Sample records for ground based navigation

  1. Guidance and Navigation Requirements for Unmanned Flyby and Swingby Missions to the Outer Planets. Volume 3; Low Thrust Missions, Phase B

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The guidance and navigation requirements for unmanned missions to the outer planets, assuming constant, low thrust, ion propulsion are discussed. The navigational capability of the ground based Deep Space Network is compared to the improvements in navigational capability brought about by the addition of guidance and navigation related onboard sensors. Relevant onboard sensors include: (1) the optical onboard navigation sensor, (2) the attitude reference sensors, and (3) highly sensitive accelerometers. The totally ground based, and the combination ground based and onboard sensor systems are compared by means of the estimated errors in target planet ephemeris, and the spacecraft position with respect to the planet.

  2. Conceptual Design of a Communication-Based Deep Space Navigation Network

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  3. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...

  4. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...

  5. Beacons for supporting lunar landing navigation

    NASA Astrophysics Data System (ADS)

    Theil, Stephan; Bora, Leonardo

    2017-03-01

    Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.

  6. Ground-Based Navigation and Dispersion Analysis for the Orion Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    D' Souza, Christopher; Holt, Greg; Zanetti, Renato; Wood, Brandon

    2016-01-01

    This paper presents the Orion Exploration Mission 1 Linear Covariance Analysis for the DRO mission using ground-based navigation. The Delta V statistics for each maneuver are presented. In particular, the statistics of the lunar encounters and the Entry Interface are presented.

  7. Altair Navigation During Trans-Lunar Cruise, Lunar Orbit, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Heyne, Martin; Riedel, Joseph E.

    2010-01-01

    The Altair lunar lander navigation system is driven by a set of requirements that not only specify a need to land within 100 m of a designated spot on the Moon, but also be capable of a safe return to an orbiting Orion capsule in the event of loss of Earth ground support. These requirements lead to the need for a robust and capable on-board navigation system that works in conjunction with an Earth ground navigation system that uses primarily ground-based radiometric tracking. The resulting system relies heavily on combining a multiplicity of data types including navigation state updates from the ground based navigation system, passive optical imaging from a gimbaled camera, a stable inertial measurement unit, and a capable radar altimeter and velocimeter. The focus of this paper is on navigation performance during the trans-lunar cruise, lunar orbit, and descent/landing mission phases with the goal of characterizing knowledge and delivery errors to key mission events, bound the statistical delta V costs for executing the mission, as well as the determine the landing dispersions due to navigation. This study examines the nominal performance that can be obtained using the current best estimate of the vehicle, sensor, and environment models. Performance of the system under a variety sensor outages and parametric trades is also examined.

  8. Human Factors Considerations for Performance-Based Navigation

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1991-01-01

    This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.

  10. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  11. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  12. Multiple beacons for supporting lunar landing navigation

    NASA Astrophysics Data System (ADS)

    Theil, Stephan; Bora, Leonardo

    2018-02-01

    The exploration and potential future exploitation of solar system bodies requires technologies for precise and safe landings. Current navigation systems for landing probes are relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. With a future transition from single exploration missions to more frequent first exploration and then exploitation missions, the implementation and operation of these missions changes, since it can be expected that a ground infrastructure on the target body is available in the vicinity of the landing site. In a previous paper, the impact of a single ground-based beacon on the navigation performance was investigated depending on the type of radiometric measurements and on the location of the beacon with respect to the landing site. This paper extends this investigation on options for ground-based multiple beacons supporting the on-board navigation system. It analyzes the impact on the achievable navigation accuracy. For that purpose, the paper introduces briefly the existing navigation architecture based on optical navigation and its extension with radiometric measurements. The same scenario of lunar landing as in the previous paper is simulated. The results are analyzed and discussed. They show a single beacon at a large distance along the landing trajectory and multiple beacons close to the landing site can improve the navigation performance. The results show how large the landing area can be increased where a sufficient navigation performance is achieved using the beacons.

  13. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  14. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  15. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  16. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  17. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  18. Deep-space navigation applications of improved ground-based optical astrometry

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter.

  19. Automatic Barometric Updates from Ground-Based Navigational Aids

    DTIC Science & Technology

    1990-03-12

    ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John

  20. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  1. Summary of paper: Area navigation implementation for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, Fujiko

    1987-01-01

    The development of an area navigation program and the implementation of this software on a microcomputer-based Loran-C receiver to provide high-quality, practical area navigation information for general aviation are described. This software provides range and bearing angle to a selected waypoint, cross-track error, course deviation indication (CDI), ground speed, and estimated time of arrival at the waypoint. The range/bearing calculation, using an elliptical Earth model, provides very good accuracy; the error does not exceed more than -.012 nm (range) or 0.09 degree (bearing) for a maximum range to 530 nm. The alpha-beta filtering is applied in order to reduce the random noise on Loran-C raw data and in the ground speed calculation. Due to alpha-beta filtering, the ground speed calculation has good stability for constant or low-accelerative flight. The execution time of this software is approximately 0.2 second. Flight testing was done with a prototype Loran-C front-end receiver, with the Loran-C area navigation software demonstrating the ability to provide navigation for the pilot to any point in the Loran-C coverage area in true area navigation fashion without line-of-sight and range restriction typical of VOR area navigation.

  2. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Preliminary ascent knowledge requirements

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    The preliminary version of expert knowledge for the Onboard Navigation (ONAV) Ground Based Expert Trainer Ascent system for the space shuttle is presented. Included is some brief background information along with the information describing the knowledge the system will contain. Information is given on rules and heuristics, telemetry status, landing sites, inertial measurement units, and a high speed trajectory determinator (HSTD) state vector.

  3. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  4. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  5. Space Shuttle Navigation in the GPS Era

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2001-01-01

    The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.

  6. National Airspace System : persistent problems in FAA's new navigation system highlight need for periodic reevaluation

    DOT National Transportation Integrated Search

    2000-06-01

    Currently, the Federal Aviation Administration (FAA) relies principally on a ground-based navigation system that uses various types of equipment to assist pilots in navigating their assigned routes and to provide them with guidance for landing their ...

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.

  8. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  9. Experiment T002: Manual navigation sightings

    NASA Technical Reports Server (NTRS)

    Smith, D.

    1971-01-01

    Navigation-type measurements through the window of the stabilized Gemini 12 spacecraft by the use of a hand-held sextant are reported. The major objectives were as follows: (1) to evaluate the ability of the crewmen to make accurate navigational measurements by the use of simple instruments in an authentic space flight environment; (2) to evaluate the operational feasibility of the measurement techniques by the use of the pressure suit with the helmet off and with the helmet on and the visor closed; (3) to evaluate operational problems associated with the spacecraft environment; and (4) to validate ground based simulation techniques by comparison of the inflight results with base line data obtained by the pilot by the use of simulators and celestial targets from ground based observatories.

  10. Autonomous Navigation for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    2012-01-01

    Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; networks consolidation program; and network sustaining are described.

  12. The First Result of Relative Positioning and Velocity Estimation Based on CAPS

    PubMed Central

    Zhao, Jiaojiao; Ge, Jian; Wang, Liang; Wang, Ningbo; Zhou, Kai; Yuan, Hong

    2018-01-01

    The Chinese Area Positioning System (CAPS) is a new positioning system developed by the Chinese Academy of Sciences based on the communication satellites in geosynchronous orbit. The CAPS has been regarded as a pilot system to test the new technology for the design, construction and update of the BeiDou Navigation Satellite System (BDS). The system structure of CAPS, including the space, ground control station and user segments, is almost like the traditional Global Navigation Satellite Systems (GNSSs), but with the clock on the ground, the navigation signal in C waveband, and different principles of operation. The major difference is that the CAPS navigation signal is first generated at the ground control station, before being transmitted to the satellite in orbit and finally forwarded by the communication satellite transponder to the user. This design moves the clock from the satellite in orbit to the ground. The clock error can therefore be easily controlled and mitigated to improve the positioning accuracy. This paper will present the performance of CAPS-based relative positioning and velocity estimation as assessed in Beijing, China. The numerical results show that, (1) the accuracies of relative positioning, using only code measurements, are 1.25 and 1.8 m in the horizontal and vertical components, respectively; (2) meanwhile, they are about 2.83 and 3.15 cm in static mode and 6.31 and 10.78 cm in kinematic mode, respectively, when using the carrier-phase measurements with ambiguities fixed; and (3) the accuracy of the velocity estimation is about 0.04 and 0.11 m/s in static and kinematic modes, respectively. These results indicate the potential application of CAPS for high-precision positioning and velocity estimation and the availability of a new navigation mode based on communication satellites. PMID:29757204

  13. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.

  14. An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro

    This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    Deep Space Network and Systems topics addressed include: tracking and ground-base navigation; communications, spacecraft-ground; station control and system technology; capabilities for existing projects; and network upgrading and sustaining.

  16. 33 CFR 109.05 - Anchorage grounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Anchorage grounds. 109.05 Section 109.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.05 Anchorage grounds. (a) Section 7 of the Rivers and Harbors Act of March 4, 1915 (33 U.S.C. 471...

  17. 33 CFR 109.05 - Anchorage grounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Anchorage grounds. 109.05 Section 109.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.05 Anchorage grounds. (a) Section 7 of the Rivers and Harbors Act of March 4, 1915 (33 U.S.C. 471...

  18. 33 CFR 109.05 - Anchorage grounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Anchorage grounds. 109.05 Section 109.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.05 Anchorage grounds. (a) Section 7 of the Rivers and Harbors Act of March 4, 1915 (33 U.S.C. 471...

  19. 33 CFR 109.05 - Anchorage grounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Anchorage grounds. 109.05 Section 109.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.05 Anchorage grounds. (a) Section 7 of the Rivers and Harbors Act of March 4, 1915 (33 U.S.C. 471...

  20. 33 CFR 109.05 - Anchorage grounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Anchorage grounds. 109.05 Section 109.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.05 Anchorage grounds. (a) Section 7 of the Rivers and Harbors Act of March 4, 1915 (33 U.S.C. 471...

  1. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    Topics addressed include: tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for existing projects; network upgrade and sustaining; mission interface and support; and Ka-band capabilities.

  3. Applicability of Deep-Learning Technology for Relative Object-Based Navigation

    DTIC Science & Technology

    2017-09-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing...possible selections for navigating an unmanned ground vehicle (UGV) is through real- time visual odometry. To navigate in such an environment, the UGV...UGV) is through real- time visual odometry. To navigate in such an environment, the UGV needs to be able to detect, identify, and relate the static

  4. Multi-Spacecraft Autonomous Positioning System

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2015-01-01

    As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.

  5. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.

  6. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor.

    PubMed

    Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas

    2017-09-28

    Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.

  7. Adaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor

    PubMed Central

    Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas

    2017-01-01

    Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically. PMID:28956839

  8. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA).

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Developments in space communications, radio navigation, radio science, ground-base radio astronomy, reports on the Deep Space Network (DSN) and its Ground Communications Facility (GCF), and applications of radio interferometry at microwave frequencies are discussed.

  10. Autonomous Navigation With Ground Station One-Way Forward-Link Doppler Data

    NASA Technical Reports Server (NTRS)

    Horstkamp, G. M.; Niklewski, D. J.; Gramling, C. J.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has spent several years developing operational onboard navigation systems (ONS's) to provide real time autonomous, highly accurate navigation products for spacecraft using NASA's space and ground communication systems. The highly successful Tracking and Data Relay Satellite (TDRSS) ONS (TONS) experiment on the Explorer Platform/Extreme Ultraviolet (EP/EUV) spacecraft, launched on June 7, 1992, flight demonstrated the ONS for high accuracy navigation using TDRSS forward link communication services. In late 1994, a similar ONS experiment was performed using EP/EUV flight hardware (the ultrastable oscillator and Doppler extractor card in one of the TDRSS transponders) and ground system software to demonstrate the feasibility of using an ONS with ground station forward link communication services. This paper provides a detailed evaluation of ground station-based ONS performance of data collected over a 20 day period. The ground station ONS (GONS) experiment results are used to project the expected performance of an operational system. The GONS processes Doppler data derived from scheduled ground station forward link services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination. Analysis of the GONS experiment performance indicates that real time onboard position accuracies of better than 125 meters (1 sigma) are achievable with two or more 5-minute contacts per day for the EP/EUV 525 kilometer altitude, 28.5 degree inclination orbit. GONS accuracy is shown to be a function of the fidelity of the onboard propagation model, the frequency/geometry of the tracking contacts, and the quality of the tracking measurements. GONS provides a viable option for using autonomous navigation to reduce operational costs for upcoming spacecraft missions with moderate position accuracy requirements.

  11. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: ONAV entry knowledge requirements specification update

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    A revised version of expert knowledge for the onboard navigation (ONAV) entry system is given. Included is some brief background information together with information describing the knowledge that the system does contain.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.

  13. Experiment D009: Simple navigation

    NASA Technical Reports Server (NTRS)

    Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III

    1971-01-01

    Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.

  14. Conceptual development of a ground-based radio-beacon navigation system for use on the surface of the moon

    NASA Technical Reports Server (NTRS)

    Beggins, Andrew J.; Canney, Lora M.; Dolezal, Anna Belle

    1988-01-01

    A spread-spectrum radio-beacon navigation system for use on the lunar surface is described. The subjects discussed are principle of operation and specifications to include power requirements, operating frequencies, weight, size, and range.

  15. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  16. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  17. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  18. 33 CFR 110.142 - Nantucket Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Nantucket Harbor, Mass. 110.142 Section 110.142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.142 Nantucket Harbor, Mass. (a) The anchorage grounds. In the...

  19. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-02-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  20. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  1. Space-based Scintillation Nowcasting with the Communications/Navigation Outage Forecast System

    NASA Astrophysics Data System (ADS)

    Groves, K.; Starks, M.; Beach, T.; Basu, S.

    2008-12-01

    The Air Force Research Laboratory's Communication/Navigation Outage Forecast System (C/NOFS) fuses ground- and space-based data in a near real-time physics-based model aimed at forecasting and nowcasting equatorial scintillations and their impacts on satellite communications and navigation. A key component of the system is the C/NOFS satellite that was launched into a low-inclination (13°) elliptical orbit (400 km x 850 km) in April 2008. The satellite contains six sensors to measure space environment parameters including electron density and temperature, ion density and drift, electric and magnetic fields and neutral wind, as well as a tri-band radio beacon transmitting at 150 MHz, 400 MHz and 1067 MHz. Scintillation nowcasts are derived from measuring the one-dimensional in situ electron density fluctuations and subsequently modeling the propagation environment for satellite-to-ground radio links. The modeling process requires a number of simplifying assumptions regarding the three-dimensional structure of the ionosphere and the results are readily validated by comparisons with ground-based measurements of the satellite's tri-band beacon signals. In mid-September 2008 a campaign to perform detailed analyses of space-based scintillation nowcasts with numerous ground observations was conducted in the vicinity of Kwajalein Atoll, Marshall Islands. To maximize the collection of ground-truth data, the ALTAIR radar was employed to obtain detailed information on the spatial structure of the ionosphere during the campaign and to aid the improvement of space-based nowcasting algorithms. A comparison of these results will be presented; it appears that detailed information on the electron density structure is a limiting factor in modeling the scintillation environment from in situ observations.

  2. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  3. Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

    PubMed

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  4. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    PubMed Central

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations. PMID:22736999

  5. Automatic construction of aerial corridor for navigation of unmanned aircraft systems in class G airspace using LiDAR

    NASA Astrophysics Data System (ADS)

    Feng, Dengchao; Yuan, Xiaohui

    2016-05-01

    According to the airspace classification by the Federal Aviation Agency, Class G airspace is the airspace at 1,200 feet or less to the ground, which is beneath class E airspace and between classes B-D cylinders around towered airstrips. However, the lack of flight supervision mechanism in this airspace, unmanned aerial system (UAS) missions pose many safety issues. Collision avoidance and route planning for UASs in class G airspace is critical for broad deployment of UASs in commercial and security applications. Yet, unlike road network, there is no stationary marker in airspace to identify corridors that are available and safe for UASs to navigate. In this paper, we present an automatic LiDAR-based airspace corridor construction method for navigation in class G airspace and a method for route planning to minimize collision and intrusion. Our idea is to combine LiDAR to automatically identify ground objects that pose navigation restrictions such as airports and high-rises. Digital terrain model (DTM) is derived from LiDAR point cloud to provide an altitude-based class G airspace description. Following the FAA Aeronautical Information Manual, the ground objects that define the restricted airspaces are used together with digital surface model derived from LiDAR data to construct the aerial corridor for navigation of UASs. Preliminary results demonstrate competitive performance and the construction of aerial corridor can be automated with much great efficiency.

  6. 14 CFR 121.420 - Flight navigators: Initial and transition ground training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ground training. 121.420 Section 121.420 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.420 Flight navigators: Initial and transition ground training. (a) Initial and transition ground.... (7) Any other instruction as necessary to ensure his competence. (b) Initial ground training for...

  7. 14 CFR 121.420 - Flight navigators: Initial and transition ground training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ground training. 121.420 Section 121.420 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.420 Flight navigators: Initial and transition ground training. (a) Initial and transition ground.... (7) Any other instruction as necessary to ensure his competence. (b) Initial ground training for...

  8. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  9. 33 CFR 110.150 - Block Island Sound, N.Y.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Block Island Sound, N.Y. 110.150 Section 110.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.150 Block Island Sound, N.Y. (a) The anchorage ground. A 3/4...

  10. 33 CFR 110.150 - Block Island Sound, N.Y.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Block Island Sound, N.Y. 110.150 Section 110.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.150 Block Island Sound, N.Y. (a) The anchorage ground. A 3/4...

  11. 33 CFR 110.150 - Block Island Sound, N.Y.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Block Island Sound, N.Y. 110.150 Section 110.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.150 Block Island Sound, N.Y. (a) The anchorage ground. A 3/4...

  12. The deep space network, volume 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported in the DSN for Nov. and Dec. 1973. Research is described for the following areas: functions and facilities, mission support for flight projects, tracking and ground-based navigation, spacecraft/ground communication, network control and operations technology, and deep space stations.

  13. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  14. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  15. How Female Professionals Successfully Process and Negotiate Involuntary Job Loss at Faith-Based Colleges and Universities: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Cunningham, Debra Jayne

    2015-01-01

    Using a constructivist grounded theory approach (Charmaz, 2006), this qualitative study examined how eight female senior-level professionals employed at faith-based colleges and universities processed and navigated the experience of involuntary job loss and successfully transitioned to another position. The theoretical framework of psychological…

  16. Navigation Concepts for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Long, Anne; Leung, Dominic; Kelbel, David; Beckman, Mark; Grambling, Cheryl

    2003-01-01

    This paper evaluates the performance that can be achieved using candidate ground and onboard navigation approaches for operation of the James Webb Space Telescope, which will be in an orbit about the Sun-Earth L2 libration point. The ground navigation approach processes standard range and Doppler measurements from the Deep Space Network The onboard navigation approach processes celestial object measurements and/or ground-to- spacecraft Doppler measurements to autonomously estimate the spacecraft s position and velocity and Doppler reference frequency. Particular attention is given to assessing the absolute position and velocity accuracy that can be achieved in the presence of the frequent spacecraft reorientations and momentum unloads planned for this mission. The ground navigation approach provides stable navigation solutions using a tracking schedule of one 30-minute contact per day. The onboard navigation approach that uses only optical quality celestial object measurements provides stable autonomous navigation solutions. This study indicates that unmodeled changes in the solar radiation pressure cross-sectional area and modeled momentum unload velocity changes are the major error sources. These errors can be mitigated by modeling these changes, by estimating corrections to compensate for the changes, or by including acceleration measurements.

  17. Navigation Operations with Prototype Components of an Automated Real-Time Spacecraft Navigation System

    NASA Technical Reports Server (NTRS)

    Cangahuala, L.; Drain, T. R.

    1999-01-01

    At present, ground navigation support for interplanetary spacecraft requires human intervention for data pre-processing, filtering, and post-processing activities; these actions must be repeated each time a new batch of data is collected by the ground data system.

  18. Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    DTIC Science & Technology

    2006-06-01

    Machine Guidance Using LocataNet In this pilot study [3], conducted at the BlueScope Steel warehouse in Port Kembla, Australia, the LocataNet system...Study at BlueScope Steel”. Proceedings of the 2004 Annual Meeting of the Institute of Navigation. Dayton, OH, June 2004. 4. Barnes, Joel, Chris

  19. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    NASA Technical Reports Server (NTRS)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  20. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  1. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  2. Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Scheeres, D. J.; Thurman, S. W.

    1994-01-01

    The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.

  3. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  4. How Female Professionals Successfully Process and Negotiate Involuntary Job Loss at Faith-Based Colleges and Universities: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Cunningham, Debra Jayne

    2013-01-01

    Using a constructivist grounded theory approach (Charmaz, 2006), this qualitative study examined how 8 female senior-level professionals employed at faith-based colleges and universities processed and navigated the experience of involuntary job loss and successfully transitioned to another position. The purpose of this research was to contribute…

  5. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  6. Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Cotton, William B.

    2011-01-01

    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.

  7. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    PubMed

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  8. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes

    PubMed Central

    Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300

  9. Navigation and Hazard Avoidance for High-Speed Unmanned Ground Vehicles in Rough Terrain

    DTIC Science & Technology

    2008-07-07

    Potential Field Navigation of High Speed Vehicles on Rough Terrain,” Robotica , Vol. 25, No. 4, pp 409-424, July 2007 Udengaard, M., and Iagnemma, K...Navigation of Unmanned Ground Vehicles on Uneven Terrain using Potential Fields," to appear in Robotica , 2007 [16] Spenko, M., Kuroda, Y., Dubowsky, S

  10. New vision system and navigation algorithm for an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Tann, Hokchhay; Shakya, Bicky; Merchen, Alex C.; Williams, Benjamin C.; Khanal, Abhishek; Zhao, Jiajia; Ahlgren, David J.

    2013-12-01

    Improvements were made to the intelligence algorithms of an autonomously operating ground vehicle, Q, which competed in the 2013 Intelligent Ground Vehicle Competition (IGVC). The IGVC required the vehicle to first navigate between two white lines on a grassy obstacle course, then pass through eight GPS waypoints, and pass through a final obstacle field. Modifications to Q included a new vision system with a more effective image processing algorithm for white line extraction. The path-planning algorithm adopted the vision system, creating smoother, more reliable navigation. With these improvements, Q successfully completed the basic autonomous navigation challenge, finishing tenth out of over 50 teams.

  11. Simulation analysis of a microcomputer-based, low-cost Omega navigation system

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.; Salter, R. J., Jr.

    1976-01-01

    The current status of research on a proposed micro-computer-based, low-cost Omega Navigation System (ONS) is described. The design approach emphasizes minimum hardware, maximum software, and the use of a low-cost, commercially-available microcomputer. Currently under investigation is the implementation of a low-cost navigation processor and its interface with an omega sensor to complete the hardware-based ONS. Sensor processor functions are simulated to determine how many of the sensor processor functions can be handled by innovative software. An input data base of live Omega ground and flight test data was created. The Omega sensor and microcomputer interface modules used to collect the data are functionally described. Automatic synchronization to the Omega transmission pattern is described as an example of the algorithms developed using this data base.

  12. Onboard utilization of ground control points for image correction. Volume 3: Ground control point simulation software design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software developed to simulate the ground control point navigation system is described. The Ground Control Point Simulation Program (GCPSIM) is designed as an analysis tool to predict the performance of the navigation system. The system consists of two star trackers, a global positioning system receiver, a gyro package, and a landmark tracker.

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported in space communications, radio navigation, radio science, and ground-based radio and radar astronomy.

  14. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he encounters...

  15. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he encounters...

  16. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he encounters...

  17. 33 CFR 110.146 - Long Island Sound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Long Island Sound. 110.146... ANCHORAGE REGULATIONS Anchorage Grounds § 110.146 Long Island Sound. (a) Anchorage grounds. (1) Bridgeport Anchorage Ground. That portion of Long Island Sound enclosed by a line connecting the following points...

  18. 33 CFR 110.146 - Long Island Sound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Long Island Sound. 110.146... ANCHORAGE REGULATIONS Anchorage Grounds § 110.146 Long Island Sound. (a) Anchorage grounds. (1) Bridgeport Anchorage Ground. That portion of Long Island Sound enclosed by a line connecting the following points...

  19. 33 CFR 110.146 - Long Island Sound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Long Island Sound. 110.146... ANCHORAGE REGULATIONS Anchorage Grounds § 110.146 Long Island Sound. (a) Anchorage grounds. (1) Bridgeport Anchorage Ground. That portion of Long Island Sound enclosed by a line connecting the following points...

  20. 33 CFR 110.146 - Long Island Sound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Long Island Sound. 110.146... ANCHORAGE REGULATIONS Anchorage Grounds § 110.146 Long Island Sound. (a) Anchorage grounds. (1) Bridgeport Anchorage Ground. That portion of Long Island Sound enclosed by a line connecting the following points...

  1. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  2. Polarized skylight navigation.

    PubMed

    Hamaoui, Moshe

    2017-01-20

    Vehicle state estimation is an essential prerequisite for navigation. The present approach seeks to use skylight polarization to facilitate state estimation under autonomous unconstrained flight conditions. Atmospheric scattering polarizes incident sunlight such that solar position is mathematically encoded in the resulting skylight polarization pattern. Indeed, several species of insects are able to sense skylight polarization and are believed to navigate polarimetrically. Sun-finding methodologies for polarized skylight navigation (PSN) have been proposed in the literature but typically rely on calibration updates to account for changing atmospheric conditions and/or are limited to 2D operation. To address this technology gap, a gradient-based PSN solution is developed based upon the Rayleigh sky model. The solution is validated in simulation, and effects of measurement error and changing atmospheric conditions are investigated. Finally, an experimental effort is described wherein polarimetric imagery is collected, ground-truth is established through independent imager-attitude measurement, the gradient-based PSN solution is applied, and results are analyzed.

  3. An on-line monitoring system for navigation equipment

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  4. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  5. A celestial assisted INS initialization method for lunar explorers.

    PubMed

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  6. A Celestial Assisted INS Initialization Method for Lunar Explorers

    PubMed Central

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface. PMID:22163998

  7. PointCom: semi-autonomous UGV control with intuitive interface

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  8. Patient Navigators: Agents of Creating Community-Nested Patient-Centered Medical Homes for Cancer Care

    PubMed Central

    Simon, Melissa A.; Samaras, Athena T.; Nonzee, Narissa J.; Hajjar, Nadia; Frankovich, Carmi; Bularzik, Charito; Murphy, Kara; Endress, Richard; Tom, Laura S.; Dong, XinQi

    2016-01-01

    Patient navigation is an internationally utilized, culturally grounded, and multifaceted strategy to optimize patients’ interface with the health-care team and system. The DuPage County Patient Navigation Collaborative (DPNC) is a campus–community partnership designed to improve access to care among uninsured breast and cervical cancer patients in DuPage County, IL. Importantly, the DPNC connects community-based social service delivery with the patient-centered medical home to achieve a community-nested patient-centered medical home model for cancer care. While the patient navigator experience has been qualitatively documented, the literature pertaining to patient navigation has largely focused on efficacy outcomes and program cost effectiveness. Here, we uniquely highlight stories of women enrolled in the DPNC, told from the perspective of patient navigators, to shed light on the myriad barriers that DPNC patients faced and document the strategies DPNC patient navigators implemented. PMID:27594792

  9. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    NASA Technical Reports Server (NTRS)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.

  10. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  11. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  12. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  13. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  14. PlanetQuest: Engaging the Public and Students in NASA's Search for New Worlds

    NASA Astrophysics Data System (ADS)

    Greene, M.; Danner, R.

    2003-12-01

    NASA's Navigator Program consists of four ground-breaking missions that span a twenty-five year time horizon. Two space-based and two ground-based missions will contribute to the overall goal of detecting and characterizing Earth-like planets around stars other than the Sun. The Keck Interferometer began its science mission in 2002, and the Large Binocular Telescope Interferometer will become operational in 2006, while the two space-based missions, the Space Interferometry Mission and the Terrestrial Planet Finder, will launch in 2009 and 2015 respectively. The science operations and analysis of all missions will be supported by the Michelson Science Center, operated by the California Institute of Technology. Navigator Public Engagement initiatives (which can also be found under the heading of "PlanetQuest") span the areas of formal education, informal education, and general public outreach. Two initiatives-improving astronomy instruction at community colleges, and the "Night Sky Network: Engaging Amateur Astronomy Clubs"-stand out as significant new investments for Navigator, and may serve as platforms for the participation of more NASA missions in the future. Other programs involve creating activities for "girls in science," continuing to support minority university research experiences, and developing museum exhibits, a planetarium show and other visualizations. The core values of all Navigator E/PO initiatives include involving scientists and engineers, creating effective partnerships, reaching underserved populations, and evaluating and measuring program impact.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Activities in space communication, radio navigation, radio science, and ground-based astronomy are reported. Advanced systems for the Deep Space Network and its Ground-Communications Facility are discussed including station control and system technology. Network sustaining as well as data and information systems are covered. Studies of geodynamics, investigations of the microwave spectrum, and the search for extraterrestrial intelligence are reported.

  16. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Archival reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA) are presented. In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations.

  17. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).

  18. GPS: Actions Needed to Address Ground System Development Problems and User Equipment Production Readiness

    DTIC Science & Technology

    2015-09-01

    Executive Action 43 Agency Comments and Our Evaluation 44 Appendix I Objectives , Scope, and Methodology 47 Appendix II Comments from the Department of...findings and conclusions based on our audit objectives . We believe that the evidence obtained provides a reasonable basis for our findings and...conclusions based on our audit objectives . GPS is a global positioning, navigation, and timing system consisting of space, ground control, and user equipment

  19. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  20. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  1. The Telecommunications and Data Aquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Tracking and ground-based navigation techniques are discussed in relation to DSN advanced systems. Network data processing and productivity are studied to improve management planning methods. Project activities for upgrading DSN facilities are presented.

  2. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision

    PubMed Central

    Reina, Giulio; Milella, Annalisa

    2012-01-01

    Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.

  3. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.

    PubMed

    Chen, Jessie Y C

    2010-08-01

    A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.

  4. A New Baseline for the Inertial Navigation Strapdown Simulator Program. Volume 2. Analytical Development

    DTIC Science & Technology

    1978-07-01

    l)ground volocity-es ft/S VEL(2) ground velocity-north Wt/ VEL (3)’ ground velocity-up ft/S 4 .ASM) ft/s2 ABM (2 specific force a f,/.2 hB(3) -ft/S 2...Inertial Navigation Sytem Standardized Software _______________ Reej-977, C.S. Draper Lab., Softwre Deelopent, Fitnal Technical Report,, Cambridge

  5. Arms Control and Missile Defense: Explaining Success and Failure in U.S.-Russian Cooperation

    DTIC Science & Technology

    2013-09-01

    Security Service) GLCM Ground-Launched Cruise Missile GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema , or Global Navigation Satellite System...threat to us will only grow. We will be pulled into another round of the arms race that is beyond our capabilities . . . because we are already at...Global’naya Navigatsionnaya Sputnikovaya Sistema , or Global Navigation Satellite System).”111 Based on his review of events in Georgia, Vladimir

  6. A novel interplanetary optical navigation algorithm based on Earth-Moon group photos by Chang'e-5T1 probe

    NASA Astrophysics Data System (ADS)

    Bu, Yanlong; Zhang, Qiang; Ding, Chibiao; Tang, Geshi; Wang, Hang; Qiu, Rujin; Liang, Libo; Yin, Hejun

    2017-02-01

    This paper presents an interplanetary optical navigation algorithm based on two spherical celestial bodies. The remarkable characteristic of the method is that key navigation parameters can be estimated depending entirely on known sizes and ephemerides of two celestial bodies, especially positioning is realized through a single image and does not rely on traditional terrestrial radio tracking any more. Actual Earth-Moon group photos captured by China's Chang'e-5T1 probe were used to verify the effectiveness of the algorithm. From 430,000 km away from the Earth, the camera pointing accuracy reaches 0.01° (one sigma) and the inertial positioning error is less than 200 km, respectively; meanwhile, the cost of the ground control and human resources are greatly reduced. The algorithm is flexible, easy to implement, and can provide reference to interplanetary autonomous navigation in the solar system.

  7. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  8. 14 CFR 95.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of a VOR station used to define the route. (f) The MRA applies to the operation of an aircraft over an intersection defined by ground-based navigation aids. The MRA is the lowest altitude at which the...

  9. 14 CFR 95.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of a VOR station used to define the route. (f) The MRA applies to the operation of an aircraft over an intersection defined by ground-based navigation aids. The MRA is the lowest altitude at which the...

  10. 14 CFR 95.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of a VOR station used to define the route. (f) The MRA applies to the operation of an aircraft over an intersection defined by ground-based navigation aids. The MRA is the lowest altitude at which the...

  11. 14 CFR 95.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of a VOR station used to define the route. (f) The MRA applies to the operation of an aircraft over an intersection defined by ground-based navigation aids. The MRA is the lowest altitude at which the...

  12. 14 CFR 95.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of a VOR station used to define the route. (f) The MRA applies to the operation of an aircraft over an intersection defined by ground-based navigation aids. The MRA is the lowest altitude at which the...

  13. The telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1980-01-01

    Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.

  14. Monitoring real-time navigation processes using the automated reasoning tool (ART)

    NASA Technical Reports Server (NTRS)

    Maletz, M. C.; Culbert, C. J.

    1985-01-01

    An expert system is described for monitoring and controlling navigation processes in real-time. The ART-based system features data-driven computation, accommodation of synchronous and asynchronous data, temporal modeling for individual time intervals and chains of time intervals, and hypothetical reasoning capabilities that consider alternative interpretations of the state of navigation processes. The concept is illustrated in terms of the NAVEX system for monitoring and controlling the high speed ground navigation console for Mission Control at Johnson Space Center. The reasoning processes are outlined, including techniques used to consider alternative data interpretations. Installation of the system has permitted using a single operator, instead of three, to monitor the ascent and entry phases of a Shuttle mission.

  15. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  16. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  17. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  18. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  19. 33 CFR 110.231 - Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Passenger Vessel Anchorage. 110.231 Section 110.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.231 Ketchikan Harbor, Alaska, Large Passenger Vessel Anchorage. (a) The anchorage grounds. Ketchikan Harbor, Alaska, Large...

  20. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  1. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.

    PubMed

    Hinas, Ajmal; Roberts, Jonathan M; Gonzalez, Felipe

    2017-12-17

    In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  2. Space weather effects on ground based technology

    NASA Astrophysics Data System (ADS)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  3. 78 FR 42723 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... System (ESIS). If the common ground fails both navigations systems could fail simultaneously, which could... Display (PFD) and the Electronic Standby Instrument System (ESIS). If the common ground fails both navigations systems could fail simultaneously, which could result in loss of control. We are issuing this...

  4. The deep space network, volume 13

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.

  5. The Telecommunications and Data Acquisition Report. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported. Also included is TDA funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  6. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  7. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  8. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  9. 78 FR 58874 - Airworthiness Directives; PILATUS AIRCRAFT LTD. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... System (ESIS). If the common ground fails both navigations systems could fail simultaneously, which could... flight display (PFD) and the Electronic Standby Instrument System (ESIS). If the common ground fails both navigation systems could fail simultaneously. We are issuing this AD to prevent simultaneous failure of both...

  10. Navigating: A Grounded Theory Study of How School Administrators Prepare to Lead

    ERIC Educational Resources Information Center

    Kern, Bruce E.

    2010-01-01

    The "theory of navigating" describes and explains the basic social process that school administrators experience as they perform and embrace their leadership roles. Grounded theory was used to analyze interviews with superintendents, assistant superintendents, principals, and vice principals, special facility leaders, and program administrators.…

  11. 33 CFR 110.130 - Bar Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bar Harbor, Maine. 110.130... ANCHORAGE REGULATIONS Anchorage Grounds § 110.130 Bar Harbor, Maine. (a) Anchorage grounds. (1) Anchorage “A” is that portion of Frenchman Bay, Bar Harbor, ME enclosed by a rhumb line connecting the following...

  12. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or an...

  13. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or an...

  14. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or an...

  15. 33 CFR 110.206 - Detroit River, Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Detroit River, Michigan. 110.206... ANCHORAGE REGULATIONS Anchorage Grounds § 110.206 Detroit River, Michigan. (a) The Anchorage grounds. Belle Isle Anchorage. The area is in the Detroit River immediately downstream from Belle Isle on the U.S...

  16. "Going beyond the call of doula": a grounded theory analysis of the diverse roles community-based doulas play in the lives of pregnant and parenting adolescent mothers.

    PubMed

    Gentry, Quinn M; Nolte, Kim M; Gonzalez, Ainka; Pearson, Magan; Ivey, Symeon

    2010-01-01

    This article presents some of the most salient qualitative results from a larger program evaluation of pregnant and parenting adolescents who participated in a community-based doula program. Using grounded theory analysis, seven problem-solving strategies emerged that doulas apply in helping pregnant and parenting adolescents navigate multiple social and health settings that often serve as barriers to positive maternal- and child-health outcomes. The ethnographic findings of this study suggest that the doulas provide valuable assistance to pregnant and parenting adolescents by addressing social-psychological issues and socio-economic disparities. "Diverse role-taking" results in doulas helping pregnant adolescents navigate more successfully through fragmented social and health service systems that are less supportive of low-income adolescents, who are often perceived to be draining scarce resources. The findings have implications for the roles of community-based doulas assigned to low-income adolescents of color seeking to overcome obstacles and attain better educational and economic opportunities.

  17. 33 CFR 110.138 - Boston Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Boston Harbor, Mass. 110.138 Section 110.138 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.138 Boston Harbor, Mass. (a) The anchorage grounds—(1) Bird...

  18. National Airspace System : status of wide area augmentation system project

    DOT National Transportation Integrated Search

    1998-04-30

    As a key element of its overall program for modernizing the National Airspace : System, the Federal Aviation Administration (FAA) is planning a transition from : ground- to satellite-based navigation by using satellite signals generated by : the Depa...

  19. Can low-cost VOR and Omega receivers suffice for RNAV - A new computer-based navigation technique

    NASA Technical Reports Server (NTRS)

    Hollaar, L. A.

    1978-01-01

    It is shown that although RNAV is particularly valuable for the personal transportation segment of general aviation, it has not gained complete acceptance. This is due, in part, to its high cost and the necessary special-handling air traffic control. VOR/DME RNAV calculations are ideally suited for analog computers, and the use of microprocessor technology has been suggested for reducing RNAV costs. Three navigation systems, VOR, Omega, and DR, are compared for common navigational difficulties, such as station geometry, siting errors, ground disturbances, and terminal area coverage. The Kalman filtering technique is described with reference to the disadvantages when using a system including standard microprocessors. An integrated navigation system, using input data from various low-cost sensor systems, is presented and current simulation studies are noted.

  20. Comparison of Orion Vision Navigation Sensor Performance from STS-134 and the Space Operations Simulation Center

    NASA Technical Reports Server (NTRS)

    Christian, John A.; Patangan, Mogi; Hinkel, Heather; Chevray, Keiko; Brazzel, Jack

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is a new spacecraft being designed by NASA and Lockheed Martin for future crewed exploration missions. The Vision Navigation Sensor is a Flash LIDAR that will be the primary relative navigation sensor for this vehicle. To obtain a better understanding of this sensor's performance, the Orion relative navigation team has performed both flight tests and ground tests. This paper summarizes and compares the performance results from the STS-134 flight test, called the Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective, and the ground tests at the Space Operations Simulation Center.

  1. Small Body Landing Accuracy Using In-Situ Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Olson, Corwin; Cangahuala, L. Alberto

    2011-01-01

    Spacecraft landings on small bodies (asteroids and comets) can require target accuracies too stringent to be met using ground-based navigation alone, especially if specific landing site requirements must be met for safety or to meet science goals. In-situ optical observations coupled with onboard navigation processing can meet the tighter accuracy requirements to enable such missions. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This paper presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Sensitivity of the results to variations in spacecraft maneuver execution error, attitude control accuracy and unmodeled forces are examined. Cases for two bodies, a small asteroid and on a mid-size comet, are presented.

  2. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  3. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at Waimea...

  4. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  5. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  6. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at Waimea...

  7. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  8. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  9. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at Waimea...

  10. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  11. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  12. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  13. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at Santa...

  14. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at Santa...

  15. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a) Explosives...

  16. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a) Explosives...

  17. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  18. 33 CFR 110.133 - Kennebec River in vicinity of Bath, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kennebec River in vicinity of Bath, Maine. 110.133 Section 110.133 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.133 Kennebec River in vicinity...

  19. 33 CFR 110.133 - Kennebec River in vicinity of Bath, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Kennebec River in vicinity of Bath, Maine. 110.133 Section 110.133 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.133 Kennebec River in vicinity...

  20. 33 CFR 110.133 - Kennebec River in vicinity of Bath, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Kennebec River in vicinity of Bath, Maine. 110.133 Section 110.133 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.133 Kennebec River in vicinity...

  1. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  2. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  3. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  4. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  5. 33 CFR 110.255 - Ponce Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ponce Harbor, P.R. 110.255 Section 110.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.255 Ponce Harbor, P.R. (a) Small-craft anchorage. On the...

  6. 33 CFR 110.208 - Buffalo Harbor, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y. 110.208 Section 110.208 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.208 Buffalo Harbor, N.Y. (a) The anchorage grounds—(1...

  7. 33 CFR 110.194 - Mobile Bay, Ala., at entrance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mobile Bay, Ala., at entrance. 110.194 Section 110.194 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.194 Mobile Bay, Ala., at entrance. (a) The anchorage...

  8. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Anchorages, Captain of the Port... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.230 Anchorages, Captain of the Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American Datum...

  9. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Anchorages, Captain of the Port... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.230 Anchorages, Captain of the Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American Datum...

  10. 33 CFR 110.166 - York River, Va., naval anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.166 York River, Va., naval anchorage. (a) The anchorage grounds. Between Yorktown and the Naval Mine Depot, beginning at latitude 37°15′34″, longitude 76... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false York River, Va., naval anchorage...

  11. 33 CFR 110.166 - York River, Va., naval anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.166 York River, Va., naval anchorage. (a) The anchorage grounds. Between Yorktown and the Naval Mine Depot, beginning at latitude 37°15′34″, longitude 76... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false York River, Va., naval anchorage...

  12. 33 CFR 110.166 - York River, Va., naval anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.166 York River, Va., naval anchorage. (a) The anchorage grounds. Between Yorktown and the Naval Mine Depot, beginning at latitude 37°15′34″, longitude 76... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false York River, Va., naval anchorage...

  13. 33 CFR 110.166 - York River, Va., naval anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.166 York River, Va., naval anchorage. (a) The anchorage grounds. Between Yorktown and the Naval Mine Depot, beginning at latitude 37°15′34″, longitude 76... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false York River, Va., naval anchorage...

  14. 33 CFR 110.166 - York River, Va., naval anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.166 York River, Va., naval anchorage. (a) The anchorage grounds. Between Yorktown and the Naval Mine Depot, beginning at latitude 37°15′34″, longitude 76... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false York River, Va., naval anchorage...

  15. 33 CFR 110.156 - Randall Bay, Freeport, Long Island, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, N.Y. 110.156 Section 110.156 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.156 Randall Bay, Freeport, Long Island, N.Y. (a) The anchorage grounds. Southward of a line 312 feet south of and parallel to the south side...

  16. 33 CFR 110.156 - Randall Bay, Freeport, Long Island, N.Y.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Island, N.Y. 110.156 Section 110.156 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.156 Randall Bay, Freeport, Long Island, N.Y. (a) The anchorage grounds. Southward of a line 312 feet south of and parallel to the south side...

  17. 33 CFR 110.156 - Randall Bay, Freeport, Long Island, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, N.Y. 110.156 Section 110.156 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.156 Randall Bay, Freeport, Long Island, N.Y. (a) The anchorage grounds. Southward of a line 312 feet south of and parallel to the south side...

  18. 33 CFR 110.148 - Johnsons River at Bridgeport, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Johnsons River at Bridgeport... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.148 Johnsons River at Bridgeport, Conn. (a) The anchorage grounds. In Johnsons River, beginning at a point “A” latitude 41°10′12.3...

  19. Systematic methods for knowledge acquisition and expert system development

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data Acquisition are provided. Space communications, radio navigation, radio science, and ground based radio and radio astronomy are discussed. Deep Space Network projects are also discussed.

  1. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  2. Digital avionics: A cornerstone of aviation

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1990-01-01

    Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.

  3. The View from the Trees: Nocturnal Bull Ants, Myrmecia midas, Use the Surrounding Panorama While Descending from Trees

    PubMed Central

    Freas, Cody A.; Wystrach, Antione; Narendra, Ajay; Cheng, Ken

    2018-01-01

    Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees. PMID:29422880

  4. The View from the Trees: Nocturnal Bull Ants, Myrmecia midas, Use the Surrounding Panorama While Descending from Trees.

    PubMed

    Freas, Cody A; Wystrach, Antione; Narendra, Ajay; Cheng, Ken

    2018-01-01

    Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas , whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.

  5. Navigation and guidance requirements for commercial VTOL operations

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.; Howell, J. D.

    1974-01-01

    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.

  6. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  7. ATS-1/ATS-3 dual satellite navigation study

    NASA Technical Reports Server (NTRS)

    Hoover, W. M.

    1971-01-01

    A study which illustrated the feasibility of implementing an on-board aircraft navigation system based on using the ATS-1 and ATS-3 satellites, the modified Omega Position Location Equipment (OPLE) Control Center, and a suitable aircraft terminal was conducted. The report provides: (1) a consideration of the problems of satellite navigation and an objective definition of the optimum system under the constraints of its specified components, (2) a description of the necessary modifications to the OPLE Control Center, the design of an aircraft terminal, and the design of ground reference terminals, and (3) an outline of an experiment plan and an estimate of the cost to be expected in conducting the program.

  8. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic Ocean...

  9. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic Ocean...

  10. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic Ocean...

  11. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic Ocean...

  12. 33 CFR 110.182 - Atlantic Ocean off Fort George Inlet, near Mayport, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean off Fort George Inlet, near Mayport, Fla. 110.182 Section 110.182 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.182 Atlantic Ocean...

  13. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  14. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  15. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  16. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  17. 33 CFR 110.240 - San Juan Harbor, P.R.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 San Juan Harbor, P.R. (a) The anchorage grounds—(1...

  18. 33 CFR 110.179 - Skidaway River, Isle of Hope, Ga.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Skidaway River, Isle of Hope, Ga. 110.179 Section 110.179 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.179 Skidaway River, Isle of Hope, Ga. (a) The...

  19. 33 CFR 110.229 - Straits of Juan de Fuca, Wash.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Straits of Juan de Fuca, Wash. 110.229 Section 110.229 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.229 Straits of Juan de Fuca, Wash. (a) Anchorage...

  20. 33 CFR 110.229 - Straits of Juan de Fuca, Wash.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Straits of Juan de Fuca, Wash. 110.229 Section 110.229 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.229 Straits of Juan de Fuca, Wash. (a) Anchorage...

  1. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao

    2017-09-01

    Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

  2. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02.

    PubMed

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-09-16

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  3. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  4. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  5. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  6. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  7. 33 CFR 110.189a - Key West Harbor, Key West, Fla., naval explosives anchorage area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Key West Harbor, Key West, Fla..., DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.189a Key West Harbor, Key West, Fla., naval explosives anchorage area. (a) The anchorage ground. A circular area with its...

  8. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  9. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  10. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  11. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  12. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  13. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Developments in programs in telecommunication and data acquisition in space communications, radio navigation, radio science, and ground based radio astronomy are reported. Activities of the deep space network (DSN) and its associated ground communication facility (GCF) in planning, supporting research and technology, implementation, and in operations are outlined. The publication of reports on the application of radio interferometry at microwave frequencies for geodynamic measurements are presented. Implementation and operation for searching the microwave spectrum is reported.

  15. Paradoxes of the comparative analysis of ground-based and satellite geodetic measurements in recent geodynamics

    NASA Astrophysics Data System (ADS)

    Kuzmin, Yu. O.

    2017-11-01

    The comparative analysis of the Earth's surface deformations measured by ground-based and satellite geodetic methods on the regional and zonal measurement scales is carried out. The displacement velocities and strain rates are compared in the active regions such as Turkmenian-Iranian zone of interaction of the Arabian and Eurasian lithospheric plates and the Kamchatka segment of the subduction of the Pacific Plate beneath the Okotsk Plate. The comparison yields a paradoxical result. With the qualitatively identical kinematics of the motion, the quantitative characteristics of the displacement velocities and rates of strain revealed by the observations using the global navigational satellite system (GNSS) are by 1-2 orders of magnitude higher than those estimated by the more accurate methods of ground-based geodesy. For resolving the revealed paradoxes, it is required to set up special studies on the joint analysis of ground-based and satellite geodetic data from the combined observation sites.

  16. 78 FR 19277 - Navigation Safety Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Safety Advisory Council; Meeting AGENCY: United States Coast Guard, DHS. ACTION: Notice of Federal Advisory Committee meeting: correction. SUMMARY: The Navigation Safety Advisory Council (NAVSAC) will meet..., groundings; Inland and International Rules of the Road; navigation regulations and equipment; routing...

  17. Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation

    NASA Technical Reports Server (NTRS)

    Rankin, A. L.; Matthies, L. H.; Huertas, A.

    2004-01-01

    Detecting water hazards is a significant challenge to unmanned ground vehicle autonomous off-road navigation. This paper focuses on detecting the presence of water during the daytime using color cameras. A multi-cue approach is taken. Evidence of the presence of water is generated from color, texture, and the detection of reflections in stereo range data. A rule base for fusing water cues was developed by evaluating detection results from an extensive archive of data collection imagery containing water. This software has been implemented into a run-time passive perception subsystem and tested thus far under Linux on a Pentium based processor.

  18. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: ONAV entry expert system code

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    A complete listing is given of the expert system rules for the Entry phase of the Onboard Navigation (ONAV) Ground Based Expert Trainer System for aircraft/space shuttle navigation. These source listings appear in the same format as utilized and required by the C Language Integrated Production System (CLIPS) expert system shell which is the basis for the ONAV entry system. A schematic overview is given of how the rules are organized. These groups result from a partitioning of the rules according to the overall function which a given set of rules performs. This partitioning was established and maintained according to that established in the knowledge specification document. In addition, four other groups of rules are specified. The four groups (control flow, operator inputs, output management, and data tables) perform functions that affect all the other functional rule groups. As the name implies, control flow ensures that the rule groups are executed in the order required for proper operation; operator input rules control the introduction into the CLIPS fact base of various kinds of data required by the expert system; output management rules control the updating of the ONAV expert system user display screen during execution of the system; and data tables are static information utilized by many different rule sets gathered in one convenient place.

  19. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  20. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  1. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  2. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  3. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...

  4. For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Cotton, William B.

    2011-01-01

    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.

  5. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    PubMed Central

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  6. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  7. The deep space network, volume 15

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.

  8. Fast and reliable obstacle detection and segmentation for cross-country navigation

    NASA Technical Reports Server (NTRS)

    Talukder, A.; Manduchi, R.; Rankin, A.; Matthies, L.

    2002-01-01

    Obstacle detection is one of the main components of the control system of autonomous vehicles. In the case of indoor/urban navigation, obstacles are typically defined as surface points that are higher than the ground plane. This characterization, however, cannot be used in cross-country and unstructured environments, where the notion of ground plane is often not meaningful.

  9. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    PubMed Central

    Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo

    2015-01-01

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977

  10. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    PubMed

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  11. 14 CFR Appendix A to Part 141 - Recreational Pilot Certification Course

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... navigation using pilotage with the aid of a magnetic compass; (e) Recognition of critical weather situations...) Ground reference maneuvers; (vii) Navigation; (viii) Slow flight and stalls; (ix) Emergency operations..., and go-arounds; (vi) Performance maneuvers; (vii) Navigation; (viii) Emergency operations; and (ix...

  12. “Going Beyond the Call of Doula”: A Grounded Theory Analysis of the Diverse Roles Community-Based Doulas Play in the Lives of Pregnant and Parenting Adolescent Mothers

    PubMed Central

    Gentry, Quinn M.; Nolte, Kim M.; Gonzalez, Ainka; Pearson, Magan; Ivey, Symeon

    2010-01-01

    This article presents some of the most salient qualitative results from a larger program evaluation of pregnant and parenting adolescents who participated in a community-based doula program. Using grounded theory analysis, seven problem-solving strategies emerged that doulas apply in helping pregnant and parenting adolescents navigate multiple social and health settings that often serve as barriers to positive maternal- and child-health outcomes. The ethnographic findings of this study suggest that the doulas provide valuable assistance to pregnant and parenting adolescents by addressing social-psychological issues and socio-economic disparities. “Diverse role-taking” results in doulas helping pregnant adolescents navigate more successfully through fragmented social and health service systems that are less supportive of low-income adolescents, who are often perceived to be draining scarce resources. The findings have implications for the roles of community-based doulas assigned to low-income adolescents of color seeking to overcome obstacles and attain better educational and economic opportunities. PMID:21886419

  13. Applications of different design methodologies in navigation systems and development at JPL

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.

    1990-01-01

    The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.

  14. Evaluation of Design Assurance Regulations for Safety of Space Navigation Services

    NASA Astrophysics Data System (ADS)

    Ratti, B.; Sarno, M.; De Andreis, C.

    2005-12-01

    The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.

  15. Improved obstacle avoidance and navigation for an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Giri, Binod; Cho, Hyunsu; Williams, Benjamin C.; Tann, Hokchhay; Shakya, Bicky; Bharam, Vishal; Ahlgren, David J.

    2015-01-01

    This paper presents improvements made to the intelligence algorithms employed on Q, an autonomous ground vehicle, for the 2014 Intelligent Ground Vehicle Competition (IGVC). In 2012, the IGVC committee combined the formerly separate autonomous and navigation challenges into a single AUT-NAV challenge. In this new challenge, the vehicle is required to navigate through a grassy obstacle course and stay within the course boundaries (a lane of two white painted lines) that guide it toward a given GPS waypoint. Once the vehicle reaches this waypoint, it enters an open course where it is required to navigate to another GPS waypoint while avoiding obstacles. After reaching the final waypoint, the vehicle is required to traverse another obstacle course before completing the run. Q uses modular parallel software architecture in which image processing, navigation, and sensor control algorithms run concurrently. A tuned navigation algorithm allows Q to smoothly maneuver through obstacle fields. For the 2014 competition, most revisions occurred in the vision system, which detects white lines and informs the navigation component. Barrel obstacles of various colors presented a new challenge for image processing: the previous color plane extraction algorithm would not suffice. To overcome this difficulty, laser range sensor data were overlaid on visual data. Q also participates in the Joint Architecture for Unmanned Systems (JAUS) challenge at IGVC. For 2014, significant updates were implemented: the JAUS component accepted a greater variety of messages and showed better compliance to the JAUS technical standard. With these improvements, Q secured second place in the JAUS competition.

  16. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    NASA Astrophysics Data System (ADS)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  17. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 3.05-1(b). (b) Definitions. Terms used in this section have the same meaning as those found in 33... District. (a) Regulated navigation area. All navigable waters of the United States, as that term is used in... tug of sufficient capability to promptly push or tow the tank barge away from danger of grounding or...

  18. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 3.05-1(b). (b) Definitions. Terms used in this section have the same meaning as those found in 33... District. (a) Regulated navigation area. All navigable waters of the United States, as that term is used in... tug of sufficient capability to promptly push or tow the tank barge away from danger of grounding or...

  19. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation.

    PubMed

    Kim, Euiho; Seo, Jiwon

    2017-09-22

    In the Federal Aviation Administration's (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0-77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  20. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    PubMed Central

    Kim, Euiho

    2017-01-01

    In the Federal Aviation Administration’s (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment. PMID:28937615

  1. An Independent Orbit Determination Simulation for the OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Getzandanner, Kenneth; Rowlands, David; Mazarico, Erwan; Antreasian, Peter; Jackman, Coralie; Moreau, Michael

    2016-01-01

    After arriving at the near-Earth asteroid (101955) Bennu in late 2018, the OSIRIS-REx spacecraft will execute a series of observation campaigns and orbit phases to accurately characterize Bennu and ultimately collect a sample of pristine regolith from its surface. While in the vicinity of Bennu, the OSIRIS-REx navigation team will rely on a combination of ground-based radiometric tracking data and optical navigation (OpNav) images to generate and deliver precision orbit determination products. Long before arrival at Bennu, the navigation team is performing multiple orbit determination simulations and thread tests to verify navigation performance and ensure interfaces between multiple software suites function properly. In this paper, we will summarize the results of an independent orbit determination simulation of the Orbit B phase of the mission performed to test the interface between the OpNav image processing and orbit determination software packages.

  2. Air Navigation. Aerospace Education II.

    ERIC Educational Resources Information Center

    Cox, Rodney V., Jr.

    This revised textbook, published for the Air Force ROTC program, contains a discussion of basic and essential understandings about air navigation. The first part of the book describes maps, air navigation charts, flight planning, and pilotage preflight. Basic differences between ground maps and air charts are described and the methods of…

  3. Use of NTRIP for optimizing the decoding algorithm for real-time data streams.

    PubMed

    He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua

    2014-10-10

    As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.

  4. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  5. Landmarks and Time-Pressure in Virtual Navigation: Towards Designing Gender-Neutral Virtual Environments

    NASA Astrophysics Data System (ADS)

    Gavrielidou, Elena; Lamers, Maarten H.

    Male superiority in the field of spatial navigation has been reported upon, numerous times. Although there have been indications that men and women handle environmental navigation in different ways, with men preferring Euclidian navigation and women using mostly topographic techniques, we have found no reported links between those differences and the shortcomings of women on ground of ineffective environment design.

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Reports on developments in space communications, radio navigation, radio science, and ground-based radio astronomy are presented. Activities of the Deep Space Network (DSN) are reported in the areas of planning, supporting research and technology, implementation and operations. The application of radio interferometry at microwave frequencies for geodynamic measurements is also discussed.

  7. Landmark-Based Navigation of an Unmanned Ground Vehicle (UGV)

    DTIC Science & Technology

    2009-03-01

    against large measurement errors. 20090710280 RELEASE LIMITATION Approved for public release 4p fv^-Jo-osiit? Published by Weapons Systems Division...achieved as numerous low cost gyroscopes in the market meet this requirement. 24 DSTO-TR-2260 3.5.4 Sensitivity to Vehicle Speed In this subsection

  8. Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Kukitschek, Daniel; Crain, Timothy

    2008-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    This publication reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation and in operations. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. This publication also reports on implementation and operations for searching the microwave spectrum.

  11. 33 CFR 110.150 - Block Island Sound, N.Y.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Block Island Sound, N.Y. 110.150... ANCHORAGE REGULATIONS Anchorage Grounds § 110.150 Block Island Sound, N.Y. (a) The anchorage ground. A 3/4... following coordinates: latitude 41°06′12″ N., longitude 72°00′05″ W., latitude 41°07′40″ N., longitude 72°01...

  12. 33 CFR 110.150 - Block Island Sound, N.Y.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Block Island Sound, N.Y. 110.150... ANCHORAGE REGULATIONS Anchorage Grounds § 110.150 Block Island Sound, N.Y. (a) The anchorage ground. A 3/4... following coordinates: latitude 41°06′12″ N., longitude 72°00′05″ W., latitude 41°07′40″ N., longitude 72°01...

  13. Using the Deep Space Atomic Clock for Navigation and Science.

    PubMed

    Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L

    2018-06-01

    Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.

  14. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  15. Horizon Based Orientation Estimation for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.

    2016-01-01

    Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.

  16. 14 CFR 121.420 - Flight navigators: Initial and transition ground training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... indicating instruments or systems. (5) Compass limitations and methods of compensation. (6) Cruise control..., cruise, and descent speeds. (2) Each item of navigational equipment installed including appropriate radio...

  17. 14 CFR 121.420 - Flight navigators: Initial and transition ground training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... limitations and methods of compensation. (6) Cruise control charts and data, including fuel consumption rates... type airplane: (1) Limitations on climb, cruise, and descent speeds. (2) Each item of navigational...

  18. 14 CFR 121.420 - Flight navigators: Initial and transition ground training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... limitations and methods of compensation. (6) Cruise control charts and data, including fuel consumption rates... type airplane: (1) Limitations on climb, cruise, and descent speeds. (2) Each item of navigational...

  19. UGV navigation in wireless sensor and actuator network environments

    NASA Astrophysics Data System (ADS)

    Zhang, Guyu; Li, Jianfeng; Duncan, Christian A.; Kanno, Jinko; Selmic, Rastko R.

    2012-06-01

    We consider a navigation problem in a distributed, self-organized and coordinate-free Wireless Sensor and Ac- tuator Network (WSAN). We rst present navigation algorithms that are veried using simulation results. Con- sidering more than one destination and multiple mobile Unmanned Ground Vehicles (UGVs), we introduce a distributed solution to the Multi-UGV, Multi-Destination navigation problem. The objective of the solution to this problem is to eciently allocate UGVs to dierent destinations and carry out navigation in the network en- vironment that minimizes total travel distance. The main contribution of this paper is to develop a solution that does not attempt to localize either the UGVs or the sensor and actuator nodes. Other than some connectivity as- sumptions about the communication graph, we consider that no prior information about the WSAN is available. The solution presented here is distributed, and the UGV navigation is solely based on feedback from neigh- boring sensor and actuator nodes. One special case discussed in the paper, the Single-UGV, Multi-Destination navigation problem, is essentially equivalent to the well-known and dicult Traveling Salesman Problem (TSP). Simulation results are presented that illustrate the navigation distance traveled through the network. We also introduce an experimental testbed for the realization of coordinate-free and localization-free UGV navigation. We use the Cricket platform as the sensor and actuator network and a Pioneer 3-DX robot as the UGV. The experiments illustrate the UGV navigation in a coordinate-free WSAN environment where the UGV successfully arrives at the assigned destinations.

  20. Computer-aided system for detecting runway incursions

    NASA Astrophysics Data System (ADS)

    Sridhar, Banavar; Chatterji, Gano B.

    1994-07-01

    A synthetic vision system for enhancing the pilot's ability to navigate and control the aircraft on the ground is described. The system uses the onboard airport database and images acquired by external sensors. Additional navigation information needed by the system is provided by the Inertial Navigation System and the Global Positioning System. The various functions of the system, such as image enhancement, map generation, obstacle detection, collision avoidance, guidance, etc., are identified. The available technologies, some of which were developed at NASA, that are applicable to the aircraft ground navigation problem are noted. Example images of a truck crossing the runway while the aircraft flies close to the runway centerline are described. These images are from a sequence of images acquired during one of the several flight experiments conducted by NASA to acquire data to be used for the development and verification of the synthetic vision concepts. These experiments provide a realistic database including video and infrared images, motion states from the Inertial Navigation System and the Global Positioning System, and camera parameters.

  1. Archival Automatic Identification System (AIS) Data for Navigation Project Performance Evaluation

    DTIC Science & Technology

    2015-08-01

    presently provided through the USCG online request form, also via the Navigation Center website. As these requests are processed manually by USCG personnel...this process typically takes anywhere from several days to weeks depending on the number of pending requests, and care should be taken to ensure...identify the time- stamped latitude and longitude , heading, course over ground, speed over ground, and rate of turn of the vessels broadcasting the

  2. Navigation of military and space unmanned ground vehicles in unstructured terrains

    NASA Technical Reports Server (NTRS)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  3. Global Horizons (Briefing Charts)

    DTIC Science & Technology

    2013-08-01

    to Austere/Remote Bases • Precision airdrop (L) • Affordable wind profiling system (L) • Air to ground communications (L) • Efficient high power... bird www.youtube.com/watch?v=2QqTcQ1BxIs  Autonomy: Swarm of Nano quadrotors – fly in formation, navigate (1 min 42s) www.youtube.com/watch?v

  4. The Telecommunications and Data Acquisition Progress Report 42-123

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    The progress of research programs monitored by the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate (TMOD) are presented in this quarterly document. Areas monitored include space communications, radio navigation, radio science, ground-based radio and radar astronomy, information systems, and all other communication and research technology activities for the Deep Space Network (DSN).

  5. The deep space network, volume 12

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress in the development of the DSN is reported along with TDA research and technology, network engineering, hardware, and software implementation. Included are descriptions of the DSN function and facilities, Helios mission support, Mariner Venus/Mercury 1973 mission support, Viking mission support, tracking and ground-based navigation, communications, network control and data processing, and deep space stations.

  6. "No One Taught Me the Steps": Latinos' Experiences Applying to Graduate School

    ERIC Educational Resources Information Center

    Ramirez, Elvia

    2011-01-01

    Based on in-depth qualitative interviews, this study examined Latinos' graduate school choice process. Grounded in intersectionality and social and cultural capital theories, this study examined barriers and support structures encountered by Latinos as they navigate through the graduate school application phase. Findings reveal that lack of access…

  7. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  8. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  9. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...

  10. 76 FR 35742 - Superfund Site, New Bedford Harbor, New Bedford, MA: Anchorage Ground and Regulated Navigation Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Coast Guard is also establishing a regulated navigation area (RNA) prohibiting activities that disturb the seabed around the site. The RNA would not affect transit or navigation of the area. DATES: This rule is effective July 20, 2011. ADDRESSES: Comments and material received from the public, as well as...

  11. Ground track maintenance for BeiDou IGSO satellites subject to tesseral resonances and the luni-solar perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Li; Jiang, Chao; Hu, Min

    2017-02-01

    Eight inclined geosynchronous satellite orbit (IGSO) satellites in the Chinese BeiDou Navigation Satellite System (BDS) have been put in orbit until now. IGSO is a special class of geosynchronous circular orbit, with the inclination not equal to zero. It can provide high elevation angle coverage to high-latitude areas. The geography longitude of the ground track cross node is the main factor to affect the ground coverage areas of the IGSO satellites. In order to ensure the navigation performance of the IGSO satellites, the maintenance control of the ground track cross node is required. Considering the tesseral resonances and the luni-solar perturbations, a control approach is proposed to maintain the ground track for the long-term evolution. The drifts of the ground track cross node of the IGSO satellites are analyzed, which is formulated as a function of the bias of the orbit elements and time. Based on the derived function, a method by offsetting the semi-major axis is put forward to maintain the longitude of the ground track cross node, and the offset calculation equation is presented as well. Moreover, the orbit inclination is adjusted to maintain the location angle intervals between each two IGSO satellites. Finally, the precision of the offset calculation equation is analyzed to achieve the operational deployment. Simulation results show that the semi-major axis offset method is effective, and its calculation equation is accurate. The proposed approach has been applied to the maintenance control of BeiDou IGSO satellites.

  12. Online Aerial Terrain Mapping for Ground Robot Navigation

    PubMed Central

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-01-01

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496

  13. Online Aerial Terrain Mapping for Ground Robot Navigation.

    PubMed

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-02-20

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  14. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  15. Heads up and camera down: a vision-based tracking modality for mobile mixed reality.

    PubMed

    DiVerdi, Stephen; Höllerer, Tobias

    2008-01-01

    Anywhere Augmentation pursues the goal of lowering the initial investment of time and money necessary to participate in mixed reality work, bridging the gap between researchers in the field and regular computer users. Our paper contributes to this goal by introducing the GroundCam, a cheap tracking modality with no significant setup necessary. By itself, the GroundCam provides high frequency, high resolution relative position information similar to an inertial navigation system, but with significantly less drift. We present the design and implementation of the GroundCam, analyze the impact of several design and run-time factors on tracking accuracy, and consider the implications of extending our GroundCam to different hardware configurations. Motivated by the performance analysis, we developed a hybrid tracker that couples the GroundCam with a wide area tracking modality via a complementary Kalman filter, resulting in a powerful base for indoor and outdoor mobile mixed reality work. To conclude, the performance of the hybrid tracker and its utility within mixed reality applications is discussed.

  16. Crew aiding and automation: A system concept for terminal area operations, and guidelines for automation design

    NASA Technical Reports Server (NTRS)

    Dwyer, John P.

    1994-01-01

    This research and development program comprised two efforts: the development of guidelines for the design of automated systems, with particular emphasis on automation design that takes advantage of contextual information, and the concept-level design of a crew aiding system, the Terminal Area Navigation Decision Aiding Mediator (TANDAM). This concept outlines a system capable of organizing navigation and communication information and assisting the crew in executing the operations required in descent and approach. In service of this endeavor, problem definition activities were conducted that identified terminal area navigation and operational familiarization exercises addressing the terminal area navigation problem. Both airborne and ground-based (ATC) elements of aircraft control were extensively researched. The TANDAM system concept was then specified, and the crew interface and associated systems described. Additionally, three descent and approach scenarios were devised in order to illustrate the principal functions of the TANDAM system concept in relation to the crew, the aircraft, and ATC. A plan for the evaluation of the TANDAM system was established. The guidelines were developed based on reviews of relevant literature, and on experience gained in the design effort.

  17. Navigation for Rendezvous and Orbit Missions to Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Helfrich, C. E.; Scheeres, D. J.; Williams, B. G.; Bollman, W. E.; Davis, R. P.; Synnott, S. P.; Yeomans, D. K.

    1994-01-01

    All previous spacecraft encounters with small solar-system bodies, such as asteroids and comets, have been flybys (e.g. Galileo's flybys of the asteroids Gaspra and Ida). Several future projects plan to build on the flyby experience and progress to the next level with rendezvous and orbit missions to small bodies. This presents several new issues and challenges for navigation which have never been considered before. This paper addresses these challenges by characterizing the different phases of a small body rendezvous and by describing the navigation requirements and goals of each phase. Prior to the encounter with the small body, improvements to its ephemeris and initial estimates of its physical parameters, e.g. size, shape, mass, rotation rate, rotation pole, and possibly outgassing, are made as accurately as ground-based measurements allow. This characterization can take place over years...

  18. Multi-Gnss Receiver for Aerospace Navigation and Positioning Applications

    NASA Astrophysics Data System (ADS)

    Peres, T. R.; Silva, J. S.; Silva, P. F.; Carona, D.; Serrador, A.; Palhinha, F.; Pereira, R.; Véstias, M.

    2014-03-01

    The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS) market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial) grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne), such as Georeferencing and Unmanned Aerial Vehicle (UAV) navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  19. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network (DSN) in space communications, radio navigation, radio science, and ground-based radio astronomy are reported. Also included are the plans, supporting research and technology, implementation and operations for the Ground Communications Facility (GCF). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum.

  20. Conformal flight path symbology for head-up displays: Defining the distribution of visual attention in three-dimensional space

    NASA Astrophysics Data System (ADS)

    Ververs, Patricia May

    An extensive investigation of the format for head-up display (HUD) instrumentation was conducted in a two-part experiment. First, a pilot's information requirements for the tasks of approach, landing, and taxi were determined through a survey administered to professional commercial pilots via the world wide web. The results of the survey were applied in the development of two symbology sets, one set for flight navigation and the second for ground navigation. Second, twenty pilots from the University of Illinois at Urbana-Champaign were recruited to participate in a 3-day experiment. The study was designed to investigate the format for symbology on HUDs and the performance effects of using conformal and partially conformal symbology to support the pilots' tasks. In addition, two different methods were investigated for supporting the pilots' transition between the task of flying and the task of landing. A seamless transition used visual momentum techniques to smoothly guide the pilots' cognitive transition between the serial displays and the associated tasks. A seamed approach employed an abrupt change between the displays to alert the pilots of the task switch. The results indicate that incorporating a virtually conformal, tunnel-in-the-sky symbology into a complete HUD instrumentation set offers promising pilot performance effects. Pilots easily navigated the complex curved approaches with little to no deviation from the flight path (approximately 10 feet), while performing the secondary tasks of the scanning their instruments and the environment. The seamless transition between the flight and ground symbology offered the pilots a preview of the upcoming landing task, thereby preparing them for the task switch. On the ground, the perspective (scene-linked) symbology set supported landing and taxi navigation tasks with the equal efficiency to the plan view display but with much greater precision. Theories of allocation of attention were used to interpret the experimental findings. Attention was found to be more widely distributed in X-Y space when the pilots were flying with the conformal, tunnel-in-the-sky as compared to the partially conformal ILS (instrument landing system) symbology set. There was little evidence that the air-based navigation displays were supporting divided attention in three-dimensional space. The ground-based scene-linked (truly conformal) display indicated promising effects of dividing attention in depth without negative consequences to processing the near domain symbology. Event expectancy was found to modulate pilot performance in the detection of events both on the symbology and in the environment. The phenomenon known as cognitive tunneling is discussed as a possible cause of the inadequate response times in resolving the anomalous events.

  1. Autonomous Navigation of USAF Spacecraft

    DTIC Science & Technology

    1983-12-01

    ASSEMBLY 21.LACn. THERM AL RADEARTOR ASEML 21.5 in REFERENC BASE PLATE JELECTRONICS REFERENMODULE ASSEMBLY (4 PLACES) PORRO PRISM & BASE MIRROR -24.25...involved in active satellite-to- satellite cracking for 14 days following one day of ground tracking. Earth geopotential resonance terms are the largest...rotates a prism at 9 rps such that optical signals are injected into each telescope parallel to the reielved starlight. The angle between tne two lines

  2. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean off Barbers Point... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal... regulations. (1) No vessels may anchor, moor, or navigate in anchorages A, B, C, or D except: (i) Vessels...

  3. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  4. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    NASA Astrophysics Data System (ADS)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  5. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... inputs to semiautomatic self-contained dead reckoning navigation systems which were not continuously... Doppler sensor equipment that provides inputs to dead reckoning navigation systems obsolete. On August 18...

  6. 75 FR 15343 - Regulated Navigation Area: Narragansett Bay, RI and Mount Hope Bay, RI and MA, Including the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... the transit, and a requirement to maintain a minimum underkeel clearance to prevent groundings. Based...' at Mean Lower Low Water (MLLW), and a minimum channel width of 600'. While most shoaling was removed... number of small entities. The term ``small entities'' comprises small businesses, not-for-profit...

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs in space communications, radio navigation, radio science, and ground-based radio and radar astronomy. It reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standardization activities at the Jet Propulsion Laboratory for space data and information systems.

  8. Vegetation Versus Man-Made Object Detection from Imagery for Unmanned Vehicles in Off-Road Environments

    DTIC Science & Technology

    2013-05-01

    saliency, natural scene statistics 1. INTRODUCTION Research into the area of autonomous navigation for unmanned ground vehicles (UGV) has accelerated in...recent years. This is partly due to the success of programs such as the DARPA Grand Challenge1 and the dream of driverless cars ,2 but is also due to the...NOTES 14. ABSTRACT There have been several major advances in autonomous navigation for unmanned ground vehicles in controlled urban environments in

  9. A Navigation and Decision Making Architecture for Unmanned Ground Vehicles: Implementation and Results with the Raptor UGV

    DTIC Science & Technology

    2007-12-01

    the Raptor UGV J. Giesbrecht, J. Collier, G . Broten, S. Monckton, and D. Mackay A Navigation and Decision Making Architecture for Unmanned...Ground Vehicles Implementation and Results with the Raptor UGV J. Giesbrecht, J. Collier, G . Broten, S. Monckton, and D. Mackay Defence R&D Canada...parcours, l’évitement d’obstacles, la planification de parcours et des modules de prises de décision. Ce rapport présente des détails concernant les

  10. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  11. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets was established as the most reliable protocol after testing various options. Improvement can be made to the system by migrating more algorithms to the hardware based FPGA to further speed up the operations of the vehicle.

  12. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    NASA Technical Reports Server (NTRS)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  13. Enacting Firm, Fair and Friendly Practice: A Model for Strengths-Based Child Protection Relationships?

    PubMed

    Oliver, Carolyn; Charles, Grant

    2016-06-01

    Strengths-based solution-focused approaches are gaining ground in statutory child protection work, but few studies have asked front line practitioners how they navigate the complex worker-client relationships such approaches require. This paper describes one component of a mixed-methods study in a large Canadian statutory child protection agency in which 225 workers described how they applied the ideas of strengths-based practice in their daily work. Interviews with twenty-four practitioners were analysed using an interpretive description approach. Only four interviewees appeared to successfully enact a version of strengths-based practice that closely mirrored those described by key strengths-based child protection theorists and was fully congruent with their mandated role. They described navigating a shifting balance of collaboration and authority in worker-client relationships based on transparency, impartial judgement, attentiveness to the worker-client interaction and the value that clients were fellow human beings. Their accounts extend current conceptualisations of the worker-client relationship in strengths-based child protection work and are congruent with current understandings of effective mandated relationships. They provide what may be a useful model to help workers understand and navigate relationships in which they must reconcile their own authority and expertise with genuine support for the authority and expertise of their clients.

  14. A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1998-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also discussed. In addition, architecture of a complete end-to-end candidate flight system that provides navigation with highly autonomous control using data from GPS is presented.

  15. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  16. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  17. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Satellite attitude determination and control, orbit determination, and onboard and ground attitude determination procedures are among the topics discussed. Other topics covered include: effect of atmosphere on Venus orbiter navigation; satellite-to-satellite tracking; and satellite onboard navigation using global positioning system data.

  18. Station Explorer for X-Ray Timing and Navigation Technology Architecture Overview

    NASA Technical Reports Server (NTRS)

    Hasouneh, Monther Abdel Hamid

    2014-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA astrophysics Explorer Mission of Opportunity, scheduled for launch in mid-2016, that will be hosted on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). By exploiting the regular pulsations emit-ted by the ultra dense remnants of dead stars, which rotate many hundreds of times per second, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar-based navigation is a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond and include the worlds first completely functional system architecture for navigation using X-ray pulsars. In addition, NICER SEXTANT will investigate the suit-ability of these millisecond X-ray pulsars (MSPs) as a Solar System-wide timing infrastructure to rival terrestrial atomic clocks on long timescales. This paper provides a brief overview of the SEXTANT demonstration and the design of the system architecture that consists of the NICER X-ray timing instrument, the SEXTANT flight software and algorithms, supporting ground system, and the GSFC X-ray Navigation Laboratory Testbed (GXLT).

  19. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  20. Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.

    2011-01-01

    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection

  1. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  2. LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing

    NASA Technical Reports Server (NTRS)

    Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin

    2011-01-01

    In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.

  3. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  4. Hybrid optical navigation by crater detection for lunar pin-point landing: trajectories from helicopter flight tests

    NASA Astrophysics Data System (ADS)

    Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan

    2018-01-01

    Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.

  5. 78 FR 60238 - Proposed Modification and Establishment of Restricted Areas; Aberdeen Proving Ground, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...; Aberdeen Proving Ground, MD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., within the existing restricted areas R-4001A and R- 4001B, at the U.S. Army's Aberdeen Proving Ground in... nonparticipating aircraft from a hazard to navigation in the Aberdeen Proving Ground airspace. DATES: Comments must...

  6. 33 CFR 160.204 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Definitions. 160.204 Section 160... Certain Dangerous Cargos § 160.204 Definitions. As used in this subpart: Agent means any person..., explosion, grounding, leaking, damage, injury or illness of a person aboard, or manning-shortage...

  7. Use of Assisted Photogrammetry for Indoor and Outdoor Navigation Purposes

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Cazzaniga, N. E.; Pinto, L.

    2015-05-01

    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users' location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error.

  8. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  9. Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview

    NASA Technical Reports Server (NTRS)

    Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.

    2012-01-01

    Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.

  10. Crew-Aided Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  11. Integrated navigation, flight guidance, and synthetic vision system for low-level flight

    NASA Astrophysics Data System (ADS)

    Mehler, Felix E.

    2000-06-01

    Future military transport aircraft will require a new approach with respect to the avionics suite to fulfill an ever-changing variety of missions. The most demanding phases of these mission are typically the low level flight segments, including tactical terrain following/avoidance,payload drop and/or board autonomous landing at forward operating strips without ground-based infrastructure. As a consequence, individual components and systems must become more integrated to offer a higher degree of reliability, integrity, flexibility and autonomy over existing systems while reducing crew workload. The integration of digital terrain data not only introduces synthetic vision into the cockpit, but also enhances navigation and guidance capabilities. At DaimlerChrysler Aerospace AG Military Aircraft Division (Dasa-M), an integrated navigation, flight guidance and synthetic vision system, based on digital terrain data, has been developed to fulfill the requirements of the Future Transport Aircraft (FTA). The fusion of three independent navigation sensors provides a more reliable and precise solution to both the 4D-flight guidance and the display components, which is comprised of a Head-up and a Head-down Display with synthetic vision. This paper will present the system, its integration into the DLR's VFW 614 Advanced Technology Testing Aircraft System (ATTAS) and the results of the flight-test campaign.

  12. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    NASA Astrophysics Data System (ADS)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  13. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  14. 14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... include additional subjects in the ground training curriculum, such as international law, flight hygiene... weather reports. Forecasting. International Morse code: Ability to receive code groups of letters and... school subjects. (3) Each instructor who conducts flight training must hold a valid flight navigator...

  15. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  16. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  17. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  18. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  19. 33 CFR 110.132 - Rockland Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rockland Harbor, Maine. 110.132... ANCHORAGE REGULATIONS Anchorage Grounds § 110.132 Rockland Harbor, Maine. (a) The anchorage grounds—(1..., power plant, oil terminal, marine terminal, munitions plant, military or naval arsenal or depot...

  20. Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2006-05-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  1. TDRSS Onboard Navigation System (TONS) experiment for the Explorer Platform (EP)

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hornstein, R. S.; Long, A. C.; Samii, M. V.; Elrod, B. D.

    A TDRSS Onboard Navigation System (TONS) is currently being developed by NASA to provide a high-accuracy autonomous spacecraft navigation capability for users of TDRSS and its successor, the Advanced TDRSS. A TONS experiment will be performed in conjunction with the Explorer Platform (EP)/EUV Explorer mission to flight-qualify TONS Block I. This paper presents an overview of TDRSS on-board navigation goals and plans and the technical objectives of the TONS experiment. The operations concept of the experiment is described, including the characteristics of the ultrastable oscillator, the Doppler extractor, the signal-acquisition process, the TONS ground-support system, and the navigation flight software. A description of the on-board navigation algorithms and the rationale for their selection is also presented.

  2. Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior

    DTIC Science & Technology

    2006-09-28

    navigate in an unstructured environment to a specific target or location. 15. SUBJECT TERMS autonomous vehicles , fuzzy logic, learning behavior...ANSI-Std Z39-18 Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior FINAL REPORT 9/28/2006 Dean B. Edwards Department...the future, as greater numbers of autonomous vehicles are employed, it is hoped that lower LONG-TERM GOALS Use LAGR (Learning Applied to Ground Robots

  3. Global navigation satellite sounding of the atmosphere and GNSS altimetry : prospects for geosciences

    NASA Technical Reports Server (NTRS)

    Yunck, Tom P.; Hajj, George A.

    2003-01-01

    The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.

  4. Demonstration of coherent Doppler lidar for navigation in GPS-denied environments

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.

    2017-05-01

    A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.

  5. Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments

    PubMed Central

    Vanegas, Fernando; Gonzalez, Felipe

    2016-01-01

    Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios. PMID:27171096

  6. Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments.

    PubMed

    Vanegas, Fernando; Gonzalez, Felipe

    2016-05-10

    Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios.

  7. 14 CFR 171.317 - Approach elevation performance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System... −2.2 dB at the coverage extremes. (b) Elevation siting requirements. The Elevation Antenna System... type System Angular error (degrees) Ground subsystem Airborne subsystem 4 PFE 1,2 ±0.133 (3) ±0.017 CMN...

  8. 14 CFR 171.317 - Approach elevation performance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System... −2.2 dB at the coverage extremes. (b) Elevation siting requirements. The Elevation Antenna System... type System Angular error (degrees) Ground subsystem Airborne subsystem 4 PFE 1,2 ±0.133 (3) ±0.017 CMN...

  9. 14 CFR 171.317 - Approach elevation performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System... −2.2 dB at the coverage extremes. (b) Elevation siting requirements. The Elevation Antenna System... type System Angular error (degrees) Ground subsystem Airborne subsystem 4 PFE 1 2 ±0.133 (3) ±0.017 CMN...

  10. 14 CFR 171.317 - Approach elevation performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System... −2.2 dB at the coverage extremes. (b) Elevation siting requirements. The Elevation Antenna System... type System Angular error (degrees) Ground subsystem Airborne subsystem 4 PFE 1,2 ±0.133 (3) ±0.017 CMN...

  11. Development and Validation of a Controlled Virtual Environment for Guidance, Navigation and Control of Quadrotor UAV

    DTIC Science & Technology

    2013-09-01

    Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming

  12. 14 CFR 171.317 - Approach elevation performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System... −2.2 dB at the coverage extremes. (b) Elevation siting requirements. The Elevation Antenna System... type System Angular error (degrees) Ground subsystem Airborne subsystem 4 PFE 1,2 ±0.133 (3) ±0.017 CMN...

  13. 33 CFR 110.250 - St. Thomas Harbor, Charlotte Amalie, V.I.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Thomas Harbor, Charlotte... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.250 St. Thomas Harbor, Charlotte Amalie... move promptly upon notification by the Harbor Master. (4) The harbor regulations for the Port of St...

  14. 33 CFR 110.230 - Puget Sound Area, Wash.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound Area, Wash. 110.230... ANCHORAGE REGULATIONS Anchorage Grounds § 110.230 Puget Sound Area, Wash. (a) The anchorage grounds—(1... shores of Whidbey Island. (4) Port Gardner General Anchorage, Possession Sound. Beginning at a point...

  15. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  16. 33 CFR 110.230 - Puget Sound Area, Wash.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound Area, Wash. 110.230... ANCHORAGE REGULATIONS Anchorage Grounds § 110.230 Puget Sound Area, Wash. (a) The anchorage grounds—(1... shores of Whidbey Island. (4) Port Gardner General Anchorage, Possession Sound. Beginning at a point...

  17. "¿Qué Estoy Haciendo Aquí? (What Am I Doing Here?)": Chicanos/Latinos(as) Navigating Challenges and Inequalities During Their First Year of Graduate School

    ERIC Educational Resources Information Center

    Ramirez, Elvia

    2014-01-01

    Based on in-depth qualitative interviews, this study analyzed the challenges and structural inequities that Chicanos/Latinos(as) encountered and resisted during their first year of graduate school. Grounded in intersectionality theory, this study analyzed how race, class, and gender inequalities that are embedded in the graduate schooling process…

  18. Helicopter precision approach capability using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1992-01-01

    The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.

  19. Impact on Space-Based Navigation Systems of Large Magnetic Storm-Driven Nighttime Flows in the Mid-latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Basu, S.; Makela, J.; Doherty, P.; Wright, J.; Coster, A.

    2008-05-01

    Multi-technique ground and space-based studies conducted during the intense magnetic storm of 7-8 November 2004 yielded a hitherto little-recognized means of impacting space-based navigation systems such as the Federal Aviation Administration's Wide Area Augmentation System (WAAS) that operates in the North American sector. During this superstorm, no appreciable storm-enhanced density gradients were observed. Rather the mid-latitude region was enveloped by the auroral oval and the ionospheric trough within which the sub auroral polarization stream (SAPS) was confined during the local dusk to nighttime hours. This shows that such processes can partially disable GPS-based navigation systems for many hours even in the absence of appreciable TEC gradients, provided an intense flow channel is present in the ionosphere during nighttime hours, as revealed by DMSP and Dynasonde drift results. The competing effects of irregularity amplitude ΔN/N, the background F-region density and the magnitude of SAPS or auroral convection are discussed in establishing the extent of the region of impact on the WAAS system. In order to provide inputs to operational space weather models, the current GPS network used for measuring the total electron content in North America and elsewhere should be augmented by instruments that can measure ionospheric drifts.

  20. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  1. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  2. In search of cybernautics

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    This is a talk about the future of aviation in the information age. Ages come and go. Certainly the atomic age came and went, but the information age looks different. This talk reviews some recent experiments on navigation and control with the Global Positioning System. Vertical position accuracies within 1 foot have been demonstrated in the most recent experiments, and research emphases have shifted to issues of integrity, continuity, and availability. Inertial navigation systems (INS) contribute much to the reliability of GPS-based autoland systems. The GPS data stream can cease, and INS can still complete a precision landing from an altitude of 200 feet. The future of aviation looks like automatic airplanes communicating among each other to schedule ground assets and to avoid collisions and wake hazards. The business of the FAA will be to assure integrity of global navigation systems, to develop and maintain the software rules of the air, and to provide expert pilots to handle emergencies from the ground via radio control. The future of aviation is democratic and lends itself to personal airplanes. Some data analyses reveal that personal airplanes are just as efficient as large turbofan transports and just as fast over distances up to 1,000 miles, thanks to the decelerative influence of the hub and spoke system. Maybe by the year 2020, the airplane will rank with the automobile and computer as an agent of personal freedom.

  3. Space shuttle onboard navigation console expert/trainer system

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bochsler, Dan

    1987-01-01

    A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.

  4. Flight assessment of a data-link-based navigation-guidance concept

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1983-01-01

    With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.

  5. Demonstration of Airborne Electromagnetic Systems for Detection and Characterization of Unexploded Ordnance at the Badlands Bombing Range, South Dakota. Revision 3

    DTIC Science & Technology

    2004-08-01

    base station Attitude Measurement Ashtech ADU-2 Bartington MAG03ML7ONT 3-axis fluxgate magnetometer , Navigation Picodas PNAV100 Model P141-E Real...BBR Test Grid, horizontal difference (outer coil minus scaled inner coil). 46 22 Analytic signal derived from ground-based magnetometer bottom...one meter over UXO-contaminated terrain. As with the magnetic systems, GPS and laser altimetry provide precise positioning to within a few tens of

  6. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  7. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  8. A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jack-Chingtse, C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.

  9. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  10. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities, as well as relative positions and velocities in space. The second novelty is that ordinarily one requires many satellites in order to achieve full navigation of any given customer s position and velocity over time. With LiAISON navigation, only a single navigation satellite is needed, provided that the satellite is significantly affected by the gravity of the Earth and the Moon. That single satellite can track another satellite elsewhere in the Earth- Moon system and obtain absolute knowledge of both satellites states.

  11. 33 CFR 110.183 - St. Johns River, Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Johns River, Florida. 110.183... ANCHORAGE REGULATIONS Anchorage Grounds § 110.183 St. Johns River, Florida. (a) The anchorage grounds—(1... anchor in the St. Johns River, as depicted on NOAA chart 11491, between the entrance buoy (STJ) and the...

  12. 33 CFR 110.193a - St. Joseph Bay, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Joseph Bay, Fla. 110.193a... ANCHORAGE REGULATIONS Anchorage Grounds § 110.193a St. Joseph Bay, Fla. (a) The anchorage grounds—(1... northeast of the north entrance channel to Port St. Joe, Florida. (2) Explosives Anchorage Area 2. A...

  13. 76 FR 76295 - Anchorage Regulations; Wells, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... meters in length. This action is intended to increase the safety of life and property in Wells Harbor... Transportation, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590... Navigation Rules (33 U.S.C. 2035) nor exhibit anchor lights or shapes as per Rule 30 of the Inland Navigation...

  14. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF..., Hawaii, Naval Anchorage. (a) The Anchorage grounds. All the waters within a circle having a radius of 300.... Except in an emergency, no vessel except a Naval vessel may anchor or moor in this anchorage without...

  15. Navigation Ground Data System Engineering for the Cassini/Huygens Mission

    NASA Technical Reports Server (NTRS)

    Beswick, R. M.; Antreasian, P. G.; Gillam, S. D.; Hahn, Y.; Roth, D. C.; Jones, J. B.

    2008-01-01

    The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year journey across the solar system that culminated in the entry of the spacecraft into Saturnian orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex interplay between several teams within the Cassini Project, performed on the Ground Data System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and completeness carried out often under uncompromising critical time pressures. To support the Navigation function, a fault-tolerant, high-reliability/high-availability computational environment was necessary to support data processing. Configuration Management (CM) was integrated with fault tolerant design and security engineering, according to the cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this approach are security benchmarks and validation to meet strict confidence levels. In addition, similar approaches to CM were applied in consideration of the staffing and training of the system administration team supporting this effort. As a result, the current configuration of this computational environment incorporates a secure, modular system, that provides for almost no downtime during tour operations.

  16. Building the Traffic, Navigation, and Situation Awareness System (T-NASA) for Surface Operations

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    1996-01-01

    We report the results of a part-task simulation evaluating the separate and combined effects of an electronic moving map display and newly developed HUD symbology on ground taxi performance, under moderate- and low-visibility conditions. Twenty-four commercial airline pilots carried out a series of 28 gate-to-runway taxi trials at Chicago O'Hare. Half of the trials were conducted under moderate visibility (RVR 1400 ft), and half under low visibility (RVR 700 ft). In the baseline condition, where navigation support was limited to surface features and a Jeppesen paper map, navigation errors were committed on almost half of the trials. These errors were virtually abolished when the electronic moving map or the HUD symbology was available; in addition, compare, the baseline condition, both forms of navigation aid yielded an increase in forward taxi speed. The speed increase was greater for HUD than the electronic moving map, and greater under low visibility than under moderate visibility. These results suggest that combination of electronic moving map and HUD symbology has the potential to greatly increase the efficiency of ground operations, particularly under low-visibility conditions.

  17. Proceedings of the 20th International Symposium on Space Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Mark (Editor); Stengle, Tom (Editor)

    2007-01-01

    Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.

  18. On a Slow Roll

    NASA Technical Reports Server (NTRS)

    Hughes, David

    2005-01-01

    Satellite navigation and surveillance products and services can cut costs, improve accuracy, expand coverage and enhance safety. But the global transformation of air traffic management (ATM) that satellites and ground augmentation systems have promised is being realized much more slowly than expected. "There are still a lot of nations that could benefit [from satellite navigation and surveillance] that haven't invested dime in new equipment." says Tim Katanik, manager of business development for navigation and landing systems Raytheon. But then things usually move slowly in this industry, he adds.

  19. GOES I/M image navigation and registration

    NASA Technical Reports Server (NTRS)

    Fiorello, J. L., Jr.; Oh, I. H.; Kelly, K. A.; Ranne, L.

    1989-01-01

    Image Navigation and Registration (INR) is the system that will be used on future Geostationary Operational Environmental Satellite (GOES) missions to locate and register radiometric imagery data. It consists of a semiclosed loop system with a ground-based segment that generates coefficients to perform image motion compensation (IMC). The IMC coefficients are uplinked to the satellite-based segment, where they are used to adjust the displacement of the imagery data due to movement of the imaging instrument line-of-sight. The flight dynamics aspects of the INR system is discussed in terms of the attitude and orbit determination, attitude pointing, and attitude and orbit control needed to perform INR. The modeling used in the determination of orbit and attitude is discussed, along with the method of on-orbit control used in the INR system, and various factors that affect stability. Also discussed are potential error sources inherent in the INR system and the operational methods of compensating for these errors.

  20. Self-calibrating pseudolite arrays: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lemaster, Edward Alan

    Tasks envisioned for future-generation Mars rovers---sample collection, area survey, resource mining, habitat construction, etc.---will require greatly enhanced navigational capabilities over those possessed by the 1997 Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, necessitating both high accuracy and the ability to share navigation information among different users. On Earth, satellite-based carrier-phase differential GPS provides a means of delivering centimeter-level, drift-free positioning to multiple users in contact with a reference base station. It would be highly desirable to have a similar navigational capability for use in Mars exploration. This research has originated a new local-area navigation system---a Self-Calibrating Pseudolite Array (SCPA)---that can provide centimeter-level localization to multiple rovers by utilizing GPS-based pseudolite transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters. Previous pseudolite arrays have relied upon a priori information to survey the locations of the pseudolites, which must be accurately known to enable navigation within the array. In contrast, an SCPA does not rely upon other measurement sources to determine these pseudolite locations. This independence is a key requirement for autonomous deployment on Mars, and is accomplished through the use of GPS transceivers containing both transmit and receive components and through algorithms that utilize limited motion of a transceiver-bearing rover to determine the locations of the stationary transceivers. This dissertation describes the theory and operation of GPS transceivers, and how they can be used for navigation within a Self-Calibrating Pseudolite Array. It presents new algorithms that can be used to self-survey such arrays robustly using no a priori information, even under adverse conditions such as high-multipath environments. It then describes the experimental SCPA prototype developed at Stanford University and used in conjunction with the K9 Mars rover operated by NASA Ames Research Center. Using this experimental system, it provides experimental validation of both successful positioning using GPS transceivers and full calibration of an SCPA following deployment in an unknown configuration.

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  3. Target Acquisition for Projectile Vision-Based Navigation

    DTIC Science & Technology

    2014-03-01

    Future Work 20 8. References 21 Appendix A. Simulation Results 23 Appendix B. Derivation of Ground Resolution for a Diffraction-Limited Pinhole Camera...results for visual acquisition (left) and target recognition (right). ..........19 Figure B-1. Differential object and image areas for pinhole camera...projectile and target (measured in terms of the angle ) will depend on target heading. In particular, because we have aligned the x axis along the

  4. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  5. Guidance and control for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Bateman, Peter J.

    1994-06-01

    Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.

  6. SEXTANT - Station Explorer for X-ray Timing and Navigation Technology

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.

  7. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  8. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  9. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hsun; Chiang, Kai-Wei

    2016-06-01

    The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.

  10. Motion Trajectories for Wide-area Surveying with a Rover-based Distributed Spectrometer

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Anderson, Gary; Wilson, Edmond

    2006-01-01

    A mobile ground survey application that employs remote sensing as a primary means of area coverage is highlighted. It is distinguished from mobile robotic area coverage problems that employ contact or proximity-based sensing. The focus is on a specific concept for performing mobile surveys in search of biogenic gases on planetary surfaces using a distributed spectrometer -- a rover-based instrument designed for wide measurement coverage of promising search areas. Navigation algorithms for executing circular and spiral survey trajectories are presented for widearea distributed spectroscopy and evaluated based on area covered and distance traveled.

  11. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  12. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community, including streamlining the compatibility testing, planning and scheduling associated with CubeSat missions. Because of the lower cost, opportunity for simultaneous multipoint observations, it is inevitable that CubeSats will continue to increase in popularity for not only LEO missions, but for lunar and L1/L2 missions as well. The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable. Advancements in flight hardware and ground infrastructure will ease the burden.

  13. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    PubMed Central

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-01-01

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843

  14. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    PubMed

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  15. Efficient transfer of weather information to the pilot in flight

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1982-01-01

    Efficient methods for providing weather information to the pilot in flight are summarized. Use of discrete communications channels in the aeronautical, VHF band or subcarriers in the VOR navigation band are considered the best possibilities. Data rates can be provided such that inputs to the ground based transmitters from 2400 band telephone lines are easily accommodated together with additional data. The crucial weather data considered for uplinking are identified as radar reflectivity patterns relating to precipitation, spherics data, hourly sequences, nowcasts, forecasts, cloud top heights with freezing and icing conditions, the critical weather map and satellite maps. NEXRAD, the ground based, Doppler weather radar which will produce an improved weather product also encourages use of an uplink to fully utilize its capability to improve air safety.

  16. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  17. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

    PubMed Central

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906

  18. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    PubMed

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  19. Comparative analysis of ROS-based monocular SLAM methods for indoor navigation

    NASA Astrophysics Data System (ADS)

    Buyval, Alexander; Afanasyev, Ilya; Magid, Evgeni

    2017-03-01

    This paper presents a comparison of four most recent ROS-based monocular SLAM-related methods: ORB-SLAM, REMODE, LSD-SLAM, and DPPTAM, and analyzes their feasibility for a mobile robot application in indoor environment. We tested these methods using video data that was recorded from a conventional wide-angle full HD webcam with a rolling shutter. The camera was mounted on a human-operated prototype of an unmanned ground vehicle, which followed a closed-loop trajectory. Both feature-based methods (ORB-SLAM, REMODE) and direct SLAMrelated algorithms (LSD-SLAM, DPPTAM) demonstrated reasonably good results in detection of volumetric objects, corners, obstacles and other local features. However, we met difficulties with recovering typical for offices homogeneously colored walls, since all of these methods created empty spaces in a reconstructed sparse 3D scene. This may cause collisions of an autonomously guided robot with unfeatured walls and thus limits applicability of maps, which are obtained by the considered monocular SLAM-related methods for indoor robot navigation.

  20. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  1. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  2. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  3. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  4. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  5. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  6. The "Set Map" Method of Navigation.

    ERIC Educational Resources Information Center

    Tippett, Julian

    1998-01-01

    Explains the "set map" method of using the baseplate compass to solve walkers' navigational needs as opposed to the 1-2-3 method for taking a bearing. The map, with the compass permanently clipped to it, is rotated to the position in which its features have the same orientation as their counterparts on the ground. Includes directions and…

  7. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  8. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  9. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  10. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  11. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  12. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...

  13. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...

  14. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...

  15. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...

  16. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...

  17. 33 CFR 334.720 - Gulf of Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving Ground Command, U.S. Air Force... Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving...

  18. 75 FR 8486 - Drawbridge Operation Regulation; Inner Harbor Navigational Canal, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Operation Regulation; Inner Harbor Navigational Canal, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION... EHL), at New Orleans, LA. The deviation is necessary to replace the counterweight wire ropes on the... Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590, between 9 a.m. and...

  19. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Waimea, Hawaii..., Hawaii, Naval Anchorage. (a) The Anchorage grounds. All the waters within a circle having a radius of 300... permission of the Captain of the Port, Honolulu, Hawaii. [CGD 74-187, 41 FR 54176, Dec. 13, 1976, as amended...

  20. Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle

    DTIC Science & Technology

    2016-09-01

    identification and tracking algorithm. 14. SUBJECT TERMS unmanned ground vehicles , pure pursuit, vector field histogram, feature recognition 15. NUMBER OF...located within the various theaters of war. The pace for the development and deployment of unmanned ground vehicles (UGV) was, however, not keeping...DEVELOPMENT OF UNMANNED GROUND VEHICLES The development and fielding of UGVs in an operational role are not a new concept in the battlefield. In

  1. Flying Reactors: The Political Feasibility of Nuclear Power in Space

    DTIC Science & Technology

    2005-04-01

    compared to the naval nuclear submarine program. It is also clear that SNP quickly became a victim of the general fear and anxiety that ground-based...in the body, particularly the lungs, are thought to cause lung cancer . Fear of a plutonium release is not without precedent. In 1964 a US navigational...Jonah House (Baltimore, MD) Kalamazoo Area Coalition for Peace and Justice Leicester Campaign for Nuclear Disarmament Mama Terra Romania (Bucharest

  2. Proceedings of the Army Aviation Instructors’ Conference

    DTIC Science & Technology

    1968-01-01

    Aviation Test Board is located at Cairns. There are about 220 aircraft based at Cairns, and it is the site of our radar approach control. The Cairns...at Fort Wolters, the student will fly either the TH-55, the OH-13, or the OH-23. The student goes out and practices his approaches , landing, and...computer out operations. Instrument Flight: This includes instrument approaches without ground navigational radio aids, using the self-contained

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  4. 78 FR 8476 - Seaway Regulations and Rules: Periodic Update, Various Categories

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... 33 CFR Part 401 Hazardous materials transportation, Navigation (water), Penalties, Radio, Reporting... Management Facility; U.S. Department of Transportation, 1200 New Jersey Avenue SE., West Building Ground.... Department of Transportation, 1200 New Jersey Avenue SE., West Building Ground Floor, Room W12-140...

  5. Advanced navigation aids in the flight deck : effects on ground taxi performance under low visibility conditions

    DOT National Transportation Integrated Search

    1996-01-01

    Reports the results of a part-task simulation evaluating the separate and combined effects of an electronic moving map display and newly developed HUD symbology on ground taxi performance, under moderate- and low-visibility conditions. Twenty-four co...

  6. Vector Pursuit Path Tracking for Autonomous Ground Vehicles

    DTIC Science & Technology

    2000-08-01

    vi INTRODUCTION ...........................................................................................................1...other geometric path-tracking techniques. 1 CHAPTER 1 INTRODUCTION An autonomous vehicle is one that is capable of automatic navigation. It is...Joint Architecture for Unmanned Ground Vehicles ( JAUGS ) working group meeting held at the University of Florida. 5 Figure 1.5: Autonomous

  7. Illuminating the circadian clock in monarch butterfly migration.

    PubMed

    Froy, Oren; Gotter, Anthony L; Casselman, Amy L; Reppert, Steven M

    2003-05-23

    Migratory monarch butterflies use a time-compensated Sun compass to navigate to their overwintering grounds in Mexico. Here, we report that constant light, which disrupts circadian clock function at both the behavioral and molecular levels in monarchs, also disrupts the time-compensated component of flight navigation. We further show that ultraviolet light is important for flight navigation but is not required for photic entrainment of circadian rhythms. Tracing these distinct light-input pathways into the brain should aid our understanding of the clock-compass mechanisms necessary for successful migration.

  8. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    NASA Astrophysics Data System (ADS)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on a Bombardier Global 5000 commercial full aircraft was studied. This was achieved via CAD-based modeling with a full-wave electromagnetic software simulation package (FEKO). It is important because the aircraft comes in approach on a 3° glideslope angle. Elevation relative to PPD jammer is changing.

  9. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 2: Supporting research and technology report, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio (L/D) aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. The methodology employed to generate technology payoffs, the major payoffs identified, the urgency of the technology effort required, and the technology plans suggested are summarized for both study phases. Technology issues concerning aerodynamics, aerothermodynamics, thermal protection, propulsion, and guidance, navigation and control are addressed.

  10. Modeling Being "Lost": Imperfect Situation Awareness

    NASA Technical Reports Server (NTRS)

    Middleton, Victor E.

    2011-01-01

    Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  12. Engineering management consideration for an integrated aeronautical mobile satellite service

    NASA Astrophysics Data System (ADS)

    Belcher, John M.

    In order to meet local air traffic control terminal requirements as well as national and transborder requirements, countries have developed communications, navigation, and surveillance (CNS) systems having little systems integration and a solely ground-based solution to air traffic control problems. It is believed that the application of satellite technology is the only currently viable solution that will enable international civil aviation to overcome the shortcomings of the presently available CNS systems. If properly implemented, available satellite system technology integrated with avionics and ground based capabilities, can be used to meet new global aviation demands. A clear transition plan has to be implemented so as to ensure continuity of service, recognize user-borne costs, and satisfy institutional and national objectives in the progress toward a universal air traffic management (ATM) system. ATM systems design should rely on a modular approach for flexibility and upgrading. An aeronautical mobile satellite service is intended to provide a worldwide satellite data link and direct air/ground voice communication. Institutional and financial roadblocks for implemetation of a global based approach will likely be far greater than technical constraints.

  13. Flight test results from the CV990 simulated space shuttle during unpowered automatic approaches and landings

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Foster, J. D.

    1973-01-01

    Unpowered automatic approaches and landings with a CV990 aircraft were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle. The flight tests were designed to study from 11,300 m to touchdown the performance of a navigation and guidance concept which utilized blended radio/inertial navigation using VOR, DME, and ILS as the ground navigation aids. In excess of fifty automatic approaches and landings were conducted. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines on a conventional size runway.

  14. Mobile Robot Designed with Autonomous Navigation System

    NASA Astrophysics Data System (ADS)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  15. Investigation and evaluation of shuttle/GPS navigation system

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1977-01-01

    Iterative procedures were used to analyze the performance of two preliminary shuttle/GPS navigation system configurations: an early OFT experimental system and a more sophisticated system which consolidates several separate navigation functions thus permitting net cost savings from decreased shuttle avionics weight and power consumption, and from reduced ground data processing. The GPS system can provide on-orbit navigation accuracy an order of magnitude better than the baseline system, with very adequate link margins. The worst-case link margin is 4.3 dB. This link margin accounts for shuttle RF circuit losses which were minimized under the constraints of program schedule and environmental limitations. Implicit in the link analyses are the location trade-offs for preamplifiers and antennas.

  16. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  17. 77 FR 62435 - Inland Waterways Navigation Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... collisions and groundings. (See 33 CFR 162.130(a)). Second, it is intended to limit wake damage to vessels... D33 stationary light is not necessary to prevent wake damage or to prevent collisions and groundings... Justice Reform, to minimize litigation, eliminate ambiguity, and reduce burden. 9. Protection of Children...

  18. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... irregularity in a ground facility or navigation aid in flight, the knowledge of which the pilot considers...

  19. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... irregularity in a ground facility or navigation aid in flight, the knowledge of which the pilot considers...

  20. mapKITE: a New Paradigm for Simultaneous Aerial and Terrestrial Geodata Acquisition and Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2016-06-01

    We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a "virtual tether," acting as a "mapping kite." In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points -therefore, lowering mission costs- and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first mapKITE mission will be held at the BCN Drone Center (Collsuspina, Moià, Spain) in mid 2016.

  1. Impact of multiconstellation satellite signal reception on performance of satellite-based navigation under adverse ionospheric conditions

    NASA Astrophysics Data System (ADS)

    Paul, Ashik; Paul, Krishnendu Sekhar; Das, Aditi

    2017-03-01

    Application of multiconstellation satellites to address the issue of satellite signal outages during periods of equatorial ionospheric scintillations could prove to be an effective tool for maintaining the performance of satellite-based communication and navigation without compromise in accuracy and integrity. A receiver capable of tracking GPS, Global Navigation Satellite System (GLONASS), and Galileo satellites is operational at the Institute of Radio Physics and Electronics, University of Calcutta, Calcutta, India, located near the northern crest of the equatorial ionization anomaly in the Indian longitude sector. The present paper shows increased availability of satellites combining GPS, GLONASS, and Galileo constellations from Calcutta compared to GPS-only scenario and estimates intense scintillation-free (S4 < 0.6) satellite vehicle look angles at different hours of the postsunset period 19:00-01:00 LT during March 2014. A representative case of 1 March 2014 is highlighted in the paper and overall statistics for March 2014 presented to indicate quantitative advantages in terms of scintillation-free satellite vehicle look angles that may be utilized for planning communication and navigation channel spatial distribution under adverse ionospheric conditions. The number of satellites tracked and receiver position deviations has been found to show a good correspondence with the occurrence of intense scintillations and poor user receiver-satellite link geometry. The ground projection of the 350 km subionospheric points corresponding to multiconstellation shows extended spatial coverage during periods of scintillations (0.2 < S4 < 0.6) compared to GPS.

  2. Doppler lidar sensor for precision navigation in GPS-deprived environment

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  3. Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment

    NASA Technical Reports Server (NTRS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-01-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  4. Compact autonomous navigation system (CANS)

    NASA Astrophysics Data System (ADS)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  5. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.

  6. Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.

    1977-01-01

    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.

  7. 33 CFR 110.194a - Mobile Bay, Ala., and Mississippi Sound, Miss.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Sound, Miss. 110.194a Section 110.194a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Mississippi Sound, Miss. (a) The anchorage grounds. (1) The waters of lower Mobile Bay, near Cedar Point... south by latitude 30°20′00″, and on the west by longitude 88°06′00″. (2) The waters of Mississippi Sound...

  8. 33 CFR 110.194a - Mobile Bay, Ala., and Mississippi Sound, Miss.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Sound, Miss. 110.194a Section 110.194a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Mississippi Sound, Miss. (a) The anchorage grounds. (1) The waters of lower Mobile Bay, near Cedar Point... south by latitude 30°20′00″, and on the west by longitude 88°06′00″. (2) The waters of Mississippi Sound...

  9. 33 CFR 110.194a - Mobile Bay, Ala., and Mississippi Sound, Miss.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sound, Miss. 110.194a Section 110.194a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Mississippi Sound, Miss. (a) The anchorage grounds. (1) The waters of lower Mobile Bay, near Cedar Point... south by latitude 30°20′00″, and on the west by longitude 88°06′00″. (2) The waters of Mississippi Sound...

  10. 33 CFR 110.194a - Mobile Bay, Ala., and Mississippi Sound, Miss.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sound, Miss. 110.194a Section 110.194a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Mississippi Sound, Miss. (a) The anchorage grounds. (1) The waters of lower Mobile Bay, near Cedar Point... south by latitude 30°20′00″, and on the west by longitude 88°06′00″. (2) The waters of Mississippi Sound...

  11. 33 CFR 110.194a - Mobile Bay, Ala., and Mississippi Sound, Miss.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sound, Miss. 110.194a Section 110.194a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Mississippi Sound, Miss. (a) The anchorage grounds. (1) The waters of lower Mobile Bay, near Cedar Point... south by latitude 30°20′00″, and on the west by longitude 88°06′00″. (2) The waters of Mississippi Sound...

  12. Ground Taxi Navigation Problems and Training Solutions

    NASA Technical Reports Server (NTRS)

    Quinn, Cheryl; Walter, Kim E.; Rosekind, Mark (Technical Monitor)

    1997-01-01

    Adverse weather conditions can put considerable strain on the National Airspace System. Even small decreases in visibility on the airport surface can create delays, hinder safe movement and lead to errors. Studies of Aviation Safety Reporting System (ASRS) surface movement incidents support the need for technologies and procedures to improve ground operations in low-visibility conditions. This study examined 139 ASRS reports of low-visibility surface movement incidents at 10 major U.S. airports. Errors were characterized in terms of incident type, contributing factors and consequences. The incidents in the present sample were comprised of runway transgressions, taxiway excursions and ground conflicts. The primary contributing factors were Airport Layout and Markings, Communication and Distraction. In half the incidents the controller issued a new clearance or the flight crew took an evasive action and in the remaining half, no recovery attempt was made because the error was detected after the fact. By gaining a better understanding the factors that affect crew navigation in low visibility and the types of errors that are likely to occur, it will be possible to develop more robust technologies to aid pilots in the ground taxi task. Implications for crew training and procedure development for low-visibility ground taxi are also discussed.

  13. Simulation and analysis of differential global positioning system for civil helicopter operations

    NASA Technical Reports Server (NTRS)

    Denaro, R. P.; Cabak, A. R.

    1983-01-01

    A Differential Global Positioning System (DGPS) computer simulation was developed, to provide a versatile tool for assessing DGPS referenced civil helicopter navigation. The civil helicopter community will probably be an early user of the GPS capability because of the unique mission requirements which include offshore exploration and low altitude transport into remote areas not currently served by ground based Navaids. The Monte Carlo simulation provided a sufficiently high fidelity dynamic motion and propagation environment to enable accurate comparisons of alternative differential GPS implementations and navigation filter tradeoffs. The analyst has provided the capability to adjust most aspects of the system, the helicopter flight profile, the receiver Kalman filter, and the signal propagation environment to assess differential GPS performance and parameter sensitivities. Preliminary analysis was conducted to evaluate alternative implementations of the differential navigation algorithm in both the position and measurement domain. Results are presented to show that significant performance gains are achieved when compared with conventional GPS but that differences due to DGPS implementation techniques were small. System performance was relatively insensitive to the update rates of the error correction information.

  14. Human Factors Considerations for Area Navigation Departure and Arrival Procedures

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    Area navigation (RNAV) procedures are being implemented in the United States and around the world as part of a transition to a performance-based navigation system. These procedures are providing significant benefits and have also caused some human factors issues to emerge. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document RNAV-related human factors issues and propose areas for further consideration. The component focusing on RNAV Departure and Arrival Procedures involved discussions with expert users, a literature review, and a focused review of the NASA Aviation Safety Reporting System (ASRS) database. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for specific instrument procedure design guidelines that consider the effects of human performance. Ongoing industry and government activities to address air-ground communication terminology, design improvements, and chart-database commonality are strongly encouraged. A review of factors contributing to RNAV in-service errors would likely lead to improved system design and operational performance.

  15. On-the-fly Locata/inertial navigation system integration for precise maritime application

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance improvement on both stand-alone OTF Locata and INS is shown. The Locata/INS integration can achieve centimetre-level accuracy for position solutions, and centimetre-per-second accuracy for velocity determination.

  16. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  17. 7.3 Communications and Navigation

    NASA Technical Reports Server (NTRS)

    Manning, Rob

    2005-01-01

    This presentation gives an overview of the networks NASA currently uses to support space communications and navigation, and the requirements for supporting future deep space missions, including manned lunar and Mars missions. The presentation addresses the Space Network, Deep Space Network, and Ground Network, why new support systems are needed, and the potential for catastrophic failure of aging antennas. Space communications and navigation are considered during Aerocapture, Entry, Descent and Landing (AEDL) only in order to precisely position, track and interact with the spacecraft at its destination (moon, Mars and Earth return) arrival. The presentation recommends a combined optical/radio frequency strategy for deep space communications.

  18. The Aquila launch service for small satellites

    NASA Astrophysics Data System (ADS)

    Whittinghill, George R.; McKinney, Bevin C.

    1992-07-01

    The Aquila launch vehicle is described emphasizing its use in the deployment of small satellites for the commercial sector. The Aquila is designed to use a guidance, navigation, and control system, and the rocket is based on hybrid propulsion incorporating a liquid oxidizer with a solid polybutadiene fuel. The launch vehicle for the system is a ground-launched four-stage vehicle that can deliver 3,200 lbs of payload into a 185-km circular orbit at 90-deg inclination. Aquila avionics include inertial navigation, radar transponder, and an S-band telemetry transmitter. The payload environment minimizes in-flight acoustic levels, and the launch-ascent profile is characterized by low acceleration. The launch vehicle uses low-cost rocket motors, a high-performance LO(x) feed system, and erector launch capability which contribute to efficient launches for commercial payloads for low polar earth orbits.

  19. Differential tracking data types for accurate and efficient Mars planetary navigation

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Border, J. S.

    1991-01-01

    Ways in which high-accuracy differential observations of two or more deep space vehicles can dramatically extend the power of earth-based tracking over conventional range and Doppler tracking are discussed. Two techniques - spacecraft-spacecraft differential very long baseline interferometry (S/C-S/C Delta(VLBI)) and same-beam interferometry (SBI) - are discussed. The tracking and navigation capabilities of conventional range, Doppler, and quasar-relative Delta(VLBI) are reviewed, and the S/C-S/C Delta (VLBI) and SBI types are introduced. For each data type, the formation of the observable is discussed, an error budget describing how physical error sources manifest themselves in the observable is presented, and potential applications of the technique for Space Exploration Initiative scenarios are examined. Requirements for spacecraft and ground systems needed to enable and optimize these types of observations are discussed.

  20. Online service for monitoring the ionosphere based on data from the global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.

    2014-07-01

    A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.

  1. Helicopter Approach Capability Using the Differential Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1994-01-01

    The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.

  2. Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32

    NASA Technical Reports Server (NTRS)

    Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.

    1990-01-01

    The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.

  3. Automatic AVHRR image navigation software

    NASA Technical Reports Server (NTRS)

    Baldwin, Dan; Emery, William

    1992-01-01

    This is the final report describing the work done on the project entitled Automatic AVHRR Image Navigation Software funded through NASA-Washington, award NAGW-3224, Account 153-7529. At the onset of this project, we had developed image navigation software capable of producing geo-registered images from AVHRR data. The registrations were highly accurate but required a priori knowledge of the spacecraft's axes alignment deviations, commonly known as attitude. The three angles needed to describe the attitude are called roll, pitch, and yaw, and are the components of the deviations in the along scan, along track and about center directions. The inclusion of the attitude corrections in the navigation software results in highly accurate georegistrations, however, the computation of the angles is very tedious and involves human interpretation for several steps. The technique also requires easily identifiable ground features which may not be available due to cloud cover or for ocean data. The current project was motivated by the need for a navigation system which was automatic and did not require human intervention or ground control points. The first step in creating such a system must be the ability to parameterize the spacecraft's attitude. The immediate goal of this project was to study the attitude fluctuations and determine if they displayed any systematic behavior which could be modeled or parameterized. We chose a period in 1991-1992 to study the attitude of the NOAA 11 spacecraft using data from the Tiros receiving station at the Colorado Center for Astrodynamic Research (CCAR) at the University of Colorado.

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  6. Rigorous Performance Evaluation of Smartphone GNSS/IMU Sensors for ITS Applications

    PubMed Central

    Gikas, Vassilis; Perakis, Harris

    2016-01-01

    With the rapid growth in smartphone technologies and improvement in their navigation sensors, an increasing amount of location information is now available, opening the road to the provision of new Intelligent Transportation System (ITS) services. Current smartphone devices embody miniaturized Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU) and other sensors capable of providing user position, velocity and attitude. However, it is hard to characterize their actual positioning and navigation performance capabilities due to the disparate sensor and software technologies adopted among manufacturers and the high influence of environmental conditions, and therefore, a unified certification process is missing. This paper presents the analysis results obtained from the assessment of two modern smartphones regarding their positioning accuracy (i.e., precision and trueness) capabilities (i.e., potential and limitations) based on a practical but rigorous methodological approach. Our investigation relies on the results of several vehicle tracking (i.e., cruising and maneuvering) tests realized through comparing smartphone obtained trajectories and kinematic parameters to those derived using a high-end GNSS/IMU system and advanced filtering techniques. Performance testing is undertaken for the HTC One S (Android) and iPhone 5s (iOS). Our findings indicate that the deviation of the smartphone locations from ground truth (trueness) deteriorates by a factor of two in obscured environments compared to those derived in open sky conditions. Moreover, it appears that iPhone 5s produces relatively smaller and less dispersed error values compared to those computed for HTC One S. Also, the navigation solution of the HTC One S appears to adapt faster to changes in environmental conditions, suggesting a somewhat different data filtering approach for the iPhone 5s. Testing the accuracy of the accelerometer and gyroscope sensors for a number of maneuvering (speeding, turning, etc.,) events reveals high consistency between smartphones, whereas the small deviations from ground truth verify their high potential even for critical ITS safety applications. PMID:27527187

  7. Rigorous Performance Evaluation of Smartphone GNSS/IMU Sensors for ITS Applications.

    PubMed

    Gikas, Vassilis; Perakis, Harris

    2016-08-05

    With the rapid growth in smartphone technologies and improvement in their navigation sensors, an increasing amount of location information is now available, opening the road to the provision of new Intelligent Transportation System (ITS) services. Current smartphone devices embody miniaturized Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU) and other sensors capable of providing user position, velocity and attitude. However, it is hard to characterize their actual positioning and navigation performance capabilities due to the disparate sensor and software technologies adopted among manufacturers and the high influence of environmental conditions, and therefore, a unified certification process is missing. This paper presents the analysis results obtained from the assessment of two modern smartphones regarding their positioning accuracy (i.e., precision and trueness) capabilities (i.e., potential and limitations) based on a practical but rigorous methodological approach. Our investigation relies on the results of several vehicle tracking (i.e., cruising and maneuvering) tests realized through comparing smartphone obtained trajectories and kinematic parameters to those derived using a high-end GNSS/IMU system and advanced filtering techniques. Performance testing is undertaken for the HTC One S (Android) and iPhone 5s (iOS). Our findings indicate that the deviation of the smartphone locations from ground truth (trueness) deteriorates by a factor of two in obscured environments compared to those derived in open sky conditions. Moreover, it appears that iPhone 5s produces relatively smaller and less dispersed error values compared to those computed for HTC One S. Also, the navigation solution of the HTC One S appears to adapt faster to changes in environmental conditions, suggesting a somewhat different data filtering approach for the iPhone 5s. Testing the accuracy of the accelerometer and gyroscope sensors for a number of maneuvering (speeding, turning, etc.,) events reveals high consistency between smartphones, whereas the small deviations from ground truth verify their high potential even for critical ITS safety applications.

  8. 33 CFR 334.710 - The Narrows and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false The Narrows and Gulf of Mexico... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.710 The Narrows and Gulf of Mexico adjacent to.... The waters of The Narrows and the Gulf of Mexico easterly of the periphery of a circular area 5...

  9. Helicopter flight test demonstration of differential GPS

    NASA Technical Reports Server (NTRS)

    Denaro, R. P.; Beser, J.

    1985-01-01

    An off-line post-mission processing facility is being established by NASA Ames Research Center to analyze differential GPS flight tests. The current and future differential systems are described, comprising an airborne segment in an SH-3 helicopter, a GPS ground reference station, and a tracking system. The post-mission processing system provides for extensive measurement analysis and differential computation. Both differential range residual corrections and navigation corrections are possible. Some preliminary flight tests were conducted in a landing approach scenario and statically. Initial findings indicate the possible need for filter matching between airborne and ground systems (if used in a navigation correction technique), the advisability of correction smoothing before airborne incorporation, and the insensitivity of accuracy to either of the differential techniques or to update rates.

  10. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  11. A Backpack-Mounted Omnidirectional Camera with Off-the-Shelf Navigation Sensors for Mobile Terrestrial Mapping: Development and Forest Application

    PubMed Central

    Prol, Fabricio dos Santos; El Issaoui, Aimad; Hakala, Teemu

    2018-01-01

    The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5–7 cm). These results are consistent with those obtained for other PMTS approaches. PMID:29522467

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on the activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data, information systems, and reimbursable DSN work performed for other space agencies through NASA.

  13. An Interactive, Physics-Based Unmanned Ground Vehicle Simulator Leveraging Open Source Gaming Technology: Progress in the Development and Application of the Virtual Autonomous Navigation Environment (VANE) Desktop

    DTIC Science & Technology

    2009-01-01

    interface, mechatronics, video games 1. INTRODUCTION Engineering methods have substantially and continuously evolved over the past 40 years. In the past...1970s, video games have pioneered interactive simulation and laid the groundwork for inexpensive computing that individuals, corporations, and...purposes. This has not gone unnoticed, and software technology and techniques evolved for video games are beginning to have extraordinary impact in

  14. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl

    2015-01-01

    Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.

  15. Environmental Assessment: Relocation and Construction of the Panama City-Bay County International Airport (PFN) Doppler Very High Frequency Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC) to Tyndall Air Force Base (TAFB)

    DTIC Science & Technology

    2010-04-01

    endangered species, wetlands , floodplains, cultural resources, and socioeconomic resources. Construction of the VORTAC would have minor temporary...ground water, wetlands , and cultural resources. SUMMARY OF PUBLIC REVIEW AND INTERAGENCY COORDINATION: A 30-day public review period was held to... wetlands , floodplains, vegetation, wildlife, and threatened and endangered species); and cultural resources. i Table of Contents COVER SHEET

  16. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  17. Techniques for measuring arrival times of pulsar signals 1: DSN observations from 1968 to 1980

    NASA Technical Reports Server (NTRS)

    Downs, G. S.; Reichley, P. E.

    1980-01-01

    Techniques used in the ground based observations of pulsars are described, many of them applicable in a navigation scheme. The arrival times of the pulses intercepting Earth are measured at time intervals from a few days to a few months. Low noise, wide band receivers, amplify signals intercepted by 26 m, 34, and 64 m antennas. Digital recordings of total received signal power versus time are cross correlated with the appropriate pulse template.

  18. Integrated Network Architecture for Sustained Human and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  19. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage

    PubMed Central

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-01-01

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user positioning. PMID:27529252

  20. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage.

    PubMed

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-08-12

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user positioning.

  1. School Counselors' Strategies for Social Justice Change: A Grounded Theory of What Works in the Real World

    ERIC Educational Resources Information Center

    Singh, Anneliese A.; Urbano, Alessandra; Haston, Meg; McMahon, Eleanor

    2010-01-01

    A qualitative study used a grounded theory methodology to explore the strategies that 16 school counselors who self-identified as social justice agents used to advocate for systemic change within their school communities. Findings included seven overarching themes: (a) using political savvy to navigate power structures, (b) consciousness raising,…

  2. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.

  3. GPS Navigation Results from the Low Power Transceiver CANDOS Experiment on STS-107

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Chris; Baraban, Dmitri; Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Savigation Demonstration on Shuttle (CANDOS) experiment flown on STS- 107. The CAkDOS experiment consisted of the Low Power Transceiver (LPT) that hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using the LPT's Tracking and Data Relay Satellite System (TDRSS) uplinh'downlink communications capabilit! . An overview of the LPT's navigation software and the GPS experiment timeline is presented. In addition. this paper discusses GEODE performance results. including comparisons ibith the Best Estimate of Trajectory (BET). N.ASA Johnson Space Center (JSC) real-time ground navigation vectors. and post-processed solutions using the Goddard Trajectory Determination System (GTDS).

  4. Autonomous integrated GPS/INS navigation experiment for OMV. Phase 1: Feasibility study

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Priovolos, George J.; Rhodehamel, Harley

    1990-01-01

    The phase 1 research focused on the experiment definition. A tightly integrated Global Positioning System/Inertial Navigation System (GPS/INS) navigation filter design was analyzed and was shown, via detailed computer simulation, to provide precise position, velocity, and attitude (alignment) data to support navigation and attitude control requirements of future NASA missions. The application of the integrated filter was also shown to provide the opportunity to calibrate inertial instrument errors which is particularly useful in reducing INS error growth during times of GPS outages. While the Orbital Maneuvering Vehicle (OMV) provides a good target platform for demonstration and for possible flight implementation to provide improved capability, a successful proof-of-concept ground demonstration can be obtained using any simulated mission scenario data, such as Space Transfer Vehicle, Shuttle-C, Space Station.

  5. Water Detection Based on Object Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2012-01-01

    Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.

  6. New approach for processing data provided by an INS/GPS system onboard a vehicle

    NASA Astrophysics Data System (ADS)

    Dumitrascu, Ana; Serbanescu, Ionut; Tamas, Razvan D.; Danisor, Alin; Caruntu, George; Ticu, Ionela

    2016-12-01

    Due to the technology development, navigation systems are widely used in ground vehicle applications such as position prediction, safety of life, etc. It is known that a hybrid navigation system consisting of a GPS and inertial navigation system (INS) can provide a more accurate position prediction. By applying a Method of Moments (MoM) approach on the acquired data with INS/GPS we can extract both the coordinate and important information concerning safety of life. This kind of system will be cost effective and can also be used as a black box on boats, cars, submersible ships and even on small aircrafts.

  7. Real-time adaptive off-road vehicle navigation and terrain classification

    NASA Astrophysics Data System (ADS)

    Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat

    2013-05-01

    We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the au­tonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.

  8. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy

    PubMed Central

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter. PMID:23535715

  9. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  10. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  11. Tracked robot controllers for climbing obstacles autonomously

    NASA Astrophysics Data System (ADS)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  12. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  13. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    NASA Astrophysics Data System (ADS)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield consistently for both seasons. The VT-R4 stages are the best period of time to estimate the corn yield. The SICMS system is only suitable for the RS research at a fixed location. In order to provide more flexibility of the RS image collection, a novel UAV based system has been studied. The UAV based agricultural RS system used a light helicopter platform equipped with a multi-spectral camera. The UAV control system consisted of an on-board and a ground station subsystem. For the on-board subsystem, an Extended Kalman Filter (EKF) based UAV navigation system was designed and implemented. The navigation system, using low cost inertial sensors, magnetometer, GPS and a single board computer, was capable of providing continuous estimates of UAV position and attitude at 50 Hz using sensor fusion techniques. The ground station subsystem was designed to be an interface between a human operator and the UAV to implement mission planning, flight command activation, and real-time flight monitoring. The navigation system is controlled by the ground station, and able to navigate the UAV in the air to reach the predefined waypoints and trigger the multi-spectral camera. By so doing, the aerial images at each point could be captured automatically. The developed UAV RS system can provide a maximum flexibility in crop field RS image collection. It is essential to perform the geometric correction and the geocoding before an aerial image can be used for precision farming. An automatic (no Ground Control Point (GCP) needed) UAV image georeferencing algorithm was developed. This algorithm can do the automatic image correction and georeferencing based on the real-time navigation data and a camera lens distortion model. The accuracy of the georeferencing algorithm was better than 90 cm according to a series test. The accuracy that has been achieved indicates that, not only is the position solution good, but the attitude error is extremely small. The waypoints planning for UAV flight was investigated. It suggested that a 16.5% forward overlap and a 15% lateral overlap were required to avoiding missing desired mapping area when the UAV flies above 45 m high with 4.5 mm lens. A whole field mosaic image can be generated according to the individual image georeferencing information. A 0.569 m mosaic error has been achieved and this accuracy is sufficient for many of the intended precision agricultural applications. With careful interpretation, the UAV images are an excellent source of high spatial and temporal resolution data for precision agricultural applications. (Abstract shortened by UMI.)

  14. Multi-instrument observations of the ionospheric and plasmaspheric density structure

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.

    2008-05-01

    : The density within the ionosphere and plasmasphere can be monitored using a combination of techniques that use both ground- and space-based instruments. We are combining diagnostic observations of everything, but the kitchen sink. These include observations of GPS TEC, TOPEX and JASON TEC, IMAGE EUV and FUV, GUVI composition data, ULF resonances, and many other multi-satellite data sets such as DMSP in situ observations. The dramatically growing number of GPS receivers on the ground and onboard Low-Earth-Orbit (LEO) satellites offers an excellent opportunity for remote sensing and monitoring of the ionospheric and plasmaspheric density structure using GPS TEC tomographic reconstruction technique. This allows us to clearly quantify magnetosphere-ionosphere (M-I) coupling dynamics, as well as confirm the long-standing conjecture that the mid-latitude trough and plasmapause are on the same field line. This has been demonstrated globally, for the first time, using a combination of data from IMAGE EUV and ground- and space-based GPS receivers. The two dimensional tomographic image of the ionosphere and plasmasphere, using data from the GPS receiver onboard LEO satellites, such as FedSat, CHAMP, COSMIC, etc, also provides a new ability to image the flux tube structure of ionospheric ion outflows, tracking flux tube structure up to 3.17Re (20,200 km) altitude for the first time. The combination of data from the altimeter on JASON and ground-based GPS network also provides an excellent opportunity to experimentally estimate the plasmaspheric density contribution to the ground-based GPS TEC and thus to the degradation of navigation and communication accuracy.

  15. Navigating the grounded theory terrain. Part 1.

    PubMed

    Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John

    2011-01-01

    The decision to use grounded theory is not an easy one and this article aims to illustrate and explore the methodological complexity and decision-making process. It explores the decision making of one researcher in the first two years of a grounded theory PhD study looking at the psychosocial training needs of nurses and healthcare assistants working with people with dementia in residential care. It aims to map out three different approaches to grounded theory: classic, Straussian and constructivist. In nursing research, grounded theory is often referred to but it is not always well understood. This confusion is due in part to the history of grounded theory methodology, which is one of development and divergent approaches. Common elements across grounded theory approaches are briefly outlined, along with the key differences of the divergent approaches. Methodological literature pertaining to the three chosen grounded theory approaches is considered and presented to illustrate the options and support the choice made. The process of deciding on classical grounded theory as the version best suited to this research is presented. The methodological and personal factors that directed the decision are outlined. The relative strengths of Straussian and constructivist grounded theories are reviewed. All three grounded theory approaches considered offer the researcher a structured, rigorous methodology, but researchers need to understand their choices and make those choices based on a range of methodological and personal factors. In the second article, the final methodological decision will be outlined and its research application described.

  16. Flight data acquisition methodology for validation of passive ranging algorithms for obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.

    1990-01-01

    The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.

  17. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  18. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  19. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  20. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

Top