NASA Astrophysics Data System (ADS)
Gacal, G. F. B.; Lagrosas, N.
2017-12-01
Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Protat, Alain; Young, Stuart; McFarlane, Sally A.
2014-02-01
The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar withmore » Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.« less
MSFC Skylab ground-based astronomy program
NASA Technical Reports Server (NTRS)
Duncan, B. J.
1974-01-01
The Skylab Ground-Based Astronomy Program (SGAP) was conducted to enhance the data base of solar physics obtained during the Apollo Telescope Mount (ATM) mission flown in conjunction with the Skylab orbital station. Leading solar physicists from various observatories obtained data from the ground at the same time that orbital data were being acquired by ATM. The acquisition of corollary solar data from the ground simultaneously with the ATM orbital observations helped to provide a broader basis for understanding solar physics by increasing spectral coverage and by the use of additional sophisticated instruments of various types. This report briefly describes the individual tasks and the associated instrumentation selected for this ground-based program and contains as appendices, the final reports from the Principal Investigators.
Method for Ground-to-Satellite Laser Calibration System
NASA Technical Reports Server (NTRS)
Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)
2015-01-01
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Method for Ground-to-Space Laser Calibration System
NASA Technical Reports Server (NTRS)
Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)
2014-01-01
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Ground-Based Calibration Of A Microwave Landing System
NASA Technical Reports Server (NTRS)
Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando
1996-01-01
System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.
Proceedings of a conference on Cardiovascular Bioinstrumentation
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Fuller, Charles A.; Mains, Richard; Finger, Herbert J.
1988-01-01
The Ames Research Center (ARC) has a long history in the development of cardiovascular (CV) instrumentation for human and animal research. The ARC Cardiovascular Research Lab under the Space Physiology Branch, Space Research Directorate, supports both ground-based and space-based animal and human research goals. The Cardiovascular Research Laboratory was established at ARC in the mid 1960's to conduct ground-based animal research and support development of advanced cardiovascular instrumentation applicable to spaceflight. The ARC Biomedical Research Program also conducts human studies with a CV instrumentation focus.
NASA Astrophysics Data System (ADS)
Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.
2017-12-01
As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).
NASA Technical Reports Server (NTRS)
Myers, R. H.
1976-01-01
The depletion of ozone in the stratosphere is examined, and causes for the depletion are cited. Ground station and satellite measurements of ozone, which are taken on a worldwide basis, are discussed. Instruments used in ozone measurement are discussed, such as the Dobson spectrophotometer, which is credited with providing the longest and most extensive series of observations for ground based observation of stratospheric ozone. Other ground based instruments used to measure ozone are also discussed. The statistical differences of ground based measurements of ozone from these different instruments are compared to each other, and to satellite measurements. Mathematical methods (i.e., trend analysis or linear regression analysis) of analyzing the variability of ozone concentration with respect to time and lattitude are described. Various time series models which can be employed in accounting for ozone concentration variability are examined.
Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation
NASA Astrophysics Data System (ADS)
Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.
2016-12-01
We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.
ERIC Educational Resources Information Center
LeMaster, W. Dean; Gray, Thomas H.
The purpose of this study was to develop a screening procedure for undergraduate pilot training (UPT). This procedure was based upon the use of ground-based instrument trainers in which UPT candidates, naive to flying, were evaluated in their performance of job sample tasks; i.e., basic instrument flying. Training and testing sessions were…
Ground-based solar astrometric measurements during the PICARD mission
NASA Astrophysics Data System (ADS)
Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.
2011-11-01
PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.
Development of a PC-based ground support system for a small satellite instrument
NASA Astrophysics Data System (ADS)
Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.
1993-11-01
The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.
“Comprehensive emission measurements from prescribed ...
Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, chlorinated dioxins and furans, and PM2.5 and continuous samples for black carbon, particle size, and CO2 were taken. Aerial instruments were lofted using a 5 m diameter, helium-filled aerostat that was maneuvered with two remotely-controlled tethers mounted on all-terrain vehicles. A parallel set of instruments on the ground made simultaneous measurements, allowing for a comparison of ground level versus elevated measurements. Ground instruments were supplemented by additional measurements of polycyclic aromatic hydrocarbons and particle aerosol absorption and light scattering. Raw biomass was also gathered on site and tested in a laboratory combustion facility using the same array of instruments. This work compares emissions derived from aerial and ground sampling as well as field and laboratory results. This abstract will likely be the first ever prescribed burn study to compare laboratory and field emission results with results from aerial and and ground sampling. As such it will inform sampling methods for future events and determine the ability of laboratory simulations to mimic events inthe field.
Dye, Dennis G.; Bogle, Rian
2016-05-26
Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.
NASA Technical Reports Server (NTRS)
Parrish, A.; Connor, B. J.; Tsou, J. J.; Mcdermid, I. S.; Chu, W. P.; Siskind, D. E.
1994-01-01
An overview of two years of data obtained with a ground-based microwave instrument is given. Intercomparisons with data obtained by the co-located JPL lidar and by SAGE 2 during near overpasses of the site are discussed, as are comparisons with mesospheric data taken earlier by SME and LIMS. Observations of diurnal variations of mesospheric ozone are shown.
Results from the 1995 Stratospheric Ozone Profile Intercomparison at Mauna Loa (MLO3)
NASA Technical Reports Server (NTRS)
McPeters, R. D.; Hofmann, D. J.; Clark, M.; Flynn, L.; Froidevaux, L.; Gross, M.; Johnson, B.; Koenig, G.; Liu, X.; McDermid, S.;
1998-01-01
In August 1995 multiple instruments that measure the stratospheric ozone vertical distribution were intercompared at the Mauna Loa Observatory, Hawaii, under the auspices of the Network for the Detection of Stratospheric Change. The instruments included two UV lidar systems, one from JPL and the other from Goddard Space Flight Center, ECC balloon-sondes, a ground-based microwave instrument, Umkehr measurements, and a new ground-based FTIR instrument. The MLS instrument on the UARS satellite provided correlative profiles of ozone, and there was one close overpass of the SAGE II instrument. The results show that much better consistency among instruments is being achieved than even a few years ago, usually to within the instrument uncertainties. The different measurement techniques in this comparison agree to within +/-10% at almost all altitudes, and in the 20 km to 45 km region most agreed within +/-5%. The results show that the current generation of lidars are capable of accurate measurement of the ozone profile to a maximum altitude of 50 km. SAGE agreed well with both lidar and balloon-sonde down to at least 17 km. The ground-based microwave measurement agreed with other measurements from 22 km to above 50 km. One minor source of disagreement continues to be the pressure-altitude conversion needed to compare a measurement of ozone density versus altitude with a measurement of ozone mixing ratio versus pressure.
NASA Technical Reports Server (NTRS)
Chyba, Thomas; Zenker, Thomas
1998-01-01
The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.
2014-12-01
XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an active instrument can be deployed in a sRLV under a satellite track, and serve as a "standard candle" for instruments on satellites. Yearly calibrations of the Solar Extreme Ultraviolet Experiment (SEE) instrument aboard the TIMED orbiter using sounding rockets depict the necessity of calibrations and illustrates calibration frequency.
Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1980-01-01
Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.
An instrumental puzzle: the modular integration of AOLI
NASA Astrophysics Data System (ADS)
López, Roberto L.; Velasco, Sergio; Colodro-Conde, Carlos; Valdivia, Juan J. F.; Puga, Marta; Oscoz, Alejandro; Rebolo, Rafael; MacKay, Craig; Pérez-Garrido, Antonio; Rodríguez-Ramos, Luis Fernando; Rodríguez-Ramos, José Manuel M.; King, David; Labadie, Lucas; Muthusubramanian, Balaji; Rodríguez-Coira, Gustavo
2016-08-01
The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.
A flexible CAMAC based data system for Space Shuttle scientific instruments
NASA Technical Reports Server (NTRS)
Ehrmann, C. H.; Baker, R. G.; Smith, R. L.; Kaminski, T. J.
1979-01-01
An effort has been made within NASA to produce a low-cost modular system for implementation of Shuttle payloads based on the CAMAC standards for packaging and data transfer. A key element of such a modular system is a means for controlling the data system, collecting and processing the data for transmission to the ground, and issuing commands to the instrument either from the ground or based on the data collected. A description is presented of such a means based on a network of digital processors and CAMAC crate controllers, which allows for the implementation of instruments ranging from those requiring only a single CAMAC crate of functional modules and no data processing to ones requiring multiple crates and multiple data processors.
Enhancing our Understanding of Snowfall Modes with Ground-Based Observations
NASA Astrophysics Data System (ADS)
Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.
2016-12-01
Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.
Ground-based Instrumentations in Africa and its Scientific and Societal Benefits to the region
NASA Astrophysics Data System (ADS)
Yizengaw, Endawoke
2012-07-01
Much of what we know about equatorial physics is based on Jicamarca Incoherent Scattering Radar (ISR) observations. However, Jicamarca is in the American sector where the geomagnetic equator dips with a fairly large excursion between the geomagnetic and geodetic equator. On the other hand, in the African sector the geomagnetic equator is fairly well aligned with the geodetic equator. Satellites (e.g. ROCSAT, DMSP, C/NOFS) observations have also indicated that the equatorial ionosphere in the African sector responds differently than other sectors. However, these satellite observations have not been confirmed, validated or studied in detail by observations from the ground due to lack of suitable ground-based instrumentation in the region. Thus, the question of what causes or drives these unique density irregularities in the region is still not yet fully understood, leading the investigation of the physics behind each effect into speculative dead ends. During the past couple of years very few (compared to the land-mass that Africa covers) small instruments, like GPS receivers, magnetometers, VHF, and VLF have been either deployed in the region or in process. However, to understand the most dynamic region in terms of ionospheric irregularities, those few instruments are far from enough. Recently, significant progress has been emerging in securing more ground-based instrument into the region, and thus three ionosondes are either deployed or in process. In this paper, results from AMBER magnetometer network, ionosonde, and GPS receivers will be presented. By combining the multi instrument independent observations, this paper will show a cause and effect of space weather impact in the region for the first time. While the magnetometer network, such as those operated under the umbrella of AMBER project, estimates the fundamental electrodynamics that governs equatorial ionospheric motion, the GPS receivers will track the structure and dynamics of the ionosphere. In addition to the scientific importance, the ground-based instrumentations have also direct impact in advancing space science research by establishing and furthering sustainable research/training infrastructure within Africa so that more young scientists will be educated in their own country. The paper will present research results performed by graduate students who utilize data from the recently deployed instruments within the African universities.
NASA Astrophysics Data System (ADS)
Petropavlovskikh, I.; Ahn, Changwoo; Bhartia, P. K.; Flynn, L. E.
2005-03-01
This analysis presents comparisons of upper-stratosphere ozone information observed by two independent systems: the Solar Backscatter UltraViolet (SBUV and SBUV/2) satellite instruments, and ground-based Dobson spectrophotometers. Both the new SBUV Version 8 and the new UMK04 profile retrieval algorithms are optimized for studying long-term variability and trends in ozone. Trend analyses of the ozone time series from the SBUV(/2) data set are complex because of the multiple instruments involved, changes in the instruments' geo-location, and short periods of overlaps for inter-calibrations among different instruments. Three northern middle latitudes Dobson ground stations (Arosa, Boulder, and Tateno) are used in this analysis to validate the trend quality of the combined 25-year SBUV/2 time series, 1979 to 2003. Generally, differences between the satellite and ground-based data do not suggest any significant time-dependent shifts or trends. The shared features confirm the value of these data sets for studies of ozone variability.
Automatic Weather Station (AWS) Lidar
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)
2001-01-01
A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.
Some Long-Standing Issues Arising From Comparisons Between TOMS and The Ground-Based Ozone Network
NASA Technical Reports Server (NTRS)
Labow, Gordon J.; McPeters, Richard; Stolarski, Richard; Einaudi, Franco (Technical Monitor)
2000-01-01
Data from the series of Total Ozone Mapping Spectrometers (TOMS) have been compared to column ozone measurements taken by ground-based systems (Dobsons, Brewers and Filtermeters). On average, the comparisons show good agreement, with approximately 80% of the ground stations having less than a 2.5% standard deviation when compared to TOMS on a monthly mean basis. There are, however, differences that imply possible errors either in the TOMS ozone retrieval algorithm or in the basic assumptions used by the ground-based instruments. Some of the issues arising from these differences are: What are the relative calibrations of TOMS instruments? Why do the calibrations of the ground-based stations vary as much as they do with respect to TOMS as a transfer standard? Why are the TOMS data so much larger (approximately 6%) than the ground-based data in Antarctica and other ice-covered locations? Why is there seasonality in the difference between TOMS and ground-based stations in the Southern Hemisphere? Why are the differences a function of total ozone? Where and why are the differences a function of reflectivity? Why do some terrain and land-sea boundary features appear in the TOMS ozone data? The above issues will be highlighted by using data from TOMS and the ground stations. Plots of the individual station differences will be available.
Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers
NASA Technical Reports Server (NTRS)
Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino
2012-01-01
Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).
Physics-based real time ground motion parameter maps: the Central Mexico example
NASA Astrophysics Data System (ADS)
Ramirez Guzman, L.; Contreras Ruiz Esparza, M. G.; Quiroz Ramirez, A.; Carrillo Lucia, M. A.; Perez Yanez, C.
2013-12-01
We present the use of near real time ground motion simulations in the generation of ground motion parameter maps for Central Mexico. Simple algorithm approaches to predict ground motion parameters of civil protection and risk engineering interest are based on the use of observed instrumental values, reported macroseismic intensities and their correlations, and ground motion prediction equations (GMPEs). A remarkable example of the use of this approach is the worldwide Shakemap generation program of the United States Geological Survey (USGS). Nevertheless, simple approaches rely strongly on the availability of instrumental and macroseismic intensity reports, as well as the accuracy of the GMPEs and the site effect amplification calculation. In regions where information is scarce, the GMPEs, a reference value in a mean sense, provide most of the ground motion information together with site effects amplification using a simple parametric approaches (e.g. the use of Vs30), and have proven to be elusive. Here we propose an approach that includes physics-based ground motion predictions (PBGMP) corrected by instrumental information using a Bayesian Kriging approach (Kitanidis, 1983) and apply it to the central region of Mexico. The method assumes: 1) the availability of a large database of low and high frequency Green's functions developed for the region of interest, using fully three-dimensional and representative one-dimension models, 2) enough real time data to obtain the centroid moment tensor and a slip rate function, and 3) a computational infrastructure that can be used to compute the source parameters and generate broadband synthetics in near real time, which will be combined with recorded instrumental data. By using a recently developed velocity model of Central Mexico and an efficient finite element octree-based implementation we generate a database of source-receiver Green's functions, valid to 0.5 Hz, that covers 160 km x 300 km x 700 km of Mexico, including a large portion of the Pacific Mexican subduction zone. A subset of the velocity and strong ground motion data available in real time is processed to obtain the source parameters to generate broadband ground motions in a dense grid ( 10 km x 10 km cells). These are interpolated later with instrumental values using a Bayesian Kriging method. Peak ground velocity and acceleration, as well as SA (T=0.1, 0.5, 1 and 2s) maps, are generated for a small set of medium to large magnitude Mexican earthquakes (Mw=5 to 7.4). We evaluate each map by comparing against stations not considered in the computation.
Mercury's Exosphere: Ground Based Observations as a Support to the Forthcoming Bepi-Colombo
NASA Astrophysics Data System (ADS)
Leblanc, F.; Chaufray, J. Y.
2018-05-01
We will summarize the still open questions regarding Mercury's exosphere, highlighting which new topics Bepi-Colombo set of instruments might be able to address and how ground based observations should contribute to further improve our understanding.
NASA Astrophysics Data System (ADS)
Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.
2011-11-01
This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.
Portable traceability solution for ground-based calibration of optical instruments
NASA Astrophysics Data System (ADS)
El Gawhary, Omar; van Veghel, Marijn; Kenter, Pepijn; van der Leden, Natasja; Dekker, Paul; Revtova, Elena; Heemskerk, Maurice; Trarbach, André; Vink, Ramon; Doyle, Dominic
2017-11-01
We present a portable traceability solution for the ground-based optical calibration of earth observation (EO) instruments. Currently, traceability for this type of calibration is typically based on spectral irradiance sources (e.g. FEL lamps) calibrated at a national metrology institute (NMI). Disadvantages of this source-based traceability are the inflexibility in operating conditions of the source, which are limited to the settings used during calibration at the NMI, and the susceptibility to aging, which requires frequent recalibrations, and which cannot be easily checked on-site. The detector-based traceability solution presented in this work uses a portable filter radiometer to calibrate light sources onsite, immediately before and after, or even during instrument calibration. The filter radiometer itself is traceable to the primary standard of radiometry in the Netherlands. We will discuss the design and realization, calibration and performance verification.
Geophysics From Terrestrial Time-Variable Gravity Measurements
NASA Astrophysics Data System (ADS)
Van Camp, Michel; de Viron, Olivier; Watlet, Arnaud; Meurers, Bruno; Francis, Olivier; Caudron, Corentin
2017-12-01
In a context of global change and increasing anthropic pressure on the environment, monitoring the Earth system and its evolution has become one of the key missions of geosciences. Geodesy is the geoscience that measures the geometric shape of the Earth, its orientation in space, and gravity field. Time-variable gravity, because of its high accuracy, can be used to build an enhanced picture and understanding of the changing Earth. Ground-based gravimetry can determine the change in gravity related to the Earth rotation fluctuation, to celestial body and Earth attractions, to the mass in the direct vicinity of the instruments, and to vertical displacement of the instrument itself on the ground. In this paper, we review the geophysical questions that can be addressed by ground gravimeters used to monitor time-variable gravity. This is done in relation to the instrumental characteristics, noise sources, and good practices. We also discuss the next challenges to be met by ground gravimetry, the place that terrestrial gravimetry should hold in the Earth observation system, and perspectives and recommendations about the future of ground gravity instrumentation.
Research instrumentation for tornado electromagnetics emissions detection
NASA Technical Reports Server (NTRS)
Jenkins, H. H.; Wilson, C. S.
1977-01-01
Instrumentation for receiving, processing, and recording HF/VHF electromagnetic emissions from severe weather activity is described. Both airborne and ground-based instrumentation units are described on system and subsystem levels. Design considerations, design decisions, and the rationale behind the decisions are given. Performance characteristics are summarized and recommendations for improvements are given. The objectives, procedures, and test results of the following are presented: (1) airborne flight test in the Midwest U.S.A. (Spring 1975) and at the Kennedy Space Center, Florida (Summer 1975); (2) ground-based data collected in North Georgia (Summer/Fall 1975); and (3) airborne flight test in the Midwest (late Spring 1976) and at the Kennedy Space Center, Florida (Summer 1976). The Midwest tests concentrated on severe weather with tornadic activity; the Florida and Georgia tests monitored air mass convective thunderstorm characteristics. Supporting ground truth data from weather radars and sferics DF nets are described.
NASA Technical Reports Server (NTRS)
Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph
2005-01-01
A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.
Instrumentation and control system for an F-15 stall/spin
NASA Technical Reports Server (NTRS)
Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.
1974-01-01
An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.
NASA Astrophysics Data System (ADS)
Gruzdev, A. N.; Elokhov, A. S.
2009-08-01
Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ˜0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm-2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm-2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm-2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ˜0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.
Graizer, V.
2006-01-01
Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.
Solar Spicules Near and at the Limb, Observed from Hinode
NASA Technical Reports Server (NTRS)
Sterling, A. C.; Moore, R. L.
2010-01-01
Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments. Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we present observations of spicules from Hinode SOT, as seen near the limb with the Ca II filtergraph.
Integrated Demonstration of Instrument Placement , Robust Execution and Contingent Planning
NASA Technical Reports Server (NTRS)
Pedersen, L.; Bualat, M.; Lees, D.; Smith, D. E.; Korsmeyer, David (Technical Monitor); Washington, R.
2003-01-01
This paper describes an integrated demonstration of ground-based contingent planning, robust execution and autonomous instrument placement for the efficient exploration of a site by a prototype Mars rover.
VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration
NASA Technical Reports Server (NTRS)
Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David;
2017-01-01
The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.
EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements
NASA Technical Reports Server (NTRS)
Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.
2003-01-01
OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.
TES Instrument Decommissioning
Atmospheric Science Data Center
2018-03-20
TES Instrument Decommissioning Tuesday, March 20, 2018 ... PST during a scheduled real time satellite contact the TES IOT along with the Aura FOT commanded the TES instrument to its ... generated from an algorithm update to the base Ground Data System software and will be made available to the scientific community in the ...
CEOS visualization environment (COVE) tool for intercalibration of satellite instruments
Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min
2013-01-01
Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.
CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments
NASA Technical Reports Server (NTRS)
Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min
2013-01-01
Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.
USDA-ARS?s Scientific Manuscript database
The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...
NASA Astrophysics Data System (ADS)
Sgrigna, V.; Buzzi, A.; Conti, L.; Picozza, P.; Stagni, C.; Zilpimiani, D.
2007-02-01
The paper aims at giving a few methodological suggestions in deterministic earthquake prediction studies based on combined ground-based and space observations of earthquake precursors. Up to now what is lacking is the demonstration of a causal relationship with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. Coordinated space and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of LEO satellites. At this purpose a new result reported in the paper is an original and specific space mission project (ESPERIA) and two instruments of its payload. The ESPERIA space project has been performed for the Italian Space Agency and three ESPERIA instruments (ARINA and LAZIO particle detectors, and EGLE search-coil magnetometer) have been built and tested in space. The EGLE experiment started last April 15, 2005 on board the ISS, within the ENEIDE mission. The launch of ARINA occurred on June 15, 2006, on board the RESURS DK-1 Russian LEO satellite. As an introduction and justification to these experiments the paper clarifies some basic concepts and critical methodological aspects concerning deterministic and statistic approaches and their use in earthquake prediction. We also take the liberty of giving the scientific community a few critical hints based on our personal experience in the field and propose a joint study devoted to earthquake prediction and warning.
PICARD SOL mission, a ground-based facility for long-term solar radius measurement
NASA Astrophysics Data System (ADS)
Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.
2012-09-01
For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.
Midcourse Space Experiment Data Certification and Technology Transfer
NASA Technical Reports Server (NTRS)
Pollock, David B.
1998-01-01
The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime with a 12 month lifetime for the cryogenically cooled IR sensor. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instrument's Level 2 data base is being extended to the in-orbit environment.
2011-08-03
Ground-based astronomers will be playing a vital role in NASA Juno mission. Images from the amateur astronomy community are needed to help the JunoCam instrument team predict what features will be visible when the camera images are taken.
NASA Technical Reports Server (NTRS)
Chyba, Thomas; Zemker, Thomas; Fishman, Jack (Technical Monitor)
1999-01-01
The objective of this research project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This research project directly supports the goal of NASA's Earth Science Enterprise to understand the distribution and budget of tropospheric ozone (objective 1.5 of the Earth Science Strategic Enterprise Plan, 1998-2002). It can participate in ground validation experiments for TES, a tropospheric ozone satellite mission due to be launched in 2002. It can also be utilized for correlative ground measurements in future GTE (Global Tropospheric Experiment) and space-based ozone lidar missions, such as ORACLE. Multiple ground-based ozone lidar systems would improve the data obtained through current ozone-sonde networks. This prototype instrument could to serve as the basic unit for these and other future monitoring projects requiring multi-instrument networks, such as that proposed for the Global Tropospheric Ozone Project (GTOP). GTOP is currently being formulated by a scientific panel of the International Global Atmospheric Chemistry Project to meet its goal to better understand the processes that control the global distribution of tropospheric ozone. In order for the lidar to be widely deployed in networks, it must be fairly easy to use and maintain as well as being cost-competitive with a ground station launching ozonesondes several times a day. A second 2-year grant to continue this effort with students participating in ground tests and system improvements has been awarded by the Office of Equal Employment Opportunities (OEOP). This project also supports existing NASA lidar missions through its development of advanced, compact lidar technology. Innovations in both transmitters and receivers have been made in this project. Finally, this system could be modified in the future to probe more deeply into the stratosphere. This could be accomplished by increasing the emitted energy or optimizing the wavelengths for this purpose. In addition to NASA, this system has applications to the EPA, NOAA, and the DOD. An AFOSR grant has been awarded based on the results of this effort to fund advanced transmitter development at medium (20-40 mJ) energies. A second proposal to the DOD with a letter of support from Air Force Research Laboratory, has been submitted to extend this uv laser technology to 100 mJ levels. Thus, this project has enabled students and faculty at Hampton University to begin to develop research efforts in support of the mission of the DOD. This instrument will be based at Hampton University (HU) to meet our educational goal to train students in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Seven undergraduates, three graduate students, and one postdoctoral. researcher (formerly an HU student) have been active participants in this research effort.
Spectral estimates of net radiation and soil heat flux
Daughtry, C.S.T.; Kustas, William P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.
1990-01-01
Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.
NASA Technical Reports Server (NTRS)
Prescott, Glenn; Komar, George (Technical Monitor)
2001-01-01
Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.
Cardiovascular instrumentation for spaceflight
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.
1976-01-01
The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.
2004-01-01
Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.
Cross Calibration of TOMS, SBUV/2 and SCIAMACHY Radiances from Ground Observations
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Bhartia, P. K.; Bojkov, B.; Kowaleski, M.; Labow, G.; Ahmad, Z.
2002-01-01
We have shown that validation of radiances is a very effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called 'Skyrad', employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS, SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOMEZ, OMI, and OMPS. Additional information is included in the original extended abstract.
Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes
NASA Astrophysics Data System (ADS)
Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun
2005-01-01
Results of a survey of instrumentation and detector systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-infrared wavelengths. Some of the most prominent trends include the development of vastly larger optical detector systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-infrared detectors - something that was quite rare only a decade ago in astronomy. Some future science applications for detectors are then explored, in an attempt to build a bridge between current detectors and what will be needed to support the research ambitions of astronomers in the future.
NASA Astrophysics Data System (ADS)
Wildner, S.; Bittner, M.
2009-04-01
TANGOO (Tilting-filter spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements) is a passive, ground-based optical instrument for the purpose of a simultanously automatic long-term monitoring of OH(6-2) and O2 atm. Band (0-1) emissions (called "airglow"), yielding rotational temperatures in about 87 and 95 km, respectively. TANGOO, being a transportable and comparatively easy-to-use instrument, is the enhancement of the Argentine Airglow Spectrometer (Scheer, 1987) and shows significant improvements in the temporal resolution and throughput. It will be located on the German Enviromental Research Station "Schneefernerhaus", Zugspitze (47°,4 N, 11° E) and will start measurements in 2009. Objectives of TANGOO cover the analysis of dynamical processes such as gravity waves as well as the identification of climate signals. The observation method will be presented.
Solar Spicules Near and at the Limb, Observed from Hinode
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald
2009-01-01
Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle (Beckers 1968, 1972; Sterling 2000). In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments (e.g., DePontieu et al. 2004). Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft (e.g., De Pontieu et al. 2007a, 2007b). Here we present observations of spicules from Hinode SOT, as seen near the limb with the Ca II filtergraph.
NASA Astrophysics Data System (ADS)
Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa
The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis stresses on the specificity of the satellite and ground-based observations and the importance of the right choice of appropriate scenario for correlative studies.
Modern developments for ground-based monitoring of fire behavior and effects
Colin C. Hardy; Robert Kremens; Matthew B. Dickinson
2010-01-01
Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...
Planar integrated optics, a new solution in optical instrumentation
NASA Astrophysics Data System (ADS)
Haguenauer, P.
2017-11-01
Planar integrated optics present an attractive solution for future instrumentation, both in ground and space based applications. The technologies used in the manufacturing of such components, supported by research laboratories as well as industries, are mature enough to provide complex devices.
Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks
NASA Astrophysics Data System (ADS)
Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.
2017-12-01
The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.
Buchhorn, Marcel; Petereit, Reinhold; Heim, Birgit
2013-01-01
This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.
The Canadian High Arctic Ionospheric Network (CHAIN)
NASA Astrophysics Data System (ADS)
Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.
2009-05-01
Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.
Ground based remote sensing retrievals and observations of snowfall in the Telemark region of Norway
NASA Astrophysics Data System (ADS)
Pettersen, C.; L'Ecuyer, T. S.; Wood, N.; Cooper, S.; Wolff, M. A.; Petersen, W. A.; Bliven, L. F.; Tushaus, S. A.
2017-12-01
Snowfall can be broadly categorized into deep and shallow events, based on the vertical extent of the frozen precipitation in the column. The two categories are driven by different thermodynamic and physical mechanisms in the atmosphere and surface. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation and over complex terrain. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes. We present data collected in a recently deployed ground suite of instruments based in Norway. The Meteorological Institute of Norway has a snow measurement suite in Haukeliseter located in the orographically complex Telemark region. This suite consists of several snow accumulation instruments as well as meteorological data (temperature, dew point, wind speeds and directions). A joint project between University of Wisconsin and University of Utah augmented this suite with a 24 GHz radar MicroRain Radar (MRR), a NASA Particle Imaging Package (PIP), and a Multi-Angle Snowflake Camera (MASC). Preliminary data from this campaign are presented along with coincident overpasses from the GPM satellite. We compare the ground-based and spaceborne remotely sensed estimates of snowfall with snow gauge observations from the Haukeliseter site. Finally, we discuss how particle size distribution and fall velocity observations from the PIP and MASC can be used to improve remotely-sensed snowfall retrievals as a function of environmental conditions at Haukeliseter.
SOFIA: Science Vision and Current Status
NASA Technical Reports Server (NTRS)
Horner, Scott D.
2010-01-01
This slide presentation details the science and status of the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is a 2.5 m Telescope designed to fit into a modified Boeing 747SP aircraft. It will have imaging and spectroscopy from .03 micron to 1.6 mm, emphasizing the obscured infrared spectrum (i.e., 30-300 micron). It will fly between 39,000 to 45,000 feet, above over 99.8 % of the water vapor which obscures the infrared from other ground based telescopes. Since it is on a ground based airplane, the instrumentation can be interchangeable between flights, it can fly anywhere and anytime. Diagrams show an overview of the observatory, the optical layout, and a comparison of SOFIA with the other major IR Imaging spectroscopic Space Observatories. Pictures include a shot of the installation of the primary mirror, and the Telescope instrument interface. Charts show the first generation instruments, and their ranges of spectral observation. Also the presentation reviews the science questions that SOFIA's instruments will assist in reviewing.
The total carbon column observing network.
Wunch, Debra; Toon, Geoffrey C; Blavier, Jean-François L; Washenfelder, Rebecca A; Notholt, Justus; Connor, Brian J; Griffith, David W T; Sherlock, Vanessa; Wennberg, Paul O
2011-05-28
A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO(2), CO, CH(4), N(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO(2)). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network. © 2011 The Royal Society
Du, Juan; Zhu, Yadan; Li, Shiguang; Zhang, Junxuan; Sun, Yanguang; Zang, Huaguo; Liu, Dan; Ma, Xiuhua; Bi, Decang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao
2017-09-01
A ground-based double-pulse integrated path differential absorption (IPDA) instrument for carbon dioxide (CO 2 ) concentration measurements at 1572 nm has been developed. A ground experiment was implemented under different conditions with a known wall located about 1.17 km away acting as the scattering hard target. Off-/offline testing of a laser transmitter was conducted to estimate the instrument systematic and random errors. Results showed a differential absorption optical depth (DAOD) offset of 0.0046 existing in the instrument. On-/offline testing was done to achieve the actual DAOD resulting from the CO 2 absorption. With 18 s pulses average, it demonstrated that a CO 2 concentration measurement of 432.71±2.42 ppm with 0.56% uncertainty was achieved. The IPDA ranging led to a measurement uncertainty of 1.5 m.
Ground and Space Radar Volume Matching and Comparison Software
NASA Technical Reports Server (NTRS)
Morris, Kenneth; Schwaller, Mathew
2010-01-01
This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.
Wireless canopy sensing network systems for automated control of irrigation and water use efficiency
USDA-ARS?s Scientific Manuscript database
Ground-based instrumentation for plant canopy sensing (infrared thermometry and spectral reflectance sensors) has been used extensively in agriculture to monitor crop status. Typically, measurements are accomplished with handheld or vehicle mounted instrumentation during limited periods of a day, an...
Evaluating Remotely-Sensed Soil Moisture Retrievals Using Triple Collocation Techniques
USDA-ARS?s Scientific Manuscript database
The validation is footprint-scale (~40 km) surface soil moisture retrievals from space is complicated by a lack of ground-based soil moisture instrumentation and challenges associated with up-scaling point-scale measurements from such instrumentation. Recent work has demonstrated the potential of e...
NASA Astrophysics Data System (ADS)
Ubertini, Pietro
2015-08-01
The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.
Geophysical Surveys for Locating Buried Utilities, Lake Pontchartrain Levees, New Orleans
2014-06-01
4 Figure 3. GPR concepts...this study. Electromagnetic (EM) induction, magnetic, and ground penetrating radar ( GPR ) geophysical methods were evaluated to determine which...surveys GPR is a ground-based geophysical instrument that transmits high- frequency EM pulses into the subsurface. The GPR system consists of a
Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground
NASA Astrophysics Data System (ADS)
Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles
"Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.
NASA Technical Reports Server (NTRS)
2001-01-01
The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.
Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind
NASA Astrophysics Data System (ADS)
Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.
2016-12-01
In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.
A star-pointing UV-visible spectrometer for remote-sensing of the stratosphere
NASA Technical Reports Server (NTRS)
Roscoe, Howard K.; Freshwater, Ray A.; Jones, Rod L.; Fish, Debbie J.; Harries, John E.; Wolfenden, Roger; Stone, Phillip
1994-01-01
We have constructed a novel instrument for ground-based remote sensing, by mounting a UV-visible spectrometer on a telescope and observing the absorption by atmospheric constituents of light from stars. Potentially, the instrument can observe stratospheric O3, NO3, NO2, and OClO.
Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China
NASA Astrophysics Data System (ADS)
Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas
2016-04-01
Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.
On-ground tests of the NISP infrared spectrometer instrument for Euclid
NASA Astrophysics Data System (ADS)
Jomni, Cyril; Ealet, Anne; Gillard, William; Prieto, Éric; Grupp, Frank U.
2017-09-01
Euclid is an ESA mission dedicated to understand the acceleration of the expansion of the Universe. The mission will measure hundred of millions of galaxies in spectrophotometry and photometry in the near infrared thanks to a spectro-photometer called NISP. This instrument will be assembled and tested in Marseille. To prepare the on-ground test plan and develop the test procedure, we have used simulated PSF images, based on a Zemax optical design of the instrument. We have developed the analysis tools that will be further used to build the procedure verification. We present here the method and analysis results to adjust the focus of the instrument. We will in particular show that because of the sampling of the PSF, a dithering strategy should be adapted and will constraint the development of the test plan.
Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases
NASA Technical Reports Server (NTRS)
Heaps, William S.; Wilson, Emily L.; Georgieva, Elena
2007-01-01
Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.
Arase: mission overview and initial results
NASA Astrophysics Data System (ADS)
Miyoshi, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Wang, S. Y.; Kazama, Y.; Kasahara, S.; Yokota, S.; Mitani, T.; Higashio, N.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Kazuo, S.; Seki, K.; Hori, T.; Shoji, M.; Teramoto, M.; Chang, T. F.; Kurita, S.; Matsuda, S.; Keika, K.; Miyashita, Y.; Hosokawa, K.; Ogawa, Y.; Kadokura, A.; Kataoka, R.; Ono, T.
2017-12-01
Geospace Exploation Project; ERG addresses what mechanisms cause acceleration, transportation and loss of MeV electrons of the radiation belts and evolutions of space storms. Cross-energy and cross-regional couplings are key concepts for the project. In order to address questions, the project has been organized by three research teams; satellite observations, ground-based observations, and modeling/data-analysis studies, and interdisciplinary research are realized for comprehensive understanding of geospace. The Arase (ERG) satellite had been developed and 9 science instruments are developed and provided from JAXA, universities and instituted in Japan and Taiwan. The Arase satellite was successfully launched on December 20, 2016. After the initial operation including maneuvers, Arase has started normal observations since March, 2017. Until now, Arase has observed several geomagnetic storms driven by coronal hole streams and CMEs, and several interesting features are observed associated with geomagnetic disturbances. The six particle instruments; LEP-e/LEP-i/MEP-e/MEP-i/HEP/XEP have shown large enhancement as well as loss of wide energy electrons and ions and variations as well as changes of pitch angle and energy spectrum. The two field/wave instruments: PWE and MGF observed several kinds of plasma waves such as chorus, hiss, EMIC as well as large scale electric and magnetic field variations. And newly developed S-WPIA has been operated to identify micro-process of wave-particle interactions. Since conjugate observations between Arase and ground-based observations are essential for comprehensive understanding of geospace, we organized several campaign observations that include both satellite and ground-based observations. The project has collaborated with the international projects, EISCAT, SuperDARN and other ground-based observations, and various data are obtained from such international collaborations. Moreover, multi-point satellite observations by collaboration with other satellites; Van Allen Probes, THEMIS and MMS are realized. In this presentation, we will report overview and initial highlights for the first year and discuss importance of synergies of multi-satellites and ground-based observations that are realized by international collaborations.
NASA Astrophysics Data System (ADS)
Repasky, K. S.; Spuler, S.; Hayman, M. M.; Bunn, C. E.
2017-12-01
Atmospheric water vapor is a greenhouse gas that is known to be a significant driver of weather and climate. Several National Research Council (NRC) reports have highlighted the need for improved water vapor measurements that can capture its spatial and temporal variability as a means to improve weather predictions. Researchers at Montana State University (MSU) and the National Center for Atmospheric Research (NCAR) have developed an eye-safe diode laser based micro-pulse differential absorption lidar (MP-DIAL) for water vapor profiling in the lower troposphere. The MP-DIAL is capable of long term unattended operation and is capable of monitoring water vapor in the lower troposphere in most weather conditions. Two MP-DIAL instruments are currently operational and have been deployed at the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Plains elevated Convection at Night (PECAN) experiment, the Perdigão experiment, and the Land Atmosphere Feedback Experiment (LAFE). For each of these field experiments, the MP-DIAL was run unattended and provided near-continuous water vapor profiles, including periods of bright daytime clouds, from 300 m above the ground level to 4 km (or the cloud base) with 150 m vertical resolution and 5 minute temporal resolution. Three additional MP-DIAL instruments are currently under construction and will result in a network of five eye-safe MP-DIAL instruments for ground based weather and climate research experiments. Taking advantage of the broad spectral coverage and modularity or the diode based architecture, a high spectral resolution lidar (HSRL) measurement capabilities was added to the second MP-DIAL instrument. The HSRL capabilities will be operational during the deployment at the LAFE field experiment. The instrument architecture will be presented along with examples of data collected during recent field experiments.
Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors
NASA Astrophysics Data System (ADS)
Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.
2006-12-01
The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the European MetOp platform as well as a planned series of Chinese polar orbiting satellites. The detailed understanding of the land surface infrared emission is a crucial step in the effective utilization of these advanced sounder instruments for the extraction of atmospheric composition information (esp. water vapor vertical profile) over land, which is a key goal for numerical weather prediction data assimilation.
Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraminana, Alberto; Collaboration: HAWC Collaboration
Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less
In situ measurements of thunderstorm electrical properties
NASA Technical Reports Server (NTRS)
Marshall, T. C.
1982-01-01
An airplane sensor to measure the charge, size and two dimensional shape of precipitation particles and large cloud particles was developed. The basic design of the instrument includes: the transducers and analog electronics, the analog to digital conversion electronics and a microprocessor based system to run the electronics and load the digital data onto magnetic tape. Prototype instrumentation for the proposed lightning mapper satellite was tested by flying it in a U-2 aircraft over severe storms in Oklahoma. Flight data are compared to data from ground based instruments.
Development of a Lunar Scintillometer as part of the national large optical telescope site survey
NASA Astrophysics Data System (ADS)
Surendran, Avinash; Parihar, Padmakar S.; Banyal, Ravinder K.; Kalyaan, Anusha
2018-03-01
Ground layer turbulence is a very important site characterization parameter used to assess the quality of an astronomical site. The Lunar Scintillometer is a simple and effective site-testing device for measuring the ground layer turbulence. It consists of a linear array of photodiodes which are sensitive to the slight variations in the moon's brightness due to scintillation by the lower layers of the Earth's atmosphere. The covariance of intensity values between the non-redundant photodiode baselines can be used to measure the turbulence profile from the ground up to a height determined by the furthest pair of detectors. The six channel lunar scintillometer that has been developed at the Indian Institute of Astrophysics is based closely on an instrument built by the team led by Andrei Tokovinin of Cerro Tololo Inter-American Observatory (CTIO), Chile (Tokovinin et al., Mon. Not. R. Astron. Soc. 404(3), 1186-1196 2010). We have fabricated the instrument based on the existing electronic design, and have worked on the noise analysis, an EMI (Electromagnetic Induction) resistant PCB design and the software pipeline for analyzing the data from the same. The results from the instrument's multi-year campaign at Mount Saraswati, Hanle is also presented.
Atmospheric seeing measurements obtained with MISOLFA in the framework of the PICARD Mission
NASA Astrophysics Data System (ADS)
Ikhlef, R.; Corbard, T.; Irbah, A.; Morand, F.; Fodil, M.; Chauvineau, B.; Assus, P.; Renaud, C.; Meftah, M.; Abbaki, S.; Borgnino, J.; Cissé, E. M.; D'Almeida, E.; Hauchecorne, A.; Laclare, F.; Lesueur, P.; Lin, M.; Martin, F.; Poiet, G.; Rouzé, M.; Thuillier, G.; Ziad, A.
2012-09-01
PICARD is a space mission launched in June 2010 to study mainly the geometry of the Sun. The PICARD mission has a ground program consisting mostly in four instruments based at the Calern Observatory (Observatoire de la Côte d’Azur). They allow recording simultaneous solar images and various atmospheric data from ground. The ground instruments consist in the qualification model of the PICARD space instrument (SODISM II: Solar Diameter Imager and Surface Mapper), standard sun-photometers, a pyranometer for estimating a global sky quality index, and MISOLFA a generalized daytime seeing monitor. Indeed, astrometric observations of the Sun using ground-based telescopes need an accurate modeling of optical effects induced by atmospheric turbulence. MISOLFA is founded on the observation of Angle-of-Arrival (AA) fluctuations and allows us to analyze atmospheric turbulence optical effects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried parameter r0, size of the isoplanatic patch, the spatial coherence outer scale L0 and atmospheric correlation times). We present in this paper simulations showing how the Fried parameter infered from MISOLFA records can be used to interpret radius measurements extracted from SODISM II images. We show an example of daily and monthly evolution of r0 and present its statistics over 2 years at Calern Observatory with a global mean value of 3.5cm.
LRG-BEASTS III: ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80
NASA Astrophysics Data System (ADS)
Kirk, J.; Wheatley, P. J.; Louden, T.; Skillen, I.; King, G. W.; McCormac, J.; Irwin, P. G. J.
2018-02-01
We have performed ground-based transmission spectroscopy of the hot Jupiter orbiting the cool dwarf WASP-80 using the ACAM instrument on the William Herschel Telescope (WHT) as part of the Low-Resolution Ground-Based Exoplanet Atmosphere Survey using Transmission Spectroscopy programme. This is the third paper of a ground-based transmission spectroscopy survey of hot Jupiters using low-resolution grism spectrographs. We observed two transits of the planet and have constructed transmission spectra spanning a wavelength range of 4640-8840 Å. Our transmission spectrum is inconsistent with a previously claimed detection of potassium in WASP-80b's atmosphere, and is instead most consistent with a haze. We also do not see evidence for sodium absorption at a resolution of 100 Å.
On-ground calibration of the BEPICOLOMBO/SIMBIO-SYS at instrument level
NASA Astrophysics Data System (ADS)
Rodriguez-Ferreira, J.; Poulet, F.; Eng, P.; Longval, Y.; Dassas, K.; Arondel, A.; Langevin, Y.; Capaccioni, F.; Filacchione, G.; Palumbo, P.; Cremonese, G.; Dami, M.
2012-04-01
The Mercury Planetary Orbiter/BepiColombo carries an integrated suite of instruments, the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS has 3 channels: a stereo imaging system (STC), a high-resolution imager (HRIC) and a visible-near-infrared imaging spectrometer (VIHI). SIMBIO-SYS will scan the surface of Mercury with these three channels and determine the physical, morphological and compositional properties of the entire planet. Before integration on the S/C, an on-ground calibration at the channels and at the instrument levels will be performed so as to describe the instrumental responses as a function of various parameters that might evolve while the instruments will be operating [1]. The Institut d'Astrophysique Spatiale (IAS) is responsible for the on-ground instrument calibration at the instrument level. During the 4 weeks of calibration campaign planned for June 2012, the instrument will be maintained in a mechanical and thermal environment simulating the space conditions. Four Optical stimuli (QTH lamp, Integrating Sphere, BlackBody with variable temperature from 50 to 1200°C and Monochromator), are placed over an optical bench to illuminate the four channels so as to make the radiometric calibration, straylight monitoring, as well as spectral proofing based on laboratory mineral samples. The instrument will be mounted on a hexapod placed inside a thermal vacuum chamber during the calibration campaign. The hexapod will move the channels within the well-characterized incoming beam. We will present the key activities of the preparation of this calibration: the derivation of the instrument radiometric model, the implementation of the optical, mechanical and software interfaces of the calibration assembly, the characterization of the optical bench and the definition of the calibration procedures.
Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment
NASA Technical Reports Server (NTRS)
Sromovsky, Lawrence A.
1997-01-01
This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground- based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section (11) provides background information on the NFR instrument.
NASA Technical Reports Server (NTRS)
Scialdone, J. J.
1983-01-01
Methods to prevent the ingestion of external contaminants into the instrument and to limit the effect of the self-generated contaminants during ground, launch, orbiting and landing phases of flight were investigated. It is proposed that a positive pressure and purging flow of clean gas inside the instrument be maintained while on the ground, during launch, and for a period of time in orbit. The pressure to be maintained and the required purging flow are examined in terms of the effectiveness in preventing gaseous and particulate contaminants ingestion and the abatement of the self-generated contaminants. Considerations have been given to the venting requirements for the structural integrity of the instrument during launch, the limitations on the volume and the pressure of the purging gas to be carried along in orbit, and the required venting area is established based on the internal volume of the instrument, the allowable pressure differential, and the rate of external pressure change during launch.
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
2007-01-01
Satellite measurements provide a unique global view of the stratospheric ozone layer. The perspective from satellites allowed for the early mapping of the extent of the phenomenon that became known as the ozone hole. The use of the satellite data for global trends outside of the ozone hole confronts the problem of the possible drift of the calibration of the instrument. The TOMS and SBUV instruments on Nimbus 7 lasted for more than a decade. During that time, the diffuser plate used to reflect sunlight into the measurement degraded (darkened) and the instruments each had a number of events that made calibration determination difficult. Initially the TOMS data were used for global trends by adjusting the overall calibration to agree with a set of ground-based measurement stations. But this was unsatisfactory because the record was not independent of those ground measurements and problems were found in many of the ground stations by using TOMS as a transfer standard. After many years of dedicated work, the TOMS/SBUV team learned how to correct for instrument drift, remove the interfering effects of aerosols, and establish instrument-to-instrument calibrations resulting in a long-term record that can be used for accurate trend and recovery determination. The global view of the satellites allows for determination not only of temporal change in ozone, but spatial fingerprints that allow more confidence in assigning cause to observed changes.
Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites.
Cadet, Jean-Maurice; Bencherif, Hassan; Portafaix, Thierry; Lamy, Kévin; Ncongwane, Katlego; Coetzee, Gerrie J R; Wright, Caradee Y
2017-11-14
South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations' data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy.
Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites
Cadet, Jean-Maurice; Bencherif, Hassan; Portafaix, Thierry; Lamy, Kévin; Ncongwane, Katlego; Coetzee, Gerrie J. R.; Wright, Caradee Y.
2017-01-01
South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations’ data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy. PMID:29135965
Calibrations and Comparisons of Aerosol Spectrometers linking Ground and Airborne Measurements
NASA Astrophysics Data System (ADS)
Williamson, C.; Brock, C. A.; Erdesz, F.
2015-12-01
The nucleation-mode aerosol size spectrometer (NMASS), a fast-time response instrument measuring aerosol size distributions between 5 and 60nm, is to sample in the boundary layer and free troposphere on NASA's Atmospheric Tomography mission (ATom), providing contiguous data with global coverage in all four seasons. In preparation for this the NMASS is calibrated for the expected flight conditions and compatibility studies are made with ground-based instrumentation. The NMASS is comprised of 5 parallel condensation particle counters (CPCs) using perfluoro-tributylamine as a working fluid. Understanding the variation of CPC counting efficiencies with respect to the chemical composition of the sample is important for accurate data analysis and can be used to give indirect information about sample chemical composition. This variation is strongly dependent on the working fluid. The absolute responses and associated variations of the NMASS to ammonium sulfate and limonene ozonolysis products, compounds pertinent to the composition of particles nucleated in the free troposphere and boundary later, are compared to those of butanol, diethylene-glycol and water based CPCs, which are more commonly used in ground-based measurements. While fast time-response is key to measuring aerosol size distributions on flights, high size-resolution is often prioritized for ground-based measurements, and so a scanning mobility particle sizer (SMPS) is commonly used. Inter-comparison between NMASS and SMPS data is non-trivial because of the different working principles and resolutions of the instruments and yet it is vital, for example, for understanding the sources of particles observed during flights and the global relevance of phenomena observed from field stations and in chambers. We report compatibility studies on inversions of data from the SMPS and NMASS, evaluating temporal and spatial resolution and sources of uncertainty.
NASA Astrophysics Data System (ADS)
Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.
2012-11-01
Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55-100 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200) is good in the altitude range 55-70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2004, CO from MIPAS (12 + 13) is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.
Measurement Capabilities of the DOE ARM Aerial Facility
NASA Astrophysics Data System (ADS)
Schmid, B.; Tomlinson, J. M.; Hubbe, J.; Comstock, J. M.; Kluzek, C. D.; Chand, D.; Pekour, M. S.
2012-12-01
The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites in three important climatic regimes that provide long-term measurements of climate relevant properties. ARM also operates mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months) to investigate understudied climate regimes around the globe. Finally, airborne observations by ARM's Aerial Facility (AAF) enhance the surface-based ARM measurements by providing high-resolution in situ measurements for process understanding, retrieval algorithm development, and model evaluation that is not possible using ground-based techniques. AAF started out in 2007 as a "virtual hangar" with no dedicated aircraft and only a small number of instruments owned by ARM. In this mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, the Battelle owned G-1 aircraft was included in the ARM facility. The G-1 is a large twin turboprop aircraft, capable of measurements up to altitudes of 7.5 km and a range of 2,800 kilometers. Furthermore the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of seventeen new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also heavily engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments. In the presentation we will showcase science applications based on measurements from recent field campaigns such as CARES, CALWATER and TCAP.
A Semiempirical Approach to the Determination of Daily Erythemal Doses.
Silva, Abel A; Yamamoto, Ana L C; Corrêa, Marcelo P
2018-02-15
The maintenance of ground-based instruments to measure the incidence of ultraviolet radiation (UVR) from the Sun demands strict and well-developed procedures. A piece of equipment can be out of service for a couple of weeks or months for calibration, repair or even the improvement of the facilities where it has been set up. However, the replacement of an instrument in such circumstances can be logistically and financially prohibitive. On the other hand, the lack of data can jeopardize a long-term experiment. In this study, we introduce a semiempirical approach to the determination of the theoretical daily erythemal dose (DED t ) for periods of instrumental absence in a tropical site. The approach is based on 5 years of ground-based measurements of daily erythemal dose (DED) linearly correlated with parameters of total ozone column (TOC) and reflectivity (R PC ) from the Ozone Monitoring Instrument (OMI) and the cosine of solar zenith angle at noon (SZA n ). Seventeen months of missing ground-based data were replaced with DED t , leading to a complete 5-year series of data. The lowest and the highest values of typical DED were 2411 ± 322 J m -2 (1σ) (winter) and 5263 ± 997 J m -2 (summer). The monthly integrated erythemal dose (mED) varied from 59 kJ m -2 (winter) to 162 kJ m -2 (summer). Both of them depended mainly on cos(SZA n ) and R PC . The 12-month integrated erythemal dose (12-ED) ranged from 1350 kJ m -2 to 1546 kJ m -2 , but it can depend significantly on other atmospheric parameter (maybe aerosols) not explicitly considered here. © 2018 The American Society of Photobiology.
Landsat Data Continuity Mission (LDCM) space to ground mission data architecture
Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.
2012-01-01
The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM Mission Operations Center (MOC) to perform the CFDP accounting, file retransmissions, and management of the autonomous features of the SSR.
New Ground Based facilities in QSO research; The GTC
NASA Astrophysics Data System (ADS)
Rodriguez Espinosa, J. M.
New ground based observing opportunities are becoming, or about to become, available to astronomers for QSO research. These, combined with state of the art focal plane instruments, provide unprecedented sensitivity for detecting faint surface brightness features. During the talk I will take the liberty of talking about one of these new large telescope facilities currently being built in Spain, and will discuss some of the advantages for QSO research offered by these new facilities.
NASA Astrophysics Data System (ADS)
Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.
2017-12-01
The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.
2014-05-01
The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routinemore » measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.« less
NASA Astrophysics Data System (ADS)
Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.
2015-04-01
Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.
NASA Technical Reports Server (NTRS)
Kucera, T. A.; Berger, T. E.; Druckmuller, M.; Dietzel, M.; Gibson, S. E.; Habbal, S. R.; Morgan, H.; Reeves, K. K.; Schmit, D. J.; Seaton, D. B.
2010-01-01
In conjunction with the total solar eclipse on July 11, 2010 we coordinated a campaign between ground and space based observations. Our specific goal was to augment the ground based measurement of corona) prominence cavity temperatures made using iron lines in the IR (Habbal et al. 2010 ApJ 719 1362) with measurements performed by space based instruments. Included in the campaign were Hinode/EIS, XRT and SOT, PROBA2/SWAP, SDO/AIA, SOHO/CDS and STEREO/SECCHI/EUVI, in addition to the ground based IR measurements. We plan to use a combination of line ratio and forward modeling techniques to investigate the density and temperature structure of the cavities at that time.
NASA Technical Reports Server (NTRS)
Herman, J.; Krotkov, N.
2003-01-01
The TOMS UV irradiance database (1978 to 2003) has been expanded to include five new products (noon irradiance at 305,310,324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, that permit direct comparisons with ground-based measurements from spectrometers and broadband instruments. The new data are available on http://toms.gsfc.nasa.gov/>http://toms.gsfc.nasa.gov. Comparisons of the TOMS estimated irradiances with ground-based instruments are given along with a review of the sources of known errors, especially the recent improvements in accounting for aerosol attenuation. Trend estimations from the new TOMS irradiances permit the clear separation of changes caused by ozone and those caused by aerosols and clouds. Systematic differences in cloud cover are shown to be the most important factor in determining regional differences in UV radiation reaching the ground for locations at the same latitude (e.g., the summertime differences between Australia and the US southwest).
Laboratory for Atmospheres: Instrument Systems Report
NASA Technical Reports Server (NTRS)
2011-01-01
Studies of the atmospheres of our solar system's planets including our own require a comprehensive set of observations, relying on instruments on spacecraft, aircraft, balloons, and on the surface. Laboratory personnel define requirements, conceive concepts, and develop instrument systems for spaceflight missions, and for balloon, aircraft, and ground-based observations. Laboratory scientists also participate in the design of data processing algorithms, calibration techniques, and data processing systems. The instrument sections of this report are organized by measurement technique: lidar, passive, in situ and microwave. A number of instruments in various stages of development or modification are also described. This report will be updated as instruments evolve.
Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.
2004-01-01
Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.
Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.
2004-01-01
Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.
Comparison of Satellite based Ion Density Measurements with Digisonde electron density measurements
NASA Astrophysics Data System (ADS)
Wilson, G.; Balthazor, R. L.; Reinisch, B. W.; McHarg, M.; Maldonado, C.
2017-12-01
The integrated Miniaturized Electrostatic Analyzer (IMESA) flying on the STPSat-3 satellite has collected more than 3 years of ion density data. This instrument is the first in a constellation of up to 6 instruments. We plan on integrating the data from all IMESAs into an approiate ionospheric model. OUr first step is to validate the IMESA data and calibrate the instrument. In this presentation we discuss our process for preparing IMESA data and comparing it to ground based measurements. Lastly, we present a number of comparisons between IMESA ion density measurements and digisonde electron density measurements.
NASA Astrophysics Data System (ADS)
de Wachter, E.; Haefele, A.; Kaempfer, N.; Ka, S.; Oh, J.
2009-04-01
The University of Bern operates two ground based microwave radiometers to measure the water vapour content in the stratosphere and mesosphere. One instrument is located nearby Bern [47°N, 7°E], Switzerland, and has been providing data since 2002 to the "Network for the Detection of Atmospheric Composition Change", NDACC, as well as to the European project GEOmon. The second radiometer has been operational in Seoul [37°N, 126°E], S-Korea, starting November 2006. Both instruments provide water vapour profiles in the altitude range 25 to 70 km. Long-term measurements of middle atmospheric water vapour by ground-based microwave instruments are sparse. These instruments provide long-term stability and high time resolution, so are in this sense ideal for short time-scale variability studies, monitoring long-term trends and validation of satellites. An analysis between these 2-year overlapping datasets of the European and Asian continent can provide valuable input on the distribution of wave patterns. In this study, we present the measurement characteristics of the instruments, and validate our data with water vapour profiles from the Aura/MLS instrument. In addition, we investigate correlations between these two midlatitudinal stations, gathering information on the spatial distribution of water vapour, particularly for pressures from 1 to 0.03 hPa.
Canadian High Arctic Ionospheric Network (CHAIN)
NASA Astrophysics Data System (ADS)
Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.
2009-02-01
Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.
NASA Technical Reports Server (NTRS)
Homan, D. J.
1977-01-01
A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.
NASA Technical Reports Server (NTRS)
Livingston, John M.
1999-01-01
This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.
NASA Astrophysics Data System (ADS)
Griffin, Debora
This thesis focusses on transport and composition of boreal fire plumes, evolution of trace gases in the Arctic, multi-year comparisons of ground-based and satellite-borne instruments, and depletion of Arctic ozone. Two similar Fourier Transform Spectrometer (FTS) instruments were utilized: (1) the ground-based and balloon-borne Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and (2) the space-borne Atmospheric Chemistry Experiment (ACE) FTS. Additional datasets, from other satellite and ground-based instruments, as well as Chemical Transport Models (CTMs) complemented the analysis. Transport and composition of boreal fire plumes were analysed with PARIS-IR measurements taken in Halifax, Nova Scotia. This study analysed the retrievals of different FTSs and investigated transport and composition of a smoke plume utilizing various models. The CO retrievals of three different FTSs (PARIS-IR, DA8, and IASI) were consistent and detected a smoke plume between 19 and 21 July 2011. These measurements were similar to the concentrations computed by GEOS-Chem ( 3% for CO and 8% for C2H6). Multi-year comparisons (2006-2013) of ground-based and satellite-borne FTSs near Eureka, Nunavut were carried out utilizing measurements from PARIS-IR, the Bruker 125HR and ACEFTS. The mean and interannual differences between the datasets were investigated for eight species (ozone, HCl, HNO3, HF, CH4, N2O, CO, and C2H6) and good agreement between these instruments was found. Furthermore, the evolution of the eight gases was investigated and increasing ozone, HCl, HF, CH4 and C2H6 were found. Springtime Arctic ozone depletion was studied, where six different methods to estimate ozone depletion were evaluated using the ACE-FTS dataset. It was shown that CH4, N2O, HF, and CCl2F2 are suitable tracers to estimate the ozone loss. The loss estimates (mixing ratio and partial column) are consistent for all six methods. Finally, PARIS-IR was prepared for a balloon-borne measurement campaign and a new suntracker for these measurements was designed and tested. The balloon was launched in September 2015. The suntracker performed with a +/-0.04° accuracy. From the balloon-borne sunset spectra, an ozone profile was retrieved and is consistent with measurements from a nearby ozonesonde within approximately 10 %.
[School-Based UV-B Monitoring Project in Support of EOS-CHEM
NASA Technical Reports Server (NTRS)
Brooks, David R.
2005-01-01
This grant is an extension of Grant NAG5-8929 (Drexel Project Number 230026), resulting from extensions necessary to meet changing science objectives as described in the final report for NAG5-8929, a copy of which is attached. The instrument configuration resulting from NAG54929 has remained basically intact. Cosine response measurements conducted by James Slusser s group at Fort Collins, Colorado, in support of the proposal for Aura ground validation mentioned in the final report for NAG5-8929, indicated that there was significant light leakage to the detector through the sides of the nylon housing. This was easily remedied by machining a removable opaque collar (made from the dark same grey rigid plastic plumbing tubing as the collimating tube) that fits around the detector collar. Also during this grant period, data logging procedures were established for the UV-A instrument, to record irradiance before, during, and after an Aura overflight. This is required in order to compare spatial and temporal variability as required for ground validation of data products derived from the Ozone Monitoring Instrument (OMI). Standalone 12-bit loggers from Onset Computer Corporation (the U12 series), which were not available at the start of these projects, makes possible relatively inexpensive logging for these instruments at a usable resolution. configuration and disposition of these instruments, including the final version of a GLOBE protocol for using the instruments, currently depend on action taken on the Aura ground validation proposal submitted in 2004. A copy of that proposal is attached.
NASA Technical Reports Server (NTRS)
Vilas, Faith; Abell, P. A.; Jarvis, K. S.
2004-01-01
Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.
Cross Calibration of TOMS, SBUV/2 and Sciamachy Radiances from Ground Observations
NASA Technical Reports Server (NTRS)
Hillsenrath, Ernest; Ahmad, Ziauddin; Bhartia, Pawan K. (Technical Monitor)
2001-01-01
Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify recovery. We have shown that validation of radiances is the most effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. Validation of radiances will also improve all higher level data products derived from the satellite observations. Backscatter algorithms suffer from several errors such as unrepresentative a-priori data and air mass factor corrections. Radiance comparisons employ forward models but are inherently more accurate and than inverse (retrieval) algorithms. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called "Skyrad", employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS. SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOME-2, OMI, and OMPS. Initial ground observations taken from Goddard Space Flight Center compared with radiative transfer calculations has indicated the feasibility of this method.
NASA Technical Reports Server (NTRS)
Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William
2018-01-01
As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.
In Situ Measurement of Ground-Surface Flow Resistivity
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1984-01-01
New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.
NASA Astrophysics Data System (ADS)
Robinson, D. Q.
2001-05-01
Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.
Planetary instrument definition and development program: 'Miniature Monochromatic Imager'
NASA Technical Reports Server (NTRS)
Broadfoot, A. L.
1991-01-01
The miniature monochromatic imager (MMI) development work became the basis for the preparation of several instruments which were built and flown on the shuttle STS-39 as well as being used in ground based experiments. The following subject areas are covered: (1) applications of the ICCD to airglow and auroral measurements and (2) a panchromatic spectrograph with supporting monochromatic imagers.
95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), ...
95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). BATTERY RACK FOR BACKUP BOOSTER POWER ON LEFT; BATTERY RACK FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER ON RIGHT. BATTERY CHARGER IS RIGHT OF BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Highly accurate FTIR observations from the scanning HIS aircraft instrument
NASA Astrophysics Data System (ADS)
Revercomb, Henry E.; Tobin, David C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L., Sr.; van Delst, Paul F. W.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Olson, Erik R.; Dutcher, Steven B.; Taylor, Joseph K.
2005-01-01
Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument. The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS). Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.
STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA
NASA Technical Reports Server (NTRS)
McGee, T. J.; Twigg, L.; Sumnicht, G.; Whiteman, D.; Leblanc, T.; Voemel, H.; Gutman, S.
2010-01-01
During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed.
Autonomous Sensors for Large Scale Data Collection
NASA Astrophysics Data System (ADS)
Noto, J.; Kerr, R.; Riccobono, J.; Kapali, S.; Migliozzi, M. A.; Goenka, C.
2017-12-01
Presented here is a novel implementation of a "Doppler imager" which remotely measures winds and temperatures of the neutral background atmosphere at ionospheric altitudes of 87-300Km and possibly above. Incorporating both recent optical manufacturing developments, modern network awareness and the application of machine learning techniques for intelligent self-monitoring and data classification. This system achieves cost savings in manufacturing, deployment and lifetime operating costs. Deployed in both ground and space-based modalities, this cost-disruptive technology will allow computer models of, ionospheric variability and other space weather models to operate with higher precision. Other sensors can be folded into the data collection and analysis architecture easily creating autonomous virtual observatories. A prototype version of this sensor has recently been deployed in Trivandrum India for the Indian Government. This Doppler imager is capable of operation, even within the restricted CubeSat environment. The CubeSat bus offers a very challenging environment, even for small instruments. The lack of SWaP and the challenging thermal environment demand development of a new generation of instruments; the Doppler imager presented is well suited to this environment. Concurrent with this CubeSat development is the development and construction of ground based arrays of inexpensive sensors using the proposed technology. This instrument could be flown inexpensively on one or more CubeSats to provide valuable data to space weather forecasters and ionospheric scientists. Arrays of magnetometers have been deployed for the last 20 years [Alabi, 2005]. Other examples of ground based arrays include an array of white-light all sky imagers (THEMIS) deployed across Canada [Donovan et al., 2006], oceans sensors on buoys [McPhaden et al., 2010], and arrays of seismic sensors [Schweitzer et al., 2002]. A comparable array of Doppler imagers can be constructed and deployed on the ground, to compliment the CubeSat data.
NASA Astrophysics Data System (ADS)
Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.
2016-12-01
The availability of reference spectra for the Solar Spectral Irradiance (SSI) is of the most importance for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. However, some large and unsolved discrepancies (up to 10 %) are observed in the 1.6 μm region between recent measurements from space instruments and modelling. We developed a ground-based instrumentation dedicated to SSI measurements of the Top Of Atmosphere (TOA), obtained through atmospheric NIR windows using the Bouguer-Langley technique. The instruments are a double spectroradiometer designed by Bentham (UK) and a 6-channels NIR filters radiometer. Both were radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. In the following they were calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) is a follower of the four-month IRESPERAD campaign which was carried out in 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3 weeks PYR-ILIOS campaign and compare them with the outcome from IRESPERAD as well as from other ground-based, airborne or space experiments will be presented. The standard uncertainty of the PYR-ILIOS results will be discussed.
Multi-instrument observations of the ionospheric and plasmaspheric density structure
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Moldwin, M. B.
2008-05-01
: The density within the ionosphere and plasmasphere can be monitored using a combination of techniques that use both ground- and space-based instruments. We are combining diagnostic observations of everything, but the kitchen sink. These include observations of GPS TEC, TOPEX and JASON TEC, IMAGE EUV and FUV, GUVI composition data, ULF resonances, and many other multi-satellite data sets such as DMSP in situ observations. The dramatically growing number of GPS receivers on the ground and onboard Low-Earth-Orbit (LEO) satellites offers an excellent opportunity for remote sensing and monitoring of the ionospheric and plasmaspheric density structure using GPS TEC tomographic reconstruction technique. This allows us to clearly quantify magnetosphere-ionosphere (M-I) coupling dynamics, as well as confirm the long-standing conjecture that the mid-latitude trough and plasmapause are on the same field line. This has been demonstrated globally, for the first time, using a combination of data from IMAGE EUV and ground- and space-based GPS receivers. The two dimensional tomographic image of the ionosphere and plasmasphere, using data from the GPS receiver onboard LEO satellites, such as FedSat, CHAMP, COSMIC, etc, also provides a new ability to image the flux tube structure of ionospheric ion outflows, tracking flux tube structure up to 3.17Re (20,200 km) altitude for the first time. The combination of data from the altimeter on JASON and ground-based GPS network also provides an excellent opportunity to experimentally estimate the plasmaspheric density contribution to the ground-based GPS TEC and thus to the degradation of navigation and communication accuracy.
Calibration of TOMS Radiances From Ground Observations
NASA Technical Reports Server (NTRS)
Bojkov, B. R.; Kowalewski, M.; Wellemeyer, C.; Labow, G.; Hilsenrath, E.; Bhartia, P. K.; Ahmad, Z.
2003-01-01
Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of radiances from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used to derive ozone products from both satellite and ground based measurements that are normally used to validate the satellite data. Radiance comparisons employ forward models, but they are inherently more accurate than the retrieval This method employs very accurate comparisons between ground based zenith sicy radiances and satellite nadir radiances and employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. The zenith sky observations are made by the SSBUV where its calibration is maintained to a high degree of accuracy and precision. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. Initial ground observations taken from Goddard Space Flight Center compared with radiative transfer calculations has indicated the feasibility of this method. The effect of aerosols and varying ozone amounts are considered in the model simulations and the theoretical comparisons. The radiative transfer simulations show that the ground and satellite radiance comparisons can be made with an uncertainty of less than l\\% without the knowledge of the amount ozone viewed by either instrument on ground or in space. algorithms.
Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment
NASA Technical Reports Server (NTRS)
Sromovsky, Lawrence A.
1997-01-01
This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period covered by NCC 2-854 are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground-based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section provides background information on the NFR instrument. Section 3 contains the final report of work done.
The Microscope Space Mission and the In-Orbit Calibration Plan for its Instrument
NASA Astrophysics Data System (ADS)
Levy, Agnès Touboul, Pierre; Rodrigues, Manuel; Onera, Émilie Hardy; Métris, Gilles; Robert, Alain
2015-01-01
The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10-15. This principle is one of the basis of the General Relativity theory; it states the equivalence between gravitational and inertial mass. The test is based on the precise measurement of a gravitational signal by a differential electrostatic accelerometer which includes two cylindrical test masses made of different materials. The accelerometers constitute the payload accommodated on board a drag-free micro-satellite which is controlled inertial or rotating about the normal to the orbital plane. The acceleration estimates used for the EP test are disturbed by the instruments physical parameters and by the instrument environment conditions on-board the satellite. These parameters are partially measured with ground tests or during the integration of the instrument in the satellite (alignment). Nevertheless, the ground evaluations are not sufficient with respect to the EP test accuracy objectives. An in-orbit calibration is therefore needed to characterize them finely. The calibration process for each parameter has been defined.
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Hughes, David W.; Hedgeland, Randy J.; Chivatero, Craig J.; Studer, Robert J.; Kostos, Peter J.
1994-01-01
The Scientific Instrument Protective Enclosures were designed for the Hubble Space Telescope Servicing Missions to provide a beginning environment to a Scientific Instrument during ground and on orbit activities. The Scientific Instruments required very stringent surface cleanliness and molecular outgassing levels to maintain ultraviolet performance. Data from the First Servicing Mission verified that both the Scientific Instruments and Scientific Instrument Protective Enclosures met surface cleanliness level requirements during ground and on-orbit activities.
NASA Astrophysics Data System (ADS)
Litvak, M. L.; Golovin, D. V.; Kolesnikov, A. B.; Vostrukhin, A. A.; Djachkova, M. V.; Kozyrev, A. S.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.
2017-05-01
This paper outlines the main research objectives and gives a description of the ADRON active gamma-ray and neutron spectrometer, which is designed specifically for the Russian lunar landing missions Luna-Glob and Luna-Resurs and for the ExoMars Martian landing platform. The measurement technique is described. The first ground-based calibration results are presented, making it possible to assess the sensitivity of the ADRON instruments in determining the average water content of the underlying surface in the range from 1% (dry ground) to 100% (water ice) to a depth of 0.5 m.
Facility Instrumentation for SOFIA: Technical Specifications and Scientific Goals
NASA Astrophysics Data System (ADS)
Stacey, G. J.
2000-05-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne observatory consisting of a 2.5 m telescope in a modified Boeing 747 SP. First light is expected in late 2002. Three "Facility Class" instruments were among the first generation of instruments selected to fly on SOFIA. These instruments, currently under development are (1) a 5 to 38 um imaging photometer based on twin As:Si and Sb:Sb BIB arrays (FORCAST), (2) a 40 to 300 um photometer based on three arrays of bolometers, and (3) a 17 to 210 um eschelle grating spectrometer based on an Sb:Sb BIB array and a Ge:Sb and stressed Ge:Ga array of photoconductors. I will discuss both the technical aspects of these facility instruments, and some of the exciting new science that is possible with these ground breaking instruments on an airborne 2.5 meter telescope. Science topics include circumstellar debris disks, star formation, the Galactic Center, and distant galaxies.
NASA Technical Reports Server (NTRS)
Edgerton, A. T.; Trexler, D. T.; Sakamoto, S.; Jenkins, J. E.
1969-01-01
The field measurement program conducted at the NASA/USGS Southern California Test Site is discussed. Ground truth data and multifrequency microwave brightness data were acquired by a mobile field laboratory operating in conjunction with airborne instruments. The ground based investigations were performed at a number of locales representing a variety of terrains including open desert, cultivated fields, barren fields, portions of the San Andreas Fault Zone, and the Salton Sea. The measurements acquired ground truth data and microwave brightness data at wavelengths of 0.8 cm, 2.2 cm, and 21 cm.
Total ozone observation by sun photometry at Arosa, Switzerland
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Schill, Herbert; Hoegger, Bruno; Viatte, Pierre; Levrat, Gilbert; Gamma, Adrian
1995-07-01
The method used for ground-based total ozone observations and the design of two instruments used to monitor atmospheric total ozone at Arosa (Dobson spectrophotometer and Brewer spectrometer) are briefly described. Two different procedures of the calibration of the Dobson spectrometer, both based on the Langley plot method, are presented. Data quality problems that occured in recent years in the measurements of one Dobson instrument at Arosa are discussed, and two different methods to reassess total ozone observations are compared. Two partially automated Dobson spectrophotometers and two completely automated Brewer spectrometers are currently in operation at Arosa. Careful comparison of the results of the measurements of the different instruments yields valuable information of possible small long- term drifts of the instruments involved in the operational measurements.
A 40 Year Time Series of SBUV Observations: the Version 8.6 Processing
NASA Technical Reports Server (NTRS)
McPeters, Richard; Bhartia, P. K.; Flynn, L.
2012-01-01
Under a NASA program to produce long term data records from instruments on multiple satellites (MEaSUREs), data from a series of eight SBUV and SBUV 12 instruments have been reprocessed to create a 40 year long ozone time series. Data from the Nimbus 4 BUV, Nimbus 7 SBUV, and SBUV/2 instruments on NOAA 9, 11, 14, 16, 17, and 18 were used covering the period 1970 to 1972 and 1979 to the present. In past analyses an ozone time series was created from these instruments by adjusting ozone itself, instrument by instrument, for consistency during overlap periods. In the version 8.6 processing adjustments were made to the radiance calibration of each instrument to maintain a consistent calibration over the entire time series. Data for all eight instruments were then reprocessed using the adjusted radiances. Reprocessing is necessary to produce an accurate latitude dependence. Other improvements incorporated in version 8.6 included the use of the ozone cross sections of Brion, Daumont, and Malicet, and the use of a cloud height climatology derived from Aura OMI measurements. The new cross sections have a more accurate temperature dependence than the cross sections previously used. The OMI-based cloud heights account for the penetration of UV into the upper layers of clouds. The consistency of the version 8.6 time series was evaluated by intra-instrument comparisons during overlap periods, comparisons with ground-based instruments, and comparisons with measurements made by instruments on other satellites such as SAGE II and UARS MLS. These comparisons show that for the instruments on NOAA 16, 17 and 18, the instrument calibrations were remarkably stable and consistent from instrument to instrument. The data record from the Nimbus 7 SBUV was also very stable, and SAGE and ground-based comparisons show that the' calibration was consistent with measurements made years laterby the NOAA 16 instrument. The calibrations of the SBUV/2 instruments on NOAA 9, 11, and 14 were more of a problem. The rapidly drifting orbits of these satellites resulted in relative time and altitude dependent differences that are significant. Despite these problems, total column ozone appears to be consistent to better than 1% over the entire time series, while the ozone vertical distribution is consistent to approximately 5%.
Dry Particulate Nitrate Deposition in China.
Liu, Lei; Zhang, Xiuying; Zhang, Yan; Xu, Wen; Liu, Xuejun; Zhang, Xiaomin; Feng, Junlan; Chen, Xinrui; Zhang, Yuehan; Lu, Xuehe; Wang, Shanqian; Zhang, Wuting; Zhao, Limin
2017-05-16
A limited number of ground measurements of dry particulate nitrate deposition (NO 3 - ) makes it difficult and challenging to fully know the status of the spatial and temporal variations of dry NO 3 - depositions over China. This study tries to expand the ground measurements of NO 3 - concentrations at monitoring sites to a national scale, based on the Ozone Monitoring Instrument (OMI) NO 2 columns, NO 2 profiles from an atmospheric chemistry transport model (Model for Ozone and Related chemical Tracers, version 4, MOZART-4) and monitor-based sources, and then estimates the NO 3 - depositions on a regional scale based on an inferred model. The ground NO 2 concentrations were first derived from NO 2 columns and the NO 2 profiles, and then the ground NO 3 - concentrations were derived from the ground NO 2 concentrations and the relationship between NO 2 and NO 3 - based on Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN). This estimated dry NO 3 - depositions over China will be helpful in determining the magnitude and pollution status in regions without ground measurements, supporting the construction plan of environmental monitoring in future.
Interactive Multi-Instrument Database of Solar Flares
NASA Technical Reports Server (NTRS)
Ranjan, Shubha S.; Spaulding, Ryan; Deardorff, Donald G.
2018-01-01
The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation of the existing solar/heliosphere space-data products jointly with ground-based observations. Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases applied to the growing amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories. Our flare database is not simply a manually searchable time-based catalog of events or list of web links pointing to data. It is a preprocessed metadata repository enabling fast search and automatic identification of all recorded flares sharing a specifiable set of characteristics, features, and parameters. The result is a new and unique database of solar flares and data search and classification tools for the Heliophysics community, enabling multi-instrument/multi-wavelength investigations of flare physics and supporting further development of flare-prediction methodologies.
Ground based and airborne atmospheric measurements near bucharest
NASA Astrophysics Data System (ADS)
Nemuc, Anca; Boscornea, Andreea; Belegante, Livio; Vasilescu, Jeni; Vajaiac, Sorin; Ene, Dragos; Marmureanu, Luminita; Andrei, Simona
2018-04-01
This paper presents the results from a coordinated approach for atmospheric investigation, exploring synergies between different techniques. A wide range of instruments have been used during an intensive measurement period both from ground (lidar, sunphotometer, aethalometer and Aerosol Chemical Speciation Monitor) and airborne (aerodynamic particle sizer, the Picarro gas analyzer and the NO2 CAPS analyzer) in 2016 over Magurele, 6 km South West of Bucharest.
The deep space network, volume 13
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.
Network operability of ground-based microwave radiometers: Calibration and standardization efforts
NASA Astrophysics Data System (ADS)
Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald
2017-04-01
Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.
122. VIEW OF CABINETS ON WEST SIDE OF LANDLINE INSTRUMENTATION ...
122. VIEW OF CABINETS ON WEST SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751), FACING EAST. PECOS CABINET INCLUDES CONTROLS FOR PRESSURE SWITCHES, VALVES, AND PURGE; THE LOGIC AND MONITOR UNITS FOR BOOSTER AND FUEL SYSTEMS INCLUDES CONTROLS FOR MISSILE GROUND POWER AND HYDRAULICS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Technical Reports Server (NTRS)
Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong
2016-01-01
Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.
Characterization of air pollution in Mexico City by remote sensing
NASA Astrophysics Data System (ADS)
Grutter, Michel; Arellano, Josue; Bezanilla, Alejandro; Friedrich, Martina; Plaza, Eddy; Rivera, Claudia; Stremme, Wolfgang
2014-05-01
Megacities, like the Mexico City Metropolitan Area, are home to a large fraction of the population of the world and a consequence is that they are one of the biggest sources of contaminants and greenhouse gases emitted to the atmosphere. The pollution is visible form space through remote sensing instruments, however, satellite observations like those with NADIR viewing geometries have decreased sensitivity near the Earth's surface and the analytical algorithms are in generally optimized to detect pollution plumes in the free troposphere or above. Ground-based observations are thus necessary in order to reduce uncertainties from satellite products. As we will show, Mexico City and its surroundings is well characterized by ground-based remote sensing measurements like from two stations with solar-absorption FTIR spectrometers and a newly formed network of MAX-DOAS and LIDAR instruments. Examples will be provided of how the evolution of the mixing-layer height is characterized and the vertical column densities and profiles of gases in and outside the urban area are continuously monitored. The combination of ground-based and space-borne measurements are used to improve the current knowledge in the spatial and temporal distribution of key pollutants from this megacity.
Conjugate Ground-Spacecraft Observations of VLF Chorus Elements
NASA Astrophysics Data System (ADS)
Demekhov, A. G.; Manninen, J.; Santolík, O.; Titova, E. E.
2017-12-01
We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of -12.4∘ close to the plasmapause and inside a localized density inhomogeneity with about 30% density increase and a transverse size of about 600 km. The time delay between the waves detected on the ground and on the spacecraft is about 1.3 s, with ground-based detection leading spacecraft detection. The measured time delay is consistent with the wave travel time of quasi-parallel whistler-mode waves for a realistic profile of the plasma density distribution along the field line. The results suggest that chorus discrete elements can preserve their spectral shape during a hop from the generation region to the ground followed by reflection from the ionosphere and return to the near-equatorial region.
Ionospheric Observations During a Geomagnetic Storm from LITES on the ISS
NASA Astrophysics Data System (ADS)
Finn, S. C.; Stephan, A. W.; Cook, T.; Budzien, S. A.; Chakrabarti, S.; Erickson, P. J.; Geddes, G.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an extreme-ultraviolet imaging spectrograph that launched in February 2017 and was installed on the International Space Station (ISS). LITES is limb-viewing ( 150 - 350 km tangent altitude) and measures airglow emissions from 60 - 140 nm with 0.2° angular and 1 nm spectral resolutions. We present early LITES results of observations during a G2 geomagnetic storm in April 2017. In addition to LITES data, we will show complementary ground-based incoherent scatter radar (ISR) observations from Millstone Hill during this storm. The combination of LITES EUV space-based observations with the ground-based radio data is an example of the capability of campaign-style measurements of the ionosphere-thermosphere system using multiwavelength ground- and space-based instruments.
Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation
NASA Technical Reports Server (NTRS)
Cohen, Richard J.
1999-01-01
It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.
TESS Ground System Operations and Data Products
NASA Astrophysics Data System (ADS)
Glidden, Ana; Guerrero, Natalia; Fausnaugh, Michael; TESS Team
2018-01-01
We describe the ground system operations for processing data from the Transiting Exoplanet Survey Satellite (TESS), highlighting the role of the Science Operations Center (SOC). TESS is a spaced-based (nearly) all-sky mission, designed to find small planets around nearby bright stars using the transit method. We detail the flow of data from pixel measurements on the instrument to final products available at the Mikulski Archive for Space Telescopes (MAST). The ground system relies on a host of players to process the data, including the Payload Operations Center at MIT, the Science Processing Operation Center at NASA Ames, and the TESS Science Office, led by the Harvard-Smithsonian Center for Astrophysics and MIT. Together, these groups will deliver TESS Input Catalog, instrument calibration models, calibrated target pixels and full frame images, threshold crossing event reports, two-minute light curves, and the TESS Objects of Interest List.
Elements of NASA GSFC Wallops Island's ozone measurement program
NASA Astrophysics Data System (ADS)
Schmidlin, F. J.; Schauer, A. G.; Thompson, A. M.; Northam, E. T.; Brothers, G. B.; Beebe, A.
2003-04-01
Ozone observations from GSFC Wallops Flight Facility, Natal, Brazil, and Ascension Island involve instrument preparation, analyses, comparisons, archiving, and documentation. The complement of instrumentation enables reliable, accurate world-class information be made available to the scientific community. At Wallops Island, instruments in use include the electrochemical concentration cell ECC ozonesondes, Dobson spectrophotometer, Microtops Sun Photometer, Ground-based Ultraviolet Radiometer GUV, and the NILU-UV Irradiance meter. ECC's and a Dobson are used at Natal while ECC's and a handheld Microtops Sunphotometer are used at Ascension Island. ECC ozonesondes are released from Natal as part of an agreement between NASA and INPE and from Ascension Island with US Air Force cooperation. Both of these sites provide vertical ozone profiles to SHADOZ. All of the instruments mentioned are widely used and need not be described further. Unique ECC preparation procedures developed at Wallops Island over many years also are used at the three sites. Description of the ECC calibration against known standards is given. Emphasis is given to results of comparisons between ECC's of two manufacturers, to the affect of different KI solutions and possible adjustment to older measurements that used different KI solution strengths, and to laboratory tests conducted during JOSIE2000 and their relationship to in situ tests conducted at Wallops Island. If time permits, we will give a summary of the performance of the ground-based instruments.
NASA Astrophysics Data System (ADS)
Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro
2015-01-01
One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides significant sky-coverage using natural guide-stars alone.Here we present an overview of the instrument design, results from the first on-sky and laboratory testing and on-going development work of the instrument and its adaptive optics system.
Ground-based Observation System Development for the Moon Hyper-spectral Imaging
NASA Astrophysics Data System (ADS)
Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng
2017-05-01
The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.
Advance on solar instrumentation in China
NASA Astrophysics Data System (ADS)
Yan, Yihua
2015-08-01
The solar observing facilities in China are introduced with the emphasis on the development in recent years and future plans for both ground and space-based solar instrumentations. The recent solar instruments are as follows: A new generation Chinese Spectral Radioreliograph (CSRH) has been constructed at Mingantu Observing Station in Zhengxiangbaiqi, inner Mongolia of China since 2013 and is in test observations now. CSRH has two arrays with 40 × 4.5 m and 60 × 2 m parabolic antennas covering 0.4-2 GHz and 2-15 GHz frequency range. CSRH is renamed as MUSER (Mingantu Ultrawide Spectral Radiheliograph) after its accomplishment. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at Fuxian lake, 60 km away from Kunming, Yunana. At present it is the best seeing place in China. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the same site as NVST in 2011. ONSET has been put into operation since 2013. For future ground-based plans, Chinese Giant Solar Telescope (CGST) with spatial resolution equivalent to 8m and effective area of 5m full-aperture telescope has been proposed and was formally listed into the National Plans of Major Science & Technology Infrastructures in China. The pre-study and site survey for CGST have been pursued. A 1-meter mid-infrared telescope for precise measurement of the solar magnetic field has been funded by NSFC in 2014 as a national major scientific instrument development project. This project will develop the first mid-infrared solar magnetic observation instrument in the world aiming at increasing the precision of the transverse magnetic field measurement by one order of magnitude. For future ground-based plans, we promote the Deep-space Solar Observatory (DSO) with 1-m aperture telescope to be formally funded. The ASO-S (an Advanced Space-based Solar Observatory) has been supported in background phase by Space Science Program as a small mission. Other related space solar projects have also been proposed to promote the solar-terrestrial research.
SMART Ground-based Radiation Measurements during PRIDE
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Ji, Qiang; Hansel, R.; Pilewskie, P.; Einaudi, Franco (Technical Monitor)
2000-01-01
We deployed a suite of ground-based remote sensing instruments - SMART (Surface Measurements for Atmospheric Radiative Transfer), at the Roosevelt Road Naval Station in Puerto Rico during the Puerto Rico Dust Experiment (PRIDE). The instruments include several solar and infrared broadband radiometers, a sunphotometer, a shadow-band radiometer, a micro-pulse lidar, a total-sky imager, a microwave radiometer, and two solar spectrometers. These radiometers were set up on a mobile platform and a solar tracker. During 27 June - 23 July, about 25 days of data were acquired under partially cloudy sky conditions. The diurnal air temperature was fluctuating around 28.6 C to within a few degrees. Daytime average of solar irradiance reaching at the surface was ranged from about 400 W/sq m on a rainy day to about 640 W/sq m on a cloud-free day. The infrared irradiance at the surface during the measurement period was averaged about 408 W/sq m. The heights of boundary layer, dusts and clouds were captured by lidar images. Based on sunphotometer and shadow-band radiometer retrievals, the aerosol optical thickness varied from below 0.1 to over 0.6. Combining with radiative transfer modeling and other in-situ and remote sensing measurements, our ground-based measurements provide vital information on understanding the long-range transport of African dust into the Caribbean.
NASA Technical Reports Server (NTRS)
Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.
1986-01-01
The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.
Global Precipitation Mission Visualization Tool
NASA Technical Reports Server (NTRS)
Schwaller, Mathew
2011-01-01
The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.
System-level view of geospace dynamics: Challenges for high-latitude ground-based observations
NASA Astrophysics Data System (ADS)
Donovan, E.
2014-12-01
Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how high latitude ground based observations can address these challenges.
Landsat-7 ETM+ radiometric stability and absolute calibration
Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, Pat; ,
2002-01-01
Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.
Light Diffusion in the Tropical Dry Forest of Costa Rica
NASA Astrophysics Data System (ADS)
Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.
2016-06-01
Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.
MSFC Skylab instrumentation and communication system mission evaluation
NASA Technical Reports Server (NTRS)
Adair, B. M.
1974-01-01
An evaluation of the in-orbit performance of the instrumentation and communications systems installed on Skylab is presented. Performance is compared with functional requirements and the fidelity of communications. In-orbit performance includes processing engineering, scientific, experiment, and biomedical data, implementing ground-generated commands, audio and video communication, generating rendezvous ranging information, and radio frequency transmission and reception. A history of the system evolution based on the functional requirements and a physical description of the launch configuration is included. The report affirms that the instrumentation and communication system satisfied all imposed requirements.
The Geostationary Operational Satellite R Series SpaceWire Based Data System Architecture
NASA Technical Reports Server (NTRS)
Krimchansky, Alexander; Anderson, William H.; Bearer, Craig
2010-01-01
The GOES-R program selected SpaceWire as the best solution to satisfy the desire for simple and flexible instrument to spacecraft command and telemetry communications. Data generated by GOES-R instruments is critical for meteorological forecasting, public safety, space weather, and other key applications. In addition, GOES-R instrument data is provided to ground stations on a 24/7 basis. GOES-R requires data errors be detected and corrected from origin to final destination. This paper describes GOES-R developed strategy to satisfy this requirement
NASA Technical Reports Server (NTRS)
Thurlow, M. E.; Co, D. T.; O'Brien, A. S.; Hannun, R. A.; Lapson, L. B.; Hanisco, T. F.; Anderson, J. G.
2014-01-01
High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 1012. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A23/2 (v = 2) ? X23/2 (v = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.
NASA Astrophysics Data System (ADS)
Krintz, I. A.; Ruble, W.; Sherman, J. P.
2017-12-01
Satellite-based measurements of aerosol optical depth (AOD), such as those made by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the TERRA and AQUA spacecraft, are often used in studies of aerosol direct radiative forcing (DRF) on regional to global scales due to daily near-global coverage. However, these measurements require validation by ground-based instrumentation, which is limited due to the cost of research-grade instrumentation. Furthermore, satellite-based AOD agreement with "ground-truth" instruments is weaker over mountainous regions (Levy et al., 2010). To aid in satellite validation, a low cost handheld sunphotometer has been developed which will be suitable for deployment to multiple sites to form a citizen science network as part of an upcoming proposal. A microcontroller, along with temperature and pressure sensors, has been included in this design to ease the process of taking measurements and transferring data for processing. Although LED-based sunphotometers have been used for a number of years (Brooks and Mims, 2001), this design uses filtered photodiodes which appear to have less of a temperature dependence. The interface has been designed to be intuitive to citizen scientists of all ages, nationalities, and backgrounds, so that deployment to primary schools and international sites will be as seamless as possible. Presented here is the instrument design, as well as initial results of a comparison with NASA Aerosol Robotic Network (AERONET) and MODIS-measured AOD. Future revisions to the instrument design, such as incorporation of surface-mount devices to cut down on circuit board size, will allow for an even smaller and more cost effective solution suitable for a global sunphotometer network.
Simple system for locating ground loops.
Bellan, P M
2007-06-01
A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.
A new approach to correct for absorbing aerosols in OMI UV
NASA Astrophysics Data System (ADS)
Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J. M.; Brogniez, C.; Siani, A. M.; Janouch, M.; Weihs, P.; Webb, A.; Koskela, T.; Kouremeti, N.; Meloni, D.; Buchard, V.; Auriol, F.; Ialongo, I.; Staneck, M.; Simic, S.; Smedley, A.; Kinne, S.
2009-11-01
Several validation studies of surface UV irradiance based on the Ozone Monitoring Instrument (OMI) satellite data have shown a high correlation with ground-based measurements but a positive bias in many locations. The main part of the bias can be attributed to the boundary layer aerosol absorption that is not accounted for in the current satellite UV algorithms. To correct for this shortfall, a post-correction procedure was applied, based on global climatological fields of aerosol absorption optical depth. These fields were obtained by using global aerosol optical depth and aerosol single scattering albedo data assembled by combining global aerosol model data and ground-based aerosol measurements from AERONET. The resulting improvements in the satellite-based surface UV irradiance were evaluated by comparing satellite and ground-based spectral irradiances at various European UV monitoring sites. The results generally showed a significantly reduced bias by 5-20%, a lower variability, and an unchanged, high correlation coefficient.
Exoplanet Observations in SOFIA's Cycle 1
NASA Astrophysics Data System (ADS)
Angerhausen, Daniel
2013-06-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micron photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in the field of characterization of the physical properties of exoplanets: parallel optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments and possible future dedicated instrumentation. Here we present spectrophotometric exoplanet observations that were or will be conducted in SOFIA's cycle 1.
Design and construction of the POLAR detector
NASA Astrophysics Data System (ADS)
Produit, N.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvich, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; Kole, M.; Kong, M. N.; Kramert, R.; Li, L.; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rapin, D.; Rybka, D.; Rutczynska, A.; Shi, H. L.; Socha, P.; Sun, J. C.; Song, L. M.; Szabelski, J.; Traseira, I.; Xiao, H. L.; Wang, R. J.; Wen, X.; Wu, B. B.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, Y. J.; Zwolinska, A.
2018-01-01
The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.
Evaluation of Experimental Data from the Gains Balloon GPS Surface Reflection Instrument
NASA Technical Reports Server (NTRS)
Ganoe, George G.; Johnson, Thomas A.; Somero, John Ryan
2002-01-01
The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in June 2002. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the GAINS balloon flight over the Northwest US, the instrument measured surface reflections as they were detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and will focus on results of the science data analyses for the mission.
Evaluation of Experimental Data from the GAINS Balloon GPS Surface Reflection Instrument
NASA Technical Reports Server (NTRS)
Gance, George G.; Johnson, Thomas A.
2004-01-01
The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.
MOEMs devices for future astronomical instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Liotard, Arnaud; Lanzoni, Patrick; ElHadi, Kacem; Waldis, Severin; Noell, Wilfried; de Rooij, Nico; Conedera, Veronique; Fabre, Norbert; Muratet, Sylvaine; Camon, Henri
2017-11-01
Based on the micro-electronics fabrication process, Micro-Opto-Electro-Mechanical Systems (MOEMS) are under study in order to be integrated in next-generation astronomical instruments for ground-based and space telescopes. Their main advantages are their compactness, scalability, specific task customization using elementary building blocks, and remote control. At Laboratoire d'Astrophysique de Marseille, we are engaged since several years in the design, realization and characterization of programmable slit masks for multi-object spectroscopy and micro-deformable mirrors for wavefront correction. First prototypes have been developed and show results matching with the requirements.
Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements
NASA Technical Reports Server (NTRS)
Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong
2013-01-01
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
NASA Astrophysics Data System (ADS)
Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; de Angelis, A.; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.
2011-12-01
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
NASA Technical Reports Server (NTRS)
Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.
2017-01-01
A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.
NASA Astrophysics Data System (ADS)
Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.
2017-03-01
A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.
Validation of SCIAMACHY and TOMS UV Radiances Using Ground and Space Observations
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Bhartia, P. K.; Bojkov, B. R.; Kowalewski, M.; Labow, G.; Ahmad, Z.
2004-01-01
Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all B W instruments in orbit (TOMS, SBW/2, GOME, SCIAMACHY, OM, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. Radiance comparisons employ forward models and are inherently more accurate than inverse (retrieval) algorithms. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. TOMS and SCIAMACHY calibrations are checked to demonstrate this method and to demonstrate applicability for long term trends.
NASA Astrophysics Data System (ADS)
Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi
2018-01-01
Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.
Development of Long-term Datasets from Satellite BUV Instruments: The "Soft" Calibration Approach
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.; Taylor, Steven; Jaross, Glen
2005-01-01
The first BUV instrument was launched in April 1970 on NASA's Nimbus4 satellite. More than a dozen instruments, broadly based on the same principle, but using very different technologies, have been launched in the last 35 years on NASA, NOAA, Japanese and European satellites. In this paper we describe the basic principles of the "soft" calibration approach that we have successfully applied to the data from many of these instruments to produce a consistent long-term record of total ozone, ozone profile and aerosols. This approach is based on using accurate radiative transfer models and assumed/known properties of the atmosphere in ultraviolet to derive calibration parameters. Although the accuracy of the results inevitably depends upon how well the assumed atmospheric properties are known, the technique has several built-in cross- checks that improve the robustness of the method. To develop further confidence in the data the soft calibration technique can be combined with data collected from few well- calibrated ground-based instruments. We will use examples from past and present BUV instruments to show how the method works.
NASA Astrophysics Data System (ADS)
Kim, B.; Choi, Y.; Ghim, Y.
2013-12-01
Both Cimel CE-318 sunphotometer and POM-02 skyradiometer were operated for around 15 months starting from March 2012 as a part of the DRAGON (Distributed Regional Aerosol Gridded Observation Networks) campaign. These two instruments were collocated at the Hankuk_UFS (Hankuk University of Foreign Studies) site of AERONET (AErosol RObotic NETwork,) and the YGN (Yongin) site of SKYNET (SKYradiometer NETwork). We have also measured the particle concentration on the ground using an optical particle counter (Grimm Model 1.108) since the beginning of this year. The measurement site (37.02 °N, 127.16 °E, 167 m above sea level) is located about 35 km southeast of downtown Seoul. We compare the volume size distributions from sunphotometer, skyradiometer, and optical particle counter for the former part of this year. In the retrieval process, AERONET assumes 22 bins for 0.05-15 μm while SKYNET assumes 20 bins for 0.01-20 μm. The optical particle counter measures the particle number concentrations between 0.25 and 32 μm in 31 bins. Since the measurement intervals are different between instruments, we compare the distributions when the measurement time coincides within 5 minutes as well as mean distributions from the instruments. We examine the differences in mode radii and volume concentrations of fine and coarse mode aerosols between instruments.
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.
Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)
NASA Technical Reports Server (NTRS)
Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.
2014-01-01
Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.
The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico
NASA Astrophysics Data System (ADS)
Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.
2014-12-01
The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network's monitoring capabilities.
Covering Jupiter from Earth and Space
2011-08-03
Ground-based astronomers will be playing a vital role in NASA Juno mission. Images from the amateur astronomy community are needed to help the JunoCam instrument team predict what features will be visible when the camera images are taken.
DOT National Transportation Integrated Search
2012-03-01
Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...
ERIC Educational Resources Information Center
Goebel, Ronald A.; And Others
Under a background condition of either recorded radio chatter or no radio chatter, the individual performances of two flights of mid-phase instrument student pilots were measured during a simulated instrument cross-country mission in the T-38 ground trainer. Operational constraints prevented the exercise of optimal experimental controls, thereby…
A four mirror anastigmat collimator design for optical payload calibration
NASA Astrophysics Data System (ADS)
Rolt, Stephen; Calcines, Ariadna; Lomanowski, Bart A.; Bramall, David G.
2016-07-01
We present here a four mirror anastigmatic optical collimator design intended for the calibration of an earth observation satellite instrument. Specifically, the collimator is to be applied to the ground based calibration of the Sentinel-4/UVN instrument. This imaging spectrometer instrument itself is expected to be deployed in 2019 in a geostationary orbit and will make spatially resolved spectroscopic measurements of atmospheric contaminants. The collimator is to be deployed during the ground based calibration only and does not form part of the instrument itself. The purpose of the collimator is to provide collimated light within the two instrument passbands in the UV-VIS (305 - 500 nm) and the NIR (750 - 775 nm). Moreover, that collimated light will be derived from a variety of slit like objects located at the input focal (object) plane of the collimator which is uniformly illuminated by a number of light sources. The collimator must relay these objects with exceptionally high fidelity. To this end, the wavefront error of the collimator should be less than 30 nm rms across the collimator field of view. This field is determined by the largest object which is a large rectangular slit, 4.4° x 0.25°. Other important considerations affecting the optical design are the requirements for input telecentricity and the size (85 mm) and location (2500 mm `back focal distance') of the exit pupil. The design of the instrument against these basic requirements is discussed in detail. In addition an analysis of the straylight and tolerancing is presented in detail.
NASA Astrophysics Data System (ADS)
Li, C. Y. R.; Parker, O.; Tzortziou, M.
2017-12-01
Our research sought to use ground-based and satellite products to study the spatiotemporal variability of NO2 and O3 in urban and coastal South Korea. Our data set was derived from direct-sun irradiance measurements of TCNO2 and TCO3 using Pandora spectrometers located at 8 ground sites and 1 boat-mounted sensor, as well as satellite observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite. Our analysis focuses on the dates of the KORUSA campaign, which took place between May 18, 2016 through June 2, 2016, and provided our off-shore measurements. The Pandora instrument offered us continuous coverage of the local area, providing a detailed understanding of NO2 and O3 temporal variability. Ground stations allowed us to compare small-scale diurnal variability in urban and near-urban environments, while the Pandora mounted on the Onnuri research vessel permitted us to gain valuable insight into off-shore behavior of trace gases. By overlaying and comparing these measurements with TCO3/TCNO2 products from the Aura-OMI sensor, we were able to form a relatively complete picture of trace gas behavior above, and off-shore from, the Korean Peninsula. Our data was then subjected to statistical and GIS (Geographic Information System) analysis, quantifying and mapping (respectively) the spatial and temporal variability of total column amounts of NO2 and O3 along the Korean Peninsula. Results are shown for the eight sites where different Pandora instruments were used. There was a notable difference in TCNO2 variability which correlates with population and land use.
NASA Astrophysics Data System (ADS)
Wagner, T. J.; Borg, L. A.; Feltz, M.; Gero, P. J.; Knuteson, R. O.; Olson, E.
2016-12-01
The Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison has developed the SSEC Portable Atmospheric Research Center (SPARC), a mobile 11 m trailer that houses numerous in situ and ground-based remote sensing instruments. Available instrumentation includes the Atmospheric Emitted Radiance Interferometer (AERI), a hyperspectral infrared radiometer from which trace gas concentrations and profiles of temperature and water vapor can be retrieved; the High Spectral Resolution Lidar (HSRL), a multichannel lidar capable of directly retrieving profiles of optical depth and backscatter depolarization; and a Doppler lidar wind profiler. The remote instrumentation suite is complemented by surface meteorology observations and a radiosonde ground station. Collectively, these instruments enable SPARC to participate in a wide variety of field studies, including meteorological field experiments and ground-based satellite calibration and validation studies. In August 2016, SPARC traveled to the Chequamegon National Forest in northern Wisconsin for a two week long deployment alongside the WLEF-TV tower. This 447 m tower houses long-term observations of thermodynamic and atmospheric composition at multiple heights, enabling studies of phenomena like atmospheric/land surface interactions and carbon uptake. During this deployment, SPARC launched radiosondes coincident with clear-sky overpasses of the Greenhouse gases Observing SATellite (GOSAT). Thermodynamic profiles from the radiosondes and AERI combined with the trace gas observations from the tower were used to validate the GOSAT observations of carbon dioxide and methane. The on-site presence of SPARC allowed for better characterization of the environment and greater observational certainty than was possible with the tower alone. Examples from this particular validation study as well as a discussion of how SPARC can contribute to other satellite calibration and validation investigations will be presented.
Proceedings of the Army Aviation Instructors’ Conference
1968-01-01
Aviation Test Board is located at Cairns. There are about 220 aircraft based at Cairns, and it is the site of our radar approach control. The Cairns...at Fort Wolters, the student will fly either the TH-55, the OH-13, or the OH-23. The student goes out and practices his approaches , landing, and...computer out operations. Instrument Flight: This includes instrument approaches without ground navigational radio aids, using the self-contained
ERIC Educational Resources Information Center
Corter, Carl; Patel, Sejal; Pelletier, Janette; Bertrand, Jane
2008-01-01
Research Findings: Integrated services for young children and families are part of the new policy landscape in early childhood, but there is limited evidence of the effectiveness of these programs and how they develop on the ground. This study examined the use of the Early Development Instrument (EDI) as both a summative program evaluation tool…
115. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (206), ...
115. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). BATTERY RACK ON LEFT FOR BACKUP BOOSTER POWER; BATTERY RACK ON RIGHT FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER. RECTIFIER SUPPLYING PRIMARY POWER ON THE RIGHT SIDE OF THE PHOTO; BATTERY CHARGER BETWEEN RECTIFIER AND BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Networked high-speed auroral observations combined with radar measurements for multi-scale insights
NASA Astrophysics Data System (ADS)
Hirsch, M.; Semeter, J. L.
2015-12-01
Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.
NASA Astrophysics Data System (ADS)
Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.
2015-12-01
Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.
Correcting for the effects of pupil discontinuities with the ACAD method
NASA Astrophysics Data System (ADS)
Mazoyer, Johan; Pueyo, Laurent; N'Diaye, Mamadou; Mawet, Dimitri; Soummer, Rémi; Norman, Colin
2016-07-01
The current generation of ground-based coronagraphic instruments uses deformable mirrors to correct for phase errors and to improve contrast levels at small angular separations. Improving these techniques, several space and ground based instruments are currently developed using two deformable mirrors to correct for both phase and amplitude errors. However, as wavefront control techniques improve, more complex telescope pupil geometries (support structures, segmentation) will soon be a limiting factor for these next generation coronagraphic instruments. The technique presented in this proceeding, the Active Correction of Aperture Discontinuities method, is taking advantage of the fact that most future coronagraphic instruments will include two deformable mirrors, and is proposing to find the shapes and actuator movements to correct for the effect introduced by these complex pupil geometries. For any coronagraph previously designed for continuous apertures, this technique allow to obtain similar performance in contrast with a complex aperture (with segmented and secondary mirror support structures), with high throughput and flexibility to adapt to changing pupil geometry (e.g. in case of segment failure or maintenance of the segments). We here present the results of the parametric analysis realized on the WFIRST pupil for which we obtained high contrast levels with several deformable mirror setups (size, separation between them), coronagraphs (Vortex charge 2, vortex charge 4, APLC) and spectral bandwidths. However, because contrast levels and separation are not the only metrics to maximize the scientific return of an instrument, we also included in this study the influence of these deformable mirror shapes on the throughput of the instrument and sensitivity to pointing jitters. Finally, we present results obtained on another potential space based telescope segmented aperture. The main result of this proceeding is that we now obtain comparable performance than the coronagraphs previously designed for WFIRST. First result from the parametric analysis strongly suggest that the 2 deformable mirror set up (size and distance between them) have a important impact on the performance in contrast and throughput of the final instrument.
The Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2)
NASA Astrophysics Data System (ADS)
Van Roozendael, M.; Hendrick, F.; Apituley, A.; Kreher, K.; Friess, U.; Richter, A.; Wagner, T.; Fehr, T.
2017-12-01
For the validation of space borne UV-Vis observations of air quality gases, ground based remote-sensing instruments using the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. Over the last decade, MAXDOAS instruments of various designs (including PANDORA systems) have been deployed worldwide forming the basis for a global ground based reference network suitable for the validation of future satellite sensors, such as TROPOMI/Sentinel-5 precursor, GEMS, TEMPO, and Sentinel 4 and 5. To ensure proper traceability of these observations, assess their accuracy and progress towards harmonized data acquisition and delivery, a thorough intercomparison campaign known as the Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2) was held in Cabauw, The Netherlands during the month of September 2016. About 35 MAXDOAS instruments operated by 25 different groups were deployed, together with systems providing key ancillary in-situ measurements of NO2 and aerosol optical properties, as well as vertical profiles of NO2 by lidar and sonde and vertical profiles of aerosol optical properties by Raman lidar. We provide an overview of the main outcome of the campaign, which included a formal semi-blind slant column intercomparison and a number of additional exercises aiming at assessing the potential of the MAXDOAS technique for retrieving vertically-resolved information on NO2, aerosol, HCHO, O3 and a few other more challenging species such as HONO and glyoxal.
NASA Astrophysics Data System (ADS)
Ocko, Ilissa B.; Ginoux, Paul A.
2017-04-01
Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved
models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.
Project management for complex ground-based instruments: MEGARA plan
NASA Astrophysics Data System (ADS)
García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge
2014-08-01
The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.
NASA Astrophysics Data System (ADS)
Revercomb, Henry E.; Knuteson, Robert O.; Best, Fred A.; Tobin, David C.; Smith, William L.; Feltz, Wayne F.; Petersen, Ralph A.; Antonelli, Paolo; Olson, Erik R.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, H. Benjamin; Vinson, Kenneth; Ackerman, Steven A.
2003-06-01
Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS (2002), CrIS (2006), IASI (2006), GIFTS (2005/6)]. Follow-on developments at the University of Wisconsin-Madison that employ interferometry for a wide range of Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the Scanning HIS aircraft instrument (S-HIS). The AERI was developed for the US DOE Atmospheric Radiation Measurement (ARM) Program, primarily to provide highly accurate radiance spectra for improving radiative transfer models. The continuously operating AERI soon demonstrated valuable new capabilities for sensing the rapidly changing state of the boundary layer and properties of the surface and clouds. The S-HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. S-HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST) operated by NASA Langley, are being used for satellite instrument validation and for atmospheric research. The calibration and noise performance of these and future satellite instruments is key to optimizing their remote sensing products. Recently developed techniques for improving effective radiometric performance by removing noise in post-processing is a primary subject of this paper.
Polarimetric measurements in prominences and "tornadoe" observed by THEMIS
NASA Astrophysics Data System (ADS)
Schmieder, Brigitte; López Ariste, Arturo; Levens, Peter; Labrosse, Nicolas; Dalmasse, Kévin
2015-10-01
Since 2013, coordinated campaigns with the THEMIS spectropolarimeter in Tenerife and other instruments (space based: Hinode/SOT, IRIS or ground based: Sac Peak, Meudon) are organized to observe prominences. THEMIS records spectropolarimetry at the He I D3 and we use the PCA inversion technique to derive their field strength, inclination and azimuth.
Tucker, D M; Wenckus, C S; Bentkover, S K
1997-03-01
Twenty-two mesial roots of extracted human mandibular molars were divided into two groups based on root curvature and length. The mesiolingual canals were instrumented using either Flexofiles in a step-back anticurvature filing method, or they were instrumented with engine-driven 0.02 taper nickel-titanium files. Ground sections were prepared at 1-, 2.5-, and 5-mm levels from the working length. The mesiobuccal canal was used as an uninstrumented control for predentin character. Digitizing software was used to calculate the instrumented portion as a percentage of the total canal perimeter. The results indicated no significant difference in overall canal wall planning between the two groups and no significant difference at each of the three levels.
AIRS Retrieval Validation During the EAQUATE
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.
2006-01-01
Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.
Development of an Airborne Micropulse Water Vapor DIAL
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Ismail, S.
2012-12-01
Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground based instrument is achievable via overdriven current pulses to the TSOA gain medium while maintaining a 1μs and 10 kHz pulse width and PRF, respectively. The increase in the laser transmitter pulse energy will allow for nighttime and daytime water vapor profile retrievals from an airborne platform operating at an 8 km altitude with 2-5 minute integration periods. Results from a numerical model demonstrating the performance of an airborne DIAL system with the mentioned transmitter enhancements will be presented and compared against the existing ground based instrument performance. Furthermore, results from laboratory experiments demonstrating the laser transmitter performance including maximum extractable energy, energy stability, and spectral purity will also be presented.
A~compact receiver system for simultaneous measurements of mesospheric CO and O3
NASA Astrophysics Data System (ADS)
Forkman, P.; Christensen, O. M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V. M.
2015-09-01
During the last decades, ground-based microwave radiometry has matured to an established remote sensing technique for measuring vertical profiles of a number of gases in the stratosphere and the mesosphere. Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the upper stratosphere and mesosphere both day and night, and even during cloudy conditions. Except for microwave instruments placed at high altitude sites, or at sites with dry atmospheric conditions, only molecules with significant emission lines below 150 GHz, such as CO, H2O and O3 can be observed. Vertical profiles of these molecules can give important information about chemistry and dynamics in the middle atmosphere. Today these measurements are performed at relatively few sites, more simple and reliable instrument solutions are required to make the measurement technique more widely spread. This need is today urgent as the number of satellite sensors observing the middle atmosphere is about to decrease drastically. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO at 115.27 GHz and O3 at 110.84 GHz is presented The radiometer, its calibration scheme and observation method are presented. The retrieval procedure, including compensation of the different tropospheric attenuation at the two frequencies, and error characterization are also described. The first measurement series from October 2014 until April 2015 taken at the Onsala Space Observatory, OSO, (57° N, 12° E) is analysed. The retrieved vertical profiles are compared with co-located CO and O3 data from the MLS instrument on the Aura satellite. The datasets from the instruments agree well to each other. The main differences are the higher OSO volume mixing ratios of O3 in the upper mesosphere during the winter nights and the higher OSO volume mixing ratios of CO in the mesosphere during the winter. The low bias of mesospheric winter values of CO from MLS compared to ground-based instruments has been reported earlier.
A compact receiver system for simultaneous measurements of mesospheric CO and O3
NASA Astrophysics Data System (ADS)
Forkman, P.; Christensen, O. M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V. M.
2016-02-01
During the last decades, ground-based microwave radiometry has matured into an established remote sensing technique for measuring vertical profiles of a number of gases in the stratosphere and the mesosphere. Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the upper stratosphere and mesosphere both day and night, and even during cloudy conditions. Except for microwave instruments placed at high-altitude sites, or at sites with dry atmospheric conditions, only molecules with significant emission lines below 150 GHz, such as CO, H2O, and O3, can be observed. Vertical profiles of these molecules can give important information about chemistry and dynamics in the middle atmosphere. Today these measurements are performed at relatively few sites; more simple and reliable instrument solutions are required to make the measurement technique more widely spread. This need is urgent today as the number of satellite sensors observing the middle atmosphere is about to decrease drastically. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO at 115.27 GHz and O3 at 110.84 GHz is presented. The radiometer, its calibration scheme, and its observation method are presented. The retrieval procedure, including compensation of the different tropospheric attenuations at the two frequencies and error characterization, are also described. The first measurement series from October 2014 until April 2015 taken at the Onsala Space Observatory, OSO (57° N, 12° E), is analysed. The retrieved vertical profiles are compared with co-located CO and O3 data from the MLS instrument on the Aura satellite. The data sets from the instruments agree well with each other. The main differences are the higher OSO volume mixing ratios of O3 in the upper mesosphere during the winter nights and the higher OSO volume mixing ratios of CO in the mesosphere during the winter. The low bias of mesospheric winter values of CO from MLS compared to ground-based instruments was reported earlier.
Validation of Brewer and Pandora measurements using OMI total ozone
NASA Astrophysics Data System (ADS)
Baek, Kanghyun; Kim, Jae H.; Herman, Jay R.; Haffner, David P.; Kim, Jhoon
2017-07-01
Korea will launch the Geostationary Environment Monitoring Spectrometer (GEMS) instrument in 2018 onboard the Geostationary Korean Multi-Purpose Satellite to monitor tropospheric gas concentrations with high temporal and spatial resolutions. The purpose of this study is to examine the performance of total column ozone (TCO) measurements from ground-based Pandora and Brewer instruments that will be used for validation of the GEMS ozone product. Satellite measurements can be used to detect erroneous outliers at a particular ground station, which deviate significantly from co-located satellite measurements relative to other stations. This is possible because a single satellite retrieval algorithm is used to process the entire satellite dataset, and instrument characteristics typically change slowly over the life of the satellite. Thus, the short-term stability (months) of satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems at individual stations. As a reference for satellite ozone measurements, we have selected TCO data derived from OMI-TOMS V8.5 algorithm, because it is a robust algorithm that has been well studied to identify its various error sources. We validated ground-based Brewer and Pandora TCO measurements using OMI-TOMS TCO data collected over South Korea from March 2012 to December 2014. The Brewer TCO measurements at Pohang showed significant deviation from overall seasonal variation during the study period. In addition, in the presence of clouds, Pandora TCO measurements are unusually ∼7% higher than OMI-TOMS TCO data. To filter out these cloud-contaminated data, we applied a Kalman filter to the Pandora measurements. The diurnal variation in the Kalman-filtered Pandora data agrees well with the Brewer data, and the correlation of Kalman-filtered Pandora data with OMI-TOMS TCO is significantly improved from 0.89 to 0.99 at Seoul and from 0.93 to 0.99 at Busan.
CERES FM-5 on the NPP Spacecraft: Continuing the Earth Radiation Budget Climate Data Record
NASA Technical Reports Server (NTRS)
Priestly, Kory; Smith, G. Louis
2009-01-01
The Clouds and the Earth's Radiant Energy System (CERES) Flight Model-5 (FM-5) instrument will fly on the NPOESS Preparatory Project (NPP) spacecraft, which has a launch-readiness date in June, 2010. This mission will continue the critical Earth Radiation Budget Climate Data Record (CDR) begun by the Earth Radiation Budget Experiment (ERBE) instruments in the mid 1980 s and continued by the CERES instruments currently flying on the EOS Terra and Aqua spacecraft. Ground calibrations have been completed for FM-5 and the instrument has been delivered for integration to the spacecraft Rigorous pre-launch ground calibration is performed on each CERES unit to achieve an accuracy goal of 1% for SW flux and 0.5% for outgoing LW flux. Any ground to flight or in-flight changes in radiometer response is monitored using a protocol employing both onboard and vicarious calibration sources and experiments. Recent studies of FM-1 through FM-4 data have shown that the SW response of space based broadband radiometers can change dramatically due to optical contamination. With these changes having most impact on optical response to blue-to UV radiance, where tungsten lamps are largely devoid of output, such changes are hard to monitor accurately using existing on-board sources. This paper outlines the lessons learned on the existing CERES sensors from 30+ years of flight experience and presents a radiometric protocol to be implemented on the FM-5 instrument to ensure that its performance exceeds the stated calibration and stability goals.
NASA Astrophysics Data System (ADS)
Antón, M.; Loyola, D.; López, M.; Vilaplana, J. M.; Bañón, M.; Zimmer, W.; Serrano, A.
2009-04-01
The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere.
Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation
NASA Technical Reports Server (NTRS)
Vondrak, R. R.
1981-01-01
Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors
The use of lidar for stratospheric measurements
NASA Technical Reports Server (NTRS)
Mccormick, M. P.
1977-01-01
Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.
Ground robotic measurement of aeolian processes
USDA-ARS?s Scientific Manuscript database
Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...
NASA Astrophysics Data System (ADS)
Marinelli, Valerio; Cremonese, Edoardo; Diémoz, Henri; Siani, Anna Maria
2017-04-01
The European Space Agency (ESA) is spending notable effort to put in operation a new generation of advanced Earth-observation satellites, the Sentinel constellation. In particular, the Sentinel-2 host an instrumental payload mainly consisting in a MultiSpectral Instrument (MSI) imaging sensor, capable of acquiring high-resolution imagery of the Earth surface and atmospheric reflectance at selected spectral bands, hence providing complementary measurements to ground-based radiometric stations. The latter can provide reference data for validating the estimates from spaceborne instruments such as Sentinel-2A (operating since October 2015), whose aerosol optical thickness (AOT) values, can be obtained from correcting SWIR (2190 nm) reflectance with an improved dense dark vegetation (DDV) algorithm. In the Northwestern European Alps (Saint-Christophe, 45.74°N, 7.36°E) a Prede POM-02 sun/sky aerosol photometer has been operating for several years within the EuroSkyRad network by the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta), gathering direct sun and diffuse sky radiance for retrieving columnar aerosol optical properties. This aerosol optical depth (AOD) dataset represents an optimal ground-truth for the corresponding Sentinel-2 estimates obtained with the Sen2cor processor in the challenging environment of the Alps (complex topography, snow-covered surfaces). We show the deviations between the two measurement series and propose some corrections to enhance the overall accuracy of satellite estimates.
Control and acquisition system of a space instrument for cosmic ray measurement
NASA Astrophysics Data System (ADS)
Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.
2000-04-01
The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.
Investigating mesospheric mountain wave characteristics over New Zealand during DEEPWAVE
NASA Astrophysics Data System (ADS)
McLaughlin, P.; Taylor, M. J.; Pautet, P. D.; Kaifler, B.; Smith, S. M.
2017-12-01
The Deep Propagating Gravity Wave Experiment, "DEEPWAVE" was an international measurement and modelling program designed to characterize and predict the generation and propagation of a broad range of atmospheric gravity waves (GWs) with measurements extending from the ground to 100 km altitude. An analysis of 2 months of GW image data obtained during 2014 in New Zealand by a ground-based Advanced Mesospheric Temperature Mapper (AMTM) identified 19 events with clear signatures of orographic forcing. This is by far the largest occurrence of MW activity ever recorded at MLT heights. The observed events were quasi-stationary, exhibited a variety of horizontal wavelengths and lasted for > 1 hour. One prior study has reported such waves in the mesosphere over the Andes Mountain Range. We utilize data obtained by a collection of ground-based instrumentation operated at NIWA Lauder Station, NZ [45.0°S] to perform a detailed investigation of the generation and propagation of mountain waves into the upper mesosphere and to quantify their impact on this region using their measured momentum fluxes (MF). Instruments included an AMTM, a Rayleigh Lidar and an all-sky imager. The results focus on the derived MFs, comparing and contrasting their magnitudes and variability under different forcing conditions.
Stepped leaders observed in ground operations of ADELE
NASA Astrophysics Data System (ADS)
Smith, D. M.; Kelley, N.; Lowell, A.; Martinez-McKinney, F.; Dwyer, J. R.; Splitt, M. E.; Lazarus, S. M.; Cramer, E. S.; Levine, S.; Cummer, S. A.; Lu, G.; Shao, X.; Ho, C.; Eastvedt, E. M.; Trueblood, J.; Edens, H. E.; Hunyady, S. J.; Winn, W. P.; Rassoul, H. K.
2010-12-01
While the Airborne Detector for Energetic Lightning Emissions (ADELE) was designed primarily to study high-energy radiation associated with thunderstorms at aircraft altitude, it can also be used as a mobile ground-based instrument when mounted in a van. ADELE contains scintillation detectors optimized for faint and bright events and a flat-plate antenna measuring dE/dt. In July and August 2010, ADELE was brought to Langmuir Laboratory in New Mexico as a stationary detector and to the Florida peninsula (based at the Florida Institute of Technology in Melbourne) for rapid-response (storm-chasing) operations. In ten days of chasing, stepped-leader x-ray emission was observed from at least four close CG flashes, a much higher rate of success than can be achieved from a stationary detector or array. We will present these four events as well as the results of a study of candidate events of lesser statistical significance. We will also discuss the optimization of lightning-chasing strategies, science goals for future ground campaigns, and what additional instrumentation would be most scientifically beneficial. In the latter category, a proximity sensor (comparing flash and thunder arrival times) and a field mill are particularly important.
A data base of geologic field spectra
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Goetz, A. F. H.; Paley, H. N.; Alley, R. E.; Abbott, E. A.
1981-01-01
It is noted that field samples measured in the laboratory do not always present an accurate picture of the ground surface sensed by airborne or spaceborne instruments because of the heterogeneous nature of most surfaces and because samples are disturbed and surface characteristics changed by collection and handling. The development of new remote sensing instruments relies on the analysis of surface materials in their natural state. The existence of thousands of Portable Field Reflectance Spectrometer (PFRS) spectra has necessitated a single, all-inclusive data base that permits greatly simplified searching and sorting procedures and facilitates further statistical analyses. The data base developed at JPL for cataloging geologic field spectra is discussed.
NASA Astrophysics Data System (ADS)
Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.
2009-12-01
Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.
SkySat-1: very high-resolution imagery from a small satellite
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk
2014-10-01
This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.
Recent Improvements in AMSR2 Ground-Based RFI Filtering
NASA Astrophysics Data System (ADS)
Scott, J. P.; Gentemann, C. L.; Wentz, F. J.
2015-12-01
Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island RFI event and flag the data efficiently and accurately, thereby reducing false detections and optimizing retrieval quality and data preservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Actis, M
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTAmore » is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.« less
NASA Astrophysics Data System (ADS)
Lamsal, L.; Martin, R. V.; Parrish, D. D.
2011-12-01
Nitrogen dioxide (NO2) is a short-lived atmospheric pollutant released from combustion processes and is an indicator of air quality. We derive a global distribution of ground-level NO2 concentrations by applying local scaling factors from a global three-dimensional model to tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument. The OMI-derived surface NO2 data are compared with in situ surface NO2 data obtained from the SEARCH, AQS/EPA, and NAPS networks. The correlation between the OMI-derived surface NO2 and the ground-based measurements is generally > 0.5. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NOx emissions obtained from bottom-up inventories relate to city population in North America, Europe, and Asia. NO2 increases proportional to population raised to an exponent that is in the range 0.25-0.55. This relationship provides insights into per capita emissions and the quality of air people breathe.
Advanced Technologies and Instrumentation at the National Science Foundation
NASA Astrophysics Data System (ADS)
Kurczynski, Peter; Neff, James E.
2018-01-01
Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.
Workshop on Advanced Technologies for Planetary Instruments, part 1
NASA Technical Reports Server (NTRS)
Appleby, John F. (Editor)
1993-01-01
This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.
NASA Technical Reports Server (NTRS)
Shumate, M. S.; Menzies, R. T.
1978-01-01
The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.
Grounding, bonding and shielding for safety and signal interference control
NASA Technical Reports Server (NTRS)
Forsyth, T. J.; Bautista, AL
1990-01-01
Aircraft models and other aerodynamic tests are conducted at the NASA Ames Research Center National Full Scale Aerodynamics Complex (NFAC). The models, tested in NFAC's wind tunnels, are sometimes heavily instrumented and are connected to a data acquisition system. Besides recording data for evaluation, certain critical information must be monitored to be sure the model is within operational limits. The signals for these parameters are for the most part low-level signals that require good instrumentation amplification. These amplifiers need to be grounded and shielded for common mode rejection and noise reduction. The instrumentation also needs to be grounded to prevent electrical shock hazards. The purpose of this paper is to present an understanding of the principles and purpose of grounding, bonding, and shielding.
NASA Technical Reports Server (NTRS)
Beij, K Hilding
1933-01-01
This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.
Infrared Detector Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.
2008-01-01
Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
Godiva, a European Project for Ozone and Trace Gas Measurements from GOME
NASA Astrophysics Data System (ADS)
Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.
GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
Verhoef, J; Toussaint, P J; Putter, H; Zwetsloot-Schonk, J H M; Vliet Vlieland, T P M
2005-10-01
Coordinated teams with multidisciplinary team conferences are generally seen as a solution to the management of complex health conditions. However, problems regarding the process of communication during team conferences are reported, such as the absence of a common language or viewpoint and the exchange of irrelevant or repeated information. To determine the outcome of interventions aimed at improving communication during team conferences, a reliable and valid assessment method is needed. To investigate the feasibility of a theory-based measurement instrument for assessing the process of the communication during multidisciplinary team conferences in rheumatology. An observation instrument was developed based on communication theory. The instrument distinguishes three types of communication: (I) grounding activities, (II) coordination of non-team activities, and (III) coordination of team activities. To assess the process of communication during team conferences in a rheumatology clinic with inpatient and day patient facilities, team conferences were videotaped. To determine the inter-rater reliability, in 20 conferences concerning 10 patients with rheumatoid arthritis admitted to the inpatient unit, the instrument was applied by two investigators independently. Content validity was determined by analysing and comparing the results of initial and follow-up team conferences of 25 consecutive patients with rheumatoid arthritis admitted to the day patient unit (Wilcoxon signed rank test). The inter-rater reliability was excellent with the intra-class correlation coefficients being >0.98 for both types I and III communications in 10 initial and 10 follow-up conferences (type II was not observed). An analysis of an additional 25 initial and 86 follow-up team conferences showed that time spent on grounding (type I) made up the greater part of the contents of communication (87% S.D. 14 and 60% S.D. 29 in initial and follow-up conferences, respectively), which is significantly more compared to time spent on co-ordination (p<0.001 and 0.02 for categories II and III, respectively). Moreover, significantly less time spent was spent on grounding in follow-up as compared to initial team conferences, whereas the time spent on coordination (type III) increased (both p-values<0.001). This theory-based measurement instrument for describing and evaluating the communication process during team conferences proved to be reliable and valid in this pilot study. Its usefulness to detect changes in the communication process, e.g. after implementing systems for re-structuring team conferences mediated by ICT applications, should be further examined.
NASA Astrophysics Data System (ADS)
Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.
2009-04-01
Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03
CARMENES: First Results from the CAHA 3.5m Telescope
NASA Astrophysics Data System (ADS)
Quirrenbach, Andreas; Consortium, CARMENES
2015-12-01
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument currently undergoing commissioning at the 3.5m telescope at the Calar Alto Observatory. It has been developed by a consortium of eleven Spanish and German institutions (see also Quirrenbach et al. 2010; 2012; 2014). CARMENES will conduct a 600-night exoplanet survey targeting ~300 M dwarfs. An important and unique feature of the CARMENES instrument is that it consists of two separate échelle spectrographs, which together cover the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000. The spectrographs are fed by fibers from the Cassegrain focus of the telescope.The main scientific objective of the CARMENES project is to carry out a survey of late-type main sequence stars with the goal of detecting low-mass planets in their habitable zones (HZs). In the focus of the project are very cool stars later than spectral type M4 and moderately active stars. We aim at being able to detect a 2M⊕ planet in the HZ of an M5 star. A long-term radial velocity precision of 1ms-1 per measurement will permit to attain such goals. For stars later than M4 (M < 0.25M⊙), such precision will yield detections of super-Earths of 5M⊕ and smaller inside the entire width of the HZ. The CARMENES survey will thus provide a comprehensive overview of planetary systems around nearby Northern M dwarfs. By reaching into the realm of Earth-like planets, it will provide a treasure trove for follow-up studies probing their habitability.Quirrenbach, A., Amado, P.J., Mandel, H., et al. (2010). CARMENES: Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs. In Ground-based and airborne instrumentation for astronomy III. Eds. McLean, I.S., Ramsay, S.K., & Takami, H., SPIE 773513Quirrenbach, A., Amado, P.J., Seifert, W., et al. (2012). CARMENES. I: Instrument and survey overview. In Ground-based and airborne instrumentation for astronomy IV. Eds. McLean, I.S., Ramsay, S.K., & Takami, H., SPIE 84460RQuirrenbach, A., Amado, P.J., Caballero, J.A., et al. (2014). CARMENES instrument overview. In Ground-based and airborne instrumentation for astronomy V. Eds. Ramsay, S.K., McLean, I.S., & Takami, H., SPIE 91471F
Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA’s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...
ERIC Educational Resources Information Center
Al-Shammari, Zaid; Yawkey, Thomas D.
2008-01-01
This investigation using Grounded Theory focuses on developing, designing and testing out an evaluation method used as a framework for this study. This framework evolved into the instrument entitled, "Classroom Teacher's Performance Based Evaluation Form (CTPBEF)". This study shows the processes and procedures used in CTPBEF's…
NASA Astrophysics Data System (ADS)
Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen
2016-04-01
Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.
NASA Astrophysics Data System (ADS)
Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.
2015-12-01
Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.
Ground-based lidar for atmospheric boundary layer ozone measurements.
Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong
2013-05-20
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early Warning system, to determine the state and danger of a slope or structure. In this paper, the technical principles of the instrument are described and case studies of different monitoring tasks are presented.
VAS demonstration: (VISSR Atmospheric Sounder) description
NASA Technical Reports Server (NTRS)
Montgomery, H. E.; Uccellini, L. W.
1985-01-01
The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.
NASA Astrophysics Data System (ADS)
Orton, G. S.; Fletcher, L. N.; Feuchtgruber, H.; Lellouch, E.; Moreno, R.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Swinyard, B.; Moses, J. I.; Burgdorf, M. J.; Hammel, H. B.; Line, M. R.; Sandell, G.; Dowell, C. D.
2013-12-01
Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of ';programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.
Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope
NASA Technical Reports Server (NTRS)
Marrone, Daniel P.; Blundell, Raymond; Tong, Edward; Paine, Scott N.; Loudkov, Denis; Kawamura, Jonathan H.; Luhr, Daniel; Barrientos, Claudio
2005-01-01
The Receiver Lab Telescope (RLT) is a ground-based terahertz telescope; it is currently the only instrument producing astronmical data between 1 and 2 THz. We report on our first measurements o the high CO transitions, which represent the highest frequency detection ever made from the ground. We also present initial observations of {N II} and discuss the implications of this non-detection for the standard estimates of the strength of this line.
NASA Astrophysics Data System (ADS)
Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.
2011-06-01
This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.
NASA Astrophysics Data System (ADS)
Wu, Di; Boudala, Faisal; Gultepe, Ismail; Isaac, George A.
2017-04-01
Pilot reports (PIREPs) of in-flight icing have been frequently been issued at Cold Lake airport (CYOD), Alberta, typically during descent on approach or climb after takeoff in the fall and winter seasons. Climatological data also indicate that this location is affected by various fog conditions. In order to better understand these conditions, Environment and Climate Change Canada (ECCC), in cooperation with the Department of National Defense (DND), installed a number of specialized instruments at Cold Lake. The ground based instruments include a Vaisala PWD22 present weather sensor, a multi-channel microwave profiling radiometer (MWRP) and a Jenoptik CHM15k ceilometer. A case study is presented of an icing event and foggy conditions that occurred very close to ground level and temperature changed from -1 C up to 2 C on 24 October, 2016. The microphysical and thermo-dynamical conditions within the boundary layer and aloft that led to these conditions were examined by integrating the ground based measurements with the Geostationary Operational Environmental Satellite (GOES) and the Canadian 2.5 km resolution NWP (HRDPS - High Resolution Deterministic Prediction System) model data. Preliminary results indicate that the ground based in-situ measurements were in agreement with the aviation weather observations (METAR). Both the HRDPS model and MWRP detected supercooled liquid water well during the icing event and its thermodynamic structure that remains to be investigated further. Furthermore, the icing potential and low clouds formation using the GOES Imager data will be compared with HRDPS simulations and verified by PIREPs.
The HERSCHEL/PACS early Data Products
NASA Astrophysics Data System (ADS)
Wieprecht, E.; Wetzstein, M.; Huygen, R.; Vandenbussche, B.; De Meester, W.
2006-07-01
ESA's Herschel Space Observatory to be launched in 2007, is the first space observatory covering the full far-infrared and submillimeter wavelength range (60 - 670 microns). The Photodetector Array Camera & Spectrometer (PACS) is one of the three science instruments. It contains two Ge:Ga photoconductor arrays and two bolometer arrays to perform imaging line spectroscopy and imaging photometry in the 60 - 210 micron wavelength band. The HERSCHEL ground segment (Herschel Common Science System - HCSS) is implemented using JAVA technology and written in a common effort by the HERSCHEL Science Center and the three instrument teams. The PACS Common Software System (PCSS) is based on the HCSS and used for the online and offline analysis of PACS data. For telemetry bandwidth reasons PACS science data are partially processed on board, compressed, cut into telemetry packets and transmitted to the ground. These steps are instrument mode dependent. We will present the software model which allows to reverse the discrete on board processing steps and evaluate the data. After decompression and reconstruction the detector data and instrument status information are organized in two main PACS Products. The design of these JAVA classes considers the individual sampling rates, data formats, memory and performance optimization aspects and comfortable user interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2015-10-01
The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that providemore » ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.« less
The Hubble Space Telescope high speed photometer
NASA Technical Reports Server (NTRS)
Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.
1988-01-01
The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.
Low level measurements of atmospheric DMS, H2S, and SO2 for GTE/CITE-3
NASA Technical Reports Server (NTRS)
Saltzman, Eric; Cooper, David
1991-01-01
This project involved the measurement of atmospheric dimethylsulfide (DMS) and hydrogen sulfide (H2S) as part of the GTE/CITE-3 instrument intercomparison program. The two instruments were adapted for use on the NASA Electra aircraft and participated in all phases of the mission. This included ground-based measurements of NIST-provided standard gases and a series of airborne missions over the Western Atlantic Ocean. Analytical techniques used are described and the results are summarized.
NASA Technical Reports Server (NTRS)
Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.
1979-01-01
The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Moldwin, M.; Zesta, E.
2015-12-01
The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector - why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?
Solar Constant (SOLCON) Experiment: Ground Support Equipment (GSE) software development
NASA Technical Reports Server (NTRS)
Gibson, M. Alan; Thomas, Susan; Wilson, Robert
1991-01-01
The Solar Constant (SOLCON) Experiment, the objective of which is to determine the solar constant value and its variability, is scheduled for launch as part of the Space Shuttle/Atmospheric Laboratory for Application and Science (ATLAS) spacelab mission. The Ground Support Equipment (GSE) software was developed to monitor and analyze the SOLCON telemetry data during flight and to test the instrument on the ground. The design and development of the GSE software are discussed. The SOLCON instrument was tested during Davos International Solar Intercomparison, 1989 and the SOLCON data collected during the tests are analyzed to study the behavior of the instrument.
Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index
Culvenor, Darius S.; Newnham, Glenn J.; Mellor, Andrew; Sims, Neil C.; Haywood, Andrew
2014-01-01
An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean. PMID:25196006
Environmental monitors in the Midcourse Space Experiments (MSX)
NASA Technical Reports Server (NTRS)
Uy, O. M.
1993-01-01
The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .
Multi-Sensor Aerosol Products Sampling System
NASA Technical Reports Server (NTRS)
Petrenko, M.; Ichoku, C.; Leptoukh, G.
2011-01-01
Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.
NASA Astrophysics Data System (ADS)
Grawe, M.; Makela, J. J.
2016-12-01
Airglow imaging of the 630.0-nm redline emission has emerged as a useful tool for studying the properties of tsunami-ionospheric coupling in recent years, offering spatially continuous coverage of the sky with a single instrument. Past studies have shown that airglow signatures induced by tsunamis are inherently anisotropic due to the observation geometry and effects from the geomagnetic field. Here, we present details behind the techniques used to determine the parameters of the signature (orientation, wavelength, etc) with potential extensions to real or quasi-real time and a tool for interpreting the location and strength of the signatures in the field of view. We demonstrate application of the techniques to ground-based optical measurements of several tsunami-induced signatures taking place over the past five years from an imaging system in Hawaii. Additionally, these methods are extended for use on space-based observation platforms, offering advantages over ground-based installations.
Ground-based observation of near-Earth asteroids
NASA Technical Reports Server (NTRS)
Gaffey, Michael J.
1992-01-01
An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.
2016-12-01
he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart
2016-12-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulwick, J.C.; Allred, G.D.; Baker, K.D.
1985-05-28
In April 1983 Utah State University and Air Force Geophysics Laboratory experimenters launched a Sergeant (A30.276) sounding rocket from the Poker Flat Research Range, Alaska. The prime purpose of the flight was to obtain infrared-spectral measurements in the 2-1.5 micrometer m range during an auroral event. In addition to the prime experiment, which has already been reported, the payload contained four photometers, and energy deposition scintillator and an atomic oxygen detector to gather in-situ supporting data. Simultaneously, all-sky television, meridian scanning photometers, riometer, and magnetometers supported the flight from ground-based measuring sites. This report presents a summary of the rocketbornemore » supporting instruments and the data they gathered and provides a time/intensity history of the event as documented by the ground-based meridian scanners and all-sky television.« less
Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone
NASA Technical Reports Server (NTRS)
Parrish, A.; Dezafra, R.; Solomon, P.
1981-01-01
The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.
NASA Astrophysics Data System (ADS)
Christodoulakis, John; Varotsos, Costas A.; Cracknell, Arthur P.; Kouremadas, George A.
2018-07-01
Dose Response Functions (DRFs) are widely used in estimating corrosion and/or soiling levels of materials used in building constructions and cultural monuments. These functions quantify the effects of air pollution and environmental parameters on different materials through ground based measurements of specific air pollutants and climatic parameters. Here, we propose a new approach where available satellite observations are used instead of ground-based data. Through this approach, the use of DRFs is expanded to cover situations where there are no in situ measurements, introducing also a totally new field where satellite data can be shown to be very helpful. In the present work satellite observations made by MODIS (MODerate resolution Imaging Spectroradiometer) on board Terra and Aqua, OMI (Ozone Monitoring Instrument) on board Aura and AIRS (Atmospheric Infrared Sounder) on board Aqua have been used.
LIF-instrument for Airborne and Ground-Based Measurement of OH and HO2 Radicals in the Troposphere.
NASA Astrophysics Data System (ADS)
Broch, Sebastian; Bachner, Mathias; Dahlhoff, Knut; Holland, Frank; Hofzumahaus, Andreas; Jansen, Peter; Meier, Andreas; Raak, Dominik; Wolters, Jörg; Wahner, Andreas
2010-05-01
The radicals OH and HO2 (also named HOx) play an important role in the chemical degradation and transformation of most trace gases in the troposphere. The rate of these processes depends strongly on the magnitude of the radical concentrations. Due to their high reactivity, their concentrations are very low (sub pptv and pptv range) and exhibit a strong regional variability. Therefore exact measurement of HOx in different regions and at different altitudes in the troposphere are very important for the understanding and modelling of the self cleaning ability of the atmosphere. Here, we present the technical concept and results of laboratory test measurements of a new, mobile instrument for measurement of OH and HO2 radicals based on the proven laser induced fluorescence (LIF) technique (Holland et al., 1995, 2003; Schlosser et al., 2007, 2009). The instrument is planned to be used for ground-based field measurements, for airborne application on a Zeppelin (h = 0-2 km) and on the new German research aircraft HALO (Gulfstream V, h = 0-15 km). The setup of the new instrument is modular to allow different configurations for different applications and all components are newly designed to reduce weight, size and power requirement. For the implementation on HALO completely new air-inlet systems for OH and HO2 were developed at Forschungszentrum Jülich. The OH inlet is based on the shrouded-inlet design by Eisele et al. (1997). The design has been modified to reduce size and weight, and cope with the flight conditions and certification requirements of HALO. These are different than those for the original design, like higher speed, greater ceiling height and strength against bird strike. Compared to our ground-based measurement system, the aircraft inlet requires long inlet tubes which modify the detection sensitivity and possible interferences. Since the sensitivity of our instrument depends on ambient pressure, the OH inlet system is equipped with a calibration system, which allows calibration of the OH measuring channel during flight at different altitudes. Furthermore, both inlet systems allow heating of the inlet tubes and contain flight safety features like de-icing and bird strike resistance. We present results of the characterisation of the new instrument especially with regard to the sensitivity achievable with the long inlet tubes and of laboratory testing of the OH "in-flight" calibration system. Literature: Holland et al., J. Atmos. Sci., 52, 3393, 1995 Holland et al., J. Geophys. Res., 108, 8246, 2003 Schlosser et al., J. Atmos. Chem., 56, 187, 2007 Schlosser et al., Atmos. Chem. Phys., 9, 7923, 2009 Eisele et al., J. Geophys. Res., 102, 27993, 1997
NASA Astrophysics Data System (ADS)
Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli
2016-10-01
An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.
NASA Astrophysics Data System (ADS)
Dionisi, D.; Iannarelli, A. M.; Scoccione, A.; Liberti, G. L.; Cacciani, M.; Argentini, S.; Baldini, L.; Barnaba, F.; Campanelli, M.; Casasanta, G.; Diémoz, H.; Di Liberto, L.; Gobbi, G. P.; Petenko, I.; Siani, A. M.; Von Bismarck, J.; Casadio, S.
2018-04-01
A joint instrumental Super Site, combining observation in urban ("Sapienza" University) and semi-rural (ESA-ESRIN and CNR-ISAC) environment, for atmospheric studies and satellites Cal/Val activities, has been set-up in the Rome area (Italy). Ground based active and passive remote sensing instruments located in both sites are operating in synergy, offering information for a wide range of atmospheric parameters. In this work, a comparison of aerosol and water vapor measurements derived by the Rayleigh-Mie-Raman (RMR) lidars, operating simultaneously in both experimental sites, is presented.
NASA Astrophysics Data System (ADS)
Lee, B.; Mohr, C.; Lopez-Hilfiker, F.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B. M.; Pollack, I. B.; Ryerson, T. B.; Roberts, J. M.; Edwards, P. M.; Brown, S. S.; Holloway, J.; Aikin, K.; Dube, W. P.; Liao, J.; Welti, A.; Middlebrook, A. M.; Nowak, J. B.; Neuman, J. A.; Brioude, J. F.; McKeen, S. A.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Wolfe, G. M.; Hallquist, M.; Trainer, M.; De Gouw, J. A.; Thornton, J. A.
2013-12-01
We present measurements by two high-resolution time-of-flight chemical-ionization mass spectrometers (HR-ToF-CIMS) during the Southeast Atmosphere Study in June and July of 2013. Both HR-ToF-CIMS used iodide as the reagent ion, which provides minimum fragmentation during ionization. Isoprene and monoterpene oxidation byproducts such as hydroxy hydroperoxides, carboxylic acids and organic nitrates, were ubiquitous in the mass spectra. In addition, we observed select inorganic gases such as N2O5 and ClNO2. The flight instrument was deployed aboard the NOAA WP-3D during SENEX, which explored the lower atmosphere over the Southeast U.S., logging a total of 125 flight hours. These measurements provide insight into the spatial and temporal variation of these types of compounds and the influence of natural gas fields, power plants, biomass burning, urban and biogenic emissions on their abundance under both day and nighttime conditions. The ground-based instrument was located near Brent, Alabama as part of the SOAS campaign and utilized the Filter Inlet for Gas and AEROsol (FIGAERO) - developed at the University of Washington - which allows measurement of both the gas and particle phases. Continuous observations spanning more than 4 weeks show the diurnal variability and the influence of meteorology and anthropogenic emissions on the gas-particle partitioning. Flights during SENEX over the ground site provide a unique opportunity to investigate the vertical distribution of a whole suite of these chemical species measured by these two cross-calibrated nearly identical instruments.
Ground-based remote sensing scheme for monitoring aerosol–cloud interactions
Sarna, Karolina; Russchenberg, Herman W. J.
2016-03-14
A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius ( r e) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m -2 wide. For every LWP bin we present the correlation coefficient between ln r e and ln ATB, as well as ACI r (defined as ACI r = -d ln r e d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACI r are in the range 0.01–0.1. In conclusion, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less
NASA Astrophysics Data System (ADS)
Villa, Enrique; Cano, Juan L.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Mediavilla, Ángel; Artal, Eduardo
2018-03-01
This paper describes the analysis, design and characterization of a polarimetric receiver developed for covering the 35 to 47 GHz frequency band in the new instrument aimed at completing the ground-based Q-U-I Joint Tenerife Experiment. This experiment is designed to measure polarization in the Cosmic Microwave Background. The described high frequency instrument is a HEMT-based array composed of 29 pixels. A thorough analysis of the behaviour of the proposed receiver, based on electronic phase switching, is presented for a noise-like linearly polarized input signal, obtaining simultaneously I, Q and U Stokes parameters of the input signal. Wideband subsystems are designed, assembled and characterized for the polarimeter. Their performances are described showing appropriate results within the 35-to-47 GHz frequency band. Functionality tests are performed at room and cryogenic temperatures with adequate results for both temperature conditions, which validate the receiver concept and performance.
Weather Radars and Lidar for Observing the Atmosphere
NASA Astrophysics Data System (ADS)
(Vivek) Vivekanandan, J.
2010-05-01
The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.
Aerosol Optical Depth Value-Added Product for the SAS-He Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ermold, B; Flynn, CJ; Barnard, J
2013-11-27
The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with overmore » 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.« less
WFIRST: Guest observer science with the coronagraph instrument
NASA Astrophysics Data System (ADS)
Levesque, Emily; Lomax, Jamie; Akeson, Rachel; Meshkat, Tiffany; WFIRST CGI GO working group
2018-01-01
In addition to the discovery and characterization of exoplanets, the coronagraph instrument (CGI) on WFIRST has the potential for ground-breaking discoveries in other fields through the Guest Observer (GO) program. 25% of the observing time in the primary mission will be made available to the GO community, and GO science with the CGI spans a broad range of scientific applications. These include imaging of binary and multiple asteroids and Kuiper Belt objects, the circumstellar environments of evolved giants and supergiants, debris disks around young stars, and the circumnuclear regions of active galactic nuclei. In this poster we summarize some of the key compelling science gains that can be pursued with the GO program and present preliminary analyses of the technical gains that the CGI will be able to offer over other contemporary coronagraphs, including those on JWST and ground-based observatories.
NASA Astrophysics Data System (ADS)
Mamun, M.; Mondol, P.
2012-12-01
Aerosols influence our weather and climate because they affect the amount of sunlight reaching Earth's surface. An important way of probing the atmosphere from the ground is to measure the effects of the atmosphere on sunlight transmitted through the atmosphere to Earth's surface. These indirect techniques provide information about the entire atmosphere above the observer, not just the atmosphere that can be sampled directly. In response to global issues of air quality and climate change, and to the need to improve the quality of science education, inexpensive atmosphere monitoring instruments have been developed. This paper describes a new kind of inexpensive two channels LED Sun Photometer for monitoring aerosols that provide much better long-term stability than instruments that use expensive interference filters. Here HAZE-SPAN TERC VHS-1 model has been used for constructing sun photometer with light emitting diode as detector. Monitoring Earth's atmosphere is a challenging task. As there is no facility in our country (Bangladesh) for ground based measurement for monitoring aerosol so, this type of study is very essential. This study compares the aerosol optical depth (AOD) retrieved from the Terra and Aqua MODerate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a handheld sun photometer over the region of Rajshahi, Bangladesh for The 15 days duration of June 2012. The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the handheld sun photometer. The correlation coefficients r = 0.88 for Terra and r = 0.55 for Aqua where as r = 0.65 for Terra and Aqua themselves. AOD for another wavelength at 625 nm is documented in this study for finding out the relation of AOD at different wavelengths. In this paper it has been described and summarized briefly investigations for four important topics: LEDs used as light detectors, construction of sun photometer and its use, the measurements and monitoring of Aerosol Optical Depth (AOD) by using handheld sun photometer, and the comparison between satellite based and ground based measurements.
First comparison of simultaneous IRIS, BUV, and ground-based measurements of total ozone
NASA Technical Reports Server (NTRS)
Prior, E. J.; Oza, B. J.
1978-01-01
In the present paper, the zonally-averaged global distribution of total ozone obtained simultaneously from different measurements are compared with respect to differences in the measured latitudinal and seasonal variations of total ozone. Emphasis is placed on systematic discrepancies that appear to be related to differences in the sensing methodologies or instruments. While the zonal averages of the IRIS and BUV satellite techniques agree quite well at low latitudes, the results are consistently higher for IRIS than for BUV above mid-latitudes in both the Northern and Southern Hemispheres. The BUV and ground-based ultraviolet averages agree better with each other than with infrared IRIS measurements.
Caro-Bautista, Jorge; Martín-Santos, Francisco Javier; Morales-Asencio, Jose Miguel
2014-06-01
To determine the psychometric properties and theoretical grounding of instruments that evaluate self-care behaviour or barriers in people with type 2 diabetes. There are many instruments designed to evaluate self-care behaviour or barriers in this population, but knowledge about their psychometric validation processes is lacking. Systematic review. We conducted a search for psychometric or validation studies published between January 1990-December 2012. We carried out searches in Pubmed, CINAHL, PsycINFO, ProQuolid, BibliPRO and Google SCHOLAR to identify instruments that evaluated self-care behaviours or barriers to diabetes self-care. We conducted a systematic review with the following inclusion criteria: Psychometric or clinimetric validation studies that included patients with type 2 diabetes (exclusively or partially) and which analysed self-care behaviour or barriers to self-care and proxies like self-efficacy or empowerment, from a multidimensional approach. Language: Spanish or English. Two authors independently assessed the quality of the studies and extracted data using Terwee's proposed criteria: psychometrics properties, dimensionality, theoretical ground and population used for validation through each included instrument. Sixteen instruments achieved the inclusion criteria for the review. We detected important methodological flaws in many of the selected instruments. Only the Self-management Profile for Type 2 Diabetes and Problem Areas in Diabetes Scale met half of Terwee's quality criteria. There are no instruments for identifying self-care behaviours or barriers elaborated with a strong validation process. Further research should be carried out to provide patients, clinicians and researchers with valid and reliable instruments that are methodologically solid and theoretically grounded. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Schmidt, Carsten; Hannawald, Patrick; Offenwanger, Thomas; Sedlak, René; Bittner, Michael; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2017-04-01
During the GW-LCYCLE campaign from January to February 2016 in Northern Scandinavia, we operated four instruments: two ground-based OH* IR-spectrometers (scanning and non-scanning mode at ALOMAR (69°N), Norway, and Kiruna (68°N), Sweden) and one ground-based OH* IR all-sky camera (at Kiruna) as well as one OH* IR-camera on board the research aircraft FALCON (field of view ca. 30°, spatial resolution 150 m x 150 m). Due to the differing spatial and temporal resolution of the instruments, this equipment allows the investigation of temporal and spatial gravity wave parameters in a wide spectral range. The flights of the research aircraft provide the opportunity to investigate gravity waves in between both measurement sites. During the campaign period, the dynamical situation changed due to a minor stratospheric warming. The effect of this warming on the OH*-layer is investigated using TIMED-SABER data. We provide an overview of the development of planetary and gravity wave parameters and energy density at mesopause height during the campaign period and present first results of the airborne measurements. Finally, we discuss possible wave sources and the influence of the stratospheric warming on wave parameters, and propagation.
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Andreev, Valeri; Christl, M. J.; Cline, David B.; Crawford, Hank; Judd, E. G.; Pennypacker, Carl; Watts, J. W.
2007-01-01
The JEM-EUSO collaboration intends to study high energy cosmic ray showers using a large downward looking telescope mounted on the Japanese Experiment Module of the International Space Station. The telescope focal plane is instrumented with approx.300k pixels operating as a digital camera, taking snapshots at approx. 1MHz rate. We report an investigation of the trigger and reconstruction efficiency of various algorithms based on time and spatial analysis of the pixel images. Our goal is to develop trigger and reconstruction algorithms that will allow the instrument to detect energies low enough to connect smoothly to ground-based observations.
NASA Technical Reports Server (NTRS)
Markson, R.; Anderson, B.; Govaert, J.; Fairall, C. W.
1989-01-01
A novel coronal current-determining instrument is being used at NASA-KSC which overcomes previous difficulties with wind sensitivity and a voltage-threshold 'deadband'. The mounting of the corona needle at an elevated location reduces coronal and electrode layer space-charge influences on electric fields, rendering the measurement of space charge density possible. In conjunction with a space-charge compensation model, these features allow a more realistic estimation of cloud base electric fields and the potential for lightning strike than has previously been possible with ground-based sensors.
Monte Carlo Simulations and Generation of the SPI Response
NASA Technical Reports Server (NTRS)
Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.; Teegarden, B. J.; Attie, D.; Diehl, R.; Ferguson, C.; Jean, P.; vonKienlin, A.
2003-01-01
In this paper we discuss the methods developed for the production of the INTEGRAL/SPI instrument response. The response files were produced using a suite of Monte Carlo simulation software developed at NASA/GSFC based on the GEANT-3 package available from CERN. The production of the INTEGRAL/SPI instrument response also required the development of a detailed computer mass model for SPI. We discuss our extensive investigations into methods to reduce both the computation time and storage requirements for the SPI response. We also discuss corrections to the simulated response based on our comparison of ground and inflight calibration data with MGEANT simulation.
Monte Carlo Simulations and Generation of the SPI Response
NASA Technical Reports Server (NTRS)
Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.; Teegarden, B. J.; Attie, D.; Cordier, B.; Diehl, R.; Ferguson, C.; Jean, P.; vonKienlin, A.
2003-01-01
In this paper we discuss the methods developed for the production of the INTEGRAL/SPI instrument response. The response files were produced using a suite of Monte Carlo simulation software developed at NASA/GSFC based on the GEANT-3 package available from CERN. The production of the INTEGRAL/SPI instrument response also required the development of a detailed computer mass model for SPI. We discuss ow extensive investigations into methods to reduce both the computation time and storage requirements for the SPI response. We also discuss corrections to the simulated response based on our comparison of ground and infiight Calibration data with MGEANT simulations.
Fault-tolerant NAND-flash memory module for next-generation scientific instruments
NASA Astrophysics Data System (ADS)
Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar
2015-10-01
Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.
Solar Spicules near and at The Limb, Observed from Hinode
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.
2009-01-01
Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years,mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally. Most recently, spicule studies have undergone revolution because of the superior resolution, time cadence, and atmosphere-free observations from the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we present observations of spicules from {\\sl Hinode} SOT, and consider how the observations from Hinode compare with historical observations. We include data taken in the blue and red wings of Halpha, where the spicules have widths of a few approx.100 kms, and the longest ones reach about 10(exp 4) km in extent,similar to sizes long reported from ground-based instruments. Their dynamics are not easy to generalize, with many showing the upward movement followed by falling or fading, as traditionally reported, but with others showing more dynamic or even ejective aspects. There is a strong transverse component to their motion, as extensively reported previously from the Hinode data as evidence for Alfven waves.
The ESA FRM4DOAS project: Towards a quality-controlled MAXDOAS Centralized Processing System
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Fayt, Caroline; Friess, Udo; Kreher, Karin; Piters, Ankie; Richter, Andreas; Wagner, Thomas; Cede, Alexander; Spinei, Elena; von Bismarck, Jonas; Fehr, Thorsten; Van Roozendael, Michel
2017-04-01
The Fiducial Reference Measurements for Ground-Based DOAS Air-Quality Observations (FRM4DOAS) is a two-year project funded by the European Space Agency (ESA). Started in July 2016, FRM4DOAS aims at further harmonizing MAXDOAS measurements and data sets, through (1) the specification of best practices for instrument operation, (2) the selection of state-of-the art retrieval algorithms, procedures, and settings, (3) the demonstration of a centralised rapid-delivery (6-24h latency) processing system for MAXDOAS instruments to be operated within the international Network for the Detection of Atmospheric Composition Change (NDACC). The project also links with the Pandonia initiative. In a first phase, the system concentrates on the development of 3 key products: NO2 vertical profiles, total O3 and tropospheric HCHO profiles, which will be retrieved at 11 MAXDOAS pilot stations. The system will also be tested and validated on data from the CINDI-2 campaign, and designed to allow further extension after commissioning. These activities will help and guarantee that homogenous, fully traceable, and quality-controlled datasets are generated from reference ground-based UV-vis instruments, which will play a crucial role in the validation of future ESA/Copernicus Sentinel satellite missions S-5P, S-4, and S-5.
Results from Multiwavelength Workshop for Next Generation Gamma Ray Experiments
NASA Astrophysics Data System (ADS)
Fortson, L.
2002-12-01
The next few years will see the build up of several new gamma-ray detectors both on the ground and in space. By 2006 VERITAS, HESS and MAGIC expect to be operational and GLAST will be in orbit. At the same time, a number of X-ray satellites will be in operation, complementing these new gamma-ray instruments. A better understanding of many high-energy sources can be obtained by making contemporaneous observations with multiple x-ray and gamma-ray instruments. A workshop was recently held at the Adler Planetarium and Astronomy Museum in Chicago to discuss the future of multiwavelength campaigns. The workshop was intended as an opportunity for information exchange within the community to get the best possible science returns from the wealth of data that is expected to come in from the next generation of experiments. By the end of the workshop participants gained a general understanding of the capabilities of the various instruments and their observational strategies. We also came up with a good start on some concrete mechanisms for coordinating gamma-ray observations with ground based and space based observatories at other wavelengths - including X-ray and optical groups. I will report on the results from this workshop in my presentation at the AAS. The workshop was sponsored by the Adler Planetarium and Astronomy Museum.
NASA Astrophysics Data System (ADS)
Petropavlovskikh, I.; Weatherhead, E.; Cede, A.; Oltmans, S. J.; Kireev, S.; Maillard, E.; Bhartia, P. K.; Flynn, L. E.
2005-12-01
The first NPOESS satellite is scheduled to be launched in 2010 and will carry the Ozone Mapping and Profiler Suite (OMPS) instruments for ozone monitoring. Prior this, the OMPS instruments and algorithms will be tested by flight on the NPOESS/NPP satellite, scheduled for launch in 2008. Pre-launch planning for validation, post launch data validation and verification of the nadir and limb profile algorithm are key components for insuring that the NPOESS will produce a high quality, reliable ozone profile data set. The heritage of satellite instrument validation (TOMS, SBUV, GOME, SCIAMACHY, SAGE, HALOE, ATMOS, etc) has always relied upon surface-based observations. While the global coverage of satellite observations is appealing for validating another satellite, there is no substitute for the hard reference point of a ground-based system such as the Dobson or Brewer network, whose instruments are routinely calibrated and intercompared to standard references. The standard solar occultation instruments, SAGE II and HALOE are well beyond their planned lifetimes and might be inoperative during the OMPS period. The Umkehr network has been one of the key data sets for stratospheric ozone trend calculations and has earned its place as a benchmark network for stratospheric ozone profile observations. The normalization of measurements at different solar zenith angle (SZAs) to the measurement at the smallest SZA cancels out many calibration parameters, including the extra-terrestrial solar flux and instrumental constant, thus providing a "self-calibrating" technique in the same manner relied upon by the occultation sensors on satellites. Moreover, the ground-based Umkehr measurement is the only technique that provides data with the same altitude resolution and in the same units (DU) as do the UV-nadir instruments (SBUV-2, GOME-2, OMPS-nadir), i.e., as ozone amount in pressure layers, whereas, occultation instruments measure ozone density with height. A new Umkehr algorithm will enhance the information content of the retrieved profiles and extend the applicability of the technique. Automated Dobson and Brewer instruments offer the potential for greatly expanded network of Umkehr observations once the new algorithm is applied. We will discuss the new algorithm development and present results of its performance in comparisons of retrievals between co-located Brewer and Dobson ozone profiles measured at Arosa station in Switzerland.
NASA Astrophysics Data System (ADS)
Rivera, C.; Stremme, W.; Grutter, M.
2012-04-01
The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.
NASA Technical Reports Server (NTRS)
Daeges, J.; Bhanji, A.
1987-01-01
Electrical noise interference in the transmitter crowbar monitoring instrumentation system creates false sensing of crowbar faults during a crowbar firing. One predominant source of noise interference is the conduction of currents in the instrumentation cable shields. Since these circulating ground noise currents produce noise that is similar to the crowbar fault sensing signals, such noise interference reduces the ability to determine true crowbar faults.
Reanalysis of water and carbon cycle models at a critical zone observatory
USDA-ARS?s Scientific Manuscript database
The Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is a forested, hill-slope catchment located in the temperate-climate of central Pennsylvania with an extensive network of ground-based instrumentation for model testing and development. In this paper we discuss the use of multi-state fi...
NASA Astrophysics Data System (ADS)
Ostrikov, V. N.; Plakhotnikov, O. V.
2014-12-01
Using considerable experimental material, we examine whether it is possible to recalculate the initial data of hyperspectral aircraft survey into spectral radiance factors (SRF). The errors of external calibration for various observation conditions and different instruments for data receiving are estimated.
A New Method to Cross Calibrate and Validate TOMS, SBUV/2, and SCIAMACHY Measurements
NASA Technical Reports Server (NTRS)
Ahmad, Ziauddin; Hilsenrath, Ernest; Einaudi, Franco (Technical Monitor)
2001-01-01
A unique method to validate back scattered ultraviolet (buv) type satellite data that complements the measurements from existing ground networks is proposed. The method involves comparing the zenith sky radiance measurements from the ground to the nadir radiance measurements taken from space. Since the measurements are compared directly, the proposed method is superior to any other method that involves comparing derived products (for example, ozone), because comparison of derived products involve inversion algorithms which are susceptible to several type of errors. Forward radiative transfer (RT) calculations show that for an aerosol free atmosphere, the ground-based zenith sky radiance measurement and the satellite nadir radiance measurements can be predicted with an accuracy of better than 1 percent. The RT computations also show that for certain values of the solar zenith angles, the radiance comparisons could be better than half a percent. This accuracy is practically independent of ozone amount and aerosols in the atmosphere. Experiences with the Shuttle Solar Backscatter Ultraviolet (SSBUV) program show that the accuracy of the ground-based zenith sky radiance measuring instrument can be maintained at a level of a few tenth of a percent. This implies that the zenith sky radiance measurements can be used to validate Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV/2), and The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) radiance data. Also, this method will help improve the long term precision of the measurements for better trend detection and the accuracy of other BUV products such as tropospheric ozone and aerosols. Finally, in the long term, this method is a good candidate to inter-calibrate and validate long term observations of upcoming operational instruments such as Global Ozone Monitoring Experiment (GOME-2), Ozone Mapping Instrument (OMI), Ozone Dynamics Ultraviolet Spectrometer (ODUS), and Ozone Mapping and Profiler Suite (OMPS).
Macroseismic Intensity and Instrumental Ground Motion Parameter Correlations for Central Mexico
NASA Astrophysics Data System (ADS)
Sandoval Gómez, H.; Ramirez Guzman, L.; Espindola, V.
2012-12-01
We present instrumental intensity prediction equations for earthquakes in Central Mexico based on the correlation of observed Instrumental Ground-Motion Parameters (IGMP) and Modified Mercalli Intensity (MMI) scale reports. The goal of this study is to provide a model that can be used by the near real-time earthquake response system operated by the Institutes of Engineering and Geophysics at the National Autonomous University of Mexico (UNAM), which delivers estimates of key information associated with the societal impact due to earthquakes not available in the immediate aftermath of the event. Correlations of MMI and IGMP have been derived in other countries with different tectonic settings and built environments, but this is the first study devoted to the development of equations for the central region of Mexico. The IGMP are obtained from records of several stations for earthquakes with Mw 5.0-8.0 from the seismic networks operated by UNAM and other institutions in Mexico. The MMI observations were primarily obtained from the Did You Feel It (DYFI) report service of the U.S. Geological Survey and re-interpreted MMI reports from UNAM earthquake bulletin archives. For each instrumental observation we assigned a mean MMI intensity based on the proximity of the site where reported value are available, constrained by geological conditions and a visual inspection to guarantee that the intensity would be within one unit of the assigned value; following the procedure by Atkinson and Kaka (2006). We derived correlations for peak ground velocity (pgv) and acceleration, and three spectral acceleration periods (T=1, 2 and 3 s). In addition, we analyzed the Mw and distance dependence. We concluded that pgv and the spectral accelerations are the most useful IGMP predictors for MMI in the region of interest and the correlations differ significantly from those obtained in regions with other tectonic settings and infrastructure vulnerabilities (e.g. Wald et al, 1999; Atkinson and Kaka, 2006, Cramer and Dangkua, 2011).
Mobile Instruments Measure Atmospheric Pollutants
NASA Technical Reports Server (NTRS)
2009-01-01
As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.
Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing
NASA Astrophysics Data System (ADS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-09-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
An overview of the laser ranging method of space laser altimeter
NASA Astrophysics Data System (ADS)
Zhou, Hui; Chen, Yuwei; Hyyppä, Juha; Li, Song
2017-11-01
Space laser altimeter is an active remote sensing instrument to measure topographic map of Earth, Moon and planetary. The space laser altimeter determines the range between the instrument and laser footprint by measuring round trip time of laser pulse. The return pulse reflected from ground surface is gathered by the receiver of space laser altimeter, the pulsewidth and amplitude of which are changeable with the variability of the ground relief. Meantime, several kinds of noise overlapped on the return pulse signal affect its signal-to-noise ratio. To eliminate the influence of these factors that cause range walk and range uncertainty, the reliable laser ranging methods need to be implemented to obtain high-precision range results. Based on typical space laser altimeters in the past few decades, various ranging methods are expounded in detail according to the operational principle of instruments and timing method. By illustrating the concrete procedure of determining time of flight of laser pulse, this overview provides the comparison of the employed technologies in previous and undergoing research programs and prospect innovative technology for space laser altimeters in future.
Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H.; Scrivner, C.W.; Worden, C.B.
1999-01-01
Rapid (3-5 minutes) generation of maps of instrumental ground-motion and shaking intensity is accomplished through advances in real-time seismographic data acquisition combined with newly developed relationships between recorded ground-motion parameters and expected shaking intensity values. Estimation of shaking over the entire regional extent of southern California is obtained by the spatial interpolation of the measured ground motions with geologically based frequency and amplitude-dependent site corrections. Production of the maps is automatic, triggered by any significant earthquake in southern California. Maps are now made available within several minutes of the earthquake for public and scientific consumption via the World Wide Web; they will be made available with dedicated communications for emergency response agencies and critical users.
A New Approach for Spectroradiometric Calibration Consistency on the Ground and in Space
NASA Technical Reports Server (NTRS)
Heath, Donald F.; Geprgoev. Geprgo
2013-01-01
A Space-based Calibration Transfer Spectroradiometer (SCATS) is combined with a ground calibration spectral albedo radiometric standard which consists of an opaque quartz glass Mie scattering diffuser (MSD) which has very good Lambertian scattering properties in both reflectance and transmittance modes. This system provides the capability for determining long term changes in the spectral albedo calibrations which operate in the solar reflective wavelength region. The spectral albedo calibration would be traceable to the SIRCUS and STARR NIST calibration facilities. The on-orbit radiometric standard is the Sun. The NIST traceable ground spectral albedo calibration is invariant between the ground and on-orbit over the instrument lifetime due to the use of a field of view defining mechanical baffle to differentiate between radiance and irradiance.
NASA Astrophysics Data System (ADS)
Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.
Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.
Graizer, V.
2009-01-01
Tarzana station is located in the foothills of the Santa Monica Mountains in California near the crest of a low (<20 m) natural hill with gentle slopes. The hill is about 500 m in length by 130 m in width and is formed of extremely weathered shale at the surface to fresh at depth. Average S-wave is about 250 m/s in the top 17-18 m, and S- and P-wave velocities significantly increase below this depth. According to the NEHRP classification based on VS30???300 m/s it is a site class D. Strong-motion instrumentation at Tarzana consisted of an accelerograph at the top of the hill, a downhole instrument at 60 m depth, and an accelerograph at the base of the hill. More than 20 earthquakes were recorded by at least three instruments at Tarzana from 1998 till 2003. Comparisons of recordings and Fourier spectra indicate strong directional resonance in a direction perpendicular to the strike of the hill. The dominant peaks in ground motion amplification on the top of the hill relative to the base are at frequencies ???3.6 and 8-9 Hz for the horizontal components. Our hypothesis is that the hill acts like a wave trap. This results in an amplification at predominant frequencies f=V/4 h (h is layer's thickness) at f???3.6 Hz for S-waves (using average VS17=246 m/s and h=17 m) and f???7.9 Hz for P-waves (using average VP17=535 m/s and h=17 m). As was shown by Bouchon and Barker [Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 1996;86(1A):66-72], topography of this hill amplifies and polarizes ground motion in the frequency range of 3-5 Hz. Hill acts as a magnifying polarizing glass: It polarizes ground motion in the direction perpendicular to the strike of the hill and also amplifies ground motions that had been also amplified by a low-velocity layer.
NASA Astrophysics Data System (ADS)
Bolen, Steven M.; Chandrasekar, V.
2003-06-01
The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.
NASA Technical Reports Server (NTRS)
Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.;
2015-01-01
The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space Agency's Ozone Climate Change Initiative project.
(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30more » percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.« less
Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.
2014-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.
NASA Technical Reports Server (NTRS)
Bhartia, P. K.; Taylor, S.; Mcpeters, R. D.; Wellemeyer, C.
1995-01-01
The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.
Experiment T002: Manual navigation sightings
NASA Technical Reports Server (NTRS)
Smith, D.
1971-01-01
Navigation-type measurements through the window of the stabilized Gemini 12 spacecraft by the use of a hand-held sextant are reported. The major objectives were as follows: (1) to evaluate the ability of the crewmen to make accurate navigational measurements by the use of simple instruments in an authentic space flight environment; (2) to evaluate the operational feasibility of the measurement techniques by the use of the pressure suit with the helmet off and with the helmet on and the visor closed; (3) to evaluate operational problems associated with the spacecraft environment; and (4) to validate ground based simulation techniques by comparison of the inflight results with base line data obtained by the pilot by the use of simulators and celestial targets from ground based observatories.
Detecting thermally driven cyclic deformation of an exfoliation sheet with lidar and radar
Collins, Brian D.; Stock, Greg M.
2014-01-01
Rock falls from steep, exfoliating cliffs are common in many landscapes. Of the many mechanisms known to trigger rock falls, thermally driven deformation is among the least quantified, despite potentially being a prevalent trigger due to its occurrence at all times of year. Here we present the results of a field-based monitoring program using instrumentation, ground-based lidar, and ground-based radar to investigate the process of thermally driven deformation of an exfoliation sheet, and the ability of remote sensing tools to capture cyclic expansion and contraction patterns. Our results indicate that thermally driven exfoliation occurs on diurnal cycles and can be measured at the submillimeter to centimeter scale using high-resolution strain gauges, short-range (2 km) radar interfer-ometry.
Coronal Mass Ejections (CMEs) and Associated Phenomena
NASA Astrophysics Data System (ADS)
Manoharan, P. K.
2008-10-01
The Sun is the most powerful radio waves emitting object in the sky. The first documented recognition of the reception of radio waves from the Sun was made in 1942 by Hey.15 Since then solar radio observations, from ground-based and space-based instruments, have played a major role in understanding the physics of the Sun and fundamental physical processes of the solar radio emitting phenomena...
The Global Precipitation Measurement (GPM) Project
NASA Technical Reports Server (NTRS)
Azarbarazin, Ardeshir Art; Carlisle, Candace C.
2008-01-01
The GIobd Precipitation hleasurement (GPM) mission is an international cooperatiee ffort to advance weather, climate, and hydrological predictions through space-based precipitation measurements. The Core Observatory will be a reference standard to uniform11 calibrate data from a constellatism of spacecraft with passive microuave sensors. GP3l mission data will be used for scientific research as well as societal applications. GPM is being developed under a partnership between the United States (US) National .Aeronautics and Space Administration (XASA) and the Japanese Aerospace and Exploration Agency (JAYA). NASA is developing the Core Observatory, a Low-Inclination Constellation Observatory, two GPM Rlicrowave Imager (GXII) instruments. Ground Validation System and Precipitation Processing System for the GPRl mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. Other US agencies and international partners contribute to the GPkf mission by providing precipitation measurements obtained from their own spacecraft and,'or providing ground-based precipitation measurements to support ground validation activities. The GPM Core Observatory will be placed in a low earth orbit (-400 krn) with 65-degree inclination, in order to calibrate partner instruments in a variety of orbits. The Core Observatory accommodates 3 instruments. The GkfI instrument provides measurements of precipitation intensity and distribution. The DPR consists of Ka and Ku band instruments, and provides threedimensional measurements of cloud structure, precipitation particle size distribution and precipitation intensitj and distribution. The instruments are key drivers for GPM Core Observatory overall size (1 1.6m x 6.5m x 5.0m) and mass (3500kg), as well as the significant (-1 950U.3 power requirement. The Core Spacecraft is being built in-house at Goddard Space Flight Center. The spacecraft structure consists of an aluminum lower bus structure. composite upper bus structure, '-axis steerable High Gain Antenna System on a dual-hinged boom, and two deploy able solar arraq s. The propulsion system features twelve thrusters and a single Composite OverlvapP ressure Vessel tank. The GPhl Core spacecraft is one of the first large spacecraft developed to be demiseable (i.e. burn up upon atmospheric reentry j. The spacecraft dernissable components-- structure. propulsion tank, lithium-ion battery, sotar array md reaction wheels. are a unique fcature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrakou, T.; Muller, J. F.; Bauwens, M.
2015-10-26
The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the ad-joint model technique in the IMAGESv2 global CTM (chem-ical transport model) on a monthly basis and at the model res-olution. Given the different local overpass times of GOME- 2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cy-cle of HCHO columnsmore » is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon max-ima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening max-ima over fire scenes, and midday minima in isoprene-rich re-gions. The agreement between simulated and ground-based columns is generally better in summer (with a clear after-noon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043).The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly pol-luted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inven-tory (24.6 vs. 25.5 TgVOC yr -1 in the a priori) with, how-ever, pronounced increases in the northeast of China and re-ductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr -1), in particular over the northeast, likely reflecting mismatches between the observed and the modeled diurnal cycle in this region.« less
Ground robotic measurement of aeolian processes
NASA Astrophysics Data System (ADS)
Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.
2017-08-01
Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself.
NASA Astrophysics Data System (ADS)
Noguchi, K.; Urita, N.; Ohta, E.; Hayashida, S.; Richter, A.; Burrows, J. P.; Liu, X.; Chance, K.; Ziemke, J. R.
2005-12-01
Rapid economical growth and industrial development in East Asian regions are causing serious air pollution. The influence of such air pollution is not limited to a local scale but reaches an intercontinental or hemispheric scale. Satellite-borne observations can monitor the behaviors of air pollutants in a global scale for long periods with a single instrument. In particular, ozone and nitrogen dioxide in the troposphere have a crucial role in air pollution, and many studies have tried to derive those species. Recently, instrumentations and retrieval techniques have made a lot of progress in measurements of tropospheric constituents. However, tropospheric observations from space need careful validation because of difficulties in detecting signals from the lower atmosphere through the middle atmosphere. In the present study, we intercompare the tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements in order to validate the satellite measurements. For the validation of tropospheric ozone, we utilize ozonesonde data provided by WOUDC, and three satellite-borne data (Tropospheric Ozone Residual (TOR), Cloud Slicing, and GOME) are intercompared. For nitrogen dioxide, we compare GOME observations with ground-based air monitoring measurements in Japan which are operationally conducted by the Ministry of the Environment Japan. This study demonstrates the validity and potential of those satellite datasets to apply for quantitative analysis of dispersion of air pollutants and their chemical lifetime. Acknowledgments. TOR data is provided by J. Fishman via http://asd-www.larc.nasa.gov/TOR/data.html. The ground observation data of nitrogen dioxide over Japan is provided by National Institute for Environmental Studies (NIES) under the collaboration study with NIES and Nara Women's University.
NASA Technical Reports Server (NTRS)
Ray, David C.; Jelinsky, Sharon; Welsh, Barry Y.; Malina, Roger F.
1990-01-01
A stringent contamination-control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments, whose performance in the 80-900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination-control program has been implemented over the last three years during assembly, test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. Various approaches are discussed which have been used during ground operations to meet optics' contamination goals within the project schedule and budget. The measured optical properties of EUV witness mirrors are also presented which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high-vacuum test-chamber environments.
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
Instrument Development of Real Time Holographic Water Drop Size Measurement System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, Stephen
2007-02-09
BNL participated with multiple correspondences with Physical Optics Corporation (POC) on the design considerations of an airbome instrument. A pod for extemal deployment ofthe POC unit on the DOE Research Aircraft Facility (RAF), an instrumented, Grumman G-1 aircraft was loaned to POC. BNL proposed evaluation flight tests between the POC unit and the BNL Cloud Aerosol Probe Spectrometer (CAPS) as a reference method. BNL's involvement is described in the semi-annual report ofPOC to DOE. Because of unanticipated technical and engineering difficulties, POC was unable to fit their instrument into an aircraft pod. As a result they are now focusing onmore » a ground-based version first. A prototype laboratory version of the Real-Time Holographic Water Drop Size Measurement (WDSM) System has been constructed.« less
Ground-based measurements of the solar diameter during the rising phase of solar cycle 24
NASA Astrophysics Data System (ADS)
Meftah, M.; Corbard, T.; Irbah, A.; Ikhlef, R.; Morand, F.; Renaud, C.; Hauchecorne, A.; Assus, P.; Borgnino, J.; Chauvineau, B.; Crepel, M.; Dalaudier, F.; Damé, L.; Djafer, D.; Fodil, M.; Lesueur, P.; Poiet, G.; Rouzé, M.; Sarkissian, A.; Ziad, A.; Laclare, F.
2014-09-01
Context. For the past thirty years, modern ground-based time-series of the solar radius have shown different apparent variations according to different instruments. The origins of these variations may result from the observer, the instrument, the atmosphere, or the Sun. Solar radius measurements have been made for a very long time and in different ways. Yet we see inconsistencies in the measurements. Numerous studies of solar radius variation appear in the literature, but with conflicting results. These measurement differences are certainly related to instrumental effects or atmospheric effects. Use of different methods (determination of the solar radius), instruments, and effects of Earth's atmosphere could explain the lack of consistency on the past measurements. A survey of the solar radius has been initiated in 1975 by Francis Laclare, at the Calern site of the Observatoire de la Côte d'Azur (OCA). Several efforts are currently made from space missions to obtain accurate solar astrometric measurements, for example, to probe the long-term variations of solar radius, their link with solar irradiance variations, and their influence on the Earth climate. Aims: The Picard program includes a ground-based observatory consisting of different instruments based at the Calern site (OCA, France). This set of instruments has been named "Picard Sol" and consists of a Ritchey-Chrétien telescope providing full-disk images of the Sun in five narrow-wavelength bandpasses (centered on 393.37, 535.7, 607.1, 782.2, and 1025.0 nm), a Sun-photometer that measures the properties of atmospheric aerosol, a pyranometer for estimating a global sky-quality index, a wide-field camera that detects the location of clouds, and a generalized daytime seeing monitor allowing us to measure the spatio-temporal parameters of the local turbulence. Picard Sol is meant to perpetuate valuable historical series of the solar radius and to initiate new time-series, in particular during solar cycle 24. Methods: We defined the solar radius by the inflection-point position of the solar-limb profiles taken at different angular positions of the image. Our results were corrected for the effects of refraction and turbulence by numerical methods. Results: From a dataset of more than 20 000 observations carried out between 2011 and 2013, we find a solar radius of 959.78 ± 0.19 arcsec (696 113 ± 138 km) at 535.7 nm after making all necessary corrections. For the other wavelengths in the solar continuum, we derive very similar results. The solar radius observed with the Solar Diameter Imager and Surface Mapper II during the period 2011-2013 shows variations shorter than 50 milli-arcsec that are out of phase with solar activity.
Kai, M; Aoki, O; Hiraga, A; Oki, H; Tokuriki, M
2000-08-01
To develop an instrument that could be sandwiched between the hoof and shoe of horses and that would reliably measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter. 5 clinically sound Thoroughbreds. The recording instrument (weight, 350 g) consisted of 2 metal plates, 2 bolts, 4 load cells, and 3 accelerometers. It was mounted to the hoof with a glue-on shoe and devised to support as much load exerted by a limb as possible. The load cells and accelerometers were wired to a 16-channel transmitter, and transmitted signals were received and amplified with a telemetry receiver. The recording instrument could measure in real time the 4 components of the ground reaction force or their resultant force along with acceleration in 3 dimensions as horses walked, trotted, or cantered on a treadmill. Patterns of force-time curves recorded for consecutive strides were similar to each other and to those previously reported, using a force plate. The recording instrument developed for use in the present study allowed us to record vertical ground reaction force and acceleration in 3 dimensions in horses at the walk, trot, and canter.
NASA Astrophysics Data System (ADS)
Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.
2012-06-01
Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is done. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events with high CO mixing ratios during winter and very low amounts during summer in the observed 55-85 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS(200) is good in the altitude range 55-70 km. Above 70 km OSO show up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2003 CO from MIPAS(12 + 13) is up to 60% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Braun, M.; Zaccheo, T.
2012-12-01
The Laser Atmospheric Transmitter Receiver-Network (LAnTeRN) is a new measurement concept that will enable local, regional and continental determination of key greenhouse gases, with unparalleled accuracy and precision. This new approach will offer the ability to make low bias, high precision, quasi-continuous, measurements to the accuracies required for separating anthropogenic and biogenic sources and sinks. In 2004 ITT Exelis developed an airborne demonstration unit, based on an intensity modulated continuous wave (IM-CW) lidar approach, for actively measuring atmospheric CO2 and O2. The multi-functional fiber laser lidar (MFLL) system relies on low peak power, high reliability, and efficient telecom laser components to implement this unique measurement approach. While evaluating methods for discriminating against thin clouds for the MFLL instrument, a new measurement concept was conceived. LAnTeRN has several fundamental characteristics in common with the MFLL instrument, but is a fundamentally different implementation and capability. The key difference is that LAnTeRN operates in transmission rather than in the traditional backscatter lidar configuration, which has several distinct advantages. Operating as a forward scatter, bistatic lidar system, LAnTeRN enables consideration of continuous monitoring from a geostationary orbit to multiple locations on the ground. Having the receivers on the ground significantly lowers cost and risk compared to an all space based mission, and allows the transmitter subsystem to be implemented, near term, as a hosted payload. Furthermore, the LAnTeRN measurement approach is also applicable for ground to ground measurements where high precision measurements over a long open path is required, such as facilities monitoring, or monitoring of passive volcanoes and fault lines. Using narrow linewidth laser sources allows flexibility to select the position on the absorption feature being probed. This feature allows for weighting the absorption toward lower altitudes for the space implementation or to handle large dynamic range measurements as would be required for volcano monitoring. This presentation will discuss results from a detailed instrument performance analyses, retrieval simulations, and from initial testing of a proof of concept demonstration unit being developed by Exelis. Initial analysis indicate that measurements from a transmitter in geostationary orbit to 25 ground receivers in the eastern U.S. can retrieve column integrated CO2 values to a precision of <0.2 ppm on monthly averages and <0.06 ppm on yearly averages, using conservative estimates of cloud cover and aerosol loading. The capability for continuous monitoring over a fixed geometry makes it possible to independently characterize the atmospheric column, using existing capabilities (e.g. aircore, aircraft and in-situ instrumentation), for quantification of bias. Furthermore, the ability to selectively locate the ground receivers can enable focused studies for specific applications.
Double-Pulsed 2-Micrometer Lidar Validation for Atmospheric CO2 Measurements
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben
2015-01-01
A double-pulsed, 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument for atmospheric carbon dioxide (CO2) measurements is successfully developed at NASA Langley Research Center (LaRC). Based on direct detection technique, the instrument can be operated on ground or onboard a small aircraft. Key features of this compact, rugged and reliable IPDA lidar includes high transmitted laser energy, wavelength tuning, switching and locking, and sensitive detection. As a proof of concept, the IPDA ground and airborne CO2 measurement and validation will be presented. IPDA lidar CO2 measurements ground validation were conducted at NASA LaRC using hard targets and a calibrated in-situ sensor. Airborne validation, conducted onboard the NASA B-200 aircraft, included CO2 plum detection from power stations incinerators, comparison to in-flight CO2 in-situ sensor and comparison to air sampling at different altitude conducted by NOAA at the same site. Airborne measurements, spanning for 20 hours, were obtained from different target conditions. Ground targets included soil, vegetation, sand, snow and ocean. In addition, cloud slicing was examined over the ocean. These flight validations were conducted at different altitudes, up to 7 km, with different wavelength controlled weighing functions. CO2 measurement results agree with modeling conducted through the different sensors, as will be discussed.
Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data
NASA Astrophysics Data System (ADS)
Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang
2017-10-01
Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.
2017-12-01
Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.
Maynooth Optical Aeronomical Facility
NASA Technical Reports Server (NTRS)
Mulligan, Francis J.; Niciejewski, Rick J.
1994-01-01
Ground-based measurements of upper atmospheric parameters, such as temperature and wind velocity, can be made by observing airglow emissions that have a well-defined altitude profile and that are known to be representative of the emitting region. We describe the optical observatory at Maynooth (53.23 deg N, 6.4 deg W) at which two instruments, a Fabry-Perot interferometer and a Fourier transform spectrometer, are used to record atmospheric airglow emissions in Ireland at visible and near-infrared wavelengths, respectively. Descriptions of the instruments, data acquisition, and analysis procedures are provided, together with some sample results.
The Auroral Particles experiment
NASA Technical Reports Server (NTRS)
1981-01-01
An instrument for the detection of particles in the energy range of 0.1 ev to 80 Kev was designed, built, tested, calibrated, and flown onboard the spacecraft ATS-6. Data from this instrument generated the following research: intensive studies of the plasma in the vicinity of the spacecraft; global variations of plasmas; correlative studies using either other spacecraft or ground based measurements; and studies of spacecraft interactions with ambient plasmas including charging, local electric fields due to differential charging, and active control of spacecraft potential. Results from this research are presented.
New findings and instrumentation from the NASA Lewis microgravity facilities
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Greenberg, Paul S.
1990-01-01
The study of fundamental combustion and fluid physics in a microgravity environment is a relatively new scientific endeavor. The microgravity environment enables a new range of experiments to be performed since: buoyancy-induced flows are nearly eliminated; normally obscured forces and flows may be isolated; gravitational settling or sedimentation is nearly eliminated; and larger time or length scales in experiments become permissible. Unexpected phenomena have been observed, with surprising frequency, in microgravity experiments, raising questions about the degree of accuracy and completeness of the classical understanding. An overview is provided of some new phenomena found through ground-based, microgravity research, the instrumentation used in this research, and plans for new instrumentation.
Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.
2013-12-01
A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC stations.
Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.
2005-01-01
A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.
PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence: First Results
NASA Astrophysics Data System (ADS)
Grossmann, K.; Magney, T. S.; Frankenberg, C.; Seibt, U.; Pivovaroff, A. L.; Hurlock, S. C.; Stutz, J.
2016-12-01
Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a proxy for photosynthetic activity and is observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal from environmental conditions, water stress, or radiation. We have developed a novel ground-based spectrometer system for measuring SIF from natural ecosystems. The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles, and also includes a commercial photosynthetic active radiation (PAR) sensor. The spectrometers cover a SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), and also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) to retrieve vegetation indices and the photochemical reflectance index (PRI). We report on results of the first continuous field measurements of this novel system at Stunt Ranch Santa Monica Mountains UC Reserve, where the PhotoSpec instrument was monitoring SIF of four native Californian shrubland species with different adaptations to seasonal summer drought. We report on the correlation with CO2 fluxes over both the growing season and the hot summer period in 2016. We also show detailed measurements of the diurnal cycle of the SIF signal of single broad leaves, as well as dark-light transitions, under controlled experimental conditions. In addition to demonstrating the instrumental set-up, retrieval algorithm, and instrument performance, our results illustrate that SIF measurements at the leaf to ecosystem scale are needed to understand and interpret the SIF signals retrieved at larger scales.
Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Counter, Douglas D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.
NASA Astrophysics Data System (ADS)
Motte, Erwan; Zribi, Mehrez; Fanise, Pascal
2015-04-01
GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with collocated measurement of biomass and soil moisture ground truth in order to better characterize the instrument sensitivity to geophysical parameters. The instrument will be improved in the meanwhile including the optimization of data processing and the better integration of external data (GPS commercial receiver, Attitude) into the receiver. M.Martin-Neira. A Passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J., 17:331-355, 1993 Hauser, D.; Caudal, G.; Le Gac, C.; Valentin, R.; Delaye, L.; Tison, C., "KuROS: A new airborne Ku-band Doppler radar for observation of the ocean surface," Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International , vol., no., pp.282,285, 13-18 July 2014 Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N., "Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of , vol.7, no.5, pp.1522,1532, May 2014
Use of empathy in psychiatric practice: constructivist grounded theory study
Watling, Chris
2017-01-01
Background Psychiatry has faced significant criticism for overreliance on the Diagnostic and Statistical Manual of Mental Disorders (DSM) and medications with purported disregard for empathetic, humanistic interventions. Aims To develop an empirically based qualitative theory explaining how psychiatrists use empathy in day-to-day practice, to inform practice and teaching approaches. Method This study used constructivist grounded theory methodology to ask (a) ‘How do psychiatrists understand and use empathetic engagement in the day-to-day practice of psychiatry?’ and (b) ‘How do psychiatrists learn and teach the skills of empathetic engagement?’ The authors interviewed 17 academic psychiatrists and 4 residents and developed a theory by iterative coding of the collected data. Results This constructivist grounded theory of empathetic engagement in psychiatric practice considered three major elements: relational empathy, transactional empathy and instrumental empathy. As one moves from relational empathy through transactional empathy to instrumental empathy, the actions of the psychiatrist become more deliberate and interventional. Conclusions Participants were described by empathy-based interventions which are presented in a theory of ’empathetic engagement’. This is in contrast to a paradigm that sees psychiatry as purely based on neurobiological interventions, with psychotherapy and interpersonal interventions as completely separate activities from day-to-day psychiatric practice. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28243463
Ground-based Spectroscopy Of Extrasolar Planets
NASA Astrophysics Data System (ADS)
Waldmann, Ingo
2011-09-01
In recent years, spectroscopy of exoplanetary atmospheres has proven to be very successful. When in the past discoveries were made using space-born observatories such as Hubble and Spitzer, the observational focus continues to shift to ground-based facilities. This is especially true since the end of the Spitzer cold-phase, depleting us of a space-borne eye in the infrared. With projects like E-ELT and TMT on the horizon, this trend will only intensify. So far several observational strategies have been employed for ground-based spectroscopy. All of which are trying to solve the problems incurred by high systematic and telluric noise and are distinct in their advantages and dis-advantages. Using time-resolved spectroscopy, we obtain an individual lightcurve per spectral channel of the instrument. The benefits of such an approach are multifold since it allows us to utilize a broad spectrum of statistical methods. Using new IRTF data, in the K and L-bands, we will illustrate the intricacies of two spectral retrieval approaches: 1) the self-filtering and signal amplification achieved by consecutive convolutions in the frequency domain, 2) the blind de-convolution of signal from noise using non-parametric machine learning algorithms. These novel techniques allow us to present new results on the hot-Jupiter HD189733b, showing strong methane emissions in both, K and L-bands at spectral resolutions of R 170. Using data from the IRTF/SpeX instrument, we will discuss the implications and possible theoretical models of strong methane emissions on this planet.
NASA Technical Reports Server (NTRS)
Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius;
2011-01-01
Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.
Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation
NASA Astrophysics Data System (ADS)
Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko
2016-07-01
One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.
ERIC Educational Resources Information Center
Mateos-Moreno, Daniel; Alcaraz-Iborra, Mario
2013-01-01
Our work highlights the necessity of revising the materials employed in instrumental education, which are systematically based on a progressive development of technical abilities and, though only transversely, without a structured sequence of contents, on issues referring to the interpretation of different periods and styles. In order to elaborate…
School Personnel Perceptions of Professional School Counselor Role and Function
ERIC Educational Resources Information Center
Coles, Caron N.
2013-01-01
The purpose of this research study was to examine the attitudes held by school-based administrators, teachers, and professional school counselors regarding ideal and actual roles of the professional school counselor. The survey instrument utilized in this research study, the PSCRFA, is grounded in the ASCA model and reflective of current school…
Multi-anode microchannel arrays
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1977-01-01
A development program is currently being undertaken to produce photon-counting detector arrays which are suitable for use in both ground-based and space-borne instruments and which utilize the full sensitivity, dynamic range and photometric stability of the microchannel array plate (MCP). The construction of the detector arrays and the status of the development program are described.
Survey of L Band Tower and Airborne Sensor Systems Relevant to Upcoming Soil Moisture Missions
USDA-ARS?s Scientific Manuscript database
Basic research on the physics of microwave remote sensing of soil moisture has been conducted for almost thirty years using ground-based (tower- or truck-mounted) microwave instruments at L band frequencies. Early small point-scale studies were aimed at improved understanding and verification of mi...
NASA Technical Reports Server (NTRS)
Khaiyer, M. M.; Doelling, D. R.; Palikonda, R.; Mordeen, M. L.; Minnis, P.
2007-01-01
This poster presentation reviews the process used to validate the GOES-10 satellite derived cloud and radiative properties. The ARM Mobile Facility (AMF) deployment at Pt Reyes, CA as part of the Marine Stratus Radiation Aerosol and Drizzle experiment (MASRAD), 14 March - 14 September 2005 provided an excellent chance to validate satellite cloud-property retrievals with the AMF's flexible suite of ground-based remote sensing instruments. For this comparison, NASA LaRC GOES10 satellite retrievals covering this region and period were re-processed using an updated version of the Visible Infrared Solar-Infrared Split-Window Technique (VISST), which uses data taken at 4 wavelengths (0.65, 3.9,11 and 12 m resolution), and computes broadband fluxes using improved CERES (Clouds and Earth's Radiant Energy System)-GOES-10 narrowband-to-broadband flux conversion coefficients. To validate MASRAD GOES-10 satellite-derived cloud property data, VISST-derived cloud amounts, heights, liquid water paths are compared with similar quantities derived from available ARM ground-based instrumentation and with CERES fluxes from Terra.
Ground-based measurements of inflight antenna patterns for imaging radar systems
NASA Astrophysics Data System (ADS)
Seifert, Pedro; Lentz, Harald; Zink, Manfred; Heel, Franz
1992-11-01
An approach is presented on how to determine the inflight antenna pattern in the cross-track direction for air- and spaceborne synthetic aperture radar (SAR) systems. In the 1991 Oberpfaffenhofen DC-8/E-SAR calibration campaign there was a good opportunity to test ground-based measurement equipment comprising 18 precision calibration receivers and nine polarimetric active radar calibrators (PARC's), all operating in C-band. These devices were designed and manufactured by the Institute of Navigation at the University of Stuttgart (INS). These instruments are capable of handling various pulse lengths, PRF's, and have a very high dynamic range. Together with precise internal clocks, these instruments are suitable for recording the actual radar transmit pulse shape for the later evaluation of the desired inflight antenna pattern. Lining up these devices in the cross-track direction, each receiver yields an azimuth cut of the three-dimensional antenna pattern. The elevation pattern was then obtained by time correlation of these azimuth cuts. Further results concerning pulse shapes, squint angles, and H-V pattern misalignment are presented.
NASA Astrophysics Data System (ADS)
Ortega, I.; Coburn, S.; Oetjen, H.; Sinreich, R.; Thalman, R. M.; Waxman, E.; Volkamer, R.
2011-12-01
We present results from two ground-based University of Colorado Multi Axis Differential Optical Absorption Spectroscopy (CU-MAX-DOAS) instruments that were deployed during the CALNEX and CARES 2010 field campaigns. Ground based CU-MAX-DOAS measurements were carried out through Dec 2010, and measured vertical column abundances of nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), and aerosol extinction, which is determined indirectly from observing the oxygen dimers (O4). The measurements were acquired on the top of Millikan library at Caltech, Pasadena, CA, at the Fontana Arrows site located 60 Km east of Caltech, and for a limited period also downwind of Sacramento at T1 site during CARES. In the South Coast Air Basin, the MAX-DOAS instruments at both sites collected an extended time series of use to test satellites, and atmospheric chemistry models. We determine the state of the planetary boundary layer by comparing the columns observations with in-situ sensors, and place the CALNEX and CARES measurements intensive into seasonal context.
NASA Technical Reports Server (NTRS)
Piters, Ankie; Boersma, K.F.; Kroon, M.; Hains, J. C.; Roozendael, M. Van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M. A. F.;
2012-01-01
From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX-DOAS aerosol optical thickness agrees within 20-30% with AERONET data. For the in-situ NO2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters.
Ionospheric Irregularities Characterization by Ground and Space-based GPS Observations
NASA Astrophysics Data System (ADS)
Zakharenkova, I.; Cherniak, I.; Krankowski, A.
2017-12-01
We present new results on detection and investigation of the topside ionospheric irregularities using GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit satellites. Our investigation is based on the recent ESA's Swarm mission launched on 22 November 2013 and consisted of three identical satellites, two of them fly in a tandem at an orbit altitude of 460 km while the third satellite - at an orbit altitude of 510 km. Each satellite is equipped with a zenith-looking antenna and 8-channel dual-frequency GPS receiver that delivered 1 Hz data for POD purposes, as well as Langmuir Probe instrument for in situ electron density. Additionally, we have analyzed GPS measurements onboard GRACE and TerraSAR-X satellite, which have rather similar to Swarm orbit altitude of 500 km. GPS measurements onboard MetOP-A and MetOP-B satellites (altitude of 840 km) can complement these observations in order to estimate an altitudinal extent of the ionospheric irregularities penetrating to higher altitudes. We demonstrate that space-based GPS observations can be effectively used for monitoring of the topside ionospheric irregularities occurrence in both high-latitude and equatorial regions and may essentially contribute to the multi-instrumental analysis of the ground-based and in situ data. Climatological characteristics of the equatorial ionospheric irregularities occurrence probability are derived from POD GPS measurements for all longitudinal sectors for the years 2013-2016. Several examples of strong geomagnetic storms, including the 2015 St. Patrick's Day storm, were analyzed to demonstrate differences between the climatlogical characteristics in space-based GPS data and storm-induced equatorial irregularities observations (postsunset suppression, night/morning-time occurrence). To support our observations and conclusions, we involve into our analysis in situ plasma density provided by Swarm constellation, GRACE KBR, DMSP satellites, as well as ground-based GNSS and digisonde networks. New International GNSS Service (IGS) product - the Northern Hemisphere GPS-based ROTI (rate of the TEC index) maps - was analyzed to determine similarities and differences in ionospheric irregularities signatures in the ground and space-based GPS observations.
NASA Astrophysics Data System (ADS)
Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.
2013-12-01
Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm Chantal in the dusty environment. We give an overview of the SALTRACE measurements and show early results covering profiles of dust size distributions, dust optical properties and the investigation of the impact of dust aging processes between the Cape Verde region and Florida.
Calibration of AIS Data Using Ground-based Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Conel, J. E.
1985-01-01
Present methods of correcting airborne imaging spectrometer (AIS) data for instrumental and atmospheric effects include the flat- or curved-field correction and a deviation-from-the-average adjustment performed on a line-by-line basis throughout the image. Both methods eliminate the atmospheric absorptions, but remove the possibility of studying the atmosphere for its own sake, or of using the atmospheric information present as a possible basis for theoretical modeling. The method discussed here relies on use of ground-based measurements of the surface spectral reflectance in comparison with scanner data to fix in a least-squares sense parameters in a simplified model of the atmosphere on a wavelength-by-wavelength basis. The model parameters (for optically thin conditions) are interpretable in terms of optical depth and scattering phase function, and thus, in principle, provide an approximate description of the atmosphere as a homogeneous body intervening between the sensor and the ground.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben
2015-01-01
NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument for simultaneous measurement of water vapor and carbon-dioxide column density measurement from an air-borne platform. This presentation will give an overview of the 2 decades of 2-micron coherent and direction detection of laser/lidar development at NASA Langley Research Center and will present the ground and airborne wind and column CO2 measurement intercomparison with in-situ, balloon and flask measurements.
A New SBUV Ozone Profile Time Series
NASA Technical Reports Server (NTRS)
McPeters, Richard
2011-01-01
Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
NASA Astrophysics Data System (ADS)
Orton, G. S.; Fletcher, L. N.; Fouchet, T.; Fujiyoshi, T.; Greathouse, T. K.; Momary, T.; Yanamandra-Fisher, P. A.
2013-12-01
For the first time, a suite of ground-based and spacecraft instruments were available to detect and characterize one of the rare giant convective storms erupting in Saturn's atmosphere. The storm that erupted on 2010 December 5 created an immense thermal and chemical perturbation of the atmosphere. Most of the perturbation of the visible cloud system had abated within a year of the initial eruption, but changes to the atmosphere were evident at thermal infrared wavelengths, and they continue to the present. Here we review the observations from ground-based stations that include NASA's Infrared Telescope Facility (IRTF) and the Subaru Telescope, both at the summit of Mauna Kea, as well as observations from ESO's Very Large Telescope. Evident in the 5-μm spectral window was the clearing of nearly all clouds around and above the 3-bar level of the atmosphere at the latitude of the primary storm. In the intervening two years, imaging in the same window by the IRTF NSFCam2 instrument shows that the cleared region remains prominent and is filling in with a pre-storm cloud cover only very slowly. Most unexpected was the generation of a stratospheric vortex of high temperatures, 'the beacon' (Fletcher et al. 2011 Science 332, 1413). This phenomenon also continues more than two years later and has been tracked using several mid-infrared imaging instruments: VISIR at the VLT, COMICS at Subaru, and MIRSI at the IRTF using moderate-band filters. More precise determination of its vertical distribution was made using the University of Texas Echelon Cross Echelle Spectrograph (TEXES) at the IRTF, targeting specific lines of CH4 and the H2 quadrupole. All of these measurements, taken in concert, show that the heated region of the stratosphere is diminishing in amplitude, expanding in longitude and slowly sinking in altitude.
Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report
NASA Technical Reports Server (NTRS)
1993-01-01
The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Andrzej, K.; Hernandez-Pajares, M.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Davidenko, D.
2017-12-01
The INSPIRE project is dedicated to the study of physical processes and their effects in ionosphere which could be determined as earthquake precursors together with detailed description of the methodology of ionospheric pre-seismic anomalies definition. It was initiated by ESA and carried out by international consortium. The physical mechanisms of the ionospheric pre-seismic anomalies generation from ground to the ionosphere altitudes were formulated within framework of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling (LAIMC) model (Pulinets et al., 2015). The general algorithm for the identification of the ionospheric precursors was formalized which also takes into account the external Space Weather factors able to generate the false alarms. Importance of the special stable pattern called the "precursor mask" was highlighted which is based on self-similarity of pre-seismic ionospheric variations. The role of expert decision in pre-seismic anomalies interpretation for generation of seismic warning is important as well. The algorithm performance of the LAIMC seismo-ionospheric effect detection module has been demonstrated using the L'Aquila 2009 earthquake as a case study. The results of INSPIRE project have demonstrated that the ionospheric anomalies registered before the strong earthquakes could be used as reliable precursors. The detailed classification of the pre-seismic anomalies was presented in different regions of the ionosphere and signatures of the pre-seismic anomalies as detected by ground and satellite based instruments were described what clarified methodology of the precursor's identification from ionospheric multi-instrumental measurements. Configuration for the dedicated multi-observation experiment and satellite payload was proposed for the future implementation of the INSPIRE project results. In this regard the multi-instrument set can be divided by two groups: space equipment and ground-based support, which could be used for real-time monitoring. Together with scientific and technical tasks the set of political, logistic and administrative problems (including certification of approaches by seismological community, juridical procedures by the governmental authorities) should be resolved for the real earthquake forecast effectuation.
Coastal Observations of Weather Features in Senegal during the AMMA SOP-3 Period
NASA Technical Reports Server (NTRS)
Jenkins, G.; Kucera, P.; Joseph, E.; Fuentes, J.; Gaye, A.; Gerlach, J.; Roux, F.; Viltard, N.; Papazzoni, M.; Protat, A.;
2009-01-01
During 15 August through 30 September 2006, ground and aircraft measurements were obtained from a multi-national group of students and scientists in Senegal. Key measurements were aimed at investigating and understanding precipitation processes, thermodynamic and dynamic environmental conditions, cloud, aerosol and microphysical processes and spaceborne sensors (TRMM, CloudSat/Calipso) validation. Ground and aircraft instruments include: ground based polarimetric radar, disdrometer measurements, a course and a high-density rain gauge network, surface chemical measurements, a 10 m flux tower, broadband IR, solar and microwave measurements, rawinsonde and radiosonde measurements, FA-20 dropsonde, in situ microphysics and cloud radar measurements. Highlights during SOP3 include ground and aircraft measurements of squall lines, African Easterly Waves (AEWs), Saharan Air Layer advances into Senegal, and aircraft measurements of AEWs -- including the perturbation that became Hurricane Isaac.
Proposed US Contributions to LOFT
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen
2013-01-01
Proposed US Enhancements include:Tantalum X -ray collimator, Additional ground station, Large Observatory for X-Ray Timing (LOFT) instrument team participation, US science support center & data archive, and Science enabled by US hardware. High-Z material with excellent stopping power. Fabricated using a combination of laser micromachining and chemical etching. Known technology capable of producing high-aspect ratio holes and large open fractions. Reduces LOFT LAD background by a factor of 3. Telemetry formats for LOFT based upon RXTE/EDS experience. Ground system software and strategies for WFM based upon RXTE/ASM automated pipeline software. MSFC engineering trade studies supporting the Ta collimator. Burst alert triggers based upon Fermi/GBM and HETE-2. Science Enhancements Enabled by US Hardware include: Tantalum collimator: Reduces background by factor of 3. Improves sensitivity to faint sources such as AGN. Eliminates contamination by bright/variable sources. outside the LAD field of view. US Ground Station: Enables continuous telemetry of all events from the WFM. Allows LAD to observe very bright >500 mCrab sources with full event resolution.
The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application
NASA Astrophysics Data System (ADS)
Reveret, Vincent
2018-01-01
CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.
Fast Coherent Differential Imaging for Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.
2018-06-01
Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.
Temperature and slant path effects in Dobson and Brewer total ozone measurements
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Peter, T.; GröBner, J.; Stübi, R.
2009-12-01
There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these data sets is of utmost importance if changes in TOZ of a few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of a few percent between midlatitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments have been colocated since 1998, providing a unique data set of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross section is calculated for each operational Brewer spectrophotometers at Arosa by using different high- and low-resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information on the primary standard instruments is used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely, these differences increase when using the spectral data of Burrows et al. (1999). This finding illustrates that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross sections measured by different internationally leading laboratories.
Temperature and Slant Path Effects in Dobson and Brewer Total Ozone Measurements
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Peter, T.; Groebner, J.; Stuebi, R.
2009-12-01
There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these datasets is of utmost importance if changes in TOZ of few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percent between mid-latitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments are co-located since 1998, providing a unique dataset of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross-section are calculated for each operational Brewer spectrophotometers at Arosa by using different high and low resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information of the primary standard instruments are used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely these differences increase using the spectral data of Burrows (1999). This finding illustrates, that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross-sections measured by different internationally leading laboratories.
An intercomparison of airborne nitrogen dioxide instruments
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Hoell, J. M., Jr.; Carroll, M. A.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Sandholm, S. T.; Schiff, H. I.; Torres, A. L.
1990-01-01
Results on NO2 instruments are reported from the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) program in summer 1986. The instruments tested were (1) a two-photon LIF system using a laser for NO2-NO photolysis, (2) a chemiluminescence (CL) detector using FeSO4 for NO2-NO conversion, (3) a CL detector using an arc lamp for NO2-NO photolysis, and (4) a tunable-laser-diode multipath-absorption system. The procedures for the CITE 2 ground-based and flight tests are described in detail, and the results are presented in extensive graphs. Instrument (2) was eliminated because the FeSO4 converted atmospheric PAN to NO, resulting in spuriously high NO2 values. The remaining instruments gave readings in 30-40-percent agreement at NO2 mixing ratios of 100-200 parts per trillion by volume (pptv). At ratios below 50 pptv, the correlation among the measurements was very poor, with a tendency for system (4) to give higher values than (1) or (3).
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.
Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute’s (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples. PMID:28003712
MINERVA: An INSAR Monitoring Service for Volcanic Hazard
NASA Astrophysics Data System (ADS)
Tampellini, M. L.; Sansosti, E.; Usai, S.; Lanari, R.; Borgstrom, S.; van Persie, M.; Ricciardi, G. P.; Maddalena, V.; Cicero, L.; Pepe, A.
2004-06-01
MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas) is a small scale service demonstration project financed by ESA in the Data User Programme framework. The objective of the project is the design, development and assessment of a demonstrative information service based on the interferometric processing of images acquired from either the ASAR instrument on board ENVISAT-I or SAR instruments on board ERS1/2. The system is based on a new approach for the processing of INSAR data, which allows to optimize the quality of interferograms spanning from 35 days up to several years, and to merge them to generate a single solution describing the temporal evolution of the ground deformations in the examined risk area. The system allows to update this solution each time a new SAR image is available, and constitutes therefore an innovative tool for monitoring of the ground displacements in risk areas. The system has been implemented and demonstrated at Osservatorio Vesuviano (Naples, Italy), which is the institution responsible for monitoring the volcanic phenomena in the Neapolitan volcanic district, and for alerting the Italian civil authorities (''Protezione Civile'') in case such monitoring activity reveals signals of imminent eruptions. In particular, the MINERVA system has been used to monitor the ground deformations at the Phlegrean Fields, a densely populated, high-hazard zone which is subject to alternate phases of uplift and subsidence, accompanied often by seismic activity.
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
NASA Astrophysics Data System (ADS)
Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku; Morse, Jon A.
2014-04-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 μm photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
NASA Technical Reports Server (NTRS)
Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku
2012-01-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5- meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micrometer photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPOFLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.
Autonomous Exploration for Gathering Increased Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.;
2010-01-01
The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.
Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
2002-12-01
A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.
Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center
NASA Astrophysics Data System (ADS)
Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott
2016-05-01
When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.
A Ground Systems Template for Remote Sensing Systems
NASA Astrophysics Data System (ADS)
McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.
2002-10-01
Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.
Laser Guide Star Based Astrophysics at Lick Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, C; Gavel, D.; Friedman, H.
2000-03-10
The resolution of ground-based telescopes is typically limited to {approx}1 second of arc because of the blurring effects of atmospheric turbulence. Adaptive optics (AO) technology senses and corrects for the optical distortions due to turbulence hundreds of times per second using high-speed sensors, computers, deformable mirror, and laser technology. The goal of this project is to make AO systems widely useful astronomical tools providing resolutions up to an order of magnitude better than current, ground-based telescopes. Astronomers at the University of California Lick Observatory at Mt. Hamilton now routinely use the LLNL developed AO system for high resolution imaging ofmore » astrophysical objects. We report here on the instrument development progress and on the science observations made with this system during this 3-year ERI project.« less
NASA Astrophysics Data System (ADS)
Orton, Glenn; Fletcher, Leigh; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphael; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy; Hofstadter, Mark; Sandell, Goran; Dowell, Charles
2014-05-01
Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the atmosphere the homopause is much higher pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 10 μbar being H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of 'programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.
Recent changes in stratospheric aerosol budget from ground-based and satellite observations
NASA Astrophysics Data System (ADS)
Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry
2017-04-01
Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background) aerosol by comparing the recent observations with historical data available from 23-yr observations at Haute-Provence and Mauna-Loa.
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P.; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405
Observations in the solar spectrum interest for remote sensing purposes
NASA Technical Reports Server (NTRS)
Herman, M.; Vanderbilt, V.
1994-01-01
The polarization of the sunlight scattered by atmospheric aerosols or cloud droplets and reflected from ground surfaces or plant canopies may convey much information when used for remote sensing purposes. The typical polarization features of aerosols, cloud droplets, and plant canopies, as observed by ground based and airborne sensors, are investigated, looking especially for those invariant properties amenable to description by simple models when possible. The question of polarization measurements from space is addressed. The interest of such measurements for remote sensing purposes is investigated, and their feasibility is tested by using results obtained during field campaigns of the airborne POLDER instrument, a radiometer designed to measure the directionality and polarization of the sunlight scattered by the ground atmosphere system.
The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.
1980-01-01
A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.
DMD-based multi-object spectrograph on Galileo telescope
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca
2013-03-01
Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.
Pressure at the ground in a large tornado
NASA Astrophysics Data System (ADS)
Winn, W. P.; Hunyady, S. J.; Aulich, G. D.
1999-09-01
A number of instruments were placed on the ground across the path of a large tornado that passed west of the town of Allison, Texas, on June 8, 1995. The center of the tornado came within 660 m of the closest instrument, which recorded a pressure drop of 55 mbar and a subsequent pressure rise of 60 mbar. During the lowest recorded pressures (near r = 660 m), there were large and rapid pressure fluctuations; the largest fluctuation was a 10-mbar spike lasting 2 s. A second instrument on the opposite side of the tornado recorded a pressure drop of 26 mbar. From the pressure variations with time P(t) at the two instruments, the variation of pressure with distance p(r) from the center of the tornado has been deduced for r>660 m. As r decreases, the measured pressure function p(r) drops more abruptly than would be expected from conservation of angular momentum of air spiraling inward near the ground level.
NASA Astrophysics Data System (ADS)
DiGregorio, A.; Wilson, E. L.; Palmer, P. I.; Mao, J.; Feng, L.
2017-12-01
We present the simulated impact of a small (50 instrument) ground network of NASA Goddard Space Flight Center's miniaturized laser heterodyne radiometer (mini-LHR), a small, low cost ( 50k), portable, and high precision CH4 and CO2 measuring instrument. Partnered with AERONET as a non-intrusive accessory, the mini-LHR is able to leverage the 500+ instrument AERONET network for rapid network deployment and testing, and simultaneously retrieve co-located aerosol data, an important input for sattelite measurements. This observing systems simulation experiment (OSSE) uses the 3-D GEOS-Chem chemistry transport model and 50 strategically selected sites to model flux estimate uncertainty reduction of both TCCON and mini-LHR instruments. We found that 50 mini-LHR sites are capable of improving global uncertainty by up to 70%, with local improvements in the Southern Hemisphere reaching to 90%. Our studies show that addition of the mini-LHR to current ground networks will play a major role in reduction of global carbon flux uncertainty.
NASA Technical Reports Server (NTRS)
Byrne, G. J.; Benbrook, J. R.; Bering, E. A.; Few, A. A.; Morris, G. A.; Trabucco, W. J.; Paschal, E. W.
1993-01-01
Attention is given to instruments constructed to measure the atmospheric conduction current and the atmospheric electric field - two fundamental parameters of the global-electric circuit. The instruments were deployed at the Amundsen-Scott South Pole Station in January 1991 and are designed to operate continuously for up to one year without operator intervention. The atmospheric current flows into one hemisphere, through the electronics where it is measured, and out the other hemisphere. The electric field is measured by a field mill of the rotating dipole type. Sample data from the first days of operation at the South Pole indicate variations in the global circuit over time scales from minutes to hours to days.
46 CFR 120.372 - Equipment and conductor grounding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Equipment and conductor grounding. 120.372 Section 120... INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All... together to a common ground by a normally non-current carrying conductor. Metallic cases of instruments and...
46 CFR 120.372 - Equipment and conductor grounding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment and conductor grounding. 120.372 Section 120... INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All... together to a common ground by a normally non-current carrying conductor. Metallic cases of instruments and...
Telescope Array Control System Based on Wireless Touch Screen Platform
NASA Astrophysics Data System (ADS)
Fu, X. N.; Huang, L.; Wei, J. Y.
2016-07-01
GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.
Ground Based Synoptic Instrumentation for Solar Observations (Postprint)
2012-03-05
vector spectropolarimetry in FeI 630.15-630.25 nm wavelength range, and line-of-sight (circular) polarimetry in Fe I 6301.5-6302.5 Å, and Ca II 8542 Å...Stokes vector polarimetry . Opt. Eng. 38, 1402-1408, 1999. [22] C. U. Keller, J. W. Harvey, M. S. Giampapa, “SOLIS: an innovative suite of synoptic
Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John
2011-01-01
This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.
The Stratosphere 1981: Theory and measurements
NASA Technical Reports Server (NTRS)
1982-01-01
Measurements of trace species are compared with theoretical estimates and the similarities and the differences between the two sets of data are discussed. The theoretical predictions are compared with long term trends in both column content and altitude profile of ozone as observed from ground-based and satellite instruments. The chemical kinetics and photochemistry of the stratosphere were reviewed.
Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study
S. Urbanski; V. Kovalev; W. M. Hao; C. Wold; A. Petkov
2010-01-01
A ground-based scanning lidar was utilized with a set of airborne instruments to acquire measurements of smoke plume dynamics, smoke aerosol distribution and chemical composition in the vicinity of active wildfires in the western U.S. A new retrieval technique was used for processing lidar multiangle measurements. The technique determines the location of...
Aircraft Integration and Flight Testing of 4STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, CJ; Kassianov, E; Russell, P
2012-10-12
Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.
NASA Technical Reports Server (NTRS)
Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing
2010-01-01
Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30more » percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.« less
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Bender, Peter L.
1992-01-01
The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.
Astronomy and astrophysics for the 1980's, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.
The whole earth telescope - A new astronomical instrument
NASA Technical Reports Server (NTRS)
Nather, R. E.; Winget, D. E.; Clemens, J. C.; Hansen, C. J.; Hine, B. P.
1990-01-01
A new multimirror ground-based telescope for time-series photometry of rapid variable stars, designed to minimize or eliminate gaps in the brightness record caused by the rotation of the earth, is described. A sequence of existing telescopes distributed in longitude, coordinated from a single control center, is used to measure designated target stars so long as they are in darkness. Data are returned by electronic mail to the control center, where they are analyzed in real time. This instrument is the first to provide data of continuity and quality that permit true high-resolution power spectroscopy of pulsating white dwarf stars.
Astronomy and astrophysics for the 1980's, volume 1
NASA Astrophysics Data System (ADS)
The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.
Inertial Pointing and Positioning System
NASA Technical Reports Server (NTRS)
Yee, Robert (Inventor); Robbins, Fred (Inventor)
1998-01-01
An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.
Solar-A Prelaunch Mission Operation Report (MOR)
NASA Technical Reports Server (NTRS)
1991-01-01
The Solar-A mission is a Japanese-led program with the participation of the United States and the United Kingdom. The Japanese Institute of Space and Astronautical Science (ISAS) is providing the Solar-A spacecraft, two of the four science instruments, the launch vehicle and launch support, and the principal ground station with Operational Control Center. NASA is providing a science instrument, the Soft X-ray Telescope (SXT)and tracking support using the Deep Space Network (DSN) ground stations. The United Kingdom s Science and Engineering Research Council (SERC) provides the Bragg Crystal Spectrometer. The Solar-A mission will study solar flares using a cluster of instruments on a satellite in a 600 km altitude, 31 degree inclination circular orbit. The emphasis of the mission is on imaging and spectroscopy of hard and soft X-rays. The principal instruments are a pair of X-ray imaging instruments, one for the hard X-ray range and one for the soft X-ray range. The Hard X-Ray Telescope (HXT), provided by ISAS, operates in the energy range of 10-100 keV and uses an array of modulation collimators to record Fourier transform images of the non-thermal and hot plasmas that are formed during the early phases of a flare. These images are thought to be intimately associated with the sites of primary energy release. The Soft X-Ray Telescope (SXT), jointly provided by NASA and ISAS, operates in the wavelength range of 3-50 Angstroms and uses a grazing incidence mirror to form direct images of the lower temperature (but still very hot) plasmas that form as the solar atmosphere responds to the injection of energy. The SXT instrument is a joint development effort between the Lockheed Palo Alto Research Laboratory and the National Astronomical Observatory of Japan. The U.S. effort also involves Stanford University, the University of California at Berkeley and the University of Hawaii, who provide support in the areas of theory, data analysis and interpretation, and ground-based observations. The hard and soft X-ray telescopes both have an alignment sensor, operating in the visual region of the spectrum, to provide co-alignment information.
Taxonomy of instructions given to residents in laparoscopic cholecystectomy.
Feng, Yuanyuan; Wong, Christopher; Park, Adrian; Mentis, Helena
2016-03-01
Although simulation-based training allows residents to become proficient in surgical skills outside the OR, residents still depend on senior surgeons' guidance in transferring skills accumulated from simulators into the operating room. This study aimed to identify and classify explicit instructions made by attending surgeons to their residents during laparoscopic surgery. Through these instructions, we examined the role gaze guidance plays in OR-based training. A total of ten laparoscopic cholecystectomy cases being performed by PGY4 residents were analyzed. The explicit directional instructions given by the mentoring attending surgeons to their residents were identified and classified into four categories based on their locations in the coordinate system. These categories were further combined into two classes, based on the target of instructions. The frequencies of instructions in the two classes were compared, and effect size was calculated. There were 1984 instructions identified in the ten cases. The instructions were categorized into instrument guidance (38.51%) and gaze guidance (61.49%). The instrument guidance focused on moving the instruments to perform surgical tasks, including directions to targets, instrument manipulation, and instrument interaction. The gaze guidance focused on achieving common ground during the operation, including target identification and target fixation. The frequency of gaze guidance is significantly higher than instrument guidance in a laparoscopic cholecystectomy (p < 0.001) with a large effect size (r = 0.6). Gaze guidance has become the main focus of OR-based training. The results show a tight connection between adopting expert gaze and performing surgical tasks and suggest that gaze training should be integrated into the simulation training.
Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs
NASA Technical Reports Server (NTRS)
mandl, Daniel; Frye, Stuart
2005-01-01
A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.
Automated Maneuver Design and Checkout for the Lunar Reconnaissance Orbiter
2014-12-01
for communication with Earth based ground stations . A photograph of the LRO, while still in development, is shown in Figure 1. All instruments with...International Space Station LAMP Lyman alpha mapping project LEND lunar exploration neutron detector LOLA lunar orbiter laser altimeter LRO Lunar...theory is discussed at length in [1 0], on which this introduction is based . To illustrate the application of Pontryagin ’s minimum principle, a simple
Atmospheric CO2 measurements with a 2-μm DIAL instrument
NASA Astrophysics Data System (ADS)
Cadiou, Erwan; Dherbecourt*, Jean-Baptiste; Gorju, Guillaume; Melkonian, Jean-Michel; Godard, Antoine; Pelon, Jacques; Raybaut, Myriam
2018-04-01
We report on ground-based atmospheric concentration measurements of carbon dioxide, using a pulsed direct detection differential absorption lidar operating at 2051 nm. The transmitter is based on a tunable parametric source emitting 10-mJ energy, 10-ns duration Fourier-limited pulses. Range resolved concentration measurements have been carried out on the aerosol back-scattered signal. Cloud signals have been used to get long range integrated-path measurements.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that uses ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
MAISIE: a multipurpose astronomical instrument simulator environment
NASA Astrophysics Data System (ADS)
O'Brien, Alan; Beard, Steven; Geers, Vincent; Klaassen, Pamela
2016-07-01
Astronomical instruments often need simulators to preview their data products and test their data reduction pipelines. Instrument simulators have tended to be purpose-built with a single instrument in mind, and at- tempting to reuse one of these simulators for a different purpose is often a slow and difficult task. MAISIE is a simulator framework designed for reuse on different instruments. An object-oriented design encourages reuse of functionality and structure, while offering the flexibility to create new classes with new functionality. MAISIE is a set of Python classes, interfaces and tools to help build instrument simulators. MAISIE can just as easily build simulators for single and multi-channel instruments, imagers and spectrometers, ground and space based instruments. To remain easy to use and to facilitate the sharing of simulators across teams, MAISIE is written in Python, a freely available and open-source language. New functionality can be created for MAISIE by creating new classes that represent optical elements. This approach allows new and novel instruments to add functionality and take advantage of the existing MAISIE classes. MAISIE has recently been used successfully to develop the simulator for the JWST/MIRI- Medium Resolution Spectrometer.
NASA Astrophysics Data System (ADS)
Bohn, Birger; Lohse, Insa
2017-09-01
The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5 × 10-7 and 1 × 10-7 s-1, respectively, derived from nighttime measurements on the ground (0.3 s integration time, 10 s averages). For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities to zero below atmospheric cutoff wavelengths. The accuracies of photolysis frequencies were determined from linear regressions with data from the double-monochromator reference instrument. The agreement was typically within ±5 %. Because optical-receiver aspects are not specific for the CCD spectroradiometers, they were widely excluded in this work and will be treated in a separate paper, in particular with regard to airborne applications.
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
NASA Astrophysics Data System (ADS)
Czapla-Myers, J.
2013-12-01
Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at-sensor spectral radiance and the top-of-atmosphere reflectance, both of which are standard products available from the US Geological Survey.
Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign
NASA Astrophysics Data System (ADS)
Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.
2016-12-01
Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.
On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg
2007-01-01
Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).
Cold Season Ground Validation Activities in support of GPM
NASA Astrophysics Data System (ADS)
Hudak, D. R.; Petersen, W. A.
2012-12-01
A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is well situated within both mid-latitude synoptic and lake-effect snowfall regimes. The instrumentation suite at CARE included active remote sensing observations as follows: W, Ku, and X-band vertically pointing radars, a Ku and Ka-band dual polarization full scanning radar, and nearby C-band dual polarization, scanning radar. The passive remote sensing suite includes a triple channel profiling microwave radiometer (10, 21, 36 GHz), and a dual channel polarization radiometer (89 and 150 GHz). In-situ measurements at CARE include a 2D video disdrometer, the Precipitation Video Imager, digital photography and a number of other technologies that estimate instantaneous precipitation rate. GCPEX collected ground-based data on 22 distinct precipitation events, 2 rain, 3 mixed and 17 snow. For 16 of these events, there were also aircraft observations. In addition, there were two clear air flights. The presentation will provide an overview of the data collection. It will also summarize the ground-based event precipitation estimates from various sensors as compared to a manual double fence reference to assess measurement uncertainties. Examples will be presented from radar and aircraft in-situ data highlighting the variability of snowfall characteristics relative to the synoptic context. Plans for ongoing validation studies with the WMO Solid Precipitation Intercomparison Experiment beginning in 2013 will be described.
Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Mount, G. H.; Bybee, R. L.
1979-01-01
The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
Science with the Advanced Gamma Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Coppi, Paolo
2009-05-01
We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.
NASA Astrophysics Data System (ADS)
Yenier, E.; Baturan, D.; Karimi, S.; Moores, A. O.; Spriggs, N.
2016-12-01
Earthquakes may be induced by man-made activity in the vicinity of critically-stressed fault segments. A number of earthquakes characterized as induced with magnitudes M>3 were recorded in British Columbia, Alberta, Oklahoma and Ohio, since 2013. In response to growing induced seismicity in North America, many jurisdictions have mandated near real-time seismic monitoring around operation sites. The data products from monitoring networks are used as drivers of operational traffic light systems designed to mitigate risks associated with induced seismicity. Most traffic light protocols developed to date use staged thresholds of earthquake magnitudes. Additionally, ground motions, which are used to estimate the impact of earthquakes and specify seismic hazard, have been proposed as an enhancement to the existing protocols. There are several challenges and options to consider at the time of planning and designing a monitoring network, the most important of which is the choice of ground motion sensing technology. In order to accurately estimate event source parameters and ground motions, monitoring instruments have to record and image the low-frequency plateau and the corner frequency of the anticipated event spectrum. A flat response over a wide frequency range with a wide dynamic range is desired for a maximum benefit from ground motion products. This study evaluates the performance of three types of instruments in terms of their suitability for induced seismic monitoring (ISM): broadband seismometers, accelerometers and geophones. Each instrument type is assessed in terms of self-noise, frequency response and clip level using instrument specifications and real-world ISM application data. The impact of each sensing technology on key ISM network performance criteria, event magnitude estimations and ground motion measurements are examined.
Magnetosphere-ionosphere coupling during active aurora
NASA Astrophysics Data System (ADS)
Grubbs, Guy, II
In this work, processes which couple the Earth's magnetosphere and ionosphere are examined using observations of aurora from ground-based imaging, in situ electron measurements, and electron transport modeling. The coupling of these regions relies heavily on the energy transport between the two and the ionospheric conductances, which regulate the location and magnitude of the transport. The combination of the datasets described are used to derive the conductances and electron energy populations at the upper boundary of the ionosphere. These values are constrained using error analysis of the observation and measurement techniques and made available to the global magnetosphere modeling community for inclusion as boundary conditions at the magnetosphere and ionosphere coupling region. A comparative study of the active aurora and incident electron distributions was conducted using ground-based measurements and in-situ sounding rocket data. Three narrow-field (47 degree field-of-view) electron-multiplying charge-coupled device (EMCCD) imagers were located at Venetie, AK which took high spatio-temporal resolution measurements of the aurora using different wavelength filters (427.8 nm, 557.7 nm, and 844.6 nm). The measured emission line ratios were combined with atmospheric modeling in order to predict the total electron energy flux and characteristic electron energy incident on the atmosphere. These predictions were compared with in-situ measurements made by the Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) sounding rocket launched in early 2014. The GREECE particle instruments were modeled using a ray-tracing program, SIMION, in order to predict the instrument responses for different incident particles. Each instrument model was compared with data taken in the lab in order to compare and update the models appropriately. A rocket emulation system was constructed for lab testing prior to and during instrument integration into the rocket and used throughout the project to test instrument response and output. EMCCD imagers were calibrated using known light sources in order to find the imager response at each pixel prior to and during deployment. Electron transport models were modified to use the most recent versions of empirical atmospheric models and chemical reaction rates. The electron transport models showed less than 20% and 50% error for intensity measurements 10 degrees and 20 degrees from magnetic zenith, respectively. An inversion technique was developed in order to derive the characteristics of the in situ electron populations using only the spectral ground-based imaging. The electron populations and atmospheric conductances were characterized, using the inversion technique and the modified Robinson relation, during the St. Patrick's Day storm on 18 March 2015. Discrete arcs contained the most energetic electrons and highest conductances, followed by pulsating aurora and then diffuse aurora. These techniques can be used to constrain the electrons and ionospheric conductances responsible for different types of aurora using imaging data taken over long time periods, when in situ measurements are unavailable.
NASA Astrophysics Data System (ADS)
Chazette, Patrick; Royer, Philippe
2017-08-01
A study of the intense spring pollution events occurring between 2007 and 2016 on the Paris Area is presented using ground-based and spaceborne measurements. Emphasis is placed on 2011 where data included ground-based lidar measurements. This last period corresponds with the highest regional pollution levels of the past decade. The information threshold (daily average of (mass concentration of particles with aerodynamic diameter less than 10 μm) PM10 > 50 μg m-3) was exceeded 16 times, while the alert threshold (daily average of PM10 > 80 μg m-3) was exceeded twice. The information (alert) threshold exists to protect the most fragile people (the entire population). Ground-based and spaceborne measurements demonstrate the benefit of their synergy as each is representative of specific space and time scales. The operational products of the spaceborne instruments Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and the Moderate Resolution Imaging Spectroradiometer are used. For 2011, CALIOP vertical profiles are inversed to assess the backscatter to extinction ratio, which is then successfully compared with similar results derived from the CALIOP operational products, a ground-based lidar and Sun photometers. The aerosols are identified to be polluted continental and polluted dust aerosols following the criteria used for the inversion of the CALIOP profiles. Aerosol typing is consistent between the ground-based and spaceborne lidars, demonstrating the importance of CALIOP for other years where the ground-based lidar was not in operation. The main pollution sources responsible for the spring aerosol pollution, occurring during anticyclonic meteorological conditions, are identified as coming from Western Europe: Benelux, Rhine-Ruhr area, and the Lorraine area.
The electrical ground support equipment for the ExoMars 2016 DREAMS scientific instrument
NASA Astrophysics Data System (ADS)
Molfese, C.; Schipani, P.; Marty, L.; Esposito, F.; D'Orsi, S.; Mannetta, M.; Debei, S.; Bettanini, C.; Aboudan, A.; Colombatti, G.; Mugnuolo, R.; Marchetti, E.; Pirrotta, S.
2014-08-01
This paper describes the Electrical Ground Support Equipment (EGSE) of the Dust characterization, Risk assessment, and Environment Analyser on the Martian Surface (DREAMS) scientific instrument, an autonomous surface payload package to be accommodated on the Entry, Descendent and landing Module (EDM) of the ExoMars 2016 European Space Agency (ESA) mission. DREAMS will perform several kinds of measurements, such as the solar irradiance with different optical detectors in the UVA band (315-400nm), NIR band (700-1100nm) and in "total luminosity" (200 -1100 nm). It will also measure environmental parameters such as the intensity of the electric field, temperature, pressure, humidity, speed and direction of the wind. The EGSE is built to control the instrument and manage the data acquisition before the integration of DREAMS within the Entry, Descendent and landing Module (EDM) and then to retrieve data from the EDM Central Checkout System (CCS), after the integration. Finally it will support also the data management during mission operations. The EGSE is based on commercial off-the-shelf components and runs custom software. It provides power supply and simulates the spacecraft, allowing the exchange of commands and telemetry according to the protocol defined by the spacecraft prime contractor. This paper describes the architecture of the system, as well as its functionalities to test the DREAMS instrument during all development activities before the ExoMars 2016 launch.
Seismic imaging at the cross-roads: Active, passive, exploration and solid Earth
NASA Astrophysics Data System (ADS)
Rawlinson, N.; Stephenson, R.; Carbonell, R.
2017-10-01
Science has grown from our need to understand the world around us. Seismology is no different, with earthquakes and their destructive effect on society providing the motivation to understand the Earth's seismic wavefield. The question of when seismology as a science really began is an interesting one, but it is unlikely that there will ever be a universally agreed-upon date, partly because of the incompleteness of the historical record, and partly because the definition of what constitutes science varies from person to person. For instance, one could regard 1889 as the true birth of seismology, because that is when the first distant earthquake was detected by an instrument; in this case Ernst von Rebeur-Paschwitz detected an earthquake in Japan using a pendulum in Potsdam, Germany (Ben-Menahem, 1995). However, even the birth of instrumental seismology could be contested; the so-called Zhang Heng directional ;seismoscope; (detects ground motion but not as a function of time) was invented in 132 CE (Rui and Yan-xiang, 2006), and is said to have detected a four-hundred mile distant earthquake which was not felt at the location of the instrument (Needham, 1959; Dewey and Byerly, 1969). Prior to instrumental seismology, observations of earthquakes were not uncommon; for instance, Aristotle provided a classification of earthquakes based on the nature of observed ground motion (Ben-Menahem, 1995).
Atmospheric Radiation Measurement Program facilities newsletter, January 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D.L.
2000-02-16
The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sitsmore » in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.« less
NASA Technical Reports Server (NTRS)
Gregory, Gerald L.; Beck, Sherwin M.; Bendura, Richard J.
1987-01-01
Documentation of the first of three instrument intercomparisons conducted as part of NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE-1) is given. This ground-based intercomparison was conducted during July 1983 at NASA Wallops Flight Facility. Instruments intercompared included one laser system and three grab-sample approaches for CO; two chemiluminescent systems and one laser-induced fluorescent (LIF) technique for NO; and two different LIF systems and a radiochemical tracer technique for OH. The major objectives of this intercomparison was to intercompare ambient measurements of CO, NO, and OH at a common site by using techniques of fundamentally different detection principles and to identify any major biases among the techniques prior to intercomparison on an aircraft platform. Included in the report are comprehensive discussions of workshop requirements, philosophies, and operations as well as intercomparison analyses and results. In addition, the large body of nonintercomparison data incorporated into the workshop measurements is summarized. The report is an important source document for those interested in conducting similar large and complex intercomparison tests as well as those interested in using the data base for purposes other than instrument intercomparison.
Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy
NASA Astrophysics Data System (ADS)
Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.
2017-12-01
Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.
Development of an OClO Slant Column Product for the GOME-2 Sensors
NASA Astrophysics Data System (ADS)
Richter, Andreas; Wittrock, Folkard; Burrows, John P.
2016-04-01
Stratospheric ozone depletion by catalytic reactions involving halogens is one of the most prominent examples of anthropogenic impacts on the atmosphere. In spite of the rapid and successful international action to reduce emissions of CFCs and other ozone depleting substances leading to the Montreal Protocol and its amendments, ozone depletion in polar spring is still observed in both hemispheres on a regular basis. For the coming years, slow ozone recovery is expected but individual years will still see very low ozone columns depending on meteorology and possible interactions with climate change. Monitoring of both ozone and ozone depleting substances in the stratosphere remains a priority to ensure that the predicted reduction in halogen levels and recovery of ozone columns is taking place as predicted. One way to observe stratospheric chlorine activation is by measurements of OClO which can be detected by UV/visible remote sensing from the ground and from satellite. While the link between OClO levels and chlorine activation is complicated by the fact that a) OClO is not directly involved in ozone depletion but is produced by reaction of BrO and ClO and b) is rapidly photolysed at daylight, the long existing data series from both ground-based and satellite observations makes it an interesting tracer of chlorine activation. The GOME-2 instruments on the MetOp series of satellites are nadir viewing UV/vis spectrometers having the spectral coverage and resolution needed for Differential Optical Absorption Spectroscopy retrievals of OClO. With their combined lifetime of more than 15 years, they can provide a long-term data set. However, previous attempts to create an OClO product for GOME-2 suffered from large scatter in the OClO data and time-dependent offsets. Here we present an improved OClO slant column retrieval for the two instruments GOME2-A and GOME2-B. The data is shown to be of similar quality as for earlier instruments such as SCIAMACHY, and is consistent between the instruments. The time series from the two instruments nicely reproduces the large interannual variability in chlorine activation in both hemispheres. Validation with ground-based DOAS zenith-sky observations in Ny-Ålesund shows very good agreement in NH spring. Some baseline drift remains in the GOME2-A data which could be further reduced by application of an offset correction.
Close-range photogrammetry in underground mining ground control
NASA Astrophysics Data System (ADS)
Benton, Donovan J.; Chambers, Amy J.; Raffaldi, Michael J.; Finley, Seth A.; Powers, Mark J.
2016-09-01
Monitoring underground mine deformation and support conditions has traditionally involved visual inspection and geotechnical instrumentation. Monitoring displacements with conventional instrumentation can be expensive and time-consuming, and the number of locations that can be effectively monitored is generally limited. Moreover, conventional methods typically produce vector rather than tensor descriptions of geometry changes. Tensor descriptions can provide greater insight into hazardous ground movements, particularly in recently excavated openings and in older workings that have been negatively impacted by high stress concentrations, time-dependent deformation, or corrosion of ground support elements. To address these issues, researchers with the National Institute for Occupational Safety and Health, Spokane Mining Research Division are developing and evaluating photogrammetric systems for ground control monitoring applications in underground mines. This research has demonstrated that photogrammetric systems can produce millimeter-level measurements that are comparable to conventional displacement-measuring instruments. This paper provides an overview of the beneficial use of close-range photogrammetry for the following three ground control applications in underground mines: monitoring the deformation of surface support, monitoring rock mass movement, and monitoring the corrosion of surface support. Preliminary field analyses, case studies, limitations, and best practices for these applications are also discussed.
NASA Astrophysics Data System (ADS)
Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.
This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.
NASA Technical Reports Server (NTRS)
Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha
2016-01-01
A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.
Earth-based planet finders power up
NASA Astrophysics Data System (ADS)
Clery, Daniel
2018-01-01
NASA's Kepler spacecraft has racked up thousands of exoplanet discoveries since its launch in 2009, but before Kepler, the workhorses of exoplanet identification were ground-based instruments that measure tiny stellar wobbles caused by the gravity of an orbiting planet. They are now undergoing a quiet renaissance. The new generation of these devices may be precise enough to find a true Earth twin: a planet with the same mass as ours, orbiting a sunlike star once a year. That's something Kepler—sensitive to planet size, but not mass—can't do. Over the past few months, two new third-generation instruments have opened their eyes to the sky and nearly two dozen others are either under construction or have recently begun service.
Atmospheric Fluorescence Yield
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.
Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane
2003-02-01
The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations
NASA Astrophysics Data System (ADS)
Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II
2017-12-01
E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then be validated from the in situ measurements of the fields from the ISINGLASS campaign. Upon successful synthesis and validation of the ground based data for the times where in situ data are present, the same analysis will be applied to similar long straight stable arcs during the campaign window when ground support is present to further explore the data synthesis method.
CALIBRATION OF INSTRUMENTS FOR RADIATION MEASUREMENTS FROM LOFTED VEHICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, W.O.
1962-05-01
The designs and developments accomplished by the Air Proving Ground Certer in support of Project TRUMP are considered. Project TRUMP pertains to the design and developmert of methods for measuring radiation from lofted vehicles. Several methods of simulating the space environment, for purposes of ground calibration of instruments to be lofted, are proposed. A mathematical approach, similar to that used by early Smithsonian solar constant seekers, is presented. (auth)
NASA Technical Reports Server (NTRS)
Butler, J.J.; Johnson, B. C.; Rice, J. P.; Shirley, E. L.; Barnes, R.A.
2008-01-01
There is a 5 W/sq m (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18-20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underEll the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here.
Butler, J. J; Johnson, B. C; Rice, J. P; Shirley, E. L; Barnes, R. A
2008-01-01
There is a 5 W/m2 (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18–20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underfill the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here. PMID:27096120
NASA Technical Reports Server (NTRS)
Emery, Edward; Kok, Gregory L.
2002-01-01
Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.
Airborne Remote sensing of the OH tropospheric column with an Integrated Path Differential LIDAR.
NASA Astrophysics Data System (ADS)
Hanisco, T. F.; Liang, Q.; Nicely, J. M.; Brune, W. H.; Miller, D. O.; Thames, A. B.
2017-12-01
The Hydroxyl radical, OH, is central to the photochemistry that controls tropospheric oxidation including the removal of atmospheric methane. Measurements of this important species are thus critical to testing our understanding and for constraining model results. Until now, tropospheric measurements have been limited to airborne or ground-based in situ instruments best suited to test photochemical box models. However, because of the growing recognition of the importance of the global methane abundance, we have a growing need to better quantify OH at the regional to global scales that are best sampled with airborne or space-based remote sensing instruments. To address this need, we have developed an instrument concept and have begun work on a laser transmitter for an airborne integrated path differential absorption LIDAR for the detection of OH. We will describe the instrument and present the expected performance characteristics. As a demonstration, we will use measurements from the recent ATOM-1 NASA airborne campaign to show measured OH columns can be used to constrain regional and global models.
NASA Astrophysics Data System (ADS)
Crawford, C. J.; Chickadel, C. C.; Hall, D. K.; Jennings, D. E.; Jhabvala, M. D.; Kim, E. J.; Jessica, L.; Lunsford, A.
2017-12-01
The NASA Terrestrial Hydrology Program sponsored a ground and airborne snow experiment (SnowEx) to the Grand Mesa area and Senator Beck Basin in western Colorado during February 2017. This communication summarizes efforts to develop traceable instrument calibration requirements for SnowEx Grand Mesa in support of thermal infrared (TIR) and visible-to-shortwave infrared (VSWIR) snow measurement science. Cross-calibration outcomes for TIR instruments (7-10 µm and 8-14 µm response functions) indicate that an at-sensor measurement accuracy of within 1.5 degrees Celsius was achieved across ground and airborne sensors using laboratory and field blackbody sources. A cross-calibration assessment of VSWIR spectrometers (0.35 to 2.5 µm response functions) using a National Institutes of Standard Technology (NIST) traceable source indicates an at-sensor measurement accuracy of within 5% for visible-near infrared spectral radiance (W/cm-2/sr-1/nm) and irradiance (W/m-2/nm), and within 20% for shortwave infrared measurements before a radiometric cross-calibration correction was applied. Additional validation is undertaken to assess the ground and airborne SnowEx Grand Mesa TIR and VSWIR instrument cross-calibration quality by benchmarking against on-orbit image acquisitions of the snow surface on February 14th and 15th, 2017 from Landsat Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel-2A Multi-Spectral Instrument (MSI).
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Oliver, Michael J.
2016-01-01
Preliminary results from the Heavily Instrumented ALF503R-5 Engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory will be discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This model engine, serial number LF01, was used during the inaugural icing test in the PSL facility. The reduction of thrust (rollback) events experienced by this engine in flight were replicated in the facility. Limited instrumentation was used to detect icing. Metal temperature on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect characterize ice accretion, and visualize the ice accretion in the region of interest.
Development and evaluation of a prototype in-flight instrument flight rules (IFR) procedures trainer
NASA Technical Reports Server (NTRS)
Aaron, J. B., Jr.; Morris, G. G.
1981-01-01
An in-flight instrument flight rules (IFR) procedures trainer capable of providing simulated indications of instrument flight in a typical general aviation aircraft independent of ground based navigation aids was developed. The IFR navaid related instruments and circuits from an ATC 610J table top simulator were installed in a Cessna 172 aircraft and connected to its electrical power and pitot static systems. The benefits expected from this hybridization concept include increased safety by reducing the number of general aviation aircraft conducting IFR training flights in congested terminal areas, and reduced fuel use and instruction costs by lessening the need to fly to and from navaid equipped airports and by increased efficiency of the required in-flight training. Technical feasibility was demonstrated and the operational feasibility of the concept was evaluated. Results indicated that the in-flight simulator is an effective training device for teaching IFR procedural skills.
Sentinel-2 diffuser on-ground calibration
NASA Astrophysics Data System (ADS)
Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.
2013-10-01
The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.
Human Factors Considerations for Performance-Based Navigation
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Adams, Catherine A.
2006-01-01
A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1992-01-01
This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).
Exoplanetary Science: Instrumentation, Observations, and Expectations
NASA Technical Reports Server (NTRS)
McElwain, Michael
2011-01-01
More than 700 exoplanets have been discovered and studied using indirect techniques, leading our field into the exciting new era of comparative exoplanetology. However, the direct detection of exoplanetary systems still remains at the sensitivity limits of both ground- and space-based observatories. The development of new technologies for adaptive optics systems and high contrast instruments continues to increase the ability to directly study exoplanets. The scientific impact of these developments has promising prospects for both short and long timescales. In my talk, I will discuss recent highlights from the SEEDS survey and the current instrumentation in use at the Subaru telescope. SEEDS is a high contrast imaging strategic observing program with 120 nights of time allocated at the NAOJ's flagship optical and infrared telescope. I will also describe new instrumentation I designed to improve the SEEDS capabilities and efficiency. Finally, I will briefly discuss the conceptual design of a transiting planet camera to fly as a potential second generation instrument on-board NASA's SOFIA observatory.
HARMONI instrument control electronics
NASA Astrophysics Data System (ADS)
Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan
2014-07-01
HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.
NASA Astrophysics Data System (ADS)
Pérez-López, F.; Vallejo, J. C.; Martínez, S.; Ortiz, I.; Macfarlane, A.; Osuna, P.; Gill, R.; Casale, M.
2015-09-01
BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with JAXA. The mission consists of two separate orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO), which are dedicated to the detailed study of the planet and its magnetosphere. The MPO scientific payload comprises eleven instruments packages covering different disciplines developed by several European teams. This paper describes the design and development approach of the framework required to support the operation of the distributed BepiColombo MPO instruments pipelines, developed and operated from different locations, but designed as a single entity. An architecture based on primary-redundant configuration, fully integrated into the BepiColombo Science Operations Control System (BSCS), has been selected, where some instrument pipelines will be operated from the instrument team's data processing centres, having a pipeline replica that can be run from the Science Ground Segment (SGS), while others will be executed as primary pipelines from the SGS, adopting the SGS the pipeline orchestration role.
Temperature And Bandwidth Effect in Brewer and Dobson Direct Sun Observations
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Stuebi, R.
2007-12-01
Dobson and Brewer spectrophotometer are the main instruments to monitor the ozone shield by ground based observations, and they have an important role for validation of ozone satellite data. Ground based total ozone observations from Brewer and Dobson spectrophotometers, operated at mid-latitudes stations, typically show a seasonal bias in the residual with a amplitude of a few percent. Mid-latitude total ozone trends caused by ozone depleting substances are on the order of few percents per decade. Therefore, only a maximum instrumental shift of 1% over the measured period can be tolerated for measurements to derive reliable trends. At Arosa two Dobson and three Brewers instruments have been co-located since 1992, producing a unique data set of quasi-simultaneous observations that is valuable for the study of systematic differences within the measurements. The differences can be at least partially attributed to the different sensitivities of the wavelengths used in the retrieval algorithms. This might explain different column ozone as a consequence of seasonal variability, mainly, in temperature in the lower stratosphere and in ozone slant path. The temperature dependence has been calculated using three different absorption spectra (Bass and Paur, Daumont and those used in the GOME satellite), weighing of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. The seasonal bias between Dobson and Brewer total ozone measurements is reduced from 3% to 1%, if one takes into account the temperature dependence of the Bass and Paur absorptions spectra and the ozone slant path effect. The accuracy and the resolution step of the experimental data of ozone cross sections have an important role. The ozone cross section must be convoluted for the slits functions that can vary from one instrument to an other, therefore the different spectra yield different results.
Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction
NASA Astrophysics Data System (ADS)
Lindhorst, S.; Betzler, C.
2017-12-01
The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.
Trace Gas Retrievals from the GeoTASO Aircraft Instrument
NASA Astrophysics Data System (ADS)
Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.
2015-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.
Chromium removal from ground water by Ion exchange resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiadas, P.
1994-05-06
The ground water at several monitoring wells at LLNL has been found to exceed the Surface Water Discharge Limits for Cr(VI). Ion exchange resins have been selected for its removal. A research study is underway to determine which commercial resin is preferred for LLNL`s ground water. The choice of an appropriate resin will be based on Cr(VI) exchange capacity, regeneration efficiency, and pH stabilization. A sequestering agent must also be selected to be used for the elimination of scaling at the treatment facilities. The chemistry of ion exchange resins, and instrumentation and procedures are explained and described in the followingmore » paper. Comparison of the different resins tested lead us to the selection of the most effective one to be used in the treatment facilities.« less
Hostile fire indicator threat data collection for helicopter-mounted applications
NASA Astrophysics Data System (ADS)
Naz, P.; Hengy, S.; De Mezzo, S.
2013-05-01
This paper briefly describes the set-up of the sensors and the instrumentation deployed by the French-German Research Institute of Saint-Louis (ISL) during the last NATO/ACG3/SG2 HFI Threat Data Collection (Trial PROTEUS which has been conducted during the summer 2012 in Slovenia). The main purpose of this trial was the measurements of weapon and ammunition signatures for threat warning and hostile fire indicator (HFI) system development. The used weapons vary from small caliber rifles to anti-tank rockets in ground-to-ground shooting configurations. For the ISL team, the objectives consisted in measuring the acoustic signals for detection and localization of weapon firing events. Experimental results of sound localization obtained by using ground based sensors are presented and analyzed under various conditions.
Analysis on H Spectral Shape During the Early 2012 SEPs with the PAMELA Experiment
NASA Technical Reports Server (NTRS)
Martucci, Matteo; Boezio, M.; Bravar, U.; Carbone, R.; Christian, E. R.; De Nolfo, G. A.; Merge, M.; Mocchiutti, E.; Munini, R.; Ricci, M.;
2013-01-01
The satellite-borne PAMELA experiment has been continuously collecting data since 2006.This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does its pan the energy range between the ground-based neutron monitor data and the observations of SEPs from space,but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs).In particular, PAMELA has registered many SEP events during solar cycle 24,offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign
NASA Astrophysics Data System (ADS)
Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.
NASA Astrophysics Data System (ADS)
Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Groß, Silke; Sauer, Daniel; Althausen, Dietrich; Toledano, Carlos
2014-05-01
At present one of the largest uncertainties in our understanding of global climate concerns the interaction of aerosols with clouds and atmospheric dynamics. In the climate system, mineral dust aerosol is of key importance, because mineral dust contributes to about half of the global annual particle emissions by mass. Although our understanding of the effects of mineral dust on the atmosphere and the climate improved during the past decade, many questions such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds remain open. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013 to investigate the transport and transformation of Saharan mineral dust during long-range transport from the Sahara across the Atlantic Ocean into the Caribbean. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling which involved many national and international partners. During SALTRACE, the DLR Falcon research aircraft was based at Sal, Cape Verde, between 11 and 17 June 2013, and at Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties, with sampling devices for offline particle analysis, with a nadir-looking 2-µm wind lidar, with dropsondes and instruments for standard meteorological parameters. Ground-based lidar and in-situ instruments were deployed in Cape Verde, Barbados and Puerto Rico. During SALTRACE, mineral dust from five dust outbreaks was studied by the Falcon research aircraft between Senegal, the Caribbean and Florida under different atmospheric conditions. On the eastern side of the Atlantic, dust plumes were quite homogenous and extended up to 6-7 km altitude. In contrast, the dust layers in the Caribbean showed three layers with different dust characteristics and were mainly below 4.5 km altitude. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust microphysical and optical properties was observed between 0.7 and 2.5 km altitude. The aerosol optical thickness of the dust outbreaks studied in the Barabados area ranged from 0.2 to 0.6 at 500 nm. Highlights during SALTRACE included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm Chantal in the dusty environment. In our presentation, we give an overview of the SALTRACE study and investigate the impact of dust aging processes between the Cape Verde region and the Caribbean on dust microphysical and optical properties. We show vertical profiles of dust size distributions, CCN and dust optical properties and compare our results with the ground-based in-situ, sun photometer and lidar measurements. In particular, we show the results from the trans-Atlantic Lagrangian dust study and discuss similarities and differences of the dust plumes observed over Cape Verde and in the Caribbean.
NASA Technical Reports Server (NTRS)
Brown, W. C.
1983-01-01
The conceptual design of a ground-based microwave power transmission system is described. This system is intended to supply electrical power via an air link to a high-altitude (21 km) powered platform. The platform must be equipped with the required instrumentation (RECTENNA) to convert the RF energy to dc power.
GOES Sounder Instrument - NOAA Satellite Information System (NOAASIS);
ground-based, balloon system. The Sounder has 4 sets of detectors (visible, long wave IR, medium wave IR , short wave IR). The incoming radiation passes through a set of filters before reaching the detectors concentric rings, one for each IR detector group. The outer ring contains 7 long wave filters, the middle
High-resolution ground-based spectroscopy: where and how ?
NASA Astrophysics Data System (ADS)
Pallavicini, R.
2002-07-01
An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.
Technologies of the 21st Century for ground-based Ionospheric Sounding, in Support of Space Missions
NASA Astrophysics Data System (ADS)
Wright, J. W.; Zabotin, N. A.; Bullett, T.; Livingston, R. C.
Modern digital systems technology is transforming the familiar ionosonde from its former role (to "make ionograms"), into a versatile instrument for precision measurement. The excellent Signal/Noise capability of plasma total reflection is combined with a complete characterization of ionospheric echoes in radio-frequency, time and localization, using multiple and identical digital receivers. High standards of RF emission minimize interference to other systems while yielding unprecedented resolution and stability for echo phase and amplitude. In turn, this information is rapidly digested to produce 3-dimensional local plasma density distributions, vector velocities, and irregularity spectral parameters; in most cases these are complete with error estimations. Results appear in real time, as at the prototype Web Application, http://www.ngdc.noaa.gov/stp/IONO/Dynasonde/. At this site, older hardware manages to approximate the performance standards of the new Dynasonde instrument now in development at Scion Associates, while serving to design and validate innovations in diagnostic capabilities and data access. The "all-sky" and continuous observations that characterize modern ionosonde methods offer strong ground-based support to spacecraft including C/NOFS, DMSP, COSMIC, etc., as well as to assimilative modeling programs such as GAIM.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-12-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.
Time series inversion of spectra from ground-based radiometers
NASA Astrophysics Data System (ADS)
Christensen, O. M.; Eriksson, P.
2013-02-01
Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the OSO water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mueller, J. L.; Fraser, R. S.; Biggar, S. F.; Thome, K. J.; Slater, P. N.; Holmes, A. W.; Barnes, R. A.
1995-01-01
This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes a comparison of the irradiance immersion coefficients determined for several different marine environmental radiometers (MERs). Chapter 2 presents an analysis of how light absorption by atmospheric oxygen will influence the radiance measurements in band 7 of the SeaWiFS instrument. Chapter 3 gives the results of the second ground-based solar calibration of the instrument, which was undertaken after the sensor was modified to reduce the effects of internal stray light. (The first ground-based solar calibration of SeaWiFS is described in Volume 19 in the SeaWiFS Technical Report Series.) Chapter 4 evaluates the effects of ship shadow on subsurface irradiance and radiance measurements deployed from the deck of the R/V Weatherbird 11 in the Atlantic Ocean near Bermuda. Chapter 5 illustrates the various ways in which a single data day of SeaWiFS observations can be defined, and why the spatial definition is superior to the temporal definition for operational usage.
Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs
NASA Technical Reports Server (NTRS)
Frazin, Richard A.; Vasquez, Alberto M.; Thompson, William T.; Hewett, Russell J.; Lamy, Philippe; Llebaria, Antoine; Vourlidas, Angelos; Burkepile, Joan
2012-01-01
In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earth’s heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments’ pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments.
NASA Astrophysics Data System (ADS)
Cilia, M. G.; Baker, L. M.
2015-12-01
We determine empirical relationships between instrumental peak ground motions and observed intensities for two great Chilean subduction earthquakes: the 2010 Mw8.8 Maule earthquake and the 2014 Mw8.2 Iquique earthquake. Both occurred immediately offshore on the primary plate boundary interface between the Nazca and South America plates. They are among the largest earthquakes to be instrumentally recorded; the 2010 Maule event is the second largest earthquake to produce strong motion recordings. Ground motion to intensity conversion equations (GMICEs) are used to reconstruct the distribution of shaking for historical earthquakes by using intensities estimated from contemporary accounts. Most great (M>8) earthquakes, like these, occur within subduction zones, yet few GMICEs exist for subduction earthquakes. It is unclear whether GMICEs developed for active crustal regions, such as California, can be scaled up to the large M of subduction zone events, or if new data sets must be analyzed to develop separate subduction GMICEs. To address this question, we pair instrumental peak ground motions, both acceleration (PGA) and velocity (PGV), with intensities derived from onsite surveys of earthquake damage made in the weeks after the events and internet-derived felt reports. We fit a linear predictive equation between the geometric mean of the maximum PGA or PGV of the two horizontal components and intensity, using linear least squares. We use a weighting scheme to express the uncertainty of the pairings based on a station's proximity to the nearest intensity observation. The intensity data derived from the onsite surveys is a complete, high-quality investigation of the earthquake damage. We perform the computations using both the survey data and community decimal intensities (CDI) calculated from felt reports volunteered by citizens (USGS "Did You Feel It", DYFI) and compare the results. We compare the GMICEs we developed to the most widely used GMICEs from California and central US earthquakes, and global earthquakes. Existing GMICEs consistently over-predict intensity for these two subduction events. This may be a regional difference, or a magnitude-dependent effect. Currently, however, there is not enough data from these great subduction earthquakes to prefer one interpretation over the other.
Validation and Error Characterization for the Global Precipitation Measurement
NASA Technical Reports Server (NTRS)
Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.
2003-01-01
The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration, assumption, or algorithm. The instrumentation and techniques of the Supersites will be discussed. The GPM core satellite, with its dual-frequency radar and conically scanning radiometer, will provide insight into precipitation drop-size distributions and potentially increased measurement capabilities of light rain and snowfall. The ground validation program will include instrumentation and techniques commensurate with these new measurement capabilities.
Development and application of a novel crop stress and quality instrument
NASA Astrophysics Data System (ADS)
Huang, Wengjiang; Sun, Gang; Wang, Jihua; Liu, Liangyun; Zheng, Wengang
2005-12-01
In this paper, a portable diagnostic instrument for crop quality analysis was designed and tested, which can measure the normalized difference vegetation index (PRI) and structure insensitive pigment index (NRI) of crop canopy in the field. The instrument have a valid survey area of 1m×1m when the height between instrument and the ground was fixed to 1.3 meter. The crop quality can be assessed based on their PRI and NRI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field. Such simple instruments can diagnose the plant growth status by the acquired spectral response.
14 CFR 61.65 - Instrument rating requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Aircraft Ratings and Pilot Authorizations § 61.65 Instrument rating requirements. (a) General. A person who applies for an instrument rating must: (1) Hold at least a private pilot certificate with an airplane, helicopter, or...
DOT National Transportation Integrated Search
1994-08-14
This order identifies specific criteria, not presently found in existing standards, which shall be satisfied before Instrument Flight Rules (IFR) operations can be authorized using differential global positioning systems (DGPS) Special Instrument App...
Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.
2014-12-01
While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.
NASA Astrophysics Data System (ADS)
Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.
2010-10-01
This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations.
NASA Astrophysics Data System (ADS)
Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.
2017-12-01
A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.
Forest biomass change estimated from height change in interferometric SAR height models.
Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole-Martin
2014-12-01
There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry. We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly accurate estimates of biomass changes from 2000 to 2011. For 200 m 2 plots we obtained an accuracy of 65 t/ha, which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can be applied without having accurate terrain heights and without having former in-situ biomass data, both of which are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass change map based on interferometry corresponded well to a very accurate map derived from repeated scanning with airborne laser. Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we can estimate temporal changes in biomass and carbon.
GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere
NASA Astrophysics Data System (ADS)
Floyd, M.; Grunberg, M.; Wilson, E. L.
2017-12-01
Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.
Building Bigger, Better Instruments with Dry Cryostats
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Voellmer, George
2010-01-01
The cylindrical instrument volume allowable n SOFIA is large, comprising perhaps 400 liters at 4K. However, the cryogen accommodation to enable this environment consumes roughly 20% of the volume, and worsens rues, airworthiness/safety, and handling/operation, Present-day pulse tube coolers have negligible cold volumes, provide adequate cooling powers, and reach colder temperatures than stored cryogen. In addition, they permit safer, more reliable, lower maintenance instrument operation. While the advantages of dry cryostats are well-known and commonly used in labs and ground-based astronomical facilities, SOFIA would require some charges in accommodations to permit a pulse tube cooler to operate on board, Whil e these changes are not negligible, we present our investigation into the feasibility and desirability of making SOFIA a dry cryostat-capable observatory
Science Results From The ARCADE Open-Aperture Cryogenic Balloon Payload
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2010-01-01
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the frequency spectrum of the cosmic microwave background and diffuse Galactic foregrounds at centimeter wavelengths. ARCADE greatly reduces measurement uncertainties compared to previous balloon-borne or ground-based instrument using a double-nulled design that features fully cryogenic optics with no windows between the atmosphere and the 2.7 K instrument. A four-hour flight in 2006 achieved sensitivity comparable to the COBE/FIRAS satellite measurement while providing new insights for emission ranging from spinning dust in the interstellar medium to an unexpectedly bright extragalactic radio background. I will discuss scientific results from the ARCADE program and implications of the ARCADE cold optics for millimeter and sub-mm astronomy.
Space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1979-01-01
The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.
Multisensor Retrieval of Atmospheric Properties.
NASA Astrophysics Data System (ADS)
Boba Stankov, B.
1998-09-01
A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of -0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.
BATMAN: a DMD-based multi-object spectrograph on Galileo telescope
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Ramarijaona, Harald; Moschetti, Manuele; Riva, Marco; Bon, William; Nicastro, Luciano; Molinari, Emilio; Cosentino, Rosario; Ghedina, Adriano; Gonzalez, Manuel; Di Marcantonio, Paolo; Coretti, Igor; Cirami, Roberto; Zerbi, Filippo; Valenziano, Luca
2014-07-01
Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We are developing a 2048x1080 Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The field of view (FOV) is 6.8 arcmin x 3.6 arcmin with a plate scale of 0.2 arcsec per micromirror. The wavelength range is in the visible and the spectral resolution is R=560 for 1 arcsec object (typical slit size). The two arms will have 2k x 4k CCD detectors. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images and spectra have been obtained and measured: typical spot diameters are within 1.5 detector pixels, and spectra generated by one micro-mirror slits are displayed with this optical quality over the whole visible wavelength range. Observation strategies are studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo mid-2015.
Allen, Trevor I.; Wald, David J.
2009-01-01
Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.
Penn State University ground software support for X-ray missions.
NASA Astrophysics Data System (ADS)
Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.
1995-03-01
The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.
2014-06-01
We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.
2014-10-01
We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.
NASA Technical Reports Server (NTRS)
Krotkov, Nickolay A.; Anton, Manuel; Valenzuela, Antonio; Roman, Roberto; Lyamani, Hassan; Arola, Antti; Olmo, Francisco J.; Alados-Arboledas
2012-01-01
The desert dust aerosols strongly affect propagation of solar radiation through the atmosphere, reducing surface irradiance available for photochemistry and photosynthesis. This paper evaluates effects of desert dust on surface UV erythemal irradiance (UVER), as measured by a ground-based broadband UV radiometer and retrieved from the satellite Ozone Monitoring Instrument (OMI) at Granada (southern Spain) from January 2006 to December 2010. The dust effects are characterized by the transmittance ra tio of the measured UVER to the corresponding modeled clear sky value. The transmittance has an exponential dependency on aerosol optical depth (AOD), with minimum values of approximately 0.6 (attenuation of approximately 40%). The OMI UVER algorithm does not account for UV aerosol absorption, which results in overestimation of the ground-based UVER especially during dust episodes with a mean relative difference up to 40%. The application of aerosol absorption post-correction method reduces OMI bias up to approximately 13%. The results highlight great effect of desert dust on the surface UV irradiance in regions like southern Spain, where dust intrusions from Sahara region are very frequent.
The Stanford equivalence principle program
NASA Technical Reports Server (NTRS)
Worden, Paul W., Jr.; Everitt, C. W. Francis; Bye, M.
1989-01-01
The Stanford Equivalence Principle Program (Worden, Jr. 1983) is intended to test the uniqueness of free fall to the ultimate possible accuracy. The program is being conducted in two phases: first, a ground-based version of the experiment, which should have a sensitivity to differences in rate of fall of one part in 10(exp 12); followed by an orbital experiment with a sensitivity of one part in 10(exp 17) or better. The ground-based experiment, although a sensitive equivalence principle test in its own right, is being used for technology development for the orbital experiment. A secondary goal of the experiment is a search for exotic forces. The instrument is very well suited for this search, which would be conducted mostly with the ground-based apparatus. The short range predicted for these forces means that forces originating in the Earth would not be detectable in orbit. But detection of Yukawa-type exotic forces from a nearby large satellite (such as Space Station) is feasible, and gives a very sensitive and controllable test for little more effort than the orbiting equivalence principle test itself.
Data Assimilation Into Physics-Based Models Via Kalman Filters
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Sojka, J. J.
2002-12-01
The magnetosphere-ionosphere-thermosphere (M-I-T) system is a highly dynamic, coupled, and nonlinear system that can vary significantly from hour to hour at any location. The coupling is particularly strong during geomagnetic storms and substorms, but there are appreciable time delays associated with the transfer of mass, momentum, and energy between the domains. Therefore, both global physics-based models and vast observational data sets are needed to elucidate the dynamics, energetics, and coupling in the M-I-T system. Fortunately, during the coming decade, tens of millions of measurements of the global M-I-T system could become available from a variety of in situ and remote sensing instruments. Some of the measurements will provide direct information about the state variables (densities, drift velocities, and temperatures), while others will provide indirect information, such as optical emissions and magnetic perturbations. The data sources available could include: thousands of ground-based GPS Total Electron Content (TEC) receivers; a world-wide network of ionosondes; hundreds of magnetometers both on the ground and in space; occultations from the COSMIC Satellites, numerous ground-based tomography chains; auroral images from the POLAR Satellite; images of the magnetosphere and plasmasphere from the IMAGE Satellite; SuperDARN radar measurements in the polar regions; the Living With a Star (LWS) Solar Dynamics Observatory and the LWS Radiation Belt and Ionosphere-Thermosphere Storm Probes; and the world-wide network of incoherent scatter radars. To optimize the scientific return and to provide specifications and forecasts for societal applications, the global models and data must be combined in an optimum way. A powerful way of assimilating multiple data types into a time-dependent, physics-based, numerical model is via a Kalman filter. The basic principle of this approach is to combine measurements from multiple instrument types with the information obtained from a physics-based model, taking into account the uncertainties in both the model and measurements. The advantages of this technique and the data sources that might be available will be discussed.
NASA Astrophysics Data System (ADS)
Camy-Peyret, Claude; Payan, Sébastien; Jeseck, Pascal; Té, Yao
2001-09-01
Infrared spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation bands in the mid- or near-infrared. Different methods based on quantitative spectroscopy permit tropospheric or stratospheric measurements: in situ long path absorption, atmospheric absorption/emission by Fourier transform spectroscopy with high spectral resolution instruments on the ground, airborne, balloon-borne or satellite-borne.
Regolith Volatile Recovery at Simulated Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale
2016-01-01
Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.
The solar wind-magnetosphere-ionosphere system
Lyon
2000-06-16
The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.
Midcourse Space Experiment Data Certification and Technology Transfer
NASA Technical Reports Server (NTRS)
Pollock, David B.
1997-01-01
The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectra-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time, 5 years after its 1996 launch. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University of Alabama Huntsville' contribution specifically supports the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime with a 12 month lifetime for the cryogenically cooled IR sensor. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instruments' Level 2 data base is being extended to the in-orbit environment.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Dunham, R. E., Jr.; Lee, J. T.
1985-01-01
As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Astrophysics Data System (ADS)
Sriwongsa, J.; Buntoung, S.
2017-09-01
In this study, comparisons of spectral ultraviolet irradiance at 305, 310, 324 and 380 nm at the overpass time retrieved from OMI/AURA satellite with that from ground-based measurements were performed at Nakhon Pathom (13.82°N,100.04°E), Thailand. The analyzed data period comprised from 1 January 2010 to 31 December 2015. The comparison results clearly showed the overestimation of satellite data with root mean square difference (RMSD) between 22.9 and 48.9%, and mean bias difference (MBD) between 5.3 and 39.8% for all sky conditions, and reduced to 10.6-40.5% and 0.18-34.9% for clear sky conditions. Further results showed that the differences between the two datasets depend on atmospheric aerosol loads and clouds.
NASA Technical Reports Server (NTRS)
1991-01-01
CRRES is a program to study the space environment which surrounds Earth and the effects of space radiation on modern satellite electronic systems. The satellite will carry an array of active experiments including chemical releases and a complement of sophisticated scientific instruments to accomplish these objectives. Other chemical release active experiments will be performed with suborbital rocket probes. These chemical releases will paint the magnetic and electric fields in Earthspace with clouds of glowing ions. Earthspace will be a laboratory, and the releases will be studied with an extensive network of ground-, aircraft-, and satellite-based diagnostic instruments.
Advanced Hypervelocity Aerophysics Facility Workshop
NASA Technical Reports Server (NTRS)
Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)
1989-01-01
The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.
Challenges in the global-scale quantification of permafrost changes
NASA Astrophysics Data System (ADS)
Gruber, S.
2012-12-01
Permafrost underlies much of Earth's surface and interacts with climate, land-surface phenomena and human systems. This presentation highlights heterogeneity and near-isothermal ground, two simple and well-known phenomena, as important challenges for investigating current and future states of permafrost. Heterogeneity, which can be introduced by e.g., topography, vegetation or subsurface material, is shown to be important for large parts of the global permafrost areas based on two proxies calculated from a global model of permafrost distribution. The model is based on a 1km DEM and NCEP-NCAR as well as CRU TS 2.0 air temperature data. Near-isothermal ground occurs when heat flow into a volume of ground material is accompanied by only a minute temperature change due to the dominance of latent heat transfer near 0°C. This causes our monitoring systems, which are to a large part based on temperature measurements, to lose much of their sensitivity as an instrument to measure permafrost changes. The importance of this is argued for based on (a) the long duration that soil columns are usually exposed to this effect, (b) the abundance of boreholes with temperatures close to 0°C based on the IPY-TSP data set, and (c) the global abundance and relative importance of ground near 0°C. The results presented indicated that systems and methods of gathering permafrost evidence and monitoring data need to better account for heterogeneity and isothermal ground in order to maintain long-term relevance, and that in large-area models sub-grid heterogeneity needs explicit attention.
Prospects for Precision Measurement of CO2 Column from Space
NASA Technical Reports Server (NTRS)
Heaps, William S.; Kawa, S. Randolph; Burris, John F.; Wilson, Emily L.; Georgieva, Elena; Miodek, Marty
2005-01-01
In order to address the problem of sources and sinks of CO2 measurements are needed on a global scale. Clearly a satellite is a promising approach to meeting this requirement. Unfortunately, most methods for making a CO2 measurement from space involve the whole column. Since sources and sinks at the surface represent a small perturbation to the total column one is faced with the need to measure the column with a precision better than 1%. No species has ever been measured from space at this level. We have developed over the last 3 years a small instrument based upon a Fabry-Perot interferometer that is very sensitive to atmospheric CO2 and has a high signal to noise ratio. We have tested this instrument in a ground based configuration and from aircraft platforms simulating operation from a satellite. We will present results from these tests and discuss ways that this promising new instrument could be used to improve our understanding of the global carbon budget.
NASA Astrophysics Data System (ADS)
Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Bolton, S.; Levin, S.; Adriani, A.; Gladstone, G. R.; Hansen, C. J.; Janssen, M.
2017-09-01
Well over sixty investigator/instrument investigations are actively engaged in the support of the Juno mission. These observations range from X-ray to the radio wavelengths and involve both space- and ground-based astronomical facilities. These observations enhance and expand Juno measurements by (1) providing a context that expands the area covered by often narrow spatial coverage of Juno's instruments, (2) providing a temporal context that shows how phenomena evolve over Juno's 53-day orbit period, (3) providing observations in spectral ranges not covered by Juno's instruments, and (4) monitoring the behavior of external influences to Jupiter's magnetosphere. Intercommunication between the Juno scientists and the support program is maintained by reference to a Google table that describes the observation and its current status, as well as by occasional group emails. A non-interactive version of this invitation-only site is mirrored in a public site. Several sets of these supporting observations are described at this meeting.
Calibration and filtering strategies for frequency domain electromagnetic data
Minsley, Burke J.; Smith, Bruce D.; Hammack, Richard; Sams, James I.; Veloski, Garret
2010-01-01
echniques for processing frequency-domain electromagnetic (FDEM) data that address systematic instrument errors and random noise are presented, improving the ability to invert these data for meaningful earth models that can be quantitatively interpreted. A least-squares calibration method, originally developed for airborne electromagnetic datasets, is implemented for a ground-based survey in order to address systematic instrument errors, and new insights are provided into the importance of calibration for preserving spectral relationships within the data that lead to more reliable inversions. An alternative filtering strategy based on principal component analysis, which takes advantage of the strong correlation observed in FDEM data, is introduced to help address random noise in the data without imposing somewhat arbitrary spatial smoothing.Read More: http://library.seg.org/doi/abs/10.4133/1.3445431
Enhnacing the science of the WFIRST coronagraph instrument with post-processing.
NASA Astrophysics Data System (ADS)
Pueyo, Laurent; WFIRST CGI data analysis and post-processing WG
2018-01-01
We summarize the results of a three years effort investigating how to apply to the WFIRST coronagraph instrument (CGI) modern image analysis methods, now routinely used with ground-based coronagraphs. In this post we quantify the gain associated post-processing for WFIRST-CGI observing scenarios simulated between 2013 and 2017. We also show based one simulations that spectrum of planet can be confidently retrieved using these processing tools with and Integral Field Spectrograph. We then discuss our work using CGI experimental data and quantify coronagraph post-processing testbed gains. We finally introduce stability metrics that are simple to define and measure, and place useful lower bound and upper bounds on the achievable RDI post-processing contrast gain. We show that our bounds hold in the case of the testbed data.
Instrument Drift Uncertainties and the Long-Term TOMS/SBUV Total Ozone Record
NASA Technical Reports Server (NTRS)
Solarski, Richard S.; Frith, Stacey
2005-01-01
Long-term climate records from satellites are often constructed from the measurements of a sequence of instruments launched at different times. Each of these instruments is calibrated prior to launch. After launch they are subjected to potential offsets and slow drifts in calibration. We illustrate these issues in the construction of a merged total ozone record from two TOMS and three SBUV instruments. This record extends from late 1978 through the present. The question is "How good are these records?". We have examined the uncertainty in determining the relative calibration of two instruments during an overlap period in their measurements. When comparing a TOMS instrument, such as that on Nimbus 7, with an SBUV instrument, also on Nimbus 7, we find systematic differences and random differences. We have combined these findings with estimates of individual instrument drift into a monte- carlo uncertainty propagation model. We estimate an instrument drift uncertainty of a little larger than 1 percent per decade over the 25-year history of the TOMS/SBUV measurements. We make an independent estimate of the drift uncertainty in the ground-based network of total ozone measurements and find it to be of similar, but slightly smaller magnitude. The implications of these uncertainties for trend and recovery determination will be discussed.
Using satellite image data to estimate soil moisture
NASA Astrophysics Data System (ADS)
Chuang, Chi-Hung; Yu, Hwa-Lung
2017-04-01
Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.
The Evolution of Spacelab Ultraviolet Astronomy Missions from OSS-3 through -7 to Astro-1
NASA Astrophysics Data System (ADS)
Gull, Theodore
2018-01-01
In the 1960s and 1970s, NASA was building towards a robust program in space astronomy. An evolutionary step from ground-based astronomy to space astronomy was human operation of space telescopes as astronomy in general evolved from astronomers directly at the telescope to application of computers and long distance communications to control to operate remote telescopes. Today ground-based telescopes and space observatories from cubesats to the Hubble Space Telescope and soon the James Webb Space Telescope are routinely operated remotely.In response to the Spacelab Announcement of Opportunity in the early 1980s, three ultraviolet experiments – the Hopkins Ultraviolet Telescope, the Ultraviolet Imaging Telescope and the Wisconsin Ultraviolet PhotoPolarimetry Experiment -- all instruments derived from multiple sounding rocket flights--were selected to fly as an integrated payload attached to a space shuttle. The justification for professional astronomers, both as Mission Specialists from the astronaut cadre and Payload Specialists from the instrument teams, was built to ensure key technical skills both of the science and the instruments. Bundled together as OSS-3 through -7 flights focused on Comet Halley, the experiments went through many changes and delays as a pathfinder for an anticipated series of attached astronomy payloads.By 1986, the five-flight mission had evolved into two missions, Astro-1 dedicated primarily to observe Halley’s Comet in early March 1986 and Astro-2 to fly about one year later. Due to the Challenger disaster 35 days before scheduled launch of Astro-1, the mission went through an initial cancellation and then re-scheduling once the instrument complement of Astro-1 was expanded to include Broad Band X-ray Telescope with emphasis on studying SN1987A. Ultimately Astro-1 flew in December 1990 partnered with an X-ray experiment focused on SN1987A.The nine-day mission was mostly successful despite multiple technical issues overcome by the NASA and instrument teams. Dozens of refereed papers results and five years later, Astro-2, with the three ultraviolet instruments accomplished a seventeen-day mission.
NASA Astrophysics Data System (ADS)
Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.
2012-12-01
The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer. Further analysis of the particle data will yield the ion temperature, whose validity we will quantify by comparison to sheath models.
Simulation of Ground Winds Time Series
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2008-01-01
A simulation process has been developed for generation of the longitudinal and lateral components of ground wind atmospheric turbulence as a function of mean wind speed, elevation, temporal frequency range and distance between locations. The distance between locations influences the spectral coherence between the simulated series at adjacent locations. Short distances reduce correlation only at high frequencies; as distances increase correlation is reduced over a wider range of frequencies. The choice of values for the constants d1 and d3 in the PSD model is the subject of work in progress. An improved knowledge of the values for zO as a function of wind direction at the ARES-1 launch pads is necessary for definition of d1. Results of other studies at other locations may be helpful as summarized in Fichtl's recent correspondence. Ideally, further research is needed based on measurements of ground wind turbulence with high resolution anemometers at a number of altitudes at a new KSC tower located closer to the ARES-1 launch pad .The proposed research would be based on turbulence measurements that may be influenced by surface terrain roughness that may be significantly different from roughness prior to 1970 in Fichtl's measurements. Significant improvements in instrumentation, data storage end processing will greatly enhance the capability to model ground wind profiles and ground wind turbulence.
Examining Rotational Ground Motion Induced by Tornados
NASA Astrophysics Data System (ADS)
Kessler, Elijah; Dunn, Robert
2016-03-01
Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.
Macleish, K.G.
1958-02-11
ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.
NASA Astrophysics Data System (ADS)
Randunu Pathirannehelage, Nishantha
Fourier telescopy imaging is a recently-developed imaging method that relies on active structured-light illumination of the object. Reflected/scattered light is measured by a large "light bucket" detector; processing of the detected signal yields the magnitude and phase of spatial frequency components of the object reflectance or transmittance function. An inverse Fourier transform results in the image. In 2012 a novel method, known as time-average Fourier telescopy (TAFT), was introduced by William T. Rhodes as a means for diffraction-limited imaging through ground-level atmospheric turbulence. This method, which can be applied to long horizontal-path terrestrial imaging, addresses a need that is not solved by the adaptive optics methods being used in astronomical imaging. Field-experiment verification of the TAFT concept requires instrumentation that is not available at Florida Atlantic University. The objective of this doctoral research program is thus to demonstrate, in the absence of full-scale experimentation, the feasibility of time-average Fourier telescopy through (a) the design, construction, and testing of small-scale laboratory instrumentation capable of exploring basic Fourier telescopy data-gathering operations, and (b) the development of MATLAB-based software capable of demonstrating the effect of kilometer-scale passage of laser beams through ground-level turbulence in a numerical simulation of TAFT.
Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; Lynch, Kristina A.; Fernandes, Philip A.; Aruliah, Anasuya L.; Engebretson, Mark J.; Moen, Jøran I.; Oksavik, Kjellmar; Yahnin, Alexander G.; Yeoman, Timothy K.
2017-05-01
We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements with corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.
The Global Precipitation Measurement (GPM) Project
NASA Technical Reports Server (NTRS)
Azarbarzin, Ardeshir; Carlisle, Candace
2010-01-01
The Global Precipitation Measurement (GP!v1) mission is an international cooperative effort to advance the understanding of the physics of the Earth's water and energy cycle. Accurate and timely knowledge of global precipitation is essential for understanding the weather/climate/ecological system, for improving our ability to manage freshwater resources, and for predicting high-impact natural hazard events including floods, droughts, extreme weather events, and landslides. The GPM Core Observatory will be a reference standard to uniformly calibrate data from a constellation of spacecraft with passive microwave sensors. GPM is being developed under a partnership between the United States (US) National Aeronautics and Space Administration (NASA) and the Japanese Aerospace and Exploration Agency (JAXA). NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD is developing the Core Observatory, two GPM Microwave Imager (GMI) instruments, Ground Validation System and Precipitation Processing System for the GPM mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. The second GMI instrument will be flown on a partner-provided spacecraft. Other US agencies and international partners contribute to the GPM mission by providing precipitation measurements obtained from their own spacecraft and/or providing ground-based precipitation measurements to support ground validation activities. The Precipitation Processing System will provide standard data products for the mission.
Research Aircraft - Controlling Instruments from the Ground in a Secure and Authenticated Fashion
NASA Astrophysics Data System (ADS)
Baltzer, T.; Martin, C.; Fawaz, S.; Webster, C.
2012-12-01
At NCAR's Research Aviation Facility (RAF) we're finding a number of factors motivating the desire to be able to control instruments fielded on the aircraft we operate for the NSF. Investigators are increasingly interested in fielding greater numbers of research instruments for projects, instruments are becoming increasingly complicated, and adjustment of instrument behavior to adapt to changing conditions around the aircraft and to meet project goals are just a few of these factors. Usually there are not enough seats on the aircraft to accommodate all the instrument PIs and crew members who do occupy the seats are being asked to monitor and control increasing numbers of instruments about which they have limited knowledge. We use Satellite Communications (SatCom) to allow researchers to communicate with colleagues/crew on the aircraft and so that some of the real-time data can be sent to the ground for helping to optimize the research. Historically, challenges of authentication, security and the disruptive SatCom system have motivated us to avoid providing for remote instrument control. Now we have now reached an era where remote instrument control is a necessity. This poster will discuss the approach we are implementing to provide this capability for our instrument investigators. Particular attention is paid to how we assure authentication and security so that only the instrument investigators are capable of communicating with their instruments.;
14 CFR Appendix H to Part 141 - Ground Instructor Certification Course
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground Instructor Certification Course H Appendix H to Part 141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...—Advanced. (c) Ground Instructor—Instrument. 2. Aeronautical knowledge training. (a) Each approved course...