valve train components are, however, subject to a severe operating environment, including elevated temperatures, sliding wear and high mechanical loads. This paper discusses the details of alloy and heat treatment selection for optimizing valve performance. When properly manufactured, titanium valves have been shown to withstand very stringent durability testing, indicating the technical feasibility of this approach to fuel economy improvement.

  14. Stem Cell Basics

    MedlinePlus

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  15. Titanium Mesh Nasal Repair without Nasal Lining.

    PubMed

    Zenga, Joseph; Kao, Katherine; Chen, Collin; Gross, Jennifer; Hahn, Samuel; Chi, John J; Branham, Gregory H

    2017-02-01

    The objective of this study was to describe outcomes for patients who underwent titanium mesh reconstruction of full-thickness nasal defects without internal lining repair. This is a retrospective cohort study. Patients with through-and-through nasal defects were identified at a single academic institution between 2008 and 2016. Nasal reconstruction was performed with either titanium mesh and external skin reconstruction without repair of the intranasal lining or traditional three-layer closure. Five patients underwent titanium mesh reconstruction and 11 underwent traditional three-layer repair. Median follow-up was 11 months (range, 2-66 months). The only significant difference between groups was older age in patients undergoing titanium reconstruction (mean, 81 vs. 63 years; difference of 18; 95% confidence interval [CI], 4-32 years). Defect extent including overall size and structures removed was similar between groups (p > 0.05). Paramedian forehead flap was the most common external reconstruction in both groups (100% for titanium mesh and 73% for three-layer closure). Time under anesthesia was significantly shorter for titanium mesh reconstruction (median, 119 vs. 314 minutes; difference of 195; 95% CI, 45-237). Estimated blood loss and length of hospital stay were similar between groups (p > 0.05). Complication rates were substantial although not significantly different, 40 and 36% in titanium and three-layer reconstruction, respectively (p > 0.05). All patients with complications after titanium reconstruction had prior or postoperative radiotherapy. Titanium mesh reconstruction of through-and-through nasal defects can successfully be performed without reconstruction of the intranasal lining, significantly decreasing operative times. This reconstructive technique may not be suitable for patients who undergo radiotherapy.

  16. Titanium Layer Influence on the Strength of a Hybrid Titanium Composite Laminate

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Grover, Ronald O., Jr.; Bryant, Genine I.

    1997-01-01

    An experimental study was undertaken to investigate the mechanical response of four hybrid titanium composite laminate (HTCL) systems, each prepared using a graphite fiber reinforced thermoplastic polyimide as the adhesive in a unidirectional prepreg. Two of the four HTCL systems were fabricated with the titanium Ti-15-3 alloy, while the other two systems were fabricated with the titanium Timetal Beta-21S alloy. Each HTCL system consisted of either three plies or four plies of the titanium alloy. Systems with only three plies of titanium had plies measuring 10 mils thick, whereas systems consisting of four plies of titanium had plies measuring 5 mils thick. The improvement in mechanical properties achieved by comparing the uniaxial tensile results of static strength at room temperature. Results included stress-strain curves, ultimate strength, strain-to-failure, initial modulus of the HTCL's, and the description of the observed modes of failure.

  17. Titanium-potassium heat pipe corrosion studies

    SciTech Connect

    Lundberg, L.B.

    1984-07-01

    An experimental study of the susceptibility of wickless titanium/potassium heat pipes to corrosive attack has been conducted in vacuo at 800/sup 0/K for 6511h and at 900/sup 0/K for 4797h without failure or degradation. Some movement of carbon, nitrogen and oxygen was observed in the titanium container tube, but no evidence of attack could be detected in metallographic cross sections of samples taken along the length of the heat pipes. The lack of observable attack of titanium by potassium under these conditions refutes previous reports of Ti-K incompatibility.

  18. Oxygen-Barrier Coating for Titanium

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Unnam, Jalaiah

    1987-01-01

    Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.

  19. Isothermal deformation of gamma titanium aluminide

    SciTech Connect

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-04-15

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material.

  20. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  1. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    PubMed

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-01-06

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO2) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  2. Synthesis and controllable wettability of micro- and nanostructured titanium phosphate thin films formed on titanium plates.

    PubMed

    Yada, Mitsunori; Inoue, Yuko; Sakamoto, Ayako; Torikai, Toshio; Watari, Takanori

    2014-05-28

    The hydrothermal treatment of a titanium plate in a mixed aqueous solution of hydrogen peroxide and aqueous phosphoric acid under different conditions results in the formation of various titanium phosphate thin films. The films have various crystal structures such as Ti2O3(H2PO4)2·2H2O, α-titanium phosphate (Ti(HPO4)2·H2O), π-titanium phosphate (Ti2O(PO4)2·H2O), or low-crystallinity titanium phosphate and different morphologies that have not been previously reported such as nanobelts, microflowers, nanosheets, nanorods, or nanoplates. The present study also suggests the mechanisms behind the formation of these thin films. The crystal structure and morphology of the titanium phosphate thin films depend strongly on the concentration of the aqueous hydrogen peroxide solution, the amount of phosphoric acid, and the reaction temperature. In particular, hydrogen peroxide plays an important role in the formation of the titanium phosphate thin films. Moreover, controllable wettability of the titanium phosphate thin films, including superhydrophilicity and superhydrophobicity, is reported. Superhydrophobic surfaces with controllable adhesion to water droplets are obtained on π-titanium phosphate nanorod thin films modified with alkylamine molecules. The adhesion force between a water droplet and the thin film depends on the alkyl chain length of the alkylamine and the duration of ultraviolet irradiation utilized for photocatalytic degradation.

  3. Titanium/titanium nitride temporomandibular joint prosthesis: historical background and a six-year clinical review.

    PubMed

    Bütow, K W; Blackbeard, G A; van der Merwe, A E

    2001-08-01

    The titanium/titanium nitride temporomandibular joint (TTN-TMJ) prosthesis, for the combined replacement of both the joint and the glenoid fossa, was developed in 1992 and introduced clinically in 1994. This joint prosthesis is manufactured from pure titanium and the condylar surfaces, as well as the fossa, are coated with titanium nitride for hardening of the contact surfaces. In two different research projects, the joint were first placed in experimental animals, before they were successfully placed in human subjects. Twenty seven joint prostheses used in human subjects have been analysed for this review.

  4. STEM Thinking!

    ERIC Educational Resources Information Center

    Reeve, Edward M.

    2015-01-01

    Science, Technology, Engineering, and Mathematics (STEM) is a term seen almost daily in the news. In 2009, President Obama launched the Educate to Innovate initiative to move American students from the middle to the top of the pack in science and math achievement over the next decade (The White House, n.d.). Learning about the attributes of STEM…

  5. Why STEM?

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  6. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function.

    PubMed

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration.

  7. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  8. Adherence of sputtered titanium carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    The study searches for interface treatment that would increase the adhesion of TiC coating to nickel- and titanium-base alloys. Rene 41 (19 wt percent Cr, 11 wt percent Mo, 3 wt percent Ti, balance Ni) and Ti-6Al-4V (6 wt percent Al, 4 wt percent V, balance Ti) are considered. Adhesion of the coatings is evaluated in pin-and disk friction tests. The coatings and interface regions are examined by X-ray photoelectron spectroscopy. Results suggest that sputtered refractory compound coatings adhere best when a mixed compound of coating and substrate metals is formed in the interfacial region. The most effective type of refractory compound interface appears to depend on both substrate and coating material. A combination of metallic interlayer deposition and mixed compound interface formation may be more effective for some substrate coating combinations than either alone.

  9. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  10. Degreasing of titanium to minimize stress corrosion

    NASA Technical Reports Server (NTRS)

    Carpenter, S. R.

    1967-01-01

    Stress corrosion of titanium and its alloys at elevated temperatures is minimized by replacing trichloroethylene with methanol or methyl ethyl ketone as a degreasing agent. Wearing cotton gloves reduces stress corrosion from perspiration before the metal components are processed.

  11. Copper/nickel eutectic brazing of titanium

    NASA Technical Reports Server (NTRS)

    Kutchera, R. E.

    1971-01-01

    Technique joins titanium or one of its alloys to materials, such as iron, nickel or cobalt base material, or to refractory metals. To ensure formation of a satisfactory bond, the temperature, time, environment and pressure must be controlled.

  12. Investigation of Conditions of Titanium Carbonization - IV

    NASA Technical Reports Server (NTRS)

    Meerson, G. A.; Lipkes, Y. M.

    1949-01-01

    In a previous paper, results are presented of accurate investigations of the processes of titanium carbonization and the succeeding titanium carbide decarbonization as related to the phenomenon of the graphitization of soot by heating at a constant temperature in atmospheres of pure hydrogen and carbon monoxide. These tests showed that the processes of titanium carbonization-decarbonization in an atmosphere of pure gases without nitrogen proceed in the same direction as the analogous processes under the conditions of the production furnace. In this case, however, the presence of admixtures of nitrogen changes the quantitative results of the decarbonization process. Thermodynamic computations confirming the results of previous tests conducted at atmospheric pressure and additional tests of titanium carbonization at lowered pressures are presented herein.

  13. Initial cytotoxicity of novel titanium alloys.

    PubMed

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  14. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  15. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  16. Electrolysis of Titanium Oxide to Titanium in Molten Cryolite Salt

    NASA Astrophysics Data System (ADS)

    Yan, Bennett Chek Kin

    Cost-effective production of titanium is becoming a challenge being tackled in the metallurgical and sustainability sector and technological advancements are required to effectively separate the metal from its oxide. The existing methods of Ti production are extremely energy intensive and slow. This proof-of-concept study investigated the feasibility of separating and capturing Ti from TiO2 through electrolysis after it has been dissolved in a cryolite bath at 1050°C. XRD and SEM/EDS results verified that TiO 2 is only partially reduced. However, addition of Al assisted in the precipitation of Ti in the form of TiAl and TiAl3. Parameters such as electrolysis time, concentration of TiO2, and electrolysis potential were explored. The experiments that were run for 4h, with TiO2 <15wt% of the total bath gave promising results as there was intermetallic formation without the excessive evaporation of cryolite.

  17. Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits.

    PubMed

    Velasco, Eugenio; Monsalve-Guil, Loreto; Jimenez, Alvaro; Ortiz, Iván; Moreno-Muñoz, Jesús; Nuñez-Marquez, Enrique; Pegueroles, Marta; Pérez, Román A; Gil, Francisco Javier

    2016-12-01

    This study focuses on the fatigue behavior and bone-implant attachment for the more usual surfaces of the different CP-titanium dental implants. The implants studied were: as-received (CTR), acid etching (AE), spark-anodization (SA), and with a grit-blasted surface (GB). Residual stresses were determined by means of X-ray diffraction. The fatigue tests were carried out at 37°C on 160 dental implants, and the stress-failure (S-N) curve was determined. The fatigue tests showed that the grit-blasting process improved fatigue life. This is a consequence of the layer of compressive residual stresses that the treatment generates in titanium surfaces. Further, our aim was to assess and compare the short- and midterm bone regenerative potential and mechanical retention of the implants in bone of New Zealand rabbits. The mechanical retention after 4 and 10 weeks of implantation was evaluated with histometric and pull-out tests, respectively, as a measure of the osseointegration of the implants. The results demonstrated that the GB treatment produced microrough that accelerated bone tissue regeneration and increased mechanical retention in the bone bed at short periods of implantation in comparison with all other implants tested. The GB surface produced an improvement in mechanical long-time behavior and improved bone growth. These types of treated implants can have great potential in clinical applications, as evidenced by the outcomes of the current study.

  18. Effect of surface roughness and calcium phosphate coating on the implant/bone response.

    PubMed

    Hayakawa, T; Yoshinari, M; Nemoto, K; Wolke, J G; Jansen, J A

    2000-08-01

    The influence of surface roughness and calcium phosphate (Ca-P) coating on the bone response of titanium implants was investigated. Four types of titanium implants, i.e. as-machined, grit blasted, as-machined with Ca-P sputter coating, and grit blasted with Ca-P sputter coating, were prepared. The Ca-P sputter-coating, produced by using the RF magnetron sputter technique, was rapid heat-treated with infrared radiation at 600 degrees C. These implants were inserted into the left and right femoral condyles and the left and right tibial diaphyses of the rabbits. After implantation periods of 2 and 12 weeks, the bone-implant interface was evaluated histologically and histomorphometrically. Histological evaluation revealed no new bone formation around different implant materials after 2 weeks of implantation. After 12 weeks, bone healing was almost completed. For both tibial and femoral implants, Ca-P coated implants always showed a higher amount of bone contact than either of the non-coated implants. On the other hand, surface roughness improved only the response to implants inserted into the tibial diaphysis. On the basis of these findings, we concluded that 1) deposition of a sputtered Ca-P coating on an implant has a beneficial effect on the bone response to this implant during the healing phase, and 2) besides implant surface conditions the bone response is also determined by local implant site conditions.

  19. Antibacterial efficacy of a new gentamicin-coating for cementless prostheses compared to gentamicin-loaded bone cement.

    PubMed

    Neut, Daniëlle; Dijkstra, René J B; Thompson, Jonathan I; van der Mei, Henny C; Busscher, Henk J

    2011-11-01

    Cementless prostheses are increasingly popular but require alternative prophylactic measures than the use of antibiotic-loaded bone cements. Here, we determine the 24-h growth inhibition of gentamicin-releasing coatings from grit-blasted and porous-coated titanium alloys, and compare their antibacterial efficacies and gentamicin release-profiles to those of a commercially available gentamicin-loaded bone cement. Antibacterial efficacy increased with increasing doses of gentamicin in the coating and loading with 1.0 and 0.1 mg gentamicin/cm(2) on both grit-blasted and porous-coated samples yielded comparable efficacy to gentamicin-loaded bone cement. The coating had a higher burst release than bone cement, and also inhibited growth of gentamicin-resistant strains. Antibacterial efficacy of the gentamicin coatings disappeared after 4 days, while gentamicin-loaded bone cement exhibited efficacy over at least 7 days. Shut-down after 4 days of gentamicin-release from coatings is advantageous over the low-dosage tail-release from bone cements, as it minimizing risk of inducing antibiotic-resistant strains. Both gentamicin-loaded cement discs and gentamicin-coated titanium coupons were able to kill gentamicin-sensitive and -resistant bacteria in a simulated prothesis-related interfacial gap. In conclusion, the gentamicin coating provided similar antibacterial properties to those seen by gentamicin-loaded bone cement, implying protection of a prosthesis from being colonized by peri-operatively introduced bacteria in cementless total joint arthroplasty.

  20. The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyu; Song, Jianxun; Hu, Guojing; Zhu, Xiaobo; Hou, Jungang; Jiao, Shuqiang; Zhu, Hongmin

    2013-08-01

    The equilibrium between metallic titanium and titanium ions, 3Ti2+ ⇌ 2Ti3+ + Ti, in NaCl-KCl equimolar molten salt was reevaluated. At a fixed temperature and an initial concentration of titanium chloride, the equilibrium was achieved by adding an excess amount of sponge titanium in assistant with bubbling of argon into the molten salt. The significance of this work is that the accurate concentrations of titanium ions have been obtained based on a reliable approach for taking samples. Furthermore, the equilibrium constant {{K}}_{{C}} = (x_{{{{Ti}}^{{ 3 { + }}} }}^{{eql}} )3 /(x_{{{{Ti}}^{{ 2 { + }}} }}^{{eql}} )2 was calculated through the best-fitting method under the consideration of the TiOCl dissolution. Indeed, the final results have disclosed that the stable value of KC could be achieved based on all modifications.

  1. Calcium and titanium release in simulated body fluid from plasma electrolytically oxidized titanium.

    PubMed

    Zhang, Y; Matykina, E; Skeldon, P; Thompson, G E

    2010-01-01

    The release of titanium and calcium species to a simulated body fluid (SBF) at 37 degrees C has been investigated for titanium treated by dc plasma electrolytic oxidation (PEO) in three different electrolytes, namely phosphate, silicate and calcium- and phosphorus-containing. The average rate of release of titanium over a 30 day period in immersion tests, determined by solution analysis, was in the range approximately 1.5-2.0 pg cm(-2) s(-1). Calcium was released at an average rate of approximately 11 pg cm(-2) s(-1). The passive current densities, determined from potentiodynamic polarization measurements, suggested titanium losses of a similar order to those determined from immersion tests. However, the possibility of film formation does not allow for discrimination between the metal releases due to electrochemical oxidation of titanium and chemical dissolution of the coating.

  2. The influence of stem design on critical squeaking friction with ceramic bearings.

    PubMed

    Fan, Na; Morlock, Michael M; Bishop, Nicholas E; Huber, Gerd; Hoffmann, Norbert; Ciavarella, Michele; Chen, Guang X; Hothan, Arne; Witt, Florian

    2013-10-01

    Ceramic-on-ceramic hip joints have been reported to squeak, a phenomenon that may occur in compromised lubrication conditions. One factor related to the incidence of in vivo squeaking is the stem design. However, it has not yet been possible to relate stem design to squeaking in deteriorating lubrication conditions. The purpose of this study was to determine critical friction factors for different stem designs. A hip simulator was used to measure the friction factor of a ceramic bearing with different stem designs and gradually deteriorating lubrication represented by evaporation of a volatile fluid lubricant. The critical squeaking friction factor was measured at the onset of squeaking for each stem. Critical friction was higher for the long cobalt chrome (0.32 ± 0.02) and short titanium stems (0.39 ± 0.02) in comparison with a long titanium stem (0.29 ± 0.02). The onset of squeaking occurred at a friction factor lower than that measured for dry conditions, in which squeaking is usually investigated experimentally. The results suggest that shorter or heavier stems might limit the possibility of squeaking as lubrication deteriorates. The method developed can be used to investigate the influence of design parameters on squeaking probability.

  3. Development and Evaluation of Titanium Spacesuit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Raymond, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z-series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z-series space suit architecture allows us to reduce mass by an estimated 23 lbs per suit system compared to the previously used stainless steel bearing race designs, without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race- 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility (WSTF) that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approx. 3 years), design parameters for maximum contact stress need to be identified. To identify these design parameters, bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination and design around a cycle life requirement for an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an

  4. Amorphous titanium-oxide supercapacitors

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system. PMID:27767103

  5. Amorphous titanium-oxide supercapacitors

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  6. The effect of stem material and surface treatment on the torsional stability at the metal-cement interface of upper limb joint replacement systems.

    PubMed

    Hosein, Yara K; King, Graham J W; Dunning, Cynthia E

    2014-08-01

    Stem surface treatment and material are two design factors that may affect the onset of implant loosening. For upper limb applications, no known in vitro studies have addressed the role of these two factors on cemented implant stability. Therefore, the purpose of this study was to compare the torsional stability of cemented titanium and cobalt chrome stems with varying surface treatments in vitro. Thirty implant stems of circular cross-section (Ø = 8mm) were machined from cobalt chrome (n = 15) and titanium (n = 15). For each type, stems were subdivided into three groups for application of clinically relevant surface treatments: smooth, sintered beads, or plasma spray. Stems were potted in bone cement, allowed 24 h to cure, and placed in a materials testing machine. Stems were tested under cyclic torsion (1-30 Nm), using a staircase loading protocol. Failure was defined as either the first rapid increase in stem rotation without resistance, or attaining a maximum torque of 30 Nm. Implant stems with non-smooth surfaces offered greater resistance to torsion (p < 0.05), with the plasma spray treatment outlasting the beaded and smooth stems (p < 0.05). Titanium offered superior interface strength (p < 0.05) but reduced resistance to motion (p < 0.05) when compared to cobalt chrome. Therefore, these design features should be considered during upper limb implant design.

  7. A superior process for forming titanium hydrogen isotopic films

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.; Cooper, D. W.

    1975-01-01

    Process forms stoichiometric, continuous, strongly bonded titanium hydrogen isotopic films. Films have thermal and electrical conductivities approximately the same as bulk pure titanium, ten times greater than those of usual thin films.

  8. Engineering titanium surfaces for improving osteointegration

    NASA Astrophysics Data System (ADS)

    Lu, Xiong

    Titanium is one of the most important metallic biomedical materials in clinical applications. One of the key issues for successful application of titanium is the interaction at the interface between the titanium and the bone. The present study focuses on improving the surfaces of titanium to achieve better capability to bond with natural bone (i.e. better osteointegration). The objectives of this work include: (1) Developing microfabrication methods to produce micropatterns on titanium surfaces for promoting osteointegration; (2) Studying the calcium phosphate (Ca-P) formation on the chemical treated titanium surface and elucidating the mechanism of precipitation theoretically; and (3) Evaluating osteoconductivity of engineering titanium surfaces in vitro and in vivo. Through mask electrochemical micromachining (TMEMM), jet electrochemical micromachining (Jet-EMM) and the confined etchant layer technique (CELT) were attempted to produce micropatterns on titanium surfaces. TMEMM has a high etching rate and good reproducibility and was used to produce micro-hole arrays on Ti plates for in vivo testing. The driving force and nucleation rate of Ca-P precipitation in simulated body fluid (SBF) were analyzed based on the classical crystallization theory. SBF supersaturation with respect to HA, OCP and DCPD (dicalcium phosphate) was carefully calculated, considering all the association/dissociation reactions of related ion groups in SBF. The analysis indicates that the nucleation rate of OCP is substantially higher than that of HA, while HA is most thermodynamically stable in SBF. DCPD precipitation is thermodynamically impossible in normal SBF, unless calcium and phosphate ion concentrations of SBF increase. Osteoconduction of Ti6Al4V surfaces under various conditions, including micro-patterned, alkali-treated, micro-patterned plus alkali-treated, and surfaces without any treatment, was evaluated. TMEMM was used to fabricate micro-hole arrays on the titanium alloy

  9. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  10. Titanium for condenser and heat exchanger service

    SciTech Connect

    Mountford, J.A. Jr.

    1996-12-31

    The use of titanium for heat exchanger service has increased dramatically over the past 20 years and continues to expand into many additional market applications. Its greatest use (as both tubing and tubesheets) is in utility steam condensers where tens of millions of feet are produced annually to service plants throughout the world with the harshest of cooling waters. Many additional utility in-plant heat exchangers use titanium as well, as do industries to include the Navy and marine, offshore oil, petrochemical processing, PTA, LNG, desalination, salt production, refinery, refrigeration and air conditioning, among others. With its virtual immunity to all natural and harsh waters (including seawater, brackish, fresh, chloride laden, etc.) and to MIC, titanium eliminates the corrosion problems and concerns related to cooling waters, the effects of tube cleaning operations necessary to eliminate normal debris and fouling, and stagnant or no flow conditions. This paper will review where and why titanium is used as exemplified in its corrosion immunity ranges and heat transfer comparisons, while providing updates on the development of newer available grades and more recent applications. Where thought to be used only in specific plant areas, titanium can and should be considered for providing uncompromised service to reduce maintenance and eliminate persistent corrosion problems in the many other areas where heat exchangers are required.

  11. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  12. Surface characterization of titanium and adsorption of bovine serum albumin

    SciTech Connect

    Feng, B.; Weng, J.; Yang, B.C.; Chen, J.Y.; Zhao, J.Z.; He, L.; Qi, S.K.; Zhang, X.D

    2002-09-15

    The surface oxide films on titanium were characterized and the relationship between the characterization and the adsorption of bovine serum albumin (BSA) on titanium was studied. The surface oxide films on titanium were obtained by heat-treatment in different oxidizing atmospheres, such as air and water vapor. The surface roughness, energy, morphology, chemical composition and crystal structure were used to characterize the titanium surfaces. The characterization was performed using a profilometer, scanning electronic microscopy (SEM), a sessile drop method, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Percentages of surface hydroxyl groups were determined by XPS analysis for the titanium plates and the densities were measured by a chemical method for titanium powders. After heat-treatment, the titanium surfaces were uniformly roughened and the surface titanium oxide was predominantly rutile TiO{sub 2}. The crystal planes in the rutile films were preferentially orientated in the (110) plane with the highest density of titanium ions. Heat-treatment increased the surface energy and the amount of surface hydroxyl groups on the titanium. The different oxidizing atmospheres resulted in different percentages of oxygen species in the TiO{sub 2}, in the physisorbed water and acidic hydroxyl groups and in the basic hydroxyl groups on the titanium surfaces. The analysis for the adsorption of BSA on titanium confirmed that the surface characterization of titanium has a strong effect on the bioactivity of titanium. The BSA chemically adsorbed onto the titanium surfaces. The adsorption of BSA on the titanium surfaces was positively related with the amounts of their surface hydroxyl groups, including basic hydroxyl groups and acidic hydroxyl groups, and the values of the polar component of the total surface energy.

  13. Stem Cell Information: Glossary

    MedlinePlus

    ... cells (skeletal stem cells) Cell-based therapies Cell culture Cell division Chromosome Clone Cloning Cord blood stem cells Culture medium Differentiation Directed differentiation DNA Ectoderm Embryo Embryoid ...

  14. Titanium-nitrogen reaction investigated for application to gettering systems

    NASA Technical Reports Server (NTRS)

    Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.

    1968-01-01

    Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.

  15. Biocompatible glass ceramic coatings for titanium alloys (review)

    SciTech Connect

    Vlasov, A.S.; Ludanova, O.V.

    1995-11-01

    Coatings from hydroxylapatite and bioglass for titanium are considered. A review of patents and scientific publications shows that there are prerequisites for creating coatings on titanium alloys that would ensure the biological compatibility of titanium on the basis of known technologies.

  16. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  17. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for...

  18. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No....

  19. 40 CFR 721.10601 - Lanthanum lead titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lanthanum lead titanium zirconium... Specific Chemical Substances § 721.10601 Lanthanum lead titanium zirconium oxide. (a) Chemical substance... titanium zirconium oxide (PMN P-11-273; CAS No. 1227908-26-0) is subject to reporting under this...

  20. 40 CFR 721.10601 - Lanthanum lead titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lanthanum lead titanium zirconium... Specific Chemical Substances § 721.10601 Lanthanum lead titanium zirconium oxide. (a) Chemical substance... titanium zirconium oxide (PMN P-11-273; CAS No. 1227908-26-0) is subject to reporting under this...

  1. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for...

  2. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    SciTech Connect

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  3. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  4. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for...

  5. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  6. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  7. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN...

  8. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for...

  9. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for...

  10. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No....

  11. Array of titanium dioxide nanostructures for solar energy utilization

    DOEpatents

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  12. Galvanic Corrosion Studies on Titanium and Zirconium Metals

    DTIC Science & Technology

    1954-06-01

    as the arc-melted metal in oxalic acid solutions. However, corrosion rates are generally higher for titanium prepared from powder. Titanium is more...contact. Conclusions: 1. Uncoupled specimens of titanium are resistant to air-aerated solutions of 1 and 9 percent oxalic acid solutions but contact with

  13. Electrospun collagen mimicking the reconstituted extracellular matrix improves osteoblastic differentiation onto titanium surfaces.

    PubMed

    Iafiscol, Michele; Quirici, Nadia; Foltran, Ismaela; Rimondini, Lia

    2013-07-01

    Titanium and its alloys are the current materials to manufacture oral implants because of their excellent mechanical properties and biocompatibility. However the increasing needs of the patients to receive fast and reliable rehabilitation have forced materials scientists to modified the surface of the materials in order to increase the rate of osseointegration and minimize the times for healing. The presence of a reconstituted extracellular matrix (ECM), constituted of proteins and polysaccharides is a key factor for healing and regeneration of the tissues. The nano-fibrous feature of ECM improves cells proliferation and addresses their phenotype. Electrospinning technique is an efficient processing method to manufacture micro- and nano-sized fibrous structures mimicking the ECM. In this work we describe a method to obtain collagen coating made of nano-fibers onto titanium for oral implant manufacturing, using electrospinning. The obtained collagen coatings showed morphology, structure and chemical composition similar to that of ECM. Moreover the stem cells cultured onto titanium samples coated with electrospun collagen showed faster osteoblastic differentiation and more efficient deposition of mineralized matrix in comparison with those onto uncoated substrates. This effect was amplified using osteogenetic media.

  14. Titanium sealing glasses and seals formed therefrom

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-12-02

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.

  15. Titanium sealing glasses and seals formed therefrom

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  16. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  17. Titanium carbide nanocrystals in circumstellar environments.

    PubMed

    von Helden, G; Tielens, A G; van Heijnsbergen, D; Duncan, M A; Hony, S; Waters, L B; Meijer, G

    2000-04-14

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that infrared wavelength spectra of gas-phase titanium carbide nanocrystals derived in the laboratory show a prominent feature at a wavelength of 20.1 micrometers, which compares well to a similar feature in observed spectra of postasymptotic giant branch stars. It is concluded that titanium carbide forms during a short (approximately 100 years) phase of catastrophic mass loss (>0.001 solar masses per year) in dying, low-mass stars.

  18. Process for preparing titanium nitride powder

    DOEpatents

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  19. Genotoxicity of titanium dioxide nanoparticles.

    PubMed

    Chen, Tao; Yan, Jian; Li, Yan

    2014-03-01

    Titanium dioxide nanoparticles (TiO(2)-NPs, <100 nm) are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO(2)-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO(2)-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO(2)-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO(2)-NPs were negative. The current data indicate that the genotoxicity of TiO(2)-NPs is mediated mainly through the generation of oxidative stress in cells.

  20. Structure of the welding zone between titanium and orthorhombic titanium aluminide for explosion welding: I. Interface

    NASA Astrophysics Data System (ADS)

    Rybin, V. V.; Grinberg, B. A.; Ivanov, M. A.; Kuz'min, S. V.; Lysak, V. I.; Elkina, O. A.; Patselov, A. M.; Inozemtsev, A. V.; Antonova, O. V.; Kozhevnikov, V. E.

    2011-10-01

    The structures of the interfaces and transition zones of bimetallic metal-intermetallide joints produced by explosion welding under various conditions have been studied. The welded materials were commercial-purity titanium and orthorhombic titanium aluminide of two alloying schemes. The specific features of the structure and substructure of the zones under study are discussed. Wave formation and formation of isolated vortex zones, as well as tracks of particles related to the transfer of particles of one metal into the other one, were observed. A possible scenario of formation of interfaces, depending on the composition of titanium aluminide and welding conditions, is proposed.

  1. Method for the production of strongly adhesive films on titanium and titanium alloys with a metallization process

    NASA Technical Reports Server (NTRS)

    Hahn, H. J.

    1986-01-01

    A process for the spray-application of a strongly adhesive, thick antifriction layer on titanium and titanium alloys is proposed. The titanium/titanium alloy component to be coated is first subjected to cleaning in a pickling bath with reducing additives and sand-blasting, then coated with an intermediate layer of nickel, after which the final layer is applied. The formation of TiNi at the interface ensures strong bonding of the antifriction layer.

  2. Titanium nitride thin films for minimizing multipactoring

    DOEpatents

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  3. Phased Array Ultrasonic Inspection of Titanium Forgings

    SciTech Connect

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-03-21

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed.

  4. A Closer Look at a Stronger Titanium

    ScienceCinema

    Joshi, Vineet; Devaraj, Arun

    2016-09-02

    An improved titanium alloy – stronger than any commercial titanium alloy currently on the market – gets its strength from the novel way atoms are arranged to form a special nanostructure. For the first time, researchers at Pacific Northwest National Laboratory have been able to see this alignment and then manipulate it to make it even stronger. Using powerful electron microscopes and a unique atom probe imaging approach at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility located at PNNL, they were able to peer deep inside the alloy’s nanostructure to see what was happening.

  5. Hydrogen partitioning and transport in titanium aluminides

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Weon S.

    1993-01-01

    This report gives the final summary of the research work perfomed from March 1, 1990 to August 28, 1993. Brief descriptions of the research findings are given on the surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions; titanium aluminides: surface composition effects as a function of temperature; Auger electron intensity variation in oxygen-charged silver; and segregation of sulfur on a titanium surface studied by Auger electron spectroscopy. Each description details one or more of the attached corresponding figures. Published journal documents are provided as appendices to give further detail.

  6. Titanium Isotopes Provide Clues to Lunar Origin

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than

  7. Thermodynamics of titanium oxides in metallurgical slags

    NASA Astrophysics Data System (ADS)

    Alpatov, A. V.; Paderin, S. N.

    2015-05-01

    The energy parameters of the model of a pseudoregular ionic solution are estimated for binary oxide phase diagrams in seven systems containing titanium oxide. The obtained parameters are compared to the available theoretical and experimental data on the thermodynamic properties of TiO2 in liquid binary systems. The model of a pseudoregular ionic solution is extended to the liquid eight-component FeO-MnO-CaO-MgO-SiO2-CrO1.5-AlO1.5-TiO2 system, as applied to metallurgical slags containing titanium oxides.

  8. Rapidly solidified titanium alloys by melt overflow

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  9. Hybrid Calcium Phosphate Coatings for Titanium Implants

    NASA Astrophysics Data System (ADS)

    Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.

    2017-01-01

    Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.

  10. A Closer Look at a Stronger Titanium

    SciTech Connect

    Joshi, Vineet; Devaraj, Arun

    2016-04-01

    An improved titanium alloy – stronger than any commercial titanium alloy currently on the market – gets its strength from the novel way atoms are arranged to form a special nanostructure. For the first time, researchers at Pacific Northwest National Laboratory have been able to see this alignment and then manipulate it to make it even stronger. Using powerful electron microscopes and a unique atom probe imaging approach at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility located at PNNL, they were able to peer deep inside the alloy’s nanostructure to see what was happening.

  11. Titanium reinforced boron-polyimide composite

    NASA Technical Reports Server (NTRS)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  12. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    NASA Astrophysics Data System (ADS)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  13. Spontaneous Differentiation of Dental Pulp stem cells on Dental polymers

    NASA Astrophysics Data System (ADS)

    Bherwani, Aneel; Suarato, Giulia; Qin, Sisi; Chang, Chung-Cheh; Akhavan, Aaron; Spiegel, Joseph; Jurukovski, Vladimir; Rafailovich, Miriam; Simon, Marcia

    2012-02-01

    Dental pulp stem cells were plated on two dentally relevant materials i.e. PMMA commonly used for denture and Titanium used for implants. In both cases, we probed for the role of surface interaction and substrate morphology. Different films of PMMA were spun cast directly onto Si wafers; PMMA fibers of different diameters were electro spun onto some of these substrates. Titanium metal was evaporated onto Si surfaces using an electron beam evaporator. In addition, on some surfaces, P4VP nanofibers were spun cast. DPSC were grown in alpha-MEM supplemented with 10% fetal bovine serum, 0.2mM L-ascorbic acid 2-phosphate, 2mm glutamine and 10mM beta-glycerol phosphate either with or without 10nM dexamethasone. After 21 days samples were examined using confocal microscopy of cells and by scanning electron microscopy (SEM) and Energy dispersive X-ray Analysis (EDAX). In the case of Titanium biomineralization was observed independent of dexamethasone, where the deposits were templated along the fibers. Minimal biomineralization was observed on flat Titanium and PMMA samples. Markers of osteogenesis and specific signaling pathways are being evaluated by RT-PCR, which are up regulated on each surface, to understand the fundamental manner in which surfaces interact with cell differentiation.

  14. Structure of molten titanium dioxide

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-01

    The x-ray structure factor of molten TiO2 has been measured, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T=2250(30)K. The Ti-O coordination number in the melt is close to nTiO=5.0(2), with modal Ti-O bond length rTiO=1.881(5)Å, both values being significantly smaller than for the high temperature stable rutile crystal structure (nTiO=6.0,rTiO=1.959Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. Interatomic potentials, suitable for modeling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These potentials have the additional advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO=5.85(2)-[3.0(1)×10-4]T(K ,2.75Åcutoff). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of fivefold polyhedra in the melt implies the existence of as-yet-undiscovered TiO2 polymorphs, based on lower-than-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  15. Structure of molten titanium dioxide

    SciTech Connect

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-01

    The x-ray structure factor of molten TiO2 has been measured for the first time, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T = 2250(30) K. Ti-O coordination number in the melt is close to nTiO = 5.0(2), with modal Ti-O bond length rTiO = 1.881(5) Å, both values being significantly smaller than for the high temperature stable Rutile crystal structure (nTiO = 6.0, rTiO = 1.959 Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. New interatomic potentials, suitable for modelling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These new potentials have the additional great advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO = 5.85(2) – (3.0(1) x 10-4 )T (K, 2.75 Å cut-off). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of 5-fold polyhedra in the melt implies the existence of as yet undiscovered TiO2 polymorphs, based on lowerthan-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  16. Rotatable stem and lock

    DOEpatents

    Deveney, Joseph E.; Sanderson, Stephen N.

    1984-01-01

    A valve stem and lock include a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  17. Rotatable stem and lock

    DOEpatents

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  18. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  19. Titanium Oxide: A Bioactive Factor in Osteoblast Differentiation

    PubMed Central

    Santiago-Medina, P.; Sundaram, P. A.; Diffoot-Carlo, N.

    2015-01-01

    Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompatibility of titanium surfaces in orthopedic biomaterial applications is still a moot point. To study this critical aspect further, human fetal osteoblasts were cultured on thermally oxidized and microarc oxidized (MAO) surfaces and cell differentiation, a key indicator in bone tissue growth, was quantified by measuring the expression of alkaline phosphatase (ALP) using a commercial assay kit. Cell attachment was similar on all the oxidized surfaces although ALP expression was highest on the oxidized titanium alloy surfaces. Untreated titanium alloy surfaces showed a distinctly lower degree of ALP activity. This indicates that titanium oxide clearly upregulates ALP expression in human fetal osteoblasts and may be a key bioactive factor that causes the excellent biocompatibility of titanium alloys. This result may make it imperative to incorporate titanium oxide in all hard tissue applications involving titanium and other alloys. PMID:26664360

  20. Formation of vortices during explosion welding (titanium-orthorhombic titanium aluminide)

    NASA Astrophysics Data System (ADS)

    Rybin, V. V.; Greenberg, B. A.; Antonova, O. V.; Elkina, O. A.; Ivanov, M. A.; Inozemtsev, A. V.; Patselov, A. M.; Sidorov, I. I.

    2009-10-01

    The possibility of cladding commercially pure titanium by a plate of orthorhombic titanium aluminide has been investigated. The bimetallic joints of orthorhombic titanium aluminide (Ti-30Al-16Nb-1Zr-1Mo) with commercially pure titanium have been obtained by explosion welding. It has been found that the weld joint investigated had a multilayer structure consisting of a zone of continuous deformation observed in both materials, a zone of titanium recrystallization, and a transition zone near the interface. Wave formation and formation of isolated vortex zones have been observed. It has been found that upon explosion welding the bonding of the surfaces is effected via melting and subsequent mixing (in the zone of vortices) and the transfer of particles of one metal into another with the formation of particle tracks (outside the zone of vortices). A possible scenario of the formation of the vortex zone in the melt with a subsequent eutectic decomposition is proposed. The structure of the vortex zones was found to consist of an ultrafine mixture of α and β grains (both phases are disordered) with the grain size changing in the limits of 50-300 nm. The regions of transition from the vortex zone to the region of continuous deformation of the aluminide and to the recrystallized zone of titanium have been investigated.

  1. Polyimide adhesives for titanium and composite bonding

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.

    1978-01-01

    Approach results in synthesis of addition polyimide adhesives with exceptional high temperature capabilities that show excellent potential for bonding titanium metal, polyimide/graphite composites, and combinations of these materials. Adhesives compatible with materials used in high performance aircraft and spacecraft structures also prove highly desirable in many other applications involving similar adherents.

  2. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  3. Ab-inition melting curve of titanium

    NASA Astrophysics Data System (ADS)

    Stutzmann, Vincent; Bouchet, Johann; Bottin, Francois

    2014-03-01

    Thermodynamical properties of titanium are of great interest for aerospace and aviation industries and many studies are done in order to understand its behaviour under pressure (P) and temperature (T) : phase transitions at low T, melting curve at high T and P. In this work we compute the first ab-initio melting curve of titanium. This one is obtained with the Abinit package using DFT, in the GGA approximation, and in the framework of the projector augmented wave method (PAW). At first, we perform ground state calculations and study the five allotropic phases of titanium. Two PAW atomic data are generated with two different cutoff radius. The larger one gives results near previews ab-initio calculations, whereas the smaller one gives results near all electron calculation. Using the second PAW atomic data and performing ab-initio molecular dynamic simulations, we then compute the melting curve of titanium with three different methods. Results show relevance of our calculations, but also discrepencies with experimental data.

  4. [Titanium dioxide nanoparticles: occupational exposure limits].

    PubMed

    Swidwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO2 nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO2 cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m3, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m3, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m3 for nanoparticles TiO2 in the workplace air can be accepted.

  5. Titanium 󈨠: Science and Technology. Volume 3

    DTIC Science & Technology

    1993-01-01

    and A. 0. Mah, "Metallurgical Thermochemistry of Titanium’ (Report of Investigations 5490, U.S. Bureau of Mines, 1959), 15. 25. 0. Kubaschewskl and W...for retubing is polished to achieve less cost and shorter shut down time. 2) Thinner gauge tube Long term experience teaches thinner gauge tubes is

  6. Structural analysis of hydroxyapatite coatings on titanium.

    PubMed

    Ducheyne, P; Van Raemdonck, W; Heughebaert, J C; Heughebaert, M

    1986-03-01

    Hydroxyapatite from two sources was electrophoretically deposited onto flat titanium plate material. Depending upon the deposition conditions various changes in the structure of the ceramic were identified. A well-adhering Ti-P compound was present at the interface. Hydroxyapatite oxygenated to various degrees and tetracalcium phosphate were reproducibly formed in the coating.

  7. Dynamic Characterization of Shape Memory Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Imam, M. A.

    2004-07-01

    Evaluation of high strain rate behavior of materials at pre-fracture strains is very important where the materials are considered for ballistic applications. High compression strain rate response of shape memory titanium alloy including a typical titanium alloy are determined using the split Hopkinson pressure bar (SHPB). The conventional SHPB technique has been routinely used for measuring high strain rate properties of high strength materials. A split Hopkinson bar consisting of 10-mm diameter Maraging 350 alloy incident, transmitter, and striker bars was used to determine the compressive response of these alloys. Attempts are underway to use this technique to extract useful information required to design a material for improving its impact resistance. Initial test results performed on these different titanium alloys show an interesting trend with change of composition. Attempts were made to compare the stress-strain data of these alloys with the published data for titanium alloys. Stress-strain data and changes resulting in the microstructure from strain rates in the regime 1800-4000/s are presented.

  8. Titanium nitride electrodes for thermoelectric generators

    DOEpatents

    Novak, Robert F.; Schmatz, Duane J.; Hunt, Thomas K.

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  9. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  10. Coating for prevention of titanium combustion

    NASA Technical Reports Server (NTRS)

    Anderson, V. G.; Funkhouser, M.; Mcdaniel, P.

    1980-01-01

    A limited number of coating options for titanium gas turbine engine components were explored with the objective of minimizing potential combustion initiation and propagation without adversely affecting component mechanical properties. Objectives were met by two of the coatings, ion-plated platinum plus electroplated copper plus electroplated nickel and ion vapor deposited aluminum.

  11. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... coloring effect. (2) Authorization and compliance with this use shall not be construed as waiving any...

  12. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... coloring effect. (2) Authorization and compliance with this use shall not be construed as waiving any...

  13. Lactobacillus assisted synthesis of titanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Jha, Anal K.; Kulkarni, A. R.

    2007-05-01

    An eco-friendly lactobacillus sp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40 60 nm are found.

  14. Stress corrosion crack inhibiting method for titanium

    NASA Technical Reports Server (NTRS)

    Beck, T. R.

    1970-01-01

    Addition of oxyanions to liquid solvents in excess of the number of chloride, bromide, or iodide ions present prevents cracking of titanium-aluminum alloys under exposure to aqueous and other solvent environments. The molar concentration of oxyanion is set from 10 to 100 times higher than concentration of halide ions.

  15. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    PubMed Central

    Variola, Fabio; Zalzal, Sylvia Francis; Leduc, Annie; Barbeau, Jean; Nanci, Antonio

    2014-01-01

    Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting. PMID:24872694

  16. Biocompatibility Evaluation of Nanosecond Laser Treated Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Mizutani, Masayoshi; Ohmori, Hitoshi; Komotori, Jun

    We developed surface modification technologies for dental implants in this study. The study contributes to shortening the time required for adhesion between alveolar bone and fixtures which consist of dental implants. A Nd:YVO4 nanosecond laser was used to modify the surfaces of commercially pure titanium (CP Ti) disks, and their biocompatibility was evaluated cytocompatibility and bioactivity. First, rows of 200 µm spaced rectilinear laser treatments were performed on surfaces of CP Ti disks. Osteoblasts derived from rat mesenchymal stem cells were then cultured on the treated surfaces. Cytocompatibility on the laser treated area was evaluated by observing adhesion behavior of cells on these surfaces. The results indicated that the micro-order structure formed by the laser treatment promoted adhesion of osteoblasts and that traces of laser treatment without microstucture didn't affect the adhesion. Second, surfaces of CP Ti disks were completely covered by traces of laser treatment, which created complex microstructures of titania whose crystal structure is rutile and anatase. This phenomenon allowed the creation of hydroxyapatite on the surface of the disks in 1.5-times simulated body fluid (1.5SBF) while no hydroxyapatite was observed on conventional polished surfaces in the same conditions. This result indicates that bioactivity was enabled on CP Ti by the laser treatment. From these two results, laser treatment for CP Ti surfaces is an effective method for enhancing adhesion of osteoblasts and promoting bioactivity, which are highly appreciated properties for dental implants.

  17. Interaction of carbon nanotubes coatings with titanium substrate

    NASA Astrophysics Data System (ADS)

    Fraczek-Szczypta, Aneta; Wedel-Grzenda, Alicja; Benko, Aleksandra; Grzonka, Justyna; Mizera, Jaroslaw

    2017-02-01

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) after chemical surface functionalization on the interaction with a titanium surface. Two kinds of MWCNTs differing in terms of concentration of functional groups were deposited on the Ti surface using the electrophoretic deposition method (EPD). The study has shown the detailed analysis of the physicochemical properties of this form of carbon nanomaterial and received on their base coatings using various techniques, such as scanning electron microscopy (SEM), confocal microscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The adhesion of the MWCNTs coatings to the Ti surface was determined using the shear test method, according to standard ASTM F-1044-05. These results indicated that one type of MWCNTs characterized by a higher concentration of functional groups has better adhesion to the metal surface than the second type. Analysis of the MWCNT-metal interface using Raman spectroscopy and SEM and STEM indicates the presence of phase built of MWCNT and TiO2. This phase could be a type of nanocomposite that affects the improvement of the adhesion of MWCNT to the Ti surface.

  18. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite

  19. Magnesium-titanium alloys for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ilona

    Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium. Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy powders made by ball-milling into bulk material without destroying the alloy structure. This is an important finding as this metastable Mg-Ti alloy can only be heated up to max. 200C° for a limited time without reaching the stable state of separated magnesium and titanium. The superior corrosion behavior of Mg 80-Ti20 alloy in a simulated physiological environment was shown through hydrogen evolution tests, where the corrosion rate was drastically reduced compared to pure magnesium and electrochemical measurements revealed an increased potential and resistance compared to pure magnesium. Cytotoxicity tests on murine pre-osteoblastic cells in vitro confirmed that supernatants made from Mg-Ti alloy were no more cytotoxic than supernatants prepared with pure magnesium. Mg and Mg-Ti alloys can also be used to make novel polymer-metal composites, e.g., with poly(lactic-co-glycolic acid) (PLGA) to avoid the polymer's detrimental pH drop during degradation and alter its degradation pattern. Thus, Mg-Ti alloys can be fabricated and consolidated while achieving improved corrosion resistance and maintaining cytocompatibility. This work opens up the possibility of using Mg-Ti alloys for fracture fixation implants and other biomedical applications. KEYWORDS: Magnesium, titanium, corrosion

  20. International strategic minerals inventory summary report; titanium

    USGS Publications Warehouse

    Towner, R.R.; Gray, J.M.; Porter, L.M.

    1988-01-01

    Ilmenite and rutile are currently the most important titanium-bearing minerals, although anatase may be important in the future. Both ilmenite and rutile occur in hard-rock and placer deposits, but at present all rutile production and about half of the ilmenite production are from placer deposits. Anatase occurs in laterite deposits in Brazil, which at present are largely undeveloped. World ilmenite resources in identified deposits that are economically exploitable (R1E} are sufficient for about 150 years at current production rates, and about two-thirds of these resources are in China, the Soviet Union, and Norway. World rutile R1E resources would last about 80 years at current production rates, and some 54 percent of these resources are in Australia, the United States, and Italy. Combined R1E resources of anatase (which are all in Brazil) and rutile would last 300 years at current rutile production rates. Over 95 percent of the world's mine production of titanium-bearing minerals is used to manufacture titanium dioxide pigment for paint and other products. Most of the remaining 4 to 5 percent of production, which is largely rutile, is used for making titanium metal. Australia and Canada are the largest ilmenite producers, together supplying about half the world total; South Africa, Norway, and the Soviet Union together account for another third. Australia accounts for half the total world rutile production, with Sierra Leone and South Africa together accounting for another third. Australia and Norway are the largest exporters of titanium minerals. Unless major new deposits are discovered and developed in the traditional producing countries, the pattern of world production of both ilmenite and rutile could change substantially by 2020.

  1. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  2. Porous titanium bases for osteochondral tissue engineering

    PubMed Central

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  3. Machined Titanium Heat-Pipe Wick Structure

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Minnerly, Kenneth G.; Gernert, Nelson J.

    2009-01-01

    Wick structures fabricated by machining of titanium porous material are essential components of lightweight titanium/ water heat pipes of a type now being developed for operation at temperatures up to 530 K in high-radiation environments. In the fabrication of some prior heat pipes, wicks have been made by extruding axial grooves into aluminum unfortunately, titanium cannot be extruded. In the fabrication of some other prior heat pipes, wicks have been made by in-situ sintering of metal powders shaped by the use of forming mandrels that are subsequently removed, but in the specific application that gave rise to the present fabrication method, the required dimensions and shapes of the heat-pipe structures would make it very difficult if not impossible to remove the mandrels due to the length and the small diameter. In the present method, a wick is made from one or more sections that are fabricated separately and assembled outside the tube that constitutes the outer heat pipe wall. The starting wick material is a slab of porous titanium material. This material is machined in its original flat configuration to form axial grooves. In addition, interlocking features are machined at the mating ends of short wick sections that are to be assembled to make a full-length continuous wick structure. Once the sections have been thus assembled, the resulting full-length flat wick structure is rolled into a cylindrical shape and inserted in the heatpipe tube (see figure). This wick-structure fabrication method is not limited to titanium/water heat pipes: It could be extended to other heat pipe materials and working fluids in which the wicks could be made from materials that could be pre-formed into porous slabs.

  4. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  5. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    PubMed Central

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-01-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility. PMID:27457788

  6. Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    PubMed Central

    El-Sadik, Abir O; El-Ansary, Afaf; Sabry, Sherif M

    2010-01-01

    Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration. PMID:22291483

  7. Upgrading Titanium Ore Through Selective Chlorination Using Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2013-06-01

    To develop a simple and effective process for upgrading low-grade titanium ore (ilmenite, mainly FeTiO3), a new selective chlorination process based on the use of calcium chloride (CaCl2) as the chlorine source was investigated in this study. Titanium ore and a titanium ore/CaCl2 mixture were placed in two separate crucibles inside a gas-tight quartz tube that was then positioned in a horizontal furnace. In the experiments, the titanium ore in the two crucibles reacted with either HCl produced from CaCl2 or CaCl2 itself at 1100 K (827 °C), leading to the selective removal of the iron present in the titanium ore as iron chlorides [FeCl x (l,g) ( x = 2, 3)]. Various kinds of titanium ores produced in different countries were used as feedstock, and the influence of the particle size and atmosphere on the selective chlorination was investigated. Under certain conditions, titanium dioxide (TiO2) with purity of about 97 pct was directly obtained in a single step from titanium ore containing 51 pct TiO2. Thus, selective chlorination is a feasible method for producing high purity titanium dioxide from low-grade titanium ore.

  8. Microstructure and properties of a titanium alloy-orthorhombic titanium aluminide layered composite

    NASA Astrophysics Data System (ADS)

    Galeev, R. M.; Valiakhmetov, O. R.; Safiullin, R. V.; Imaev, V. M.; Imaev, R. M.

    2009-03-01

    The microstructure and tensile properties of a layered composite material fabricated by solid-state bonding of its components using pressure welding are studied at room and elevated temperatures. The components are made of a high-temperature VT25U titanium alloy and an intermetallic alloy ( O alloy) based on orthorhombic titanium aluminide of the composition Ti-23Al-22.7Nb-1.1V-0.6Zr-0.2Si-0.3C (at %). The study of the microstructure and chemical composition of the composite by scanning electron microscopy and energy dispersive X-ray analysis demonstrates that this method of producing a layered composite provides high-quality poreless bonding of materials of different types. The solid-state bonding zone has an intermediate chemical composition. Mechanical tests demonstrate that the room-temperature strength of the composite is comparable with that of the O alloy and is higher than that of the titanium alloy; as the fraction of the titanium alloy in the composite decreases, this strength increases. The relative elongation of the layered composite is found to be higher than that of the O alloy and lower than that of the titanium alloy. In the temperature range 500-700°C, the strength of the composite material is 25% higher than that of the titanium alloy, and its plasticity is lower than that of the titanium alloy. Our method is shown to be promising for producing layered composite materials that have high mechanical properties over a wide temperature range.

  9. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  10. Novel antioxidant capability of titanium induced by UV light treatment.

    PubMed

    Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro

    2016-11-01

    The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium.

  11. Osteogenic cell sheets reinforced with photofunctionalized micro-thin titanium.

    PubMed

    Ishijima, Manabu; Hirota, Makoto; Park, Wonhee; Honda, Masaki J; Tsukimura, Naoki; Isokawa, Keitaro; Ishigami, Tomohiko; Ogawa, Takahiro

    2015-05-01

    Cell sheet technology has been used to deliver cells in single-sheet form with an intact extracellular matrix for soft tissue repair and regeneration. Here, we hypothesized that titanium-reinforced cell sheets could be constructed for bone tissue engineering and regeneration. Fifty-µm-thick titanium plates containing apertures were prepared and roughened by acid etching, some of which were photofunctionalized with 12 min of UV light treatment. Cell sheets were prepared by culturing rat calvarial periosteum-derived cells on temperature-responsive culture dishes and attached to titanium plates. Titanium-reinforced osteogenic cell sheet construction was conditional on various technical and material factors: cell sheets needed to be double-sided and sandwich the titanium plate, and the titanium plates needed to be micro thin and contain apertures to allow close apposition of the two cell sheets. Critically, titanium plates needed to be UV-photofunctionalized to ensure adherence and retention of cell sheets. Single-sided cell sheets or double-sided cell sheets on as-made titanium contracted and deformed within 4 days of incubation. Titanium-reinforced cell sheets on photofunctionalized titanium were structurally stable at least up to 14 days, developed the expected osteogenic phenotypes (ALP production and mineralization), and maintained structural integrity without functional degradation. Successful construction of titanium-reinforced osteogenic cell sheets was associated with increased cell attachment, retention, and expression of vinculin, an adhesion protein by photofunctionalization. This study identified the technical and material requirements for constructing titanium-reinforced osteogenic cell sheets. Future in vivo studies are warranted to test these titanium-reinforced cell sheets as stably transplantable, mechanically durable, and shape controllable osteogenic devices.

  12. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  13. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  14. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  15. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  16. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  17. Preliminary evaluation of hybrid titanium composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, J. L.; Progar, D. J.; Johnson, W. S.; St.clair, T. L.

    1994-01-01

    In this study, the mechanical response of hybrid titanium composite laminates (HTCL) was evaluated at room and elevated temperatures. Also, the use of an elastic-plastic laminate analysis program for predicting the tensile response from constituent properties was verified. The improvement in mechanical properties achieved by the laminates was assessed by comparing the results of static strength and constant amplitude fatigue tests to those for monolithic titanium sheet. Two HTCL were fabricated with different fiber volume fractions, resin layer thicknesses, and resins. One panel was thicker and was more poorly bonded in comparison to other. Consequently, the former had a lower tensile strength, while fewer cracks grew in this panel and at a slower rate. Both panels showed an improvement in fatigue life of almost two orders of magnitude. The model predictions were also in good agreement with the experimental results for both HTCL panels.

  18. Titanium oxide antibacterial surfaces in biomedical devices.

    PubMed

    Visai, Livia; De Nardo, Luigi; Punta, Carlo; Melone, Lucio; Cigada, Alberto; Imbriani, Marcello; Arciola, Carla Renata

    2011-09-01

    Titanium oxide is a heterogeneous catalyst whose efficient photoinduced activity, related to some of its allotropic forms, paved the way for its widespread technological use. Here, we offer a comparative analysis of the use of titanium oxide as coating for materials in biomedical devices. First, we introduce the photoinduced catalytic mechanisms of TiO2 and their action on biological environment and bacteria. Second, we overview the main physical and chemical technologies for structuring suitable TiO2 coatings on biomedical devices. We then present the approaches for in vitro characterization of these surfaces. Finally, we discuss the main aspects of TiO2 photoactivated antimicrobial activity on medical devices and limitations for these types of applications.

  19. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  20. Custom-made titanium mandibular reconstruction tray.

    PubMed

    Samman, N; Luk, W K; Chow, T W; Cheung, L K; Tideman, H; Clark, R K

    1999-09-01

    Reconstruction of the mandible after ablative surgery can be achieved by using preformed trays or trays formed from models produced by computer-assisted modelling systems. The former presents difficulty in matching the required facial contour, jaw relationship and condylar position; while the latter is expensive. This paper presents a simple and inexpensive method of fabricating a custom-made titanium bone grafting tray. The dimensions of the patient's mandible are obtained by clinical measurement. Such measurements are used to construct a mandibular replica. The region to be reconstructed is carved to produce the ideal shape and dimensions of an edentulous segment. The tray is made either by casting or by swaging. Twenty-one custom-made titanium bone grafting trays have been fitted in patients with encouraging results. This method of bone grafting tray construction is a simple, inexpensive technique for achieving excellent facial contour and functional reconstruction after mandibulectomy.

  1. Titanium implants in irradiated dog mandibles

    SciTech Connect

    Schweiger, J.W. )

    1989-08-01

    The use of osseointegrated titanium implants has been a great benefit to selected cancer patients who otherwise would not be able to wear conventional and/or maxillofacial prostheses. Cognizant of the risk of osteoradionecrosis, we used an animal model to seek experimental evidence for successful osseointegration in bone irradiated to tumoricidal levels. Five healthy male beagle dogs received 60 gray to a previously edentulated and healed area of the right hemimandible. The left hemimandible was kept as a nonirradiated control. After 9 months, titanium implants were placed and allowed an additional 5 1/2 months to osseointegrate. At that time, block specimens were obtained, radiographed, photographed, and analyzed histologically. Although statistical significance cannot be attached to the results, osseointegration was achieved in half of the irradiated specimens.

  2. Isotope shift measurements in titanium I

    NASA Astrophysics Data System (ADS)

    Azaroual, E. M.; Luc, P.; Vetter, R.

    1992-06-01

    The use of an effusive beam of titanium atoms crossed with a CW single-mode tunable dye laser has allowed the high-resolution, Doppler-free study of the isotope shifts between50Ti,48Ti and46Ti, for seven 3 d 2 4 s 2 a3 F J → 3 d 2 4 s 4 p z 5 D J , visible transitions of Ti I. The measurements show without ambiguity the existence of a non-negligible field shift. Using the values of the nuclear radii of titanium (coming from muonic X-ray measurements), it is possible to determine the respective values of the field and mass shifts.

  3. PEM Anchorage on Titanium Using Catechol Grafting

    PubMed Central

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  4. Environmental Studies on Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  5. Fatigue - corrosion of endoprosthesis titanium alloys.

    PubMed

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  6. Possible segregation caused by centrifugal titanium casting.

    PubMed

    Watanabe, K; Okawa, S; Kanatani, M; Nakano, S; Miyakawa, O; Kobayashi, M

    1996-12-01

    The possibility of the segregation under solidification process using a centrifugal casting machine was investigated using an electron probe microanalyzer with elemental distribution map, line analysis and quantitative analysis. When a very small quantity of platinum was added to local molten titanium during the casting process, macroscopic segregation was observed under conditions of density difference of 0.1 g/cm3 at the most, confirming that the centrifugal force of the casting machine is extremely strong. When a Ti-6Al-4V alloy was cast, however, no macroscopic segregation was observed. The centrifugal force of the casting machine examined in the present study hardly results in the body-force segregation in this titanium alloy.

  7. Reinforcement of titanium by laser metal deposition

    NASA Astrophysics Data System (ADS)

    Sampedro, Jesús; Pérez, Irene; Cárcel, Bernabé; Amigó, Vicente; Sánchez, José María

    2010-09-01

    Pure commercial titanium is widely used because of its high corrosion resistance and lower cost compared with other titanium alloys, in particular when there is no high wear requirements. Nevertheless, the wear resistance is poor and surface damage occurs in areas under contact loadings. Laser melting deposition using a high power laser is a suitable technique for manufacturing precise and defect free coatings of a dissimilar material with higher wear and corrosion resistance. In this work a good understanding of laser metal deposition mechanisms allowed to obtain defect free coatings of Ti6Al4V and TiC metal matrix composite (MMC) using a flash lamp pumped Nd:YAG laser of 1 kW. A complete investigation of the process parameters is discussed and resultant wear and corrosion properties are shown. The results show the feasibility to apply the process for manufacturing, improving or repairing high added value components for a wide range of industrial sectors.

  8. Accuracy of Casting Single Crowns in Titanium

    DTIC Science & Technology

    1990-04-01

    in bone (Branemark, et.al. 1985). Titanium’s biocompatibility in dental implantology created an interest in its use in cast restorations. The aerospace...and dental implantology , but implants are fabricated by machining, not casting. The first use of Ti as a cast dental restoration was accomplished in...Chairman of Dental Research, WHMC) and Dr. Adrian F. VanDellen (Veterinary Research Pathologist) for their assistance in accomplishing the

  9. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  10. The Specific Heat of Titanium Disilicide

    DTIC Science & Technology

    1993-05-01

    accurate thermodynamic data. We have therefore undertaken the measurement of the specific heat of TiSi2. The titanium disilicide alloy has been...of moles of the reactants. The standard molar enthalpy, Af HO, and the standard molar entropy, So, can be found in tables of thermodynamic properties ...factors. To perform these calculations, the thermodynamic properties of all the reactants and products: standard molar enthalpy, standard molar entropy and

  11. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  12. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, M.A.; Xu, Q.

    1992-03-17

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  13. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  14. Elevated Temperature Crack Growth Studies of Advanced Titanium Aluminides.

    DTIC Science & Technology

    1987-09-01

    titanium aluminide in gas turbine engines would reduce the United States dependence on foreign sources for superalloy constituent elements, and would...ELVTDTEMPERATURE CRACK GROWTH STUDIES OF ADVANCED 1I TITANIUM ALUMINIDES (U) SYSTRAN CORP DAYTON ON VENKATARAMAN SEP 87 AFUAL-TR-87-4t82 F32615-86-C...ELEVATED TEMPERATURE CRACK GROWTH STUDIES OF ADVANCED TITANIUM ALUMINIDES DTIC Dr. Srivathsan Venkataraman e’.- Systran Corporation 4126 Linden Avenue

  15. Fatigue and Fracture of Titanium Aluminides. Volume 2

    DTIC Science & Technology

    1990-02-01

    WRDC-TR-89-4145 Volume II FATIGUE AND FRACTURE OF TITANIUM ALUMINIDES M.L. Gambone V) Allison Gas Turbine Division fl General Motors Corporation RO...77 I1 TITLE (Include Securty Classficaton) Fat igue & Fracture of Titanium Aluminides 12. PERSONAL AUTHOR(S) M.L. Gambone 13& TYPE OF REPORT 13b. TIME...CODES 18. SUBJECT TERMS (Continue on reuerse it neceuar’y and identify by block numberi FIELD GROUP SUB GR. Metal matrix composites, titanium aluminide

  16. The effect of vacuum annealing on corrosion resistance of titanium

    SciTech Connect

    Chikanov, V.N.; Peshkov, V.V.; Kireev, L.S.

    1994-09-01

    The effect of annealing on the corrosion resistance of OT4-1 sheet titanium in 25% HCl under various air pressures and self-evacuating conditions has been investigated. From the kinetic corrosion curves it follows that the least corrosion resistance of titanium is observed after vacuum annealing. Even low residual air pressure in a chamber improves corrosion resistance. The corrosion resistance of titanium decreases with vacuum-annealing time.

  17. A single crystalline porphyrinic titanium metal–organic framework

    DOE PAGES

    Yuan, Shuai; Liu, Tian -Fu; Feng, Dawei; ...

    2015-04-28

    We successfully assembled the photocatalytic titanium-oxo cluster and photosensitizing porphyrinic linker into a metal–organic framework (MOF), namely PCN-22. A preformed titanium-oxo carboxylate cluster is adopted as the starting material to judiciously control the MOF growth process to afford single crystals. This synthetic method is useful to obtain highly crystalline titanium MOFs, which has been a daunting challenge in this field. Moreover, PCN-22 demonstrated permanent porosity and photocatalytic activities toward alcohol oxidation.

  18. Iron-titanium-mischmetal alloys for hydrogen storage

    DOEpatents

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  19. Stem Cell Transplant

    MedlinePlus

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  20. Midterm results of a femoral stem with a modular neck design: clinical outcomes and metal ion analysis.

    PubMed

    Silverton, Craig D; Jacobs, Joshua J; Devitt, Jeffrey W; Cooper, H John

    2014-09-01

    Modular neck femoral stems have a higher-than-anticipated rate of failure in registry results, but large single-center cohort studies are lacking. This is a retrospective cohort of 152 hips implanted with a single titanium stem with a modular titanium neck, presenting clinical, radiographic, and metal ion results at a mean 4.5-year follow-up. Five hips were revised during the study period, for an overall Kaplan-Meier survival of 0.894 at 8 years. There was one modular neck fracture (0.66%), but others demonstrated corrosion or adverse tissue reaction. Serum metal levels demonstrated wide variability. Despite good clinical results in the majority of patients, we confirmed an increased rate of femoral revision at mid-term follow-up, and therefore urge caution in the use of this particular stem design.

  1. Shock response of a gamma titanium aluminide

    NASA Astrophysics Data System (ADS)

    Shazly, Mostafa; Prakash, Vikas

    2008-10-01

    Potential use of γ-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys—the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8±0.09 GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied.

  2. Shock response of a gamma titanium aluminide

    SciTech Connect

    Shazly, Mostafa; Prakash, Vikas

    2008-10-15

    Potential use of {gamma}-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys--the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8{+-}0.09 GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied.

  3. Ag-doped titanium dioxide gas sensor

    NASA Astrophysics Data System (ADS)

    Alaei Sheini, Navid; Rohani, Mahsa

    2016-03-01

    Titanium dioxide has been utilized for the fabrication of oxygen sensitive ceramic bodies. In this work, disk-shaped TiO2 pellets are fabricated by the sintering of the press- formed anatase powder at 1000°C. Two silver contacts are printed on one of the top base of each sample. Silver wire segments are connected to the printed electrodes. It is shown that the gradual diffusion of silver into titanium dioxide from the electrodes profoundly affects the resistive properties of the ceramic samples. SEM, XRD and EDAX analyses are carried out to determine the position of the silver diffused in the structure. At 35°C, before silver diffusion, the electrical resistance of the device decreases ten times in response to the presence of 3000 ppm ethanol contamination. Sensitivity (Rair/Rgas) to reducing gases is severely affected by the silver doping level in the titanium dioxide. The progress of silver diffusion continuously decreases the sensitivity till it become less than one. Further progress in silver diffusion brings the devices to the condition at which the resistance increases at the presents of reducing gases. In this condition, inverse sensitivities (Rgas/Rair) as large as 103 are demonstrated.

  4. Deformation Mechanisms during Hot Working of Titanium

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Bieler, T. R.; Miller, J. D.; Glavicic, M. G.

    2004-06-01

    Computer models of metal flow and texture evolution during hot working require accurate descriptions of deformation mechanisms and constitutive behavior. Such descriptions for titanium alloys can be very complex because of the variety of slip systems in the hexagonal (alpha) phase, let alone the complications associated with the deformation of two-phase (alpha/beta) microstructures in commercial alloys. Methods to elucidate the deformation behavior of unalloyed alpha titanium and two-phase Ti-6Al-4V will be described. First, the analysis of the hot deformation of heavily textured bar and plate materials will be described. In these instances, the anisotropy in flow stress and in sample deformation pattern have been used in conjunction with a crystal plasticity code to deduce the relative values of the critical resolved shear stresses for basal , prism , and pyramidal slip. Analysis of the flow curves has also provided insight into the micromechanism of flow softening in two-phase alloys with colony-alpha microstructures. To complement this work, an x-ray line broadening technique was developed to deduce the relative slip activity at large strains in unalloyed titanium and Ti-6Al-4V. These measurements also provided estimates of the dislocation density as a function of temperature and the competition between slip and twinning at cold-working temperatures.

  5. Biodistribution of titanium dioxide from biologic compartments.

    PubMed

    Olmedo, Daniel G; Tasat, Deborah R; Guglielmotti, María Beatriz; Cabrini, Rómulo Luis

    2008-09-01

    The layer of titanium dioxide (TiO(2)) of the implant is chronically exposed to the internal electrolyte milieu in the peri-implant biological compartment. Corrosion results from electrochemical attack and ensuing gradual degradation of the metallic materials and is thus of biological interest when these biomaterials are employed in clinical implantology. Herein we evaluated and compared the chronic effect and the biodistribution of TiO(2) administered subcutaneously or intraperitoneally. We propose that the compartmentalization of titanium in the area of subcutaneous injection would reproduce the biological compartment of the implant and its microenvironment from which metal ions could be released and migrate systemically. Potential TiO(2) deposits were identified and characterized in skin, liver and lung by histological and EDX analyses. After both treatments, the skin, liver, and lungs exhibited histological evidence of TiO(2) deposits. In order to characterize in situ macrophage-like cells, tissue sections were immunohistochemically stained for CD68. Tissue specimens from all organs assayed showed positive staining for anti-macrophage monoclonal antibody CD68 (PGM1). Despite the compartmentalization of titanium within nodular areas in rats treated subcutaneously, systemic migration occurred. We concluded that systemic migration of TiO(2) occurred regardless of the administration route.

  6. [Guided bone regeneration beneath titanium foils].

    PubMed

    Otto, Katharina; Schopper, Christian; Ewers, Rolf; Lambrecht, J Thomas

    2004-01-01

    The aim of this study was to examine the clinical and histological bony healing process beneath titanium foils used for guided tissue regeneration as well as of the Frios Algipore graft which was applied with autologous bone. 66 sinus floor elevations were carried out and examined over a period of three years and eight months. A success rate of 64% was recorded with foil incorporation. Complications occurred in form of primary and secondary disturbances in the healing process caused by exposure of the foil. 12 of the 66 foils had to be removed early. In all but one case, the augmented bone material was macroscopically well integrated despite the loss of the foil. Primary stability of the inserted dental implants into the ossified augmented site after operations of the sinus maxillaris was reached in all cases with absence of post-operative complications, and in 94% when there was postoperative exposure of the membrane. Histologically, a thin layer of connective tissue poor in cells but rich in collagen fibers appeared underneath the titanium foil. This was followed by newly-formed bony tissue transforming into osseous lamella parallel to the membrane underneath the new periost. In 65 out of 66 cases a sufficient amount of stable bone was built up locally suggesting good bio-compatibility and barrier function. Further, the foil also provided mechanical rest and supporting function for the space underneath. However, the occurrence of healing complications in 36% of the cases showed a need to improve on the titanium foils.

  7. Kinetics of Hydrochloric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag

    NASA Astrophysics Data System (ADS)

    Zheng, Fuqiang; Chen, Feng; Guo, Yufeng; Jiang, Tao; Travyanov, Andrew Yakovlevich; Qiu, Guanzhou

    2016-05-01

    The hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag was investigated under different experimental conditions. The results indicate that particle size, hydrochloric acid concentration and reaction temperature were of significance to the leaching kinetics. Specifically, reaction temperature was the most important factor followed by hydrochloric acid concentration and particle size. The shrinking core model was used to describe the leaching process which was controlled by surface chemical reaction. The kinetic equation was obtained and the activation energy was found to be 43.16 kJ/mol. Iron and calcium species were almost completely dissolved in the acid when the extraction degree of titanium reached 99.84%. MgO (19.34 wt.%) and Al2O3 (32.45 wt.%) in the spinel were still in the leaching residue and SiO2 (43.53 wt.%) in the form of quartz remained in the leaching residue.

  8. STEM Club Participation and STEM Schooling Outcomes

    ERIC Educational Resources Information Center

    Gottfried, Michael A.; Williams, Darryl N.

    2013-01-01

    To develop a more robust understanding of the relationship between non-formal, school-based STEM activities and students' success and persistence in STEM fields, this study evaluates how math club participation influences math GPA and how science club participation influences science GPA. Additionally, this study evaluates how math or science club…

  9. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2016-12-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  10. Color Anodizing of Titanium Coated Rolled Carbon Steel Plate

    SciTech Connect

    Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab

    2011-12-26

    As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.

  11. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  12. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  13. Understanding STEM: Current Perceptions

    ERIC Educational Resources Information Center

    Brown, Ryan; Brown, Joshua; Reardon, Kristin; Merrill, Chris

    2011-01-01

    In many ways, the push for STEM (science, technology, engineering, and mathematics) education appears to have grown from a concern for the low number of future professionals to fill STEM jobs and careers and economic and educational competitiveness. The proponents of STEM education believe that by increasing math and science requirements in…

  14. Titanium: a promising new material for food contact. A study of titanium resistance to some aggressive food simulants.

    PubMed

    Feliciani, R; Migliorelli, D; Maggio, A; Gramiccioni, L

    1998-01-01

    It is well known that titanium is one of the most rugged metals; therefore it has been extensively used in many critical fields. However, the lowering of price and an increased availability of titanium has made this material suitable to be used in other industrial fields, such as the food industry. The present paper reports the results of an assessment that concludes that titanium could be regarded as a candidate food-grade material.

  15. Pitting of titanium. I - Titanium-foil experiments. II - One-dimensional pit experiments.

    NASA Technical Reports Server (NTRS)

    Beck, T. R.

    1973-01-01

    Pitting experiments were conducted with strips of titanium foil in beakers containing chloride, bromide, or iodide solutions. The potentials were determined in reference to the saturated calomel electrode. Corrosion occurred at the edge of a foil specimen when it was maintained at a potential between the steady-state pitting potential of about 0.9 V and a potential of about 1.4 V in neutral bromide solution. A model is discussed to account for the complex relationships observed in the experiments. Conclusions based on experiments conducted with one-dimensional pits at the ends of insulated titanium pencils in the anode-facing-up position are also presented.

  16. Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template.

    PubMed

    Yada, Mitsunori; Inoue, Yuko; Uota, Masafumi; Torikai, Toshio; Watari, Takanori; Noda, Iwao; Hotokebuchi, Takao

    2007-02-27

    Sodium titanate nanotube/titanium metal composites were synthesized by hydrothermal treatment of titanium metals with various morphologies such as plate, wire, mesh, microsphere, and microtube at 160 degrees C in aqueous NaOH solution and by the subsequent fixation treatment by calcination at 300 degrees C. The surface of the composite was covered with sodium titanate nanotubes with a diameter of approximately 7 nm, and the core part of the composite was titanium metal phase. The raw titanium metal acts as a template or a morphology-directing agent of micrometer size or more to arrange the nanotubes as well as a titanium source for the formation of nanotubes. The concentration of titanium species increases in the reaction solution as the dissolution of titanium metal is accelerated by the reaction between titanium and OH-. Furthermore, with an increase in concentration of titanium species in the reaction solution, the titanium species are re-precipitated as sodium titanate nanotubes onto the titanium metal. Titanium metal with a large surface area and volume can form sodium titanate nanotubes on the surface of the titanium metal, though titanium metal with a small volume and surface area tends to dissolve with the hydrothermal treatment. Even in the synthesis using titanium metal with a small volume and surface area, sodium titanate nanotubes are formed and cover the surface of the titanium metal by adding another titanium metal as a source of titanium species in the reaction solution.

  17. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  18. Nail stem cells.

    PubMed

    Sellheyer, Klaus

    2013-03-01

    Our knowledge on stem cells of the hair follicle has increased exponentially after the bulge was characterized as the stem cell niche two decades ago. In contrast, little is known about stem cells in the nail unit. Whereas hair follicles are plentiful and easy to access, the human body has only twenty nails and they are rarely biopsied. Therefore, examining fetal material offers unique advantages. In the following mini-review, our current knowledge on nail stem cells is summarized and analogies to the hair follicle stem cells are drawn.

  19. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon.

    PubMed

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p<0.005) and Bone Formation Rate (BFR, μm(2)/μm/day) (p<0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p<0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant.

  20. Effect of titanium nitride/titanium coatings on the stress corrosion of nickel-titanium orthodontic archwires in artificial saliva

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Kuang; Liu, I.-Hua; Liu, Cheng; Chang, Chen-Jung; Kung, Kuan-Chen; Liu, Yen-Ting; Lee, Tzer-Min; Jou, Jin-Long

    2014-10-01

    The purpose of this investigation was to develop titanium nitride (TiN)/titanium (Ti) coating on orthodontic nickel-titanium (NiTi) wires and to study the stress corrosion of specimens in vitro, simulating the intra-oral environment in as realistic a manner as possible. TiN/Ti coatings were formed on orthodontic NiTi wires by physical vapor deposition (PVD). The characteristics of untreated and TiN/Ti-coated NiTi wires were evaluated by measurement of corrosion potential (Ecorr), corrosion current densities (Icorr), breakdown potential (Eb), and surface morphology in artificial saliva with different pH and three-point bending conditions. From the potentiodynamic polarization and SEM results, the untreated NiTi wires showed localized corrosion compared with the uniform corrosion observed in the TiN/Ti-coated specimen under both unstressed and stressed conditions. The bending stress influenced the corrosion current density and breakdown potential of untreated specimens at both pH 2 and pH 5.3. Although the bending stress influenced the corrosion current of the TiN/Ti-coated specimens, stable and passive corrosion behavior of the stressed specimen was observed even at 2.0 V (Ag/AgCl). It should be noted that the surface properties of the NiTi alloy could determine clinical performance. For orthodontic application, the mechanical damage destroys the protective oxide film of NiTi; however, the self-repairing capacity of the passive film of NiTi alloys is inferior to Ti in chloride-containing solutions. In this study, the TiN coating was found able to provide protection against mechanical damage, while the Ti interlayer improved the corrosion properties in an aggressive environment.

  1. Liver cancer stem cells.

    PubMed

    Sell, Stewart; Leffert, Hyam L

    2008-06-10

    In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.

  2. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  3. Titanium surface topography affects collagen biosynthesis of adherent cells.

    PubMed

    Mendonça, Daniela B S; Miguez, Patrícia A; Mendonça, Gustavo; Yamauchi, Mitsuo; Aragão, Francisco J L; Cooper, Lyndon F

    2011-09-01

    Collagen-dependent microstructure and physicochemical properties of newly formed bone around implant surfaces represent key determinants of implant biomechanics. This study investigated the effects of implant surface topography on collagen biosynthesis of adherent human mesenchymal stem cells (hMSCs). hMSCs were grown for 0 to 42 days on titanium disks (20.0 × 1.0 mm) with smooth or rough surfaces. Cell attachment and spreading were evaluated by incubating cells with Texas-Red-conjugated phalloidin antibody. Quantitative real-time PCR was used to measure the mRNA levels of Col1α1 and collagen modifying genes including prolyl hydroxylases (PHs), lysyl oxidases (LOXs) and lysyl hydroxylases (LHs). Osteogenesis was assessed at the level of osteoblast specific gene expression and alizarin red staining for mineralization. Cell layer-associated matrix and collagen content were determined by amino acid analysis. At 4h, 100% cells were flattened on both surfaces, however the cells on smooth surface had a fibroblast-like shape, while cells on rough surface lacked any defined long axis. PH, LH, and most LOX mRNA levels were greater in hMSCs grown on rough surfaces for 3 days. The mineralized area was greater for rough surface at 28 and 42 days. The collagen content (percent total protein) was also greater at rough surface compared to smooth surface at 28 (36% versus 26%) and 42 days (46% versus 29%), respectively (p<.05). In a cell culture model, rough surface topography positively modulates collagen biosynthesis and accumulation and the expression of genes associated with collagen cross-linking in adherent hMSC. The altered biosynthesis of the collagen-rich ECM adjacent to endosseous implants may influence the biomechanical properties of osseointegrated endosseous implants.

  4. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  5. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  6. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  7. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  8. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead...

  9. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead...

  10. Initial bacterial adhesion on resin, titanium and zirconia in vitro

    PubMed Central

    Lee, Byung-Chul; Jung, Gil-Yong; Kim, Dae-Joon

    2011-01-01

    PURPOSE The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with 1 µm diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting from resazurin reduction were performed for quantifying the bacterial adhesion. RESULTS Surface of resin composite was significantly rougher than that of titanium and zirconia, although all tested specimens are classified as smooth. The resin specimens showed lower value of contact angle compared with titanium and zirconia specimens, and had hydrophilic surfaces. The result of scanning electron microscopy demonstrated that bound bacteria were more abundant on resin in comparison with titanium and zirconia. When total biofilm mass determined by crystal violet, absorbance value of resin was significantly higher than that of titanium or zirconia. The result of relative fluorescence intensities also demonstrated that the highest fluorescence intensity was found on the surface of resin. Absorbance value and fluorescence intensity on titanium was not significantly different from those on zirconia. CONCLUSION Resin specimens showed the roughest surface and have a significantly higher susceptibility to adhere Streptococcus sanguis than titanium and zirconia when surfaces of each specimen were polished under same condition. There was no significant difference in bacteria adhesion between titanium and zirconia in vitro. PMID:21814616

  11. Candida albicans biofilm on titanium: effect of peroxidase precoating

    PubMed Central

    Ahariz, Mohamed; Courtois, Philippe

    2010-01-01

    The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil) was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30) and 0.50 ± 0.04 × 106 blastoconidia per cm2 of titanium foil (n = 12). The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate), Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated) and liquid environment (containing peroxidase substrates) to limit C. albicans biofilm formation. PMID:22915919

  12. Grain boundary structure and solute segregation in titanium-doped sapphire bicrystals

    SciTech Connect

    Taylor, Seth Thomas

    2002-01-01

    Solute segregation to ceramic grain boundaries governs material processing and microstructure evolution, and can strongly influence material properties critical to engineering performance. Understanding the evolution and implications of grain boundary chemistry is a vital component in the greater effort to engineer ceramics with controlled microstructures. This study examines solute segregation to engineered grain boundaries in titanium-doped sapphire (Al2O3) bicrystals, and explores relationships between grain boundary structure and chemistry at the nanometer scale using spectroscopic and imaging techniques in the transmission electron microscope (TEM). Results demonstrate dramatic changes in solute segregation stemming from small fluctuations in grain boundary plane and structure. Titanium and silicon solute species exhibit strong tendencies to segregate to non-basal and basal grain boundary planes, respectively. Evidence suggests that grain boundary faceting occurs in low-angle twis t boundaries to accommodate nonequilibrium solute segregation related to slow specimen cooling rates, while faceting of tilt grain boundaries often occurs to expose special planes of the coincidence site lattice (CSL). Moreover, quantitative analysis of grain boundary chemistry indicates preferential segregation of charged defects to grain boundary dislocations. These results offer direct proof that static dislocations in ionic materials can assume a net charge, and emphasize the importance of interactions between charged point, line, and planar defects in ionic materials. Efforts to understand grain boundary chemistry in terms of space charge theory, elastic misfit and nonequilibrium segregation are discussed for the Al2O3 system.

  13. Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties.

    PubMed

    Inzunza, Débora; Covarrubias, Cristian; Von Marttens, Alfredo; Leighton, Yerko; Carvajal, Juan Carlos; Valenzuela, Francisco; Díaz-Dosque, Mario; Méndez, Nicolás; Martínez, Constanza; Pino, Ana María; Rodríguez, Juan Pablo; Cáceres, Mónica; Smith, Patricio

    2014-01-01

    Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces.

  14. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested. PMID:27688425

  15. Corrosion behavior of binary titanium aluminide intermetallics

    SciTech Connect

    Saffarian, H.M.; Gan, Q.; Hadkar, R.; Warren, G.W.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit} decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.

  16. Surface characteristics of thermally treated titanium surfaces

    PubMed Central

    Lee, Yang-Jin; Cui, De-Zhe; Jeon, Ha-Ra; Chung, Hyun-Ju; Park, Yeong-Joon; Kim, Ok-Su

    2012-01-01

    Purpose The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at 300℃ for 30 minutes. Group II: Ti-S was treated at 500℃ for 30 minutes. Group III: Ti-S was treated at 750℃ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results The titanium dioxide (TiO2) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile TiO2 were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants. PMID:22803009

  17. Stripping of titanium from TBP-decanol phase

    NASA Astrophysics Data System (ADS)

    Mao, X. H.

    2017-01-01

    The stripping of titanium from TBP-decanol phase with hydrochloric acid has been investigated. The results showed that the stripping rate of titanium increased with decreased hydrochloric acid concentration in the aqueous phase, decreased organic and aqueous phase ratio and increased stripping temperature. Extracted titanium was easy to strip and 0.5 mol/L hydrochloric acid was suitable stripping agent. The kinetics of the stripping process was fast, since the equilibrium was reached in 10 minutes. The extraction and stripping isotherms showed that through extraction and stripping titanium (IV) was separated and enriched as about five fold. The simulated extraction and stripping of titanium (IV) in leaching solution of blast furnace slag were proceeded.

  18. Process for the fabrication of ceramic fiber reinforced titanium aluminide

    SciTech Connect

    Horsfall, I.; Cundy, S.J.

    1992-10-01

    This paper describes initial work on a novel process for the production of titanium aluminide matrix composites reinforced with short alumina fibers. The processing route involves an adaption of existing metal matrix composite (MMC) fabrication technology used to produce hybrid particulate/short fiber composites. A preform is produced which contains alumina fibers and titanium metal powder with a fiber content of around 10 percent by volume and approximately 50 percent porosity. This preform is then infiltrated with pure aluminum by a squeeze casting process to produce a fully dense composite of titanium powder and alumina fibers in a metallic aluminum matrix. The composite is then heat treated in a hot isostatic press to react the aluminum and titanium to produce a titanium aluminide matrix. 9 refs.

  19. The biomimetic apatite-cefalotin coatings on modified titanium.

    PubMed

    Kang, Min-Kyung; Lee, Sang-Bae; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2012-02-03

    Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Release of antibiotic was evaluated by UV/VIS spectrometry, and the antibacterial effect was evaluated on Streptococcus mutans. After the second coating step, we observed a thick homogeneous apatite layer that contained the antibiotic, cefalotin. The titanium formed a rutile phase after the heat treatment, and a carbonated apatite phase appeared after biomimetic coating. We found that the modified titanium increased the loading of cefalotin onto the hydroxyapatite coated surface. The results suggested that modified titanium coated with a cefalotin using biomimetic coating method might be useful for preventing local post-surgical implant infections.

  20. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  1. Effect of sandblasting on fracture load of titanium ceramic crowns

    PubMed Central

    Moldi, Arvind I.; Bhandari, Kishor Singh; Nagral, Sharanbassapa; Deshpandey, Sumit; Kulkarni, Pawan

    2015-01-01

    Purpose of the Study: It is difficult to achieve a reliable bond between the titanium and veneering porcelain. The aim of this study was to evaluate the bond strength between titanium ceramic crowns. Materials and Methods: The surfaces of titanium copings were divided in two groups. Group A sandblasted with 250 um (n = 10) and Group B without sandblasting (n = 10). Low-fusing porcelain was bonded over copings. A universal testing machine was used to determine the fracture load (N) of the crowns. All data were compared using Student's t-test. Results: There was a significant difference in fracture toughness between two groups (P = 0.05). The mean value of fracture strength for Group A was 721.66 N and for Group B was 396.39 N. Conclusions: Sandblasting improves the bond strength between titanium, and ceramic, mechanical bonding plays a crucial role in the bonding between titanium and ceramic. PMID:26929517

  2. Effect of chemical polishing in titanium materials for low outgassing

    NASA Astrophysics Data System (ADS)

    Ishizawa, K.; Kurisu, H.; Yamamoto, S.; Nomura, T.; Murashige, N.

    2008-03-01

    A chemical polishing using a nitric acid solution was found to be the most suitable for the titanium materials. 1.8 nm of small surface roughness was observed in a microscopic range in 1 μm square, and 7 nm of a thin oxide layer was shown to exist for the chemically polished titanium. The surface processing for the titanium was developed combining the chemical polishing and the precision cleaning. The chemically polished pure titanium of JIS grade 2 showed extremely low outgassing rate below 10-12 Pams-1 after baking process, which is two orders of magnitude smaller than that for standard vacuum materials under the same baking condition. Outgassing rates of the titanium is about 1/5 of that for a stainless steel without baking process.

  3. Adhesion of osteoblasts to a nanorough titanium implant surface

    PubMed Central

    Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš

    2011-01-01

    This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478

  4. Micro-organism and cell viability on antimicrobially modified titanium.

    PubMed

    Omori, S; Shibata, Y; Arimoto, T; Igarashi, T; Baba, K; Miyazaki, T

    2009-10-01

    When titanium is anodized by discharge in NaCl solution, both antimicrobial activity and osteoconductivity are conferred. The viability of adherent micro-organisms and cells on antimicrobial titanium remains uncertain. We hypothesized that a thin peroxidation barrier would efficiently destroy adherent bacteria, whereas adherent osteoblastic cells would be viable, since these cells adhere to the surface indirectly though serum proteins. The efficacy of antimicrobial titanium appears to be based on peroxidation, since peroxidation products were detected in parallel with the destruction of bacterial cell-surface structures. The peroxidation effect of antimicrobial titanium was confined to the surface within narrow limits. The viability of osteoblastic cells on the surface was strongly dependent on the presence of serum protein, whereas that of adherent Streptococcus mutans was not affected by the presence of serum proteins. Therefore, differences in the adherent systems used by bacteria and osteoblastic cells are important determinants of their viability on antimicrobial titanium.

  5. Investigating Preservice STEM Teacher Conceptions of STEM Education

    ERIC Educational Resources Information Center

    Radloff, Jeff; Guzey, Selcen

    2016-01-01

    Surrounding the national emphasis on improving STEM education, effective STEM educators are required. Connected, yet often overlooked, is the need for effective preservice STEM teaching instruction for incoming educators. At a basic level, preservice STEM teacher education should include STEM content, pedagogy, and conceptualization. However, the…

  6. INTERNAL ADAPTATION OF CAST TITANIUM CROWNS

    PubMed Central

    da Rocha, Sicknan Soares; Adabo, Gelson Luis; Ribeiro, Ricardo Faria; Fonseca, Renata Garcia

    2007-01-01

    As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm). For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height) was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430°C, 515°C and 600°C. The crowns were cleaned individually in a solution (1% HF + 13% HNO3) for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X) and measured by the Leica Qwin image analysis system (mm2). The data for each experimental condition (n=8) were analyzed by Kruskal-Wallis non-parametric test (á=0.05). The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD) of internal misfit were obtained for the 430°C/100%: (7.25 mm2 ±1.59) and 600°C/100% (8.8 mm2 ±2.25) groups, which presented statistically similar levels of internal misfit. PMID:19089139

  7. Magnetic susceptibility of tetragonal titanium dioxide

    USGS Publications Warehouse

    Senftle, F.E.; Pankey, T.; Grant, F.A.

    1960-01-01

    Careful measurements have been made of the magnetic susceptibility of the rutile and anatase crystalline forms of titanium dioxide. The magnetic susceptibility of a single crystal of high-purity rutile was found to be (0.067??0.0015)??10-6 emu per gram, and was temperature-independent from 55??to 372??K. Difficulty was encountered in obtaining a good value of the magnetic susceptibility of anatase because of impurities. However, a value of 0.02??10-6 emu per gram was obtained as a maximum value for anatase powder. A discussion is given for the different values obtained for anatase and rutile. ?? 1960 The American Physical Society.

  8. Characterization of cellular titanium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hrabe, Nikolas Wilson

    By controlling structural features (relative density, pore size, strut size) of cellular titanium (also known as porous titanium), the mechanical properties can be optimized to reduce the effects of stress shielding currently observed in load-bearing bone replacement implants. Thermal gravimetric analysis of a sacrificial scaffold system lead to important processing modifications in an attempt to meet chemistry requirements for surgical grade titanium not met in previous work. Despite these modifications chemistry did not meet requirements for carbon, nitrogen, or oxygen. Commercially pure titanium (CPTi) porous structures were made over a range of relative densities using laser engineered net shaping (LENS). From monotonic compression tests, yield strength and elastic modulus in the range of bone were achieved but did not scale with relative density as predicted by the Gibson-Ashby analytical model. Compression-compression fatigue resistance was high, as no failures were observed for test stresses up to 133% yield strength, which is thought to be influenced by the dense exterior shell of the samples. Structures were also fabricated over a range of relative densities using selective electron beam melting (SEBM or EBM), and structural, mechanical, and in-vitro properties were measured for three materials (as-built Ti-6A1-4V, Ti-6A1-4V after hot isostatic pressing (HIPing), and as-built CPTi). For structures of all three materials, yield strength and elastic modulus was within the range for bone. Numerical modeling results suggested cell shape and sintered particles on strut surfaces affect the scaling of elastic modulus with relative density and lead to the observed difference from the Gibson-Ashby model. Normalized fatigue strengths at 106 cycles ranged from 0.150.25 for as-built Ti-6A1-4V structures, which is lower than expected. Results for HIPed Ti-6A1-4V structures and CPTi structures suggest that stress concentrations from closed porosity within struts as well

  9. Laser-TIG Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  10. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  11. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  12. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  13. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  14. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  15. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  16. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  17. Water-soluble titanium alkoxide material

    DOEpatents

    Boyle, Timothy J.

    2010-06-22

    A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.

  18. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  19. Sensitiveness of the colorimetric estimation of titanium

    USGS Publications Warehouse

    Wells, R.C.

    1911-01-01

    The accuracy of the colorimetric estimation of titanium is practically constant over concentrations ranging from the strongest down to those containing about 1.5 mg. TiO2 in 100 cc. The change in concentration required to produce a perceptible difference in intensity between two solutions, at favorable concentrations, was found to be about 6.5 per cent, which does not differ much from the results of others with chromium and copper solutions. With suitable precautions, such as comparing by substitution and taking the mean of several settings or of the two perceptibly different extremes, the accuracy of the colorimetric comparisons appears to be about 2 per cent.

  20. Titanium carbide coatings for aerospace ball bearings

    NASA Technical Reports Server (NTRS)

    Boving, Hans J.; Haenni, Werner; Hintermann, HANS-E.

    1988-01-01

    In conventional ball bearings, steel to steel contacts between the balls and the raceways are at the origin of microwelds which lead to material transfer, surface roughening, lubricant breakdown, and finally to a loss in the bearing performances. To minimize the microwelding tendencies of the contacting partners it is necessary to modify their surface materials; the solid to solid collisions themselves are difficult to avoid. The use of titanium carbide coated steel balls can bring spectacular improvements in the performances and lifetimes of both oil-grease lubricated and oil-grease free bearings in a series of severe applications.

  1. Crystallization of modified hydroxyapatite on titanium implants

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Izmailov, R. R.; Ghyngazov, S. A.; Zaits, A. V.

    2016-02-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface.

  2. Calibration of Thermal Desorption System (TDS) Response to Hydrogen for Analysis of Titanium Subhydride and Titanium Hydride

    SciTech Connect

    Mills, Bernice E.

    2013-07-01

    The equipment and method for and results of calibration of the Sandia/CA TDS system for hydrogen quantification is presented. This technique for calibration can be used to quantify the hydrogen content titanium subhydride, titanium hydride, and any other hydrogen-containing material that desorbs its hydrogen in the form of molecular hydrogen below 1450°C.

  3. Metal debris concentrations in soft tissues adjacent to loosened femoral stems is higher in uncemented than cemented implants

    PubMed Central

    2014-01-01

    Background There are still many questions related to aseptic femoral stem loosening. Systemic and local immune responses to the implanted “foreign body” is one of the reasons for loosening. The purpose of the study was to measure metal ion concentration (Ti, Co, Cr, Mo, Ni, Al) around loosened femoral stems and compare their levels around uncemented and cemented implants. Methods This paper reports 50 hips operated for isolated stem loosening, in 50 patients at the mean age of 57 years (from 21 to 87). There were 25 cemented (Co,Cr29,Mo,Ni) and 25 uncemented (Ti, Al) stems. The mean follow-up from primary hip replacement to revision was 10.1 years (from 0.5 to 17). During the procedure, scar tissue around the stem was taken for analysis of metal ions. Results The concentrations of titanium and aluminium in soft tissues around uncemented loosened stems were higher than cemented ones (p < 0.001, p < 0.001 respectively). However, no statistically significant differences were observed between both types of stems in terms of ions of the metal of which cemented implants had been made of (Co, Cr, Mo, Ni). Conclusions In soft tissue around a loosened stem, the concentrations of metal ions from implants are much higher in case of uncemented stems than of cemented ones. Metal ions from vitalium femoral heads were found around uncemented stems in similar values to cemented streams. PMID:25098913

  4. Structure of the welding zone between titanium and orthorhombic titanium aluminide for explosion welding: II. Local melting zones

    NASA Astrophysics Data System (ADS)

    Grinberg, B. A.; Ivanov, M. A.; Rybin, V. V.; Kuz'min, S. V.; Lysak, V. I.; Elkina, O. A.; Patselov, A. M.; Antonova, O. V.; Inozemtsev, A. V.

    2011-10-01

    The structure and chemical composition of the local melting zones that form during explosion welding of orthorhombic titanium aluminide with commercial-purity titanium near a wavy interface between them are studied. The Rayleigh number is estimated to propose a possible mechanism for the formation of a concentric structure in these zones. Titanium aluminide fragments are detected near the zone boundaries. It is assumed that the fragmentation in the transition zone is caused by the division of a material into loosely coupled microvolumes under the action of a strong external action in a time comparable with the explosion time. Outside the transition zone, fragmentation occurs via a traditional way beginning from dislocation accumulation. Both processes occur in titanium aluminide and only one process (banded structure formation) takes place in titanium.

  5. Global Collaborative STEM Education

    NASA Astrophysics Data System (ADS)

    Meabh Kelly, Susan; Smith, Walter

    2016-04-01

    Global Collaborative STEM Education, as the name suggests, simultaneously supports two sets of knowledge and skills. The first set is STEM -- science, technology, engineering and math. The other set of content knowledge and skills is that of global collaboration. Successful global partnerships require awareness of one's own culture, the biases embedded within that culture, as well as developing awareness of the collaborators' culture. Workforce skills fostered include open-mindedness, perseverance when faced with obstacles, and resourceful use of technological "bridges" to facilitate and sustain communication. In respect for the 2016 GIFT Workshop focus, Global Collaborative STEM Education projects dedicated to astronomy research will be presented. The projects represent different benchmarks within the Global Collaborative STEM Education continuum, culminating in an astronomy research experience that fully reflects how the global STEM workforce collaborates. To facilitate wider engagement in Global Collaborative STEM Education, project summaries, classroom resources and contact information for established international collaborative astronomy research projects will be disseminated.

  6. Allergic contact stomatitis caused by a titanium nitride-coated implant abutment: a clinical report.

    PubMed

    Lim, Hyun-Pil; Lee, Kwang-Min; Koh, Young-Il; Park, Sang-Won

    2012-10-01

    A patient developed contact mucositis after being treated with a titanium nitride implant abutment. Patch testing disclosed a positive reaction to titanium nitride. After removal of the titanium nitride-coated abutment and placement of an uncoated abutment, all signs and symptoms disappeared. This clinical report suggests that titanium nitride-coated abutments may be a potential allergen in some patients.

  7. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this subpart E are applicable to discharges from (a) mines obtaining titanium ores from...

  8. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this subpart E are applicable to discharges from (a) mines obtaining titanium ores from...

  9. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this subpart E are applicable to discharges from (a) mines obtaining titanium ores from...

  10. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  11. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  12. Fibroblast behavior after titanium surfaces exposure

    PubMed Central

    Danza, Matteo; Zollino, Ilaria; Candotto, Valentina; Cura, Francesca; Carinci, Francesco

    2012-01-01

    Background: The main requirements for a good material are its ability to promote attraction and adhesion of bone precursor cells and their proliferation and differentiation. Different biocompatible materials are currently employed as scaffold. Among these, titanium is considered a gold standard because of its biocompatibility and good corrosion resistance. Materials and Methods: The aim of this work was to compare two different AoN titanium layers (GR4 and GR5) to investigate which one had a greater osteoconductive power using human fibroblasts (HFb) culture at two different time-points. The expression levels of some adhesion and traction-resistance related genes (COL11A1, COL2A1, COL9A1, DSP, ELN, HAS1, and TFRC) were analyzed using real time reverse transcription-polymerase chain reaction. Results: After 7 days of treatment with TiA 4GR, the only two up-regulated genes were COL2A1 and DSP. After 15 days of treatment, none of genes over expressed. Conclusion: Our preliminary results suggest that neither AoN 4GR nor AoN 5GR are able to promote the production of protein involved in cell–cell and cell–matrix adhesion and in stress-resistance, required for a good outcome in dental implantology. PMID:23814586

  13. Aggregation stability of titanium dioxide hydrosols

    SciTech Connect

    Grishchenko, L.I.; Medvedkova, N.G.; Nazarov, V.V.; Frolov, Yu.G.

    1994-03-01

    Titanium dioxide based ceramic membranes have recently attracted great interest because of their catalytic and photocatalytic abilities and other advantages typical of the ceramic membranes. For the preparation of the selective layer of the ultrafiltration ceramic TiO{sub 2}-based membranes, hydrosol, as a rule, is used as a starting material. The synthesis of a selective layer of the membrane with predetermined properties requires data on the colloid-chemical properties of these sols, which are rather scarce. The electrophoretic mobility and the size of the scattering centers of the TiO{sub 2} hydrosols obtained through titanium tetraethoxide hydrolysis were measured at 0.5-3.0 pH units. Coagulation thresholds were estimated in the presence of NaNO{sub 3} and Na{sub 2}SO{sub 4}. Under the conditions investigated, the aggregation stability was shown to be mainly dependent on the structural component of the disjoining pressure. The existence of a hydrated gel-layer on the surface of sol particles was proposed.

  14. Titanium for long-term tritium storage

    SciTech Connect

    Heung, L.K.

    1994-12-01

    Due to the reduction of nuclear weapon stockpile, there will be an excess of tritium returned from the field. The excess tritium needs to be stored for future use, which might be several years away. A safe and cost effective means for long term storage of tritium is needed. Storing tritium in a solid metal tritide is preferred to storing tritium as a gas, because a metal tritide can store tritium in a compact form and the stored tritium will not be released until heat is applied to increase its temperature to several hundred degrees centigrade. Storing tritium as a tritide is safer and more cost effective than as a gas. Several candidate metal hydride materials have been evaluated for long term tritium storage. They include uranium, La-Ni-Al alloys, zirconium and titanium. The criteria used include material cost, radioactivity, stability to air, storage capacity, storage pressure, loading and unloading conditions, and helium retention. Titanium has the best combination of properties and is recommended for long term tritium storage.

  15. [Titanium dioxide nanoparticles--biological effects].

    PubMed

    Świdwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide occurs as particles of various sizes. Particles of up to 100 nm, corresponding to nanoparticles, and in the size range of 0.1-3 mm are the most frequently used. Titanium dioxide in a bulk form is not classified as dangerous substance, nevertheless nanoparticles may cause adverse health effects. Inhalation exposure to nano-TiO2, causes pulmonary inflammation that may lead to fibrotic and proliferative changes in the lungs. Many studies confirm the genotoxic effect of TiO2, especially in the form of nanoparticles, on mammal and human cells. In rats exposed to TiO2-nanoparticles by inhalation the development of tumors has been observed. However, there is no evidence of additional lung cancer risk or mortality in workers exposed to TiO2 dust. There are some studies demonstrating the adverse effect of TiO2-nanoparticles on fetal development, as well as on reproduction of animals. TiO2 nanoparticles find a still wider application and thus the risk of occupational exposure to this substance increases as well. Considering such alarming data on the biological activity of TiO2 nanoparticles, more attention should be paid to occupational exposure and its health effects. Properties of the nanoparticles, due to their larger surface area and reactivity, differ significantly from the inhalable dust of TiO2, for which the hygiene standards are mandatory in Poland.

  16. Titanium dioxide photocatalytic inactivation of prions.

    PubMed

    Paspaltsis, Ioannis; Kotta, Konstantia; Lagoudaki, Roza; Grigoriadis, Nikolaos; Poulios, Ioannis; Sklaviadis, Theodoros

    2006-10-01

    Prions are postulated to be the infectious agents of a family of transmissible, fatal, neurodegenerative disorders affecting both humans and animals. The possibility of prion transmission constitutes a public-health risk that confronts regulatory authorities everywhere. The main problem in handling prions is the fact that they are extremely resistant to standard decontamination methods. Thus, the use of harsh and expensive practices to destroy prions is inevitable. The development of applicable and efficient prion-inactivation practices is still highly important for the prevention of accidental transmission. In the search for effective and environmentally friendly methods to eliminate organic compounds and bacteria, much attention has been focused on the so-called advanced oxidation processes. These are based on the formation of hydroxyl radicals, which are known to possess a high reductive potential. This study tested the potential of titanium dioxide, an inexpensive and completely inert reagent, to inactivate prions in a heterogeneous photocatalytic process. Initial in vitro experiments were followed by a bioassay with the scrapie strain 263K in Syrian hamsters. The results obtained from this study indicate that titanium dioxide photocatalytic treatment of scrapie-infected brain homogenates reduces infectivity titres significantly.

  17. Neutron Activation Analysis, A Titanium Material Study

    NASA Astrophysics Data System (ADS)

    Dresser, Charles

    2011-04-01

    In order to obtain faster and more accurate measurements of radioactive contaminates within a sample of titanium we expose it to a neutron flux. This flux will activate the stable and quasi stable (those with extremely long half lives) isotopes into resultant daughter cells that are unstable which will result in shorter half lives on the order of minutes to days. We measured the resulting decays in the Germanium Crystal Detector and obtained a complex gamma spectrum. A mathematical model was used to recreate the production of the measured isotopes in the neutron flux and the resultant decays. Using this model we calculated the mass percent of the contaminate isotopes inside our titanium sample. Our mathematical model accounted for two types of neutron activation, fast or thermal activation, since this would determine which contaminate was the source of our signals. By looking at the percent abundances, neutron absorption cross-sections and the resulting mass percents of each contaminate we are able to determine the exact source of our measured signals. Additionally we implemented a unique ratio method to cross check the mathematical model. Our results have verified that for fast neutron activation and thermal neutron activation the method is accurate.

  18. Molecular and physiological responses to titanium dioxide ...

    EPA Pesticide Factsheets

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  19. Outgassing Properties of Chemically Polished Titanium Materials

    NASA Astrophysics Data System (ADS)

    Kurisu, Hiroki; Kimoto, Gou; Fujii, Hiroaki; Tanaka, Kazuhiko; Yamamoto, Setsuo; Matsuura, Mitsuru; Ishizawa, Katsunobu; Nomura, Takeru; Murashige, Nobuyuki

    We developed a chemical polishing (CP) for titanium materials applicable to ultrahigh vacuum (UHV) and extremely high vacuum (XHV) systems. The surface roughness, Ra, of the chemically polished titanium is obtained to be 25 nm by the atomic force microscopy measurement. This value is smaller than those of the base metal (BM) and the buff-polished (BP) samples. The thickness of the surface oxide layer of CP sample is estimated to be 7 nm by the cross section of transmission electron micrograph. Amount of desorption gas of CP sample obtained by the thermal desorption measurement is smaller than those of BM and BP sample, and is the same as that of the mechanochemically polished (MCP) sample. The outgassing rate of CP sample after baking at 150°C×20 h is obtained to be 7×10-13 Pa•m•s-1. This value is lower than that of standard vacuum materials by two orders of magnitude after the ordinary baking.

  20. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  1. Anomalous Oxidative Diffusion in Titanium Pyrotechnic Powders

    SciTech Connect

    Erikson, William W.; Coker, Eric N.

    2016-11-10

    It has long been observed that oxidation processes in metals tend to follow a parabolic rate law associated with the growth of a surface oxide layer. Here we observe that for certain titanium powders, the expected parabolic law (∝t1/2) is recovered, yet for others, the exponent differs significantly. One explanation for this non-parabolic, anomalous diffusion arises from fractal geometry. Theoretical considerations indicate that the time response of diffusion-limited processes in an object closely follow a power-law in time (tn) with n=(E–D)/2, where E is the object's Euclidean dimension and D is its boundary's Hausdorff dimension. Non-integer, (fractal) values of D will result in n≠1/2. Finite element simulations of several canonical fractal objects were performed to verify the application of this theory; the results matched the theory well. Two different types of titanium powder were tested in isothermal thermogravimetric tests under dilute oxygen. Time-dependent mass uptake data were fit with power-law forms and the associated exponents were used to determine an equivalent fractal dimension. One Ti powder type has an implied surface dimension of ca. 2.3 to 2.5, suggesting fractal geometry may be operative. Finally, the other has a dimension near 2.0, indicating it behaves like traditional material.

  2. Anomalous Oxidative Diffusion in Titanium Pyrotechnic Powders

    DOE PAGES

    Erikson, William W.; Coker, Eric N.

    2016-11-10

    It has long been observed that oxidation processes in metals tend to follow a parabolic rate law associated with the growth of a surface oxide layer. Here we observe that for certain titanium powders, the expected parabolic law (∝t1/2) is recovered, yet for others, the exponent differs significantly. One explanation for this non-parabolic, anomalous diffusion arises from fractal geometry. Theoretical considerations indicate that the time response of diffusion-limited processes in an object closely follow a power-law in time (tn) with n=(E–D)/2, where E is the object's Euclidean dimension and D is its boundary's Hausdorff dimension. Non-integer, (fractal) values of Dmore » will result in n≠1/2. Finite element simulations of several canonical fractal objects were performed to verify the application of this theory; the results matched the theory well. Two different types of titanium powder were tested in isothermal thermogravimetric tests under dilute oxygen. Time-dependent mass uptake data were fit with power-law forms and the associated exponents were used to determine an equivalent fractal dimension. One Ti powder type has an implied surface dimension of ca. 2.3 to 2.5, suggesting fractal geometry may be operative. Finally, the other has a dimension near 2.0, indicating it behaves like traditional material.« less

  3. Mesoporous titanium dioxide coating for metallic implants.

    PubMed

    Xia, Wei; Grandfield, Kathryn; Hoess, Andreas; Ballo, Ahmed; Cai, Yanling; Engqvist, Håkan

    2012-01-01

    A bioactive mesoporous titanium dioxide (MT) coating for surface drug delivery has been investigated to develop a multifunctional implant coating, offering quick bone bonding and biological stability. An evaporation induced self-assembly (EISA) method was used to prepare a mesoporous titanium dioxide coating of the anatase phase with BET surface area of 172 m(2)/g and average pore diameter of 4.3 nm. Adhesion tests using the scratch method and an in situ screw-in/screw-out technique confirm that the MT coating bonds tightly with the metallic substrate, even after removal from bone. Because of its high surface area, the bioactivity of the MT coating is much better than that of a dense TiO(2) coating of the same composition. Quick formation of hydroxyapatite (HA) in vitro can be related to enhance bonding with bone. The uptake of antibiotics by the MT coating reached 13.4 mg/cm(3) within a 24 h loading process. A sustained release behavior has been obtained with a weak initial burst. By using Cephalothin as a model drug, drug loaded MT coating exhibits a sufficient antibacterial effect on the material surface, and within millimeters from material surface, against E.coli. Additionally, the coated and drug loaded surfaces showed no cytotoxic effect on cell cultures of the osteoblastic cell line MG-63. In conclusion, this study describes a novel, biocompatiblemesoporous implant coating, which has the ability to induce HA formation and could be used as a surface drug-delivery system.

  4. Survey of Radiation Effects in Titanium Alloys

    SciTech Connect

    Mansur, Louis K

    2008-08-01

    Information on radiation effects in titanium alloys has been reviewed. Only sparse experimental data from fission reactor and charged particle irradiations is available, none of which is directly applicable to the SNS. Within this limited data it is found that although mechanical properties are substantially degraded, several Ti alloys may retain acceptable properties to low or moderate doses. Therefore, it is recommended that titanium alloys be examined further for application to the SNS target. Since information directly relevant to the SNS mercury target environment and irradiation conditions is not available, it is recommended that ORNL generate the necessary experimental data using a graded approach. The first testing would be for cavitation erosion resistance using two different test devices. If the material performs acceptably the next tests should be for long term mercury compatibility testing of the most promising alloys. Irradiation tests to anticipated SNS displacement doses followed by mechanical property measurements would be the last stage in determining whether the alloys should be considered for service in the SNS target module.

  5. Porous titanium particles for acetabular reconstruction in total hip replacement show extensive bony armoring after 15 weeks

    PubMed Central

    Walschot, Lucas H B; Aquarius, René; Verdonschot, Nico; Buma, Pieter

    2014-01-01

    Background and purpose — The bone impaction grafting technique restores bone defects in total hip replacement. Porous titanium particles (TiPs) are deformable, like bone particles, and offer better primary stability. We addressed the following questions in this animal study: are impacted TiPs osteoconductive under loaded conditions; do released micro-particles accelerate wear; and are systemic titanium blood levels elevated after implantation of TiPs? Animals and methods — An AAOS type-III defect was created in the right acetabulum of 10 goats weighing 63 (SD 6) kg, and reconstructed with calcium phosphate-coated TiPs and a cemented polyethylene cup. A stem with a cobalt chrome head was cemented in the femur. The goats were killed after 15 weeks. Blood samples were taken pre- and postoperatively. Results — The TiP-graft layer measured 5.6 (SD 0.8) mm with a mean bone ingrowth distance of 2.8 (SD 0.8) mm. Cement penetrated 0.9 (0.3–1.9) mm into the TiPs. 1 reconstruction showed minimal cement penetration (0.3 mm) and failed at the cement-TiP interface. There were no signs of accelerated wear, metallic particle debris, or osteolysis. Median systemic titanium concentrations increased on a log-linear scale from 0.5 (0.3–1.1) parts per billion (ppb) to 0.9 (0.5–2.8) ppb (p = 0.01). Interpretation — Adequate cement pressurization is advocated for impaction grafting with TiPs. After implantation, calcium phosphate-coated TiPs were osteoconductive under loaded conditions and caused an increase in systemic titanium concentrations. However, absolute levels remained low. There were no signs of accelerated wear. A clinical pilot study should be performed to prove that application in humans is safe in the long term. PMID:25238431

  6. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress.

  7. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  8. Laser shock peening of titanium 6-4 alloy

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Hopkins, A.; Laber, M. W.

    2000-04-01

    Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Titanium disks, 20-mm in diameter, and ranging in thicknesses from zero (bare LiF) to 3-mm were subjected to laser shock to monitor amplitude and temporal stress profiles of the pulsed laser. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.7 GPa while propagating through 3-mm thick disk of titanium 6-4.

  9. Laser Shock Peening of Titanium 6-4 Alloy

    NASA Astrophysics Data System (ADS)

    Hopkins, Alan; Laber, Mark; Brar, Nachhatter S.

    1999-06-01

    shock 99 Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Disks of titanium, 0 to 3-mm thick and 20-mm in diameter, were subjected to the pulsed laser to monitor amplitude and temporal stress profiles of laser shock. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.6 GPa while propagating through 3-mm thick disk of titanium 6-4. *Supported by the U.S. Air Force Research Laboratory

  10. Temporarily alloying titanium to facilitate friction stir welding

    SciTech Connect

    Hovanski, Yuri

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  11. Decolorization of methylene blue in aqueous suspensions of titanium peroxide.

    PubMed

    Ogino, Chiaki; Dadjour, Mahmoud Farshbaf; Iida, Yasuo; Shimizu, Nobuaki

    2008-05-01

    The pretreatment of TiO(2)-photocatalysts in solutions of H(2)O(2) was studied by examining the decolorization of methylene blue in the dark. Incubation of TiO(2) particles in H(2)O(2) solutions increased the oxidizing capacity of TiO(2). Methylene blue (0.3 mM) was degraded in the presence of pretreated TiO(2), and a decolorizing ratio of 47% was obtained after a 48-h incubation period in the presence of 5.0 g/L pretreated TiO(2). Titanium peroxide as a stable oxidant, which can be synthesized with the reaction of titanium sulfate and H(2)O(2), was studied in the decolorizing process of methylene blue. Concentrations of methylene blue were significantly reduced in the presence of titanium peroxide, and a greater extent of decolorization was obtained with larger amounts of titanium peroxide. A 63% decrease in methylene blue concentration was achieved in 5h incubation in the presence of 4.0 g/L titanium peroxide. H(2)O(2) accelerated the decolorizing process in the presence of titanium peroxide. The addition of 100 mM H(2)O(2) to a methylene blue solution containing 2.0 g/L titanium peroxide increased the decolorizing ratio to 85% after 5 h incubation. The addition of a hydroxyl radical scavenger, dimethyl sulfoxide, significantly decreased the decolorizing ratio, indicating the role of hydroxyl radicals in the oxidation process.

  12. Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model.

    PubMed

    Ueno, Takeshi; Yamada, Masahiro; Suzuki, Takeo; Minamikawa, Hajime; Sato, Naoko; Hori, Norio; Takeuchi, Kazuo; Hattori, Masami; Ogawa, Takahiro

    2010-03-01

    In this study, we tested the potential of UV-photofunctionalized titanium surfaces to overcome compromised bone-titanium integration in a gap healing model. Titanium in rod and disk forms was acid etched and then stored for 4 weeks under dark ambient conditions. Titanium rods with and without UV pretreatment were placed into a rat femur with (contact healing) or without (gap healing) contact with the innate cortical bone. The titanium implants were subjected to a biomechanical push-in test, micro-CT bone morphometry, and surface elemental analysis after 2 weeks of healing. The strength of bone-titanium integration in the gap healing model was one-third of that in the contact healing model. However, UV-treated implants in the gap healing condition produced a strength of bone-titanium integration equivalent to that of untreated implants in the contact healing condition. Bone volume around UV-treated implants was 2- to 3-fold greater than that around the untreated implants in the gap healing model. A bone generation profile drawn along the long axis of the implant exhibited greater contrast between the untreated and UV-treated surfaces in the cortical area than in the bone marrow area. The bone tissue formed on UV-treated implants showed a higher Ca/P ratio than that formed on untreated titanium. The rate of cell proliferation, alkaline phosphatase activity, and calcium deposition in femoral periosteal cells and in bone marrow-derived osteoblasts were greater in cultures on UV-treated titanium disks than in cultures on untreated disks. The UV-enhanced function in periosteal cells was more pronounced when they were co-cultured with bone marrow-derived osteoblasts, indicating a synergistic effect of UV-treated titanium with biological signals from bone marrow-derived osteoblasts. Within the limitation of the model used in this study, UV-photofunctionalized titanium surfaces may overcome the challenging condition of bone-titanium integration without cortical bone support

  13. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  14. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants A ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  15. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    PubMed

    Baranowski, Andreas; Klein, Anja; Ritz, Ulrike; Ackermann, Angelika; Anthonissen, Joris; Kaufmann, Kerstin B; Brendel, Christian; Götz, Hermann; Rommens, Pol M; Hofmann, Alexander

    2016-01-01

    Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both

  16. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein

    PubMed Central

    Ritz, Ulrike; Ackermann, Angelika; Anthonissen, Joris; Kaufmann, Kerstin B.; Brendel, Christian; Götz, Hermann; Rommens, Pol M.; Hofmann, Alexander

    2016-01-01

    Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both

  17. Gamma ray treatment enhances bioactivity and osseointegration capability of titanium.

    PubMed

    Ueno, Takeshi; Takeuchi, Masato; Hori, Norio; Iwasa, Fuminori; Minamikawa, Hajime; Igarashi, Yoshimasa; Anpo, Masakazu; Ogawa, Takahiro

    2012-11-01

    The time-dependent degradation of titanium bioactivity (i.e., the biological aging of titanium) has been reported in previous studies. This phenomenon is caused by the loss of hydrophilicity and the inevitable occurrence of progressive contamination of titanium surfaces by hydrocarbons. In this study, we tested the hypothesis that gamma ray treatment, owing to its high energy to decompose and remove organic contaminants, enhances the bioactivity and osteoconductivity of titanium. Titanium disks were acid-etched and stored for 4 weeks. Rat bone marrow-derived osteoblasts (BMOs) were cultured on titanium disks with or without gamma ray treatment (30 kGy) immediately before experiments. The cell density at day 2 increased by 50% on gamma-treated surfaces, which reflected the 25% higher rate of cell proliferation. Osteoblasts on gamma-treated surfaces showed 30% higher alkaline phosphatase activity at day 5 and 60% higher calcium deposition at day 20. The strength of in vivo bone-implant integration increased by 40% at the early healing stage of week 2 for gamma-treated implants. Gamma ray-treated surfaces regained hydrophilicity and showed a lower percentage of carbon (35%) as opposed to 48% on untreated aged surfaces. The data indicated that gamma ray pretreatment of titanium substantially enhances its bioactivity and osteoconductivity, in association with the significant reduction in surface carbon and the recovery of hydrophilicity. The results suggest that gamma ray treatment could be an effective surface enhancement technology to overcome biological aging of titanium and improve the biological properties of titanium implants.

  18. Titania sol-gel coatings with silver on non-porous titanium and titanium alloys

    NASA Astrophysics Data System (ADS)

    Horkavcova, D.; Cerny, M.; Sanda, L.; Novak, P.; Jablonska, E.; Zlamalova-Cflova, Z.; Helebrant, A.

    2016-04-01

    The objective of the work was to prepare and characterize titania sol-gel coatings on non-porous titanium and newly developed titanium alloys. Basic titania sol contained two forms of silver. Titania sol without silver was used as a reference sample. Coatings were prepared by dip-coating technique during stirring and fired. Coatings after firing were characterized by scanning electron microscopy. All titania coatings were measured to determine their adhesive and bactericidal properties. Adhesion of the coatings to the substrate was measured by tape test. Gram-negative bacteria E. coli was used for the bactericidal test. Coated substrates were immersed into suspension of E. coli in physiological solution for 24 hours. The in vitro cytotoxicity test was performed after one day. The bactericidal effect without toxicity was confirmed for selected coatings.

  19. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  20. Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature

    PubMed Central

    Wu, H. C.; Kumar, A.; Wang, J.; Bi, X. F.; Tomé, C. N.; Zhang, Z.; Mao, S. X.

    2016-01-01

    Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: 〈0001〉hcp||〈001〉fcc and , different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning. PMID:27067515

  1. Engineering Titanium for Improved Biological Response

    SciTech Connect

    Orme, C; Bearinger, J; Dimasi, E; Gilbert, J

    2002-01-23

    The human body and its aggressive environment challenge the survival of implanted foreign materials. Formidable biocompatibility issues arise from biological, chemical, electrical, and tribological origins. The body's electrolytic solution provides the first point of contact with any kind of implant, and is responsible for transport, healing, integration, or attack. Therefore, determining how to successfully control the integration of a biomaterial should begin with an analysis of the early interfacial dynamics involved. setting, a complicated feedback system of solution chemistry, pH, ions, and solubility exists. The introduction of a fixation device instantly confounds this system. The body is exposed to a range of voltages, and wear can bring about significant shifts in potentials across an implant. In the environment of a new implant the solution pH becomes acidic, ionic concentrations shift, cathodic currents can lead to corrosion, and oxygen levels can be depleted; all of these impact the ability of the implant to retain its protective oxide layer and to present a stable interface for the formation of a biolayer. Titanium has been used in orthopedic and maxilofacial surgery for many years due to its reputation as being biocompatible and its ability to osseointegrate. Osseointegration is defined as direct structural and functional connection between ordered, living bone, and the surface of a load carrying implant. Branemark discovered this phenomenon in the 60's while examining titanium juxtaposed to bone. The mechanism by which titanium and its passivating oxide encourage osseosynthetic activity remains unknown. However in general terms the oxide film serves two purposes: first to provide a kinetic barrier that prevents titanium from corroding and second to provide a substrate that allows the constituents of bone (calcium phosphate crystals, cells, proteins, and collagen) to bond to it. We believe that the electrochemical environment dictates the titanium

  2. Producing lower-cost titanium for automotive applications

    NASA Astrophysics Data System (ADS)

    Hartman, A. D.; Gerdemann, S. J.; Hansen, J. S.

    1998-09-01

    Although titanium has attractive properties that can improve the performance and economy of automobiles, at its current cost, it cannot compete with steel in most applications for which it is suited. It is readily apparent that titanium cannot be considered a viable mass-market automotive materials alternative as long as it is produced with the Kroll process. A look at existing and new technologies (as well as some that have been found lacking) in terms of applicability toward high-volume, low-cost titanium production for automotive applications indicates other options.

  3. Titanium Damage Tolerant Design Data for Propulsion Systems

    DTIC Science & Technology

    1977-08-01

    6 -2- 4 - 6 , Titanium , Crack Propagation Ti 8-1-1, Low Cycle Fatigue Ti 6 -2- 4 -2, Hyperbolic Sine Model 20. ABSTRACT...Laboratory Contract, F33615-75-C-5130, for three titanium alloys, Ti 8-1-1, Ti 6 -2- 4 -2, and Ti 6 -2- 4 - 6 . The program consisted of crack growth threshold...5130, an Air Force Materials Laboratory program to determine the fracture mechanics design properties for three titanium alloys, Ti 6 -2- 4 - 6 ,

  4. The use of titanium and stainless steel in fracture fixation.

    PubMed

    Hayes, J S; Richards, R G

    2010-11-01

    The use of metal in fracture fixation has demonstrated unrivalled success for many years owing to its high stiffness, strength, biological toleration and overall reliable function. The most prominent materials used are electropolished stainless steel and commercially pure titanium, along with the more recent emergence of titanium alloys. Despite the many differences between electropolished stainless steel and titanium, both materials provide a relatively predictable clinical outcome, and offer similar success for fulfilling the main biomechanical and biological requirements of fracture fixation despite distinctive differences in implant properties and biological responses. This article explores these differences by highlighting the limitations and advantages of both materials, and addresses how this translates to clinical success.

  5. Dynamic recovery and recrystallization in titanium alloys by hot deformation

    NASA Astrophysics Data System (ADS)

    Furuhara, T.; Poorganji, B.; Abe, H.; Maki, T.

    2007-01-01

    The microstructural change of β titanium alloys, Ti-15V-3Cr-3Sn-3Al and Ti-10V-2Fe-3Al, and an (α+β) titanium alloy, Ti-6Al-4V, during hot deformation at temperatures in β single-phase and (α+β) two-phase regions was studied. For the β titanium alloys, dynamic recovery takes place dominantly within β grains during deformation in the β single-phase region although some discontinuous dynamic recrystallization occurs along β grain boundaries. The size and fraction of recrystallized β grains increase as strain rate decreases or the deformation temperature rises.

  6. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  7. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  8. Pressure-reaction synthesis of titanium composite materials

    DOEpatents

    Oden, Laurance L.; Ochs, Thomas L.; Turner, Paul C.

    1993-01-01

    A pressure-reaction synthesis process for producing increased stiffness and improved strength-to-weight ratio titanium metal matrix composite materials comprising exothermically reacting a titanium powder or titanium powder alloys with non-metal powders or gas selected from the group consisting of C, B, N, BN, B.sub.4 C, SiC and Si.sub.3 N.sub.4 at temperatures from about 900.degree. to about 1300.degree. C., for about 5 to about 30 minutes in a forming die under pressures of from about 1000 to 5000 psi.

  9. Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Weeks, Carrell E.

    2005-01-01

    Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.

  10. Application of titanium materials to vacuum chambers and components

    NASA Astrophysics Data System (ADS)

    Kurisu, H.; Ishizawa, K.; Yamamoto, S.; Hesaka, M.; Saito, Y.

    2008-03-01

    This paper describes the outgassing properties of titanium materials, and development of vacuum chambers and components for practical UHV/XHV systems. The mechano-chemically polished and the chemically polished titanium materials have a smooth surface and a thin (<= 10 nm) oxide surface layer, which showed extremely low outgassing rate below 10-12 Pams-1 after baking process. In order to fabricate practical vacuum systems welding, metallizing and brazing processes were optimized, and complex shaped vacuum chambers and various vacuum components such as a bellows, valve, electric feedthrough and ceramic duct with titanium sleeve were fabricated. Sufficient mechanical properties and durability were obtained for practical use.

  11. Characterization and Sintering of Armstrong Process Titanium Powder

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-01-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  12. Development of a nanocrystalline titanium aluminide-titanium silicide particulate composite

    SciTech Connect

    Senkov, O.N.; Froes, F.H.; Baburaj, E.G.

    1997-09-01

    In the present work, a combined mechanical alloying-thermohydrogen processing approach was used to produce a nanocrystalline titanium aluminide reinforced with nanometer-size particles of Ti{sub 5}Si{sub 3}. Mechanical alloying and thermohydrogen processing were chosen as very effective methods for grain refinement. The combination of these two processes was expected to produce an even finer microstructure than either process used alone.

  13. Dynamic Multi-Axial Loading Response and Constitutive/Damage Modeling of Titanium and Titanium Alloys

    DTIC Science & Technology

    2006-06-24

    properties like high specific strength, good deformability, reasonable ductility and ability to withstand high temperatures and resistance to corrosion...structure) at room temperature , and at high temperatures it exists as β-titanium (bcc structure). Alloying of this material is performed by adding...applications due to their high strength to weight ratio, ductility, and ability to withstand high temperatures and resist corrosion. The development of

  14. Investigating Preservice STEM Teacher Conceptions of STEM Education

    NASA Astrophysics Data System (ADS)

    Radloff, Jeff; Guzey, Selcen

    2016-10-01

    Surrounding the national emphasis on improving STEM education, effective STEM educators are required. Connected, yet often overlooked, is the need for effective preservice STEM teaching instruction for incoming educators. At a basic level, preservice STEM teacher education should include STEM content, pedagogy, and conceptualization. However, the literature suggests no leading conception of STEM education, and little is known about how preservice STEM teachers are conceptualizing STEM education. In order to explore preservice STEM teacher conceptions of STEM education, preservice teachers at a large, Midwestern research university were given an open-ended survey eliciting both textual and visual responses. Here, we report and discuss the results of employing this instrument in relation with the current STEM conceptualization literature.

  15. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos.

    PubMed

    López-Serrano Oliver, Ana; Muñoz-Olivas, Riansares; Sanz Landaluze, Jon; Rainieri, Sandra; Cámara, Carmen

    2015-01-01

    The production of titanium dioxide nanoparticles (TiO(2) NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium. We analyzed the experimental bioaccumulation capability of ionic titanium and TiO(2) NPs by zebrafish (Danio rerio) eleutheroembryos through bioconcentration factors (BCFs), after 48 or 72 h of exposure. The stability of both chemical forms in an aquatic medium was fully characterized for further bioaccumulation studies. Several stabilizing agents (humic acids, soluble starch, polyethylene glycol, Na(4)P(2)O(7) and Na(2)HPO(4)) for anatase and rutile, the two allotrophs of TiO(2) NPs, were evaluated to check the evolution of the aggregation process. Around 60% of TiO(2) NPs remained disaggregated under simulated environmental conditions with the addition of 50 mg L(-1) of humic acids. However, the presence of eleutheroembryos in the exposure medium increased TiO(2) NPs aggregation in the experimental tests. The BCFs values obtained in all cases were <100, which classifies ionic titanium and TiO(2) NPs as non-bioaccumulative substances, under the REACH regulations.

  16. Molecular geometries and relative stabilities of titanium oxide and gold-titanium oxide clusters

    NASA Astrophysics Data System (ADS)

    Hudson, Rohan J.; Falcinella, Alexander; Metha, Gregory F.

    2016-09-01

    Titanium oxide and gold-titanium oxide clusters of stoichiometry MxOy (Mx = Ti3, Ti4 & AuTi3; y = 0 - (2x + 2)) have been investigated using density functional theory. Geometries of determined global energy minimum structures are reported and other isomers predicted up to 0.5 eV higher in energy. The Ti3On geometries build upon a triangular Ti3 motif, while Ti4On stoichiometries template upon a pseudo-tetrahedral Ti4 structure. Addition of a gold atom to the Ti3On series does not significantly alter the cluster geometry, with the gold atom preferentially binding to titanium atoms over oxygen atoms. Adiabatic ionization energies, electron affinities and HOMO/LUMO energies increase in magnitude with increasing oxygenation. The HOMO-LUMO energy gaps reach the bulk anatase band gap energy at stoichiometry (Au)TimO2m-1, and increase above this upon further oxygen addition. The most stable structural moieties are found to be a cage-like, C3v symmetric Ti4O6/7 geometry and a Ti3O6 structure with an η3-bound oxygen atom.

  17. Myeloproliferative neoplasm stem cells.

    PubMed

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2, CALR, or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC.

  18. Learn About Stem Cells

    MedlinePlus

    ... develops and ages, the number and type of stem cells changes. Totipotent cells are no longer present after dividing into the cells that generate the placenta and umbilical cord. Pluripotent cells ... organs and tissues. The stem cells that stay in your body throughout your ...

  19. Designing for STEM Integration

    ERIC Educational Resources Information Center

    Berland, Leema K.

    2013-01-01

    We are increasingly seeing an emphasis on STEM integration in high school classrooms such that students will learn and apply relevant math and science content while simultaneously developing engineering habits of mind. However, research in both science education and engineering education suggests that this goal of truly integrating STEM is rife…

  20. STEM School Discourse Patterns

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Callahan, Carolyn M.

    2016-01-01

    Analysis of discursive practices in science classrooms within STEM schools may provide meaningful information about the nature of these classrooms and, potentially, their uniqueness. Full descriptions of current practice can serve as a foundation for exploring the differences in instructional norms within STEM specialized schools and across…