Sample records for ground state solution

  1. Ground state sign-changing solutions for fractional Kirchhoff equations in bounded domains

    NASA Astrophysics Data System (ADS)

    Luo, Huxiao; Tang, Xianhua; Gao, Zu

    2018-03-01

    We study the existence of ground state sign-changing solutions for the fractional Kirchhoff problem. Under mild assumptions on the nonlinearity, by using some new analytical skills and the non-Nehari manifold method, we prove that the fractional Kirchhoff problem possesses a ground state sign-changing solution ub. Moreover, we show that the energy of ub is strictly larger than twice that of the ground state solutions of Nehari-type. Finally, we establish the convergence property of ub as the parameter b ↘ 0. Our results generalize some results obtained by Shuai [J. Differ. Equations 259, 1256 (2015)] and Tang and Cheng [J. Differ. Equations 261, 2384 (2016)].

  2. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    PubMed

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.

  3. A Discussion of Patient Safety Programs in the United States Air Force Ground Medical Expeditionary Environment and an Analysis of Potential Solutions for Increasing Their Effectiveness

    DTIC Science & Technology

    2017-05-01

    and 4N to work Patient Safety together, and it has worked out fine in our environment .” • “It is my opinion that there needs to be a permanent full...GROUND MEDICAL EXPEDITIONARY ENVIRONMENT AND AN ANALYSIS OF POTENTIAL SOLUTIONS FOR INCREASING THEIR EFFECTIVENESS By: James Lee...DISCUSSION OF PATIENT SAFETY PROGRAMS IN THE UNITED STATES AIR FORCE GROUND MEDICAL EXPEDITIONARY ENVIRONMENT AND AN ANALYSIS OF POTENTIAL SOLUTIONS FOR

  4. Approximation solution of Schrodinger equation for Q-deformed Rosen-Morse using supersymmetry quantum mechanics (SUSY QM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari

    2015-09-30

    The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.

  5. Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Bussola, Francesco; Dappiaggi, Claudio; Ferreira, Hugo R. C.; Khavkine, Igor

    2017-11-01

    We consider a real, massive scalar field in Bañados-Teitelboim-Zanelli spacetime, a 2 +1 -dimensional black hole solution of Einstein's field equations with a negative cosmological constant. First, we analyze the space of classical solutions in a mode decomposition, and we characterize the collection of all admissible boundary conditions of Robin type which can be imposed at infinity. Second, we investigate whether, for a given boundary condition, there exists a ground state by constructing explicitly its two-point function. We demonstrate that for a subclass of the boundary conditions it is possible to construct a ground state that locally satisfies the Hadamard property. In all other cases, we show that bound state mode solutions exist and, therefore, such construction is not possible.

  6. Contrasting intermolecular and intramolecular exciplex formation of a 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad.

    PubMed

    Imoto, Mitsutaka; Ikeda, Hiroshi; Fujii, Takayuki; Taniguchi, Hisaji; Tamaki, Akihiro; Takeda, Motonori; Mizuno, Kazuhiko

    2010-05-07

    An intramolecular exciplex is formed upon excitation of the cyclohexane solution of the 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad, but little if any intramolecular CT complex exists in the ground state of this substance in solution. In contrast, in the crystalline state, the dyad forms an intermolecular mixed-stack CT complex in the ground state and an intermolecular exciplex when it is photoexcited.

  7. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1987-01-01

    The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.

  8. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals

    NASA Astrophysics Data System (ADS)

    Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias

    2018-05-01

    We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.

  9. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  10. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    NASA Technical Reports Server (NTRS)

    Mandra, Salvatore

    2017-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  11. Quenched crystal-field disorder and magnetic liquid ground states in Tb 2 Sn 2 - x Ti x O 7 [Crystal field disorder in the quantum spin ice ground state of Tb2Sn2-xTixO7

    DOE PAGES

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...

    2015-06-01

    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less

  12. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, T.E.; Franke, O.L.; Bennett, G.D.

    1984-01-01

    The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)

  13. σ -SCF: A Direct Energy-targeting Method To Mean-field Excited States

    NASA Astrophysics Data System (ADS)

    Ye, Hongzhou; Welborn, Matthew; Ricke, Nathan; van Voorhis, Troy

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g. Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF, tend to fall into the lowest solution consistent with a given symmetry - a problem known as ``variational collapse''. In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states - ground or excited - are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). This work was funded by a Grant from NSF (CHE-1464804).

  14. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport

    USGS Publications Warehouse

    Langevin, C.D.; Guo, W.

    2006-01-01

    This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport. ?? 2006 National Ground Water Association.

  15. Computational solution of atmospheric chemistry problems

    NASA Technical Reports Server (NTRS)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  16. Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Luo, Xiao

    2018-06-01

    We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.

  17. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  18. Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential

    NASA Astrophysics Data System (ADS)

    Cipolatti, R.; de Macedo Lira, Y.; Trallero-Giner, C.

    2018-03-01

    We consider a generalized nonlinear Schrödinger equation (GNLS) with a single power nonlinearity of the form λ ≤ft\\vert \\varphi \\right\\vert p , with p  >  0 and λ\\in{R} , in the presence of a harmonic confinement. We report the conditions that p and λ must fulfill for the existence and uniqueness of ground states of the GNLS. We discuss the Cauchy problem and summarize which conditions are required for the nonlinear term λ ≤ft\\vert \\varphi \\right\\vert p to render the ground state solutions orbitally stable. Based on a new variational method we provide exact formulæ for the minimum energy for each index p and the changing range of values of the nonlinear parameter λ. Also, we report an approximate close analytical expression for the ground state energy, performing a comparative analysis of the present variational calculations with those obtained by a generalized Thomas-Fermi approach, and soliton solutions for the respective ranges of p and λ where these solutions can be implemented to describe the minimum energy.

  19. Landscape Encodings Enhance Optimization

    PubMed Central

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  20. Particle-like solutions of the Einstein-Dirac-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-08-01

    We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.

  1. Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution

    NASA Astrophysics Data System (ADS)

    Mereshchenko, Andrey S.

    Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those for copper(II) complexes studied so far, in particular, copper blue proteins. The highest 2A1 and lowest 2E LF states relax directly to the ground electronic state whereas the intermediate 2B1 LF state relaxes stepwise through the 2E state. The LMCT excited states are short-lived undergoing either ionic dissociation (CuCl3- + Cl-) or cascading relaxation through the manifold of vibrationally hot LF states to the ground state.

  2. Ground tire rubber (GTR) as a component material in concrete mixtures for paving concrete, phase 2 : [summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Using ground tire rubber (GTR) in : concrete mixtures is a possible solution : to mitigating flexibility and thermal : expansion issues with high-strength : concrete pavements. Florida State : University researchers designed concrete : mixtures using...

  3. A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine

    Treesearch

    Daniel Joseph Yelle

    2009-01-01

    Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...

  4. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    NASA Astrophysics Data System (ADS)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  5. σ-SCF: A direct energy-targeting method to mean-field excited states.

    PubMed

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  6. Numerical study of fractional nonlinear Schrödinger equations.

    PubMed

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-12-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  7. Numerical study of fractional nonlinear Schrödinger equations

    PubMed Central

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  8. Photoisomerization and photoionization of the photoactive yellow protein chromophore in solution.

    PubMed

    Larsen, Delmar S; Vengris, Mikas; van Stokkum, Ivo H M; van der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk

    2004-04-01

    Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein.

  9. Photoisomerization and Photoionization of the Photoactive Yellow Protein Chromophore in Solution

    PubMed Central

    Larsen, Delmar S.; Vengris, Mikas; van Stokkum, Ivo H. M.; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein. PMID:15041690

  10. σ-SCF: A direct energy-targeting method to mean-field excited states

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  11. Bifurcation analysis of eight coupled degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki

    2018-06-01

    A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.

  12. Extremal optimization for Sherrington-Kirkpatrick spin glasses

    NASA Astrophysics Data System (ADS)

    Boettcher, S.

    2005-08-01

    Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient accuracy and with statistical significance are obtained for systems with more than N=1000 variables using ±J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less than 1% accuracy rational values of ω=2/3 for the finite-size correction exponent, and of ρ=3/4 for the fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet. The probability density function for ground state energies is highly skewed and identical within numerical error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity shows that the skewness is connectivity-dependent.

  13. Synthesis, characterization, and spectroscopic investigation of benzoxazole conjugated Schiff bases.

    PubMed

    Santos, Fabiano S; Costa, Tania M H; Stefani, Valter; Gonçalves, Paulo F B; Descalzo, Rodrigo R; Benvenutti, Edilson V; Rodembusch, Fabiano S

    2011-11-24

    Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.

  14. Observation and control of coherent torsional dynamics in a quinquethiophene molecule.

    PubMed

    Cirmi, Giovanni; Brida, Daniele; Gambetta, Alessio; Piacenza, Manuel; Della Sala, Fabio; Favaretto, Laura; Cerullo, Giulio; Lanzani, Guglielmo

    2010-07-28

    By applying femtosecond pump-probe spectroscopy to a substituted quinquethiophene molecule in solution, we observe in the time domain the coherent torsional dynamics that drives planarization of the excited state. Our interpretation is based on numerical modeling of the ground and excited state potential energy surfaces and simulation of wavepacket dynamics, which reveals two symmetric excited state deactivation pathways per oscillation period. We use the acquired knowledge on torsional dynamics to coherently control the excited state population with a pump-dump scheme, exploiting the non-stationary Franck-Condon overlap between ground and excited states.

  15. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Treesearch

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  16. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 2, Non-catalyzed reactions with the wood cell wall

    Treesearch

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    Solution-state NMR provides a powerful tool to observe the presence or absence of covalent bonds between wood and adhesives. Finely ground wood can be dissolved in an NMR compatible solvent system containing dimethylsulfoxide-d6 and N-methylimidazole-d6, in which the wood polymers remain largely intact. High-resolution...

  17. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Treesearch

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  18. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com; Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can bemore » computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.« less

  19. Fluorescent temperature sensor

    DOEpatents

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  20. Physical approach to quantum networks with massive particles

    NASA Astrophysics Data System (ADS)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These localized solutions only couple to each other and are able to jump from one site to another as if they were trapped in a discrete lattice.

  1. A spectroscopic study of the molecular interactions of harmane with pyrimidine and other diazines.

    PubMed

    Muñoz, M A; Guardado, P; Galán, M; Carmona, C; Balón, M

    2000-01-17

    FTIR, UV-vis, steady state and time-resolved fluorescence measurements show that harmane (1-methyl-9H-pyrido/3,4-b/indole) interacts with pyrimidine and its isomers pyrazine and pyridazine in its ground and lowest singlet states. The mechanisms of interaction are dependent on both the structure of the diazine and the nature of the solvent. Thus, in a low polar solvent such as toluene, harmane forms ground state 1:1 hydrogen-bonded complexes with all the diazines. These complexes quench the fluorescence of harmane and diminish its fluorescence lifetime. Conversely, in buffered (pH 8.7) aqueous solutions, pyrimidine behaves differently from the other diazines. Thus, whereas pyrimidine only interacts with harmane in its ground state, pyrazine and pyridazine also interact in the excited state. The harmane-pyrimidine ground state interaction is an entropic controlled process. Therefore, we propose the formation of pi-pi stacked 1:1 complexes between these substrates. Association constants for the different types of complexes and quenching parameters are reported.

  2. Conformationally Constrained, Stable, Triplet Ground State (S = 1) Nitroxide Diradicals. Antiferromagnetic Chains of S = 1 Diradicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajca, Andrzej; Takahashi, Masahiro; Pink, Maren

    2008-06-30

    Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k >> 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moietiesmore » from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k {approx} 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H {hor_ellipsis} O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.« less

  3. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less

  4. Adiabatic Quantum Computation with Neutral Cesium

    NASA Astrophysics Data System (ADS)

    Hankin, Aaron; Parazzoli, L.; Chou, Chin-Wen; Jau, Yuan-Yu; Burns, George; Young, Amber; Kemme, Shanalyn; Ferdinand, Andrew; Biedermann, Grant; Landahl, Andrew; Ivan H. Deutsch Collaboration; Mark Saffman Collaboration

    2013-05-01

    We are implementing a new platform for adiabatic quantum computation (AQC) based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism, thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. University of New Mexico: Ivan H. Deutsch, Tyler Keating, Krittika Goyal.

  5. The Kitaev honeycomb model on surfaces of genus g ≥ 2

    NASA Astrophysics Data System (ADS)

    Brennan, John; Vala, Jiří

    2018-05-01

    We present a construction of the Kitaev honeycomb lattice model on an arbitrary higher genus surface. We first generalize the exact solution of the model based on the Jordan–Wigner fermionization to a surface with genus g = 2, and then use this as a basic module to extend the solution to lattices of arbitrary genus. We demonstrate our method by calculating the ground states of the model in both the Abelian doubled {Z}}}2 phase and the non-Abelian Ising topological phase on lattices with the genus up to g = 6. We verify the expected ground state degeneracy of the system in both topological phases and further illuminate the role of fermionic parity in the Abelian phase.

  6. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prima, Eka Cahya; Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung; International Program on Science Education, Universitas Pendidikan Indonesia

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. Themore » results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.« less

  7. Approximate ground states of the random-field Potts model from graph cuts

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay

    2018-05-01

    While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.

  8. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problemmore » invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational approach of [3].« less

  9. Quantum vertex model for reversible classical computing.

    PubMed

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  10. Quantum vertex model for reversible classical computing

    NASA Astrophysics Data System (ADS)

    Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.

    2017-05-01

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  11. Apprenticeships Make a Comeback in the United States

    ERIC Educational Resources Information Center

    Labi, Aisha

    2012-01-01

    The close connections between industry and academe, in which students simultaneously train and study, are gaining ground in the United States. Inspired by Germany's model, states are encouraging community colleges and manufacturers to work together on training programs. This offers a possible solution to a problem that continues to vex the United…

  12. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  13. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  14. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  15. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  16. FeRh ground state and martensitic transformation

    DOE PAGES

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2018-01-09

    Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less

  17. Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes

    NASA Astrophysics Data System (ADS)

    Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.

    2014-06-01

    Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.

  18. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang

    2015-12-21

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is stronglymore » correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.« less

  19. Preliminary Map of Potentially Karstic Carbonate Rocks in the Central and Southern Appalachian States

    USGS Publications Warehouse

    Weary, David J.

    2008-01-01

    Karst is a landscape produced by dissolution of rocks and the development of integrated subterranean drainages dominated by the flow of ground water in solutionally enlarged conduits. Karst landscapes typically include cave entrances, sinkholes, blind valleys, losing streams, springs, and large and small-scale solution features on bedrock surfaces. Water-bearing rocks beneath the surface containing solutionally enlarged pores, fractures, or conduits are referred to as karst aquifers. About 40 percent of all ground water extracted in the United States comes from karst aquifers (Karst Waters Institute). Karst means many things to many people. To most cavers and many speleologists, karst means areas containing caves. To engineers, home builders, local governments, and insurance companies, karst is exemplified by the occurrence of sinkholes and subsidence hazard. To hydrologists, well drillers, and environmental consultants, the focus on karst may be more limited to karst aquifers and springs. Precise figures are not available, but ground collapses in karst areas in the United States require hundreds of millions of dollars in repair and mitigation costs each year. Most karst in the United States is formed in either carbonate or evaporite rocks. This map depicts only areas of carbonate rock outcrop, the chief host for karst formation in the eastern United States. The U.S. Geological Survey (USGS), in cooperation with the National Cave and Karst Research Institute (NCKRI), the National Speleological Society (NSS), and various State geological surveys, is working on a new national karst map that will delineate areas of karst and karst-like features nationwide. This product attempts to identify potentially karstic areas of the Appalachian states as defined by the Appalachian Regional Commission (ARC), with the addition of the state of Delaware. This map is labeled preliminary because there is an expectation that it will be revised and updated as part of a new national karst map.

  20. Rationalization of the solvation effects on the AtO+ ground-state change.

    PubMed

    Ayed, Tahra; Réal, Florent; Montavon, Gilles; Galland, Nicolas

    2013-09-12

    (211)At radionuclide is of considerable interest as a radiotherapeutic agent for targeted alpha therapy in nuclear medicine, but major obstacles remain because the basic chemistry of astatine (At) is not well understood. The AtO(+) cationic form might be currently used for (211)At-labeling protocols in aqueous solution and has proved to readily react with inorganic/organic ligands. But AtO(+) reactivity must be hindered at first glance by spin restriction quantum rules: the ground state of the free cation has a dominant triplet character. Investigating AtO(+) clustered with an increasing number of water molecules and using various flavors of relativistic quantum methods, we found that AtO(+) adopts in solution a Kramers restricted closed-shell configuration resembling a scalar-relativistic singlet. The ground-state change was traced back to strong interactions, namely, attractive electrostatic interactions and charge transfer, with water molecules of the first solvation shell that lift up the degeneracy of the frontier π* molecular orbitals (MOs). This peculiarity brings an alternative explanation to the highly variable reproducibility reported for some astatine reactions: depending on the production protocols (with distillation in gas-phase or "wet chemistry" extraction), (211)At may or may not readily react.

  1. DNA-DNA interaction beyond the ground state

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Wynveen, A.; Kornyshev, A. A.

    2004-11-01

    The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first order for nonhomologous DNA and weaker order for homologous sequences.

  2. Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light.

    PubMed

    Vennekate, Hendrik; Schwarzer, Dirk; Torres-Alacan, Joel; Krahe, Oliver; Filippou, Alexander C; Neese, Frank; Vöhringer, Peter

    2012-05-14

    The ultrafast photo-induced primary processes of the iron-(III) azido complex, [Fe(III)N(3)(cyclam-acetato)] PF(6) (1), in acetonitrile solution at room temperature were studied using femtosecond spectroscopy with ultraviolet (UV) excitation and mid-infrared (MIR) detection. Following the absorption of a 266 nm photon, the complex undergoes an internal conversion back to the electronic doublet ground state at a time scale below 2 ps. Subsequently, the electronic ground state vibrationally cools with a characteristic time constant of 13 ps. A homolytic bond cleavage was also observed by the appearance of ground state azide radicals, which were identified by their asymmetric stretching vibration at 1659 cm(-1). The azide radical recombines in a geminate fashion with the iron containing fragment within 20 ps. The cage escape leading to well separated fragments after homolytic Fe-N bond breakage was found to occur with a quantum yield of 35%. Finally, non-geminate recombination at nanosecond time scales was seen to further reduce the photolytic quantum yield to below 20% at a wavelength of 266 nm. This journal is © the Owner Societies 2012

  3. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  4. Estimation of ground and excited state dipole moment of laser dyes C504T and C521T using solvatochromic shifts of absorption and fluorescence spectra.

    PubMed

    Basavaraja, Jana; Suresh Kumar, H M; Inamdar, S R; Wari, M N

    2016-02-05

    The absorption and fluorescence spectra of laser dyes: coumarin 504T (C504T) and coumarin 521T (C521T) have been recorded at room temperature in a series of non-polar and polar solvents. The spectra of these dyes showed bathochromic shift with increasing in solvent polarity indicating the involvement of π→π⁎ transition. Kamlet-Taft and Catalan solvent parameters were used to analyze the effect of solvents on C504T and C521T molecules. The study reveals that both general solute-solvent interactions and specific interactions are operative in these two systems. The ground state dipole moment was estimated using Guggenheim's method and also by quantum mechanical calculations. The solvatochromic data were used to determine the excited state dipole moment (μ(e)). It is observed that dipole moment value of excited state (μ(e)) is higher than that of the ground state in both the laser dyes indicating that these dyes are more polar in nature in the excited state than in the ground state. Copyright © 2015. Published by Elsevier B.V.

  5. FeRh ground state and martensitic transformation

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2018-01-01

    Cubic B 2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B 2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90 ±10 K . We also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed [Phys. Rev. B 94, 180407(R) (2016), 10.1103/PhysRevB.94.180407], but a constrained solution.

  6. Ground states for fractional Schrödinger equations with critical growth

    NASA Astrophysics Data System (ADS)

    Li, Quanqing; Teng, Kaimin; Wu, Xian

    2018-03-01

    In this paper, we study the following critical fractional Schrödinger equation: (-Δ) su +V (x ) u =|u |2s*-2u +λ f (x ,u ) , x ∈RN, where λ > 0, 0 < s < 1, N > 2s, 2s*=2/N N -2 s , (-Δ)s denotes the fractional Laplacian of order s, and f is a continuous superlinear but subcritical function. When V and f are asymptotically periodic in x, we prove that the equation has a ground state solution for large λ by the Nehari method.

  7. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    PubMed

    Ashwood, Brennan; Jockusch, Steffen; Crespo-Hernández, Carlos E

    2017-02-28

    6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug's overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S₂(ππ*) state, which is followed by ultrafast internal conversion to the S₁(nπ*) state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25%) of the population that reaches the S₁(nπ*) state repopulates the ground state. The T₁(ππ*) state decays to the ground state in 1.4 ± 0.2 μs under N₂-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O₂-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T₁(ππ*) state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed increase in the rates of intersystem crossing in 6-thioguanine upon N9-glycosylation.

  8. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    PubMed

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  9. Experimental and theoretical investigation of the molecular, electronic structure and solvatochromism of phenyl salicylate: External electric field effect on the electronic structure

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Sıdır, Yadigar Gülseven

    2017-11-01

    The UV-vis absorption and steady state fluorescence spectra of phenyl salicylate (abbreviated as PS) have been recorded in a series of non-polar, polar protic and polar aprotic solvents at room temperature and the obtained spectral data are used to determine the solvatochromic behavior and the ground and excited state dipole moments. Basis set sensitive molecular structure along with X-ray crystal data are evaluated. The ground state and excited state dipole moments are determined by using Lippert-Mataga, Bakhshiev, Bilot-Kawski and Reichardt solvatochromic shift methods as a function of dielectric constant (ε) and refractive index (n) of the solvents. The larger excited state dipole moment value indicates the more polar PS in the excited state. The rate of μe/μg is found as 2.4239. Solvatochromic behavior of PS is enlightened by using Kamlet-Taft and Catalan models. Kamlet-Taft solvatochromic model indicates that non-specific solute solvent interactions are controlled by solvent dispersion-induction forces and specific interactions are directed by hydrogen-bond donor capacity of solvent. Catalan solvatochromic model designates that solute-solvent interactions are governed by solvent polarizability. Ground and excited state dipole moments are found theoretically by using DFT/B3LYP/6-311++G(d, p) and TDDFT/B3LYP/6-31++G(d, p) methods. External electric field effect on LUMO-HOMO band gap and dipole moment have been investigated by using B3LYP/6-311++G(d, p) method.

  10. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  11. Many-body Green’s function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Peng, Yang; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem

    2015-12-21

    We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximationsmore » published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system.« less

  12. Aspects of the RVB Luttinger Liquid Theory of the High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Ren, Yong

    1992-01-01

    This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to the Hubbard model and the normal state properties of the high T_{rm c} superconductors, we briefly examine the definition of the Fermi liquid and its breakdown. Then we explain why the 1D Hubbard model is the best starting point to approach our problem. In one dimension, the exact Lieb-Wu solution is available. We discuss the Lieb-Wu solution, and calculate various asymptotic correlation functions in the ground state. This clarifies the nature of the ground state which has not been known before. Instead of simply getting the exponents of the correlation functions from the Bethe Ansatz integral equations, we establish the connection between phase shifts at different Fermi points and the asymptotic correlation functions. We believe that this connection contains the most important physics and it can be readily generalized into higher dimensions. We then discuss bosonization in two dimensions and define the 2D RVB-Luttinger liquid theory, proposing that the ground state of the 2D Hubbard model belongs to a different fixed point than the Landau Fermi liquid-Luttinger liquid. Finally we apply the understanding of the 1D result to explain the normal state properties of the high T_ {c} superconductors, putting emphasis on how the non-Fermi liquid correlation functions explain the "anomalous" experimental results. In the Appendix, several issues related to the 1D and 2D Hubbard model are discussed.

  13. LETTER TO THE EDITOR: The quantum Knizhnik Zamolodchikov equation, generalized Razumov Stroganov sum rules and extended Joseph polynomials

    NASA Astrophysics Data System (ADS)

    Di Francesco, P.; Zinn-Justin, P.

    2005-12-01

    We prove higher rank analogues of the Razumov Stroganov sum rule for the ground state of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the ground state of the Ak-1 IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\\widehat{\\frak{sl}(k)}) quantum Knizhnik Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of quantum Hall effect wavefunctions at filling fraction ν = k. In addition to the generalized Razumov Stroganov point q = -eiπ/k+1, another combinatorially interesting point is reached in the rational limit q → -1, where we identify the solution with extended Joseph polynomials associated with the geometry of upper triangular matrices with vanishing kth power.

  14. Jastrow-like ground states for quantum many-body potentials with near-neighbors interactions

    NASA Astrophysics Data System (ADS)

    Baradaran, Marzieh; Carrasco, José A.; Finkel, Federico; González-López, Artemio

    2018-01-01

    We completely solve the problem of classifying all one-dimensional quantum potentials with nearest- and next-to-nearest-neighbors interactions whose ground state is Jastrow-like, i.e., of Jastrow type but depending only on differences of consecutive particles. In particular, we show that these models must necessarily contain a three-body interaction term, as was the case with all previously known examples. We discuss several particular instances of the general solution, including a new hyperbolic potential and a model with elliptic interactions which reduces to the known rational and trigonometric ones in appropriate limits.

  15. Using narrowband excitation to confirm that the S∗ state in carotenoids is not a vibrationally-excited ground state species

    NASA Astrophysics Data System (ADS)

    Jailaubekov, Askat E.; Song, Sang-Hun; Vengris, Mikas; Cogdell, Richard J.; Larsen, Delmar S.

    2010-02-01

    The hypothesis that S∗ is a vibrationally-excited ground-state population is tested and discarded for two carotenoid samples: β-carotene in solution and rhodopin glucoside embedded in the light harvesting 2 protein from Rhodopseudomonas acidophila. By demonstrating that the transient absorption signals measured in both systems that are induced by broadband (1000 cm -1) and narrowband (50 cm -1) excitation pulses are near identical and hence bandwidth independent, the impulsive stimulated Raman scattering mechanism proposed as the primary source for S∗ generation is discarded. To support this conclusion, previously published multi-pulse pump-dump-probe signals [17] are revisited to discard secondary mechanisms for S∗ formation.

  16. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  17. Quantum Hall ferromagnets and transport properties of buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Luo, Wenchen; Chakraborty, Tapash

    2015-10-01

    We study the ground states and low-energy excitations of a generic Dirac material with spin-orbit coupling and a buckling structure in the presence of a magnetic field. The ground states can be classified into three types under different conditions: SU(2), easy-plane, and Ising quantum Hall ferromagnets. For the SU(2) and the easy-plane quantum Hall ferromagnets there are goldstone modes in the collective excitations, while all the modes are gapped in an Ising-type ground state. We compare the Ising quantum Hall ferromagnet with that of bilayer graphene and present the domain-wall solution at finite temperatures. We then specify the phase transitions and transport gaps in silicene in Landau levels 0 and 1. The phase diagram depends strongly on the magnetic field and the dielectric constant. We note that there exist triple points in the phase diagrams in Landau level N =1 that could be observed in experiments.

  18. Model studies on the photosensitized isomerization of bixin.

    PubMed

    Montenegro, Mariana A; Rios, Alessandro de O; Mercadante, Adriana Z; Nazareno, Mónica A; Borsarelli, Claudio D

    2004-01-28

    The photosensitized isomerization reaction of the natural cis carotenoid bixin (methyl hydrogen 9'-cis-6, 6'-diapocarotene-6, 6'-dioate) with rose bengal or methylene blue as the sensitizer in acetonitrile/methanol (1:1) solution was studied using UV-vis spectroscopy, high-performance liquid chromatography (HPLC), and time-resolved spectroscopic techniques, such as laser-flash photolysis and singlet oxygen phosphorescence detection. In both N(2)- and air-saturated solutions, the main product formed was all-trans-bixin. The observed isomerization rate constants, k(obs), decreased in the presence of air or with increase in the bixin concentration, suggesting the participation of the excited triplet state of bixin, (3)Bix, as precursor of the cis--> trans process. On the other hand, bixin solutions in the absence of sensitizer and/or light did not degrade, indicating that the ground state of bixin is stable to thermal isomerization at room temperature. Time-resolved spectroscopic experiments confirmed the formation of the excited triplet state of bixin and its deactivation by ground state bixin and molecular oxygen quenching processes. The primary isomerization products only degraded in the presence of air and under prolonged illumination conditions, probably due to the formation of oxidation products by reaction with singlet molecular oxygen. An energy-transfer mechanism was used to explain the observed results for the bixin transformations, and the consequences for food color are discussed.

  19. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  20. Maximum-Entropy Inference with a Programmable Annealer

    PubMed Central

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  1. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  2. Anharmonic vibrations around a triaxial nuclear deformation “frozen” to γ = 30°

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buganu, Petrica, E-mail: buganu@theory.nipne.ro; Budaca, Radu

    2015-12-07

    The Davydov-Chaban Hamiltonian with a sextic oscillator potential for the variable β and γ fixed to 30° is exactly solved for the ground and β bands and approximately for the γ band. The model is called Z(4)-Sextic in connection with the already established Z(4) solution. The energy spectra, normalized to the energy of the first excited state, and several B(E2) transition probabilities, normalized to the B(E2) transition from the first excited state to the ground state, depend on a single parameter α. By varying α within a sufficiently large interval, a shape phase transition from an approximately spherical shape tomore » a deformed one is evidenced.« less

  3. Adiabatic Quantum Computing via the Rydberg Blockade

    NASA Astrophysics Data System (ADS)

    Keating, Tyler; Goyal, Krittika; Deutsch, Ivan

    2012-06-01

    We study an architecture for implementing adiabatic quantum computation with trapped neutral atoms. Ground state atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism, thereby providing the requisite entangling interactions. As a benchmark we study the performance of a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. We model a realistic architecture, including the effects of magnetic level structure, with qubits encoded into the clock states of ^133Cs, effective B-fields implemented through microwaves and light shifts, and atom-atom coupling achieved by excitation to a high-lying Rydberg level. Including the fundamental effects of photon scattering we find a high fidelity for the two-qubit implementation.

  4. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  5. RAPID CONCENTRATION OF VIRUSES FROM WATER - PHASE I

    EPA Science Inventory

    In the United States, several high profile outbreaks of waterborne illness during the past 15 years have highlighted the need for solutions to drinking water contamination.  Several recent studies suggest that approximately 20 percent of the surface and ground source waters...

  6. Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation.

    PubMed

    Zhang, Yin; Ley, Kevin D.; Schanze, Kirk S.

    1996-11-20

    A photochemical and photophysical investigation was carried out on (tbubpy)Pt(II)(dpdt) and (tbubpy)Pt(II)(edt) (1 and 2, respectively, where tbubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, dpdt = meso-1,2-diphenyl-1,2-ethanedithiolate and edt = 1,2-ethanedithiolate). Luminescence and transient absorption studies reveal that these complexes feature a lowest excited state with Pt(S)(2) --> tbubpy charge transfer to diimine character. Both complexes are photostable in deoxygenated solution; however, photolysis into the visible charge transfer band in air-saturated solution induces moderately efficient photooxidation. Photooxidation of 1 produces the dehydrogenation product (tbubpy)Pt(II)(1,2-diphenyl-1,2-ethenedithiolate) (4). By contrast, photooxidation of 2 produces S-oxygenated complexes in which one or both thiolate ligands are converted to sulfinate (-SO(2)R) ligands. Mechanistic photochemical studies and transient absorption spectroscopy reveal that photooxidation occurs by (1) energy transfer from the charge transfer to diimine excited state of 1 to (3)O(2) to produce (1)O(2) and (2) reaction between (1)O(2) and the ground state 1. Kinetic data indicates that excited state 1 produces (1)O(2) efficiently and that reaction between ground state 1 and (1)O(2) occurs with k approximately 3 x 10(8) M(-)(1) s(-)(1).

  7. The water situation in the United States with special reference to ground water

    USGS Publications Warehouse

    McGuinness, Charles Lee

    1951-01-01

    This report constitutes appendixes B and C of a report prepared in April 1950 by the Geological Survey at the request of the President’s Water Resources Policy Commission. The full report was entitled "Water facts in relation to a national water-resources policy.” The brief text, entitled "Water in relation to the national economy,” and appendix A, entitled "A  summary of the water situation in the United States, with special reference to ground water,” were drafted by A. M. Piper of the Geological Survey and are to be published separately, in slightly modified form, under his name.This report discusses the occurrence of ground water in nature and its relation to surface water and to the national water picture as a whole, and it lists numerous existing water problems and discusses their solution.

  8. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  9. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System

    NASA Astrophysics Data System (ADS)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-01

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  10. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    PubMed

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier. (Kosco-USGS)

  12. Measurement of the dipole moments of excited states and photochemical transients by microwave dielectric absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fessenden, R.W.; Carton, P.M.; Shimamori, H.

    1982-09-16

    Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less

  13. GIS Analysis to Assess where Shallow Ground Water Supplies in the United States are Vulnerable to Contamination by Releases of Motor Fuel from Underground Storage Tanks

    EPA Science Inventory

    Data reported on the long form of the 1990 United State Census were used to identify the number of households in each census block group that obtained water from a private source. A data file was purchased form ESRI Business Solutions (ESRI, 2009) that contained the latitude and ...

  14. Solvent-Controlled Branching of Localized versus Delocalized Singlet Exciton States and Equilibration with Charge Transfer in a Structurally Well-Defined Tetracene Dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jasper D.; Carey, Thomas J.; Arias, Dylan H.

    A detailed photophysical picture is elaborated for a structurally well-defined and symmetrical bis-tetracene dimer in solution. The molecule was designed for interrogation of the initial photophysical steps (S 1 → 1TT) in intramolecular singlet fission (SF). (Triisopropylsilyl)acetylene substituents on the dimer TIPS-BT1 as well as a monomer model TIPS-Tc enable a comparison of photophysical properties, including transient absorption dynamics, as solvent polarity is varied. In nonpolar toluene solutions, TIPS-BT1 decays via radiative and nonradiative pathways to the ground state with no evidence for dynamics related to the initial stages of SF. This contrasts with the behavior of the previously reportedmore » unsubstituted dimer BT1 and is likely a consequence of energetic perturbations to the singlet excited-state manifold of TIPS-BT1 by the (trialkylsilyl)acetylene substituents. In polar benzonitrile, two key findings emerge. First, photoexcited TIPS-BT1 shows a bifurcation into both arm-localized (S 1-loc) and dimer-delocalized (S 1-dim) singlet exciton states. The S 1-loc decays to the ground state, and weak temperature dependence of its emissive signatures suggests that once it is formed, it is isolated from S 1-dim. Emissive signatures of the S 1-dim state, on the other hand, are strongly temperature-dependent, and transient absorption dynamics show that S1-dim equilibrates with an intramolecular charge-transfer state in 50 ps at room temperature. This equilibrium decays to the ground state with little evidence for formation of long-lived triplets nor 1TT. These detailed studies spectrally characterize many of the key states in intramolecular SF in this class of dimers but highlight the need to tune electronic coupling and energetics for the S 1 → 1TT photoreaction.« less

  15. Solvent-Controlled Branching of Localized versus Delocalized Singlet Exciton States and Equilibration with Charge Transfer in a Structurally Well-Defined Tetracene Dimer

    DOE PAGES

    Cook, Jasper D.; Carey, Thomas J.; Arias, Dylan H.; ...

    2017-11-04

    A detailed photophysical picture is elaborated for a structurally well-defined and symmetrical bis-tetracene dimer in solution. The molecule was designed for interrogation of the initial photophysical steps (S 1 → 1TT) in intramolecular singlet fission (SF). (Triisopropylsilyl)acetylene substituents on the dimer TIPS-BT1 as well as a monomer model TIPS-Tc enable a comparison of photophysical properties, including transient absorption dynamics, as solvent polarity is varied. In nonpolar toluene solutions, TIPS-BT1 decays via radiative and nonradiative pathways to the ground state with no evidence for dynamics related to the initial stages of SF. This contrasts with the behavior of the previously reportedmore » unsubstituted dimer BT1 and is likely a consequence of energetic perturbations to the singlet excited-state manifold of TIPS-BT1 by the (trialkylsilyl)acetylene substituents. In polar benzonitrile, two key findings emerge. First, photoexcited TIPS-BT1 shows a bifurcation into both arm-localized (S 1-loc) and dimer-delocalized (S 1-dim) singlet exciton states. The S 1-loc decays to the ground state, and weak temperature dependence of its emissive signatures suggests that once it is formed, it is isolated from S 1-dim. Emissive signatures of the S 1-dim state, on the other hand, are strongly temperature-dependent, and transient absorption dynamics show that S1-dim equilibrates with an intramolecular charge-transfer state in 50 ps at room temperature. This equilibrium decays to the ground state with little evidence for formation of long-lived triplets nor 1TT. These detailed studies spectrally characterize many of the key states in intramolecular SF in this class of dimers but highlight the need to tune electronic coupling and energetics for the S 1 → 1TT photoreaction.« less

  16. Ground water contamination by crude oil near Bemidji, Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Essaid, H.I.; Cozzarelli, I.M.; Lahvis, M.H.; Bekins, B.A.

    1998-01-01

    Ground-water contamination by crude oil, and other petroleum-based liquids, is a widespread problem. An average of 83 crude-oil spills occurred per year during 1994-96 in the United States, each spilling about 50,000 barrels of crude oil (U.S. Office of Pipeline Safety, electronic commun., 1997). An understanding of the fate of organic contaminants (such as oil and gasoline) in the subsurface is needed to design innovative and cost-effective remedial solutions at contaminated sites.

  17. Symmetry breaking, Josephson oscillation and self-trapping in a self-bound three-dimensional quantum ball.

    PubMed

    Adhikari, S K

    2017-11-22

    We study spontaneous symmetry breaking (SSB), Josephson oscillation, and self-trapping in a stable, mobile, three-dimensional matter-wave spherical quantum ball self-bound by attractive two-body and repulsive three-body interactions. The SSB is realized by a parity-symmetric (a) one-dimensional (1D) double-well potential or (b) a 1D Gaussian potential, both along the z axis and no potential along the x and y axes. In the presence of each of these potentials, the symmetric ground state dynamically evolves into a doubly-degenerate SSB ground state. If the SSB ground state in the double well, predominantly located in the first well (z > 0), is given a small displacement, the quantum ball oscillates with a self-trapping in the first well. For a medium displacement one encounters an asymmetric Josephson oscillation. The asymmetric oscillation is a consequence of SSB. The study is performed by a variational and a numerical solution of a non-linear mean-field model with 1D parity-symmetric perturbations.

  18. A spectroscopic study of the hydrogen bonding and pi-pi stacking interactions of harmane with quinoline.

    PubMed

    Balón, M; Guardado, P; Muñoz, M A; Carmona, C

    1998-01-01

    A spectroscopic (UV-vis, Fourier transform IR, steady state, and time-resolved fluorescence) study of the interactions of the ground and excited singlet states of harmane (1-methyl-9H-pyrido/3,4-b/indole) with quinoline has been carried out in cyclohexane, toluene, and buffered pH=8.7 aqueous solutions. To analyze how the number of rings in the substrate influences these interactions, pyridine and phenanthridine have also been included in this study. In cyclohexane and toluene 1:1 stoichiometric hydrogen-bonded complexes are formed in both the ground and the excited singlet states. As the number of rings of the benzopyridines and the solvent polarity increase hydrogen-bonding interactions weaken and pi-pi van der Waals interactions become apparent.

  19. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  20. Thermodynamic consideration and ground-state search of icosahedral boron subselenide B12(B1-xSex) 2 from a first-principles cluster expansion

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.

    2018-05-01

    The phase stability of icosahedral boron subselenide B12(B1-xSex) 2 , where 0.5 ≤x ≤1 , is explored using a first-principles cluster expansion. The results shows that, instead of a continuous solid solution, B12(B1-xSex) 2 is thermodynamically stable as an individual line compound at the composition of B9.5Se . The ground-state configuration of B9.5Se is represented by a mixture of B12(Se-Se), B12(B-Se), and B12(Se-B) with a ratio of 1:1:1, where they form a periodic A B C A B C ⋯ stacking sequence of B12(Se-Se), B12(B-Se), and B12(Se-B) layers along the c axis of the hexagonal conventional unit cell. The structural and electronic properties of the ground-state B9.5Se are also derived and discussed. By comparing the derived ground-state properties of B9.5Se to the existing experimental data of boron subselenide B˜13Se , I proposed that the as-synthesized boron subselenide B˜13Se , as reported in the literature, has the actual composition of B9.5Se .

  1. Demonstration of Systematic Improvements in Application of the Variational Method to Strongly Bound Potentials

    ERIC Educational Resources Information Center

    Ninemire, B.; Mei, W. N.

    2004-01-01

    In applying the variational method, six different sets of trial wave functions are used to calculate the ground state and first excited state energies of the strongly bound potentials, i.e. V(x)=x[2m], where m = 4, 5 and 6. It is shown that accurate results can be obtained from thorough analysis of the asymptotic behaviour of the solutions.…

  2. Long-lived coherence in carotenoids

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Cannon, E.; Van Dao, L.; Hannaford, P.; Quiney, H. M.; Nugent, K. A.

    2010-08-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the langS2|S0rang superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  3. Transition from itinerant metamagnetism to ferromagnetism in UCo1-xOsxAl solid solutions

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Šebek, J.; Shirasaki, K.; Daniš, S.; Gorbunov, D. I.; Yamamura, T.; Vejpravová, J.; Havela, L.; de Boer, F. R.

    2018-05-01

    The influence of substitution of a small amount of Os (<2%) on the Co sublattice on the magnetism of the itinerant metamagnet UCoAl is studied on single-crystalline UCo1-xOsxAl compounds with x = 0.002, 0.005 and 0.01. For x = 0.002, the ground state is still paramagnetic, like in UCoAl. The metamagnetic-transition field is 0.37 T, twice lower than in UCoAl. The compound with x = 0.005 is at the border between the paramagnetic and the ferromagnetic ground state. At T = 2 K, it is ferromagnetic, at elevated temperatures a magnetic field is necessary to maintain the magnetic state. In zero field, the ferromagnetic state vanishes at T = 8 K. The compound with x = 0.01 is a ferromagnet with strong uniaxial magnetic anisotropy similar to the previously studied compounds with x = 0.02-0.20.

  4. Numerical model of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Paybins, Katherine S.; Izbicki, John A.; Reichard, Eric G.

    1999-01-01

    To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) groundwater recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimension-al flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) ground-water recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.

  5. Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions.

    PubMed

    Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Shaw, Paul E

    2016-09-21

    Fluorescence-based detection of explosive analytes requires an understanding of the nature of the excited state responsible for the luminescence response of a sensing material. Many measurements are carried out to elucidate the fundamental photophysical properties of an emissive material in solution. However, simple transfer of the understanding gained from the solution measurements to the solid-state can lead to errors. This is in part due to the absence of inter-molecular interactions of the chromophores in solution, which are present in the solid-state. To understand the role of inter-molecular interactions on the detection of explosive analytes we have chosen dendrimers from two different families, D1 and D2, which allow facile control of the inter-molecular interactions through the choice of dendrons and emissive chromophores. Using ultrafast transient absorption spectroscopy we find that the solution photoinduced absorption (PA) for both materials can be explained in terms of the generation of singlet excitons, which decay to the ground state, or intersystem cross (ISC) to form a triplet exciton. In neat films however, we observe different photophysical behaviours; first, ISC to the triplet state does not occur, and second, depending on the chromophore, charge transfer and charge separated states are formed. Furthermore, we find that when either dendrimer is interfaced with analyte vapour, the singlet state is strongly quenched, generating a charge transfer state that undergoes geminate recombination.

  6. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less

  7. Analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculation.

    PubMed

    Si, Dejun; Li, Hui

    2011-10-14

    The analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculations are derived and implemented for spin-restricted closed shell (RMP2), Z-averaged spin-restricted open shell (ZAPT2), and spin-unrestricted open shell (UMP2) cases. Using these methods, the geometries of the S(0) ground state and the T(1) state of three nucleobase pairs (guanine-cytosine, adenine-thymine, and adenine-uracil) in the gas phase and aqueous solution phase are optimized. It is found that in both the gas phase and the aqueous solution phase the hydrogen bonds in the T(1) state pairs are weakened by ~1 kcal/mol as compared to those in the S(0) state pairs. © 2011 American Institute of Physics

  8. Measure-valued solutions to the complete Euler system revisited

    NASA Astrophysics Data System (ADS)

    Březina, Jan; Feireisl, Eduard

    2018-06-01

    We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.

  9. Photo-physical and interactional behavior of two members of group B vitamins in different solvent media

    NASA Astrophysics Data System (ADS)

    Zakerhamidi, M. S.; Zare Haghighi, L.; Seyed Ahmadian, S. M.

    2017-09-01

    In this paper, absorption and fluorescence spectra of vitamin B12 (cyanocobalamin) and vitamin B6 (pyridoxine) were recorded in solvents with different polarity, at room temperature. These vitamins' photo-physical behavior depends strongly on the solvent's nature along with different attached groups in their structures. In order to investigate the solvent-solute interactions and environmental effect on spectral variations, linear solvation energy relationships concept, suggested by Kamlet and Taft was used. Solvatochromic method was also used for measuring the ground and excited state dipole moments of these vitamins. According to our experimental results, dipole moment of these groups of vitamins in excited state is larger than ground state. Furthermore, obtained photo-physical and interactional properties of used vitamins can give important information on how this group of vitamins behaves in biological systems.

  10. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less

  12. Calculating ground water transit time of horizontal flow through leaky aquifers.

    PubMed

    Braunsfurth, Angelika C; Schneider, Wilfried

    2008-01-01

    The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored.

  13. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  14. The small impact of various partial charge distributions in ground and excited state on the computational Stokes shift of 1-methyl-6-oxyquinolinium betaine in diverse water models

    NASA Astrophysics Data System (ADS)

    Heid, Esther; Harringer, Sophia; Schröder, Christian

    2016-10-01

    The influence of the partial charge distribution obtained from quantum mechanics of the solute 1-methyl-6-oxyquinolinium betaine in the ground- and first excited state on the time-dependent Stokes shift is studied via molecular dynamics computer simulation. Furthermore, the effect of the employed solvent model — here the non-polarizable SPC, TIP4P and TIP4P/2005 and the polarizable SWM4 water model — on the solvation dynamics of the system is investigated. The use of different functionals and calculation methods influences the partial charge distribution and the magnitude of the dipole moment of the solute, but not the orientation of the dipole moment. Simulations based on the calculated charge distributions show nearly the same relaxation behavior. Approximating the whole solute molecule by a dipole results in the same relaxation behavior, but lower solvation energies, indicating that the time scale of the Stokes shift does not depend on peculiarities of the solute. However, the SPC and TIP4P water models show too fast dynamics which can be ascribed to a too large diffusion coefficient and too low viscosity. The calculated diffusion coefficient and viscosity for the SWM4 and TIP4P/2005 models coincide well with experimental values and the corresponding relaxation behavior is comparable to experimental values. Furthermore we found that for a quantitative description of the Stokes shift of the applied system at least two solvation shells around the solute have to be taken into account.

  15. Multiple branches of travelling waves for the Gross–Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Chiron, David; Scheid, Claire

    2018-06-01

    Explicit solitary waves are known to exist for the Kadomtsev–Petviashvili-I (KP-I) equation in dimension 2. We first address numerically the question of their Morse index. The results confirm that the lump solitary wave has Morse index one and that the other explicit solutions correspond to excited states. We then turn to the 2D Gross–Pitaevskii (GP) equation, which in some long wave regime converges to the KP-I equation. Numerical simulations have already shown that a branch of travelling waves of GP converges to a ground state of KP-I, expected to be the lump. In this work, we perform numerical simulations showing that other explicit solitary waves solutions to the KP-I equation give rise to new branches of travelling waves of GP corresponding to excited states.

  16. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  17. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.

  18. Ultrafast kinetics of linkage isomerism in Na2[Fe(CN)5NO] aqueous solution revealed by time-resolved photoelectron spectroscopy

    PubMed Central

    Raheem, Azhr A.; Wilke, Martin; Borgwardt, Mario; Engel, Nicholas; Bokarev, Sergey I.; Grell, Gilbert; Aziz, Saadullah G.; Kühn, Oliver; Kiyan, Igor Yu.; Merschjann, Christoph; Aziz, Emad F.

    2017-01-01

    The kinetics of ultrafast photoinduced structural changes in linkage isomers is investigated using Na2[Fe(CN)5NO] as a model complex. The buildup of the metastable side-on configuration of the NO ligand, as well as the electronic energy levels of ground, excited, and metastable states, has been revealed by means of time-resolved extreme UV (XUV) photoelectron spectroscopy in aqueous solution, aided by theoretical calculations. Evidence of a short-lived intermediate state in the isomerization process and its nature are discussed, finding that the complete isomerization process occurs in less than 240 fs after photoexcitation. PMID:28713840

  19. Variational Perturbation Treatment of the Confined Hydrogen Atom

    ERIC Educational Resources Information Center

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  20. Conferences as Information Grounds: Web Site Evaluation with a Mobile Usability Laboratory

    ERIC Educational Resources Information Center

    Bossaller, Jenny S.; Paul, Anindita; Hill, Heather; Wang, Jiazhen; Erdelez, Sanda

    2008-01-01

    This article describes an "on-the-road" usability study and explains the study's methodological challenges, solutions, and recommendations. The study concerned a library-consortium website, which is a communication and educational tool for librarians who are physically dispersed throughout the state, and an intranet for remote users.…

  1. Chemistry, photophysics, and ultrafast kinetics of two structurally related Schiff bases containing the naphthalene or quinoline ring

    NASA Astrophysics Data System (ADS)

    Fita, P.; Luzina, E.; Dziembowska, T.; Radzewicz, Cz.; Grabowska, A.

    2006-11-01

    The two structurally related Schiff bases, 2-hydroxynaphthylidene-(8-aminoquinoline) (HNAQ) and 2-hydroxynaphthylidene-1'-naphthylamine (HNAN), were studied by means of steady-state and time resolved optical spectroscopies as well as time-dependent density functional theory (TDDFT) calculations. The first one, HNAQ, is stable as a keto tautomer in the ground state and in the excited state in solutions, therefore it was used as a model of a keto tautomer of HNAN which exists mainly in its enol form in the ground state at room temperature. Excited state intramolecular proton transfer in the HNAN molecule leads to a very weak (quantum yield of the order of 10-4) strongly Stokes-shifted fluorescence. The characteristic time of the proton transfer (about 30fs) was estimated from femtosecond transient absorption data supported by global analysis and deconvolution techniques. Approximately 35% of excited molecules create a photochromic form whose lifetime was beyond the time window of the experiment (2ns). The remaining ones reach the relaxed S1 state (of a lifetime of approximately 4ps), whose emission is present in the decay associated difference spectra. Some evidence for the back proton transfer from the ground state of the keto form with the characteristic time of approximately 13ps was also found. The energies and orbital characteristics of main electronic transitions in both molecules calculated by TDDFT method are also discussed.

  2. Electronic Interactions of Michler's Ketone with DNA Bases in Synthetic Hairpins.

    PubMed

    Jalilov, Almaz S; Young, Ryan M; Eaton, Samuel W; Wasielewski, Michael R; Lewis, Frederick D

    2015-01-01

    The mechanism and dynamics of photoinduced electron transfer in two families of DNA hairpins possessing Michler's ketone linkers have been investigated by means of steady state and time-resolved transient absorption and emission spectroscopies. The excited state behavior of the diol linker employed in hairpin synthesis is similar to that of Michler's ketone in methanol solution. Hairpins possessing only a Michler's ketone linker undergo fast singlet state charge separation and charge recombination with an adjacent purine base, attributed to well-stacked ground state conformations, and intersystem crossing to the triplet state, attributed to poorly stacked ground state conformations. The failure of the triplet to undergo electron transfer reactions on the 7 ns time scale of our measurements is attributed to the low triplet energy and reduction potential of the twisted triplet state. Hairpins possessing both a Michler's ketone linker and a perylenediimide base surrogate separated by four base pairs undergo photoinduced hole transport from the diimide to Michler's ketone upon excitation of the diimide. The efficiency of hole transport is dependent upon the sequence of the intervening purine bases. © 2014 The American Society of Photobiology.

  3. Intrinsic optimization using stochastic nanomagnets

    PubMed Central

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-01-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053

  4. Intrinsic optimization using stochastic nanomagnets

    NASA Astrophysics Data System (ADS)

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-03-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.

  5. Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.

    2014-05-01

    Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.

  6. Isomerization Intermediates In Solution Phase Photochemistry Of Stilbenes

    NASA Astrophysics Data System (ADS)

    Doany, F. E.; Hochstrasser, R. M.; Greene, B. I.

    1985-04-01

    Picosecond and subpicosecond spectroscopic studies have revealed evidence for an isomerization intermediate between cis and trans in the photoinduced isomerism of both stilbene and biindanyledene ("stiff" stilbene). In stiff stilbene, a transient absorption at 351 nm displays time evolution and viscosity dependence consistent with absorption by a twisted intermediate ("phantom" state) with a lOps lifetime. An analagous bottleneck state with a life-time of 4ps is also consistent with the ground state recovery dynamics of t-stilbene following excitation of c-stilbene when monitored with 0.1ps resolution.

  7. Analytical formulation of 2-D aeroelastic model in weak ground effect

    NASA Astrophysics Data System (ADS)

    Dessi, Daniele; Mastroddi, Franco; Mancini, Simone

    2013-10-01

    This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently and robustly accounting for the presence of the ground when unsteady analysis of elastic lifting surfaces in weak ground effect is required.

  8. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond layouts, and water-supply constraints, indicate that the number of new wells is insensitive to water-supply constraints; however, pumping rates and patterns of the existing wells are sensitive. The locations of new wells are mildly sensitive to the pond layout.

  9. Progress Toward Generation of a Navier-Stokes Database for a Harrier in Ground Effect

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Ahmad, Jasim U.; Pandya, Shishir A.; Murman, Scott A.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The Harrier YAV-8B aircraft is capable of vertical and short-field take-off and landing (V/STOL) by directing its four exhaust nozzles toward the ground, or conventional flight by rotating its nozzles into a horizontal position. The British Royal Air Force and the United States Marine Corps have used this aircraft for more than 30 years to provide a quick reaction time for troop support, and reduce the need for long runways. The success of this powered-lift (PL) vehicle has also prompted the more recent design of the Joint Strike Fighter (JSF). However there are significant safety issues that must be addressed when operating a PL vehicle in close proximity to the ground. Hot Gas Ingestion (HGI) by the inlets can result in a rapid loss of powered lift; and high-speed jet flows along the ground plane can induce low pressures underneath the vehicle, causing a 'suck-down' effect. Under these conditions, departure from controlled flight may occur. Moreover, unsteady ground vortices and jet fountains can affect the aircraft,s controllability and its proximity to ground troops. The viscous, time-dependent flow fields of PL vehicles are difficult to accurately and efficiently predict using Computational Fluid Dynamics (CFD). A number of researchers have used the time-dependent Reynolds-averaged Navier-Stokes (RANS) equations to compute flows for single and multiple jets in a cross-flow. A few have added some geometric complexity to the problem by computing flows for jet-augmented delta wings near a ground plane. Smith et.al. computed for the first time a single RANS solution about a simplified Harrier. This geometry included a fuselage, wing, leading edge root extension (LERX), inlets, and exhaust nozzles. All of these investigations cite two practical problems with computing these flows: 1) the need for improved solution accuracy; and, 2) the need for faster solution methods. We view the need for faster solution methods as key to improving the solution accuracy and making this class of computation more routine. One can hardly refine grids, explore the use of advanced turbulence models, and generate databases when it takes weeks of dedicated computer time for a single solution. Chaderjian, Ahmad, Pandya, and Murman have focused on reducing the time-to-solution for this very difficult and complex problem through process automation and exploitation of parallel computing. They began with the Harrier geometry reported, and added a deflected wing flap and empennage for greater realism. To date more than 80 solutions have been carried out. This paper will describe this process and progress made in reducing the time required to generate a simple longitudinal force and moment database for a Harrier in ground effect. It shows a typical snap-shot from an unsteady streakline animation, where fluid particles are colored by temperature. The ground vortex and a jet-fountain vortex are highlighted. It also shows a similar streakline image, where HGI occurs due to the vehicle in close proximity to the ground. It is show the mean lift coefficient as a function of angle of attack and height. The angle of attack range was 4 deg less than or = alpha less than or = 10 deg with an increment of 1 degree, and the height range was 10 ft less than or = h less than or = 30ft with an increment of 5 feet. This 35 solution database was extended to over 2500 cases using a monotone cubic-spline interpolation procedure. The suck-down effect (reduction of lift near the ground) is highlighted in the figure. The "cushion effect," the conventional reduction of lift as the vehicle moves out of ground effect, is also indicated. All 35 RANS solutions were obtained using 952 Silicon Graphics Origin 2000 and 3000 processors in dedicated mode for one week. Typically, 112 processors were assigned to each case. Some other cases used fewer processors to utilize all available CPUS. The final paper will report on the automation of the solution process, including: grid generation, job monitoring, solution completion criteria, and post processing. Moreover, improvements in parallel efficiency for a dual time-step algorithm for the RANS equations will also be presented. Results will be discussed in detail using unsteady streakline flow visualization to correlate unsteady flow structures with dominant aerodynamic frequencies. The stability derivatives, CL, and CL, will also be presented.

  10. Resolving the excited state equilibrium of peridinin in solution.

    PubMed

    Papagiannakis, Emmanouil; Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; Hiller, Roger G; van Grondelle, Rienk

    2004-12-14

    The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character. To disentangle the excited states of peridinin and understand their function in vivo, we applied dispersed pump-probe and pump-dump-probe spectroscopy. The preferential depletion of population from the intramolecular charge transfer state by the dump pulse demonstrates that the S(1) and this charge transfer state are distinct entities. The ensuing dump-induced dynamics illustrates the equilibration of the two states which occurs on the time scale of a few picoseconds. Additionally, the dump pulse populates a short-lived ground state intermediate, which is suggestive of a complex relaxation pathway, probably including structural reorientation or solvation of the ground state. These findings indicate that the unique intramolecular charge transfer state of peridinin is an efficient energy donor to chlorophyll a in the peridinin-chlorophyll-protein complex and thus plays a significant role in global light harvesting.

  11. Primary photophysical properties of moxifloxacin--a fluoroquinolone antibiotic.

    PubMed

    Lorenzo, Fernando; Navaratnam, Suppiah; Edge, Ruth; Allen, Norman S

    2008-01-01

    The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44,000 and 17,000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.

  12. Boundary Layer Model for Air Pollutant Concentrations Due to Highway Traffic

    ERIC Educational Resources Information Center

    Ragland, Kenneth W.; Peirce, J. Jeffrey

    1975-01-01

    A numerical solution of the three-dimensional steady-state diffusion equation for a finite width line source is presented. The wind speed and eddy diffusivity as a function of height above the roadway are obtained. Normalized ground level and elevated concentrations near a highway are obtained for winds perpendicular, parallel, and at 45 degrees.…

  13. Evaluating the natural durability of native and tropical wood species against Reticulitermes flavipes

    Treesearch

    R.A. Arango; F. Green; K. Hintz; R.B. Miller

    2004-01-01

    Environmental pressures to eliminate arsenate from wood preservatives has resulted in voluntary removal of CCA for residential applications in the United States. A new generation of copper organic preservatives has been formulated to replace CCA for decking and in-ground applications but there is no guarantee that these preservatives represent a permanent solution to...

  14. Early events associated with the excited state proton transfer in 2-(2{sup '}-pyridyl)benzimidazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burai, Tarak Nath; Mukherjee, Tushar Kanti; Lahiri, Priyanka

    2009-07-21

    2-(2{sup '}-pyridyl)benzimidazole (2PBI) undergoes excited state proton transfer (ESPT) in acidic solutions, leading to a tautomer emission at 460 nm. This photoprocess has been studied using ultrafast fluorescence spectroscopic techniques in acidic neat aqueous solutions, in viscous mixtures of glycerol with water, as well as in sucrose solutions. The tautomer is found to be stabilized in the more viscous medium, leading to a greater relative quantum yield as well as lifetime. The long rise time in tautomer emission is not affected by viscosity though. Rather, it appears to have the same value as the long component of the decay ofmore » the cationic excited state (C*). In addition to the subnanosecond lifetime reported earlier, C* is found to exhibit a decay time of 2 ps. This is assigned to its protonation to form the nonfluorescent dication in its excited state (D*) considering the ground and excited state pK{sub a} values reported earlier. An additional rising component of 100 ps is observed in the region of C* emission. This is likely to arise from a structural change or charge redistribution in C* immediately after its creation and before the phototautomerization.« less

  15. Polarized skylight navigation.

    PubMed

    Hamaoui, Moshe

    2017-01-20

    Vehicle state estimation is an essential prerequisite for navigation. The present approach seeks to use skylight polarization to facilitate state estimation under autonomous unconstrained flight conditions. Atmospheric scattering polarizes incident sunlight such that solar position is mathematically encoded in the resulting skylight polarization pattern. Indeed, several species of insects are able to sense skylight polarization and are believed to navigate polarimetrically. Sun-finding methodologies for polarized skylight navigation (PSN) have been proposed in the literature but typically rely on calibration updates to account for changing atmospheric conditions and/or are limited to 2D operation. To address this technology gap, a gradient-based PSN solution is developed based upon the Rayleigh sky model. The solution is validated in simulation, and effects of measurement error and changing atmospheric conditions are investigated. Finally, an experimental effort is described wherein polarimetric imagery is collected, ground-truth is established through independent imager-attitude measurement, the gradient-based PSN solution is applied, and results are analyzed.

  16. Ground-water problems in highway construction and maintenance

    USGS Publications Warehouse

    Rasmussen, W.C.; Haigler, L.B.

    1953-01-01

    This report discusses the occurrence of ground water in relation to certain problems in highway construction and maintenance. These problems are: the subdrainage of roads; quicksand; the arrest of soil creep in road cuts; the construction of lower and larger culverts necessitated by the farm-drainage program; the prevention of failure of bridge abutments and retaining walls; and the water-cement ratio of sub-water-table concrete. Although the highway problems and suggested solutions are of general interest, they are considered with special reference to the State of Delaware, in relation to the geology of that State. The new technique of soil stabilization by electroosmosis is reviewed in the hope that it might find application here in road work and pile setting, field application by the Germans and Russians is reviewed.

  17. The Effective Correlation Theory for Liquid 3He

    NASA Astrophysics Data System (ADS)

    Puoskari, M.; Kallio, A.

    1981-09-01

    We show that when the antisymmetry of liquid 3He is treated with the effective correlation theory of Lado, the optimal HNC solution gives very good agreement with the optimal FHNC theory when in the latter the long wave length properties due to Fermi cancellations are treated properly. When in addition elementary diagrams are calculated with the Pade approximation, we obtain ground state energies that agree quite well with the Monte-Carlo results of Ceperley, Chester and Kalos and Levesque, especially at low densities. In addition we calculate the contribution of the three-body factors in the variational wave function. For the expectation value of the ground state energy we obtain altogether - 1.62 ± 0.15 K at a saturation density 0.015 ± 0.001 Å-3.

  18. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the water budget of the lakes.

  19. Valence tautomerism in synthetic models of cytochrome P450

    PubMed Central

    Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai

    2016-01-01

    CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948

  20. Linking photochemistry in the gas and solution phase: S-H bond fission in p-methylthiophenol following UV photoexcitation.

    PubMed

    Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E

    2011-01-01

    Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.

  1. Optical limiting properties of optically active phthalocyanine derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  2. Model of an Injection Semiconductor Quantum-Dot Laser

    NASA Astrophysics Data System (ADS)

    Koryukin, I. V.

    2018-05-01

    We propose an asymmetric electron-hole model of an injection semiconductor quantum-dot laser, which correctly allows for relaxation at transitions between the electron and hole levels. Steady-state solutions of the proposed model, conditions for the simultaneous operation at transitions between the ground and first excited state levels, and relaxation oscillations in the two-wave lasing regime are studied. It is shown that the model can be simplified when the relaxation between hole levels is much faster than the relaxation between electron levels.

  3. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  4. Deep Wavelet Scattering for Quantum Energy Regression

    NASA Astrophysics Data System (ADS)

    Hirn, Matthew

    Physical functionals are usually computed as solutions of variational problems or from solutions of partial differential equations, which may require huge computations for complex systems. Quantum chemistry calculations of ground state molecular energies is such an example. Indeed, if x is a quantum molecular state, then the ground state energy E0 (x) is the minimum eigenvalue solution of the time independent Schrödinger Equation, which is computationally intensive for large systems. Machine learning algorithms do not simulate the physical system but estimate solutions by interpolating values provided by a training set of known examples {(xi ,E0 (xi) } i <= n . However, precise interpolations may require a number of examples that is exponential in the system dimension, and are thus intractable. This curse of dimensionality may be circumvented by computing interpolations in smaller approximation spaces, which take advantage of physical invariants. Linear regressions of E0 over a dictionary Φ ={ϕk } k compute an approximation E 0 as: E 0 (x) =∑kwkϕk (x) , where the weights {wk } k are selected to minimize the error between E0 and E 0 on the training set. The key to such a regression approach then lies in the design of the dictionary Φ. It must be intricate enough to capture the essential variability of E0 (x) over the molecular states x of interest, while simple enough so that evaluation of Φ (x) is significantly less intensive than a direct quantum mechanical computation (or approximation) of E0 (x) . In this talk we present a novel dictionary Φ for the regression of quantum mechanical energies based on the scattering transform of an intermediate, approximate electron density representation ρx of the state x. The scattering transform has the architecture of a deep convolutional network, composed of an alternating sequence of linear filters and nonlinear maps. Whereas in many deep learning tasks the linear filters are learned from the training data, here the physical properties of E0 (invariance to isometric transformations of the state x, stable to deformations of x) are leveraged to design a collection of linear filters ρx *ψλ for an appropriate wavelet ψ. These linear filters are composed with the nonlinear modulus operator, and the process is iterated upon so that at each layer stable, invariant features are extracted: ϕk (x) = ∥ | | ρx *ψλ1 | * ψλ2 | * ... *ψλm ∥ , k = (λ1 , ... ,λm) , m = 1 , 2 , ... The scattering transform thus encodes not only interactions at multiple scales (in the first layer, m = 1), but also features that encode complex phenomena resulting from a cascade of interactions across scales (in subsequent layers, m >= 2). Numerical experiments give state of the art accuracy over data bases of organic molecules, while theoretical results guarantee performance for the component of the ground state energy resulting from Coulombic interactions. Supported by the ERC InvariantClass 320959 Grant.

  5. The Ground Flash Fraction Retrieval Algorithm Employing Differential Evolution: Simulations and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2012-01-01

    The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error plots are provided for both the simulations and actual data analyses.

  6. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  7. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  8. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  9. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

    USGS Publications Warehouse

    Wexler, Eliezer J.

    1992-01-01

    Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems having uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of selected solutions, source codes for the computer programs, and samples of program input and output also are included.

  10. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  11. Grounding Symbolic Operations in Modality-Specific Processing

    DTIC Science & Technology

    2007-07-01

    such as happiness and fear, motivational states such as hunger and ambition. Once these simulators exist, they support symbolic operations in the...conceptual knowledge. Cognitive Neuropsychology , 20, 525-540. Landauer, T.K., & Dumais, S.T. (1997). A solution to Plato’s Problem: The latent...principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology , 20, 451-486. Smith, L., & Gasser, M. (2005). The development of

  12. Organic Thin Films for Photonics Applications. Volume 14

    DTIC Science & Technology

    1997-01-01

    progress of the polymer optical fiber (POF) and related photonics polymer for high-speed telecommunication is reviewed. The high-bandwidth perfluorinated ...silicon. In the waveguide spectrometry studies described above, ab- sorption was measured on slab waveguides where fabrication imperfections are... compound in scries I[//| and II|//| , we have determined in solution: - the ground-state dipole /{ using capacitive measurements - the static

  13. Feedback quantum control of molecular electronic population transfer

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.; Yakovlev, Vladislav V.; Wilson, Kent R.; Carpenter, Scott D.; Weber, Peter M.; Warren, Warren S.

    1997-11-01

    Feedback quantum control, where the sample `teaches' a computer-controlled arbitrary lightform generator to find the optimal light field, is experimentally demonstrated for a molecular system. Femtosecond pulses tailored by a computer-controlled acousto-optic pulse shaper excite fluorescence from laser dye molecules in solution. Fluorescence and laser power are monitored, and the computer uses the experimental data and a genetic algorithm to optimize population transfer from ground to first excited state. Both efficiency (the ratio of excited state population to laser energy) and effectiveness (total excited state population) are optimized. Potential use as an `automated theory tester' is discussed.

  14. State and local response to damaging land subsidence in United States urban areas

    USGS Publications Warehouse

    Holzer, T.L.

    1989-01-01

    Land subsidence caused by man-induced depressuring of underground reservoirs has occurred in at least nine urban areas in the United States. Significant efforts to control it have been made in three areas: Long Beach, California; Houston-Galveston, Texas; and Santa Clara Valley, California. In these areas coastal flooding and its control cost more than $300 million. Institutional changes were required in each area to ameliorate its subsidence problem. In Long Beach and Houston Galveston, efforts were made to mitigate subsidence only after significant flood damage had occurred. To arrest subsidence at Long Beach, the city lobbied for a special state law, the California Subsidence Act, that required unitization and repressuring of the Wilmington oil field. In the Houston-Galveston region, the Texas State Legislature authorized formation of the Harris-Galveston Coastal Subsidence District with authority to regulate groundwater pumping by permit. This solution, which was achieved through efforts of entities affected by subsidence, was the product of a series of compromises necessitated by political fragmentation and disjointed water planning in the region. Amelioration of subsidence in the Santa Clara Valley was a collateral benefit from the effort by water users to curtail ground-water overdraft in the valley. Importation of surface water and a tax on ground-water pumpage reduced ground-water use, thereby allowing the recovery of water level and the arresting of subsidence.

  15. Exact solution of finite parabolic potential disc-like quantum dot with and without electric field R. Djelti, S. Bentata and Z. Aziz: Trimer barrier hight effect oh the nature of the electronic state of the superlatice GaAs/AlxGa1-xAs Bibhas K. Dutta and Prasanta K. Mahapatra: Study of velocity-dependent collision effects on Lamb dip and crossover resonances in three-level system

    NASA Astrophysics Data System (ADS)

    Hassanien, H. H.; Abdelmoly, S. S.; Elmeshad, N.

    The exact series solutions of finite parabolic potential disc-like quantum dot are given in the absence and presence of uniform applied electric field. We define some normalized parameters. From the complex eigenenergy E=E0 - i G/2, due to the electric field, we calculate the resonance width G of a bounded state. The ground and the first excited state of the electron and the hole are obtained with and without the electric field. The corresponding envelope functions are presented as a function of the disc dimensionality, radius R and half-width L.

  16. Evaluation of the vehicle state with vibration-based diagnostics methods

    NASA Astrophysics Data System (ADS)

    Gai, V. E.; Polyakov, I. V.; Krasheninnikov, M. S.; Koshurina, A. A.; Dorofeev, R. A.

    2017-02-01

    Timely detection of a trouble in the mechanisms work is a guarantee of the stable operation of the entire machine complex. It allows minimizing unexpected losses, and avoiding any injuries inflicted on working people. The solution of the problem is the most important for vehicles and machines, working in remote areas of the infrastructure. All-terrain vehicles can be referred to such type of transport. The potential object of application of the described methodology is the multipurpose rotary-screw amphibious vehicle for rescue; reconnaissance; transport and technological operations. At the present time, there is no information on the use of these kinds of systems in ground-based vehicles. The present paper is devoted to the state estimation of a mechanism based on the analysis of vibration signals produced by the mechanism, in particular, the vibration signals of rolling bearings. The theory of active perception was used for the solution of the problem of the state estimation.

  17. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  18. Leaching of Metal Pollutants from Four Well Casings Used for Ground-Water Monitoring

    DTIC Science & Technology

    1989-09-01

    Atomic Spectroscopy, 4:126-128. 10 APPENDIX A : LEVELS OF CD, PB, CR, BA AND CU DETERMINED IN GROUND-WATER SOLUTIONS (MG/L). Time Pqle R:ph’itc (day1s...7 Conclusion ................................................... 9 Literature cited ................................................ 9 Appendix A ... Levels of Cd, Pb, Cr, Ba and Cu determined in ground-water solutions .................................................. 11 ILLUSTRATIONS Figure 1. Ground

  19. Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods

    DOE PAGES

    Motta, Mario; Ceperley, David M.; Chan, Garnet Kin-Lic; ...

    2017-09-28

    We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A variety of modern many-body methods are employed, with exhaustive cross-checks and validation. Approaches for reaching the continuous space limit and the thermodynamic limit are investigated, proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state of the art in many-body computation, and for the development of new methods. The ground-state energy per atom in the linear chain is accurately determined versus bond length, with a confidence bound given on all uncertainties.

  20. Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motta, Mario; Ceperley, David M.; Chan, Garnet Kin-Lic

    We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A variety of modern many-body methods are employed, with exhaustive cross-checks and validation. Approaches for reaching the continuous space limit and the thermodynamic limit are investigated, proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state of the art in many-body computation, and for the development of new methods. The ground-state energy per atom in the linear chain is accurately determined versus bond length, with a confidence bound given on all uncertainties.

  1. Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California

    USGS Publications Warehouse

    Bright, Daniel J.; Nash, David B.; Martin, Peter

    1997-01-01

    Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams per liter from concentrations in 1988. During 1941-88 about 1,096,000 acre-feet of water was pumped from the aquifer system. Average pumpage for this period (22,830 acre-feet per year) exceeded pumpage for the steady-state simulation by 16,590 acre-feet per year. The results of the transient simulation indicate that about 60 percent of this increase in pumpage was contributed by increased recharge, 28 percent by decreased natural discharge from the system (primarily discharge to the Santa Ynez River and transpiration), and 13 percent was withdrawn from storage. Total simulated downward leakage from the middle zone to the main zone in the central plain and upward leakage from the consolidated rocks to the main zone significantly increased in response to increased pumpage, which increased from about 6,240 to 30,870 acre-feet per year from 1941 to 1988. Average dissolved-solid concentration in the middle zone in 1987-88 ranged from 2,000 to 3,000 milligrams per liter beneath the northeastern plain and the dissolved-solids concentration of two samples from the consolidated rocks beneath the western plain averaged 4,300 milligrams per liter. Because the dissolved-solids concentration for the middle zone and the consolidated rocks is higher than the simulated steady-state dissolved-solids concentration of the main zone, the increase in the leakage from these two sources resulted in increased dissolved-solids concentration in the main zone during the transient period. The model results indicate that the main source of increased dissolved- solids concentration in the northeastern and central plains was downward leakage from the middle zone; whereas, upward leakage from the consolidated rocks was the main source of the increased dissolved-solids concentrations in the northwestern and western plains. The models were used to estimate changes in hydraulic head and in dissolved-solids concentration resulting from three proposed management alternatives: (1) average recharge

  2. Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO2 phases is not correct

    NASA Astrophysics Data System (ADS)

    Grau-Crespo, Ricardo; Wang, Hao; Schwingenschlögl, Udo

    2012-08-01

    In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases [Eyert, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.016401 107, 016401 (2011)], we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.

  3. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

    USGS Publications Warehouse

    Wexler, Eliezer J.

    1989-01-01

    Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented in this report for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems with uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of select solutions, source codes for the computer programs, and samples of program input and output also are included.

  4. Nonlinear Fano interferences in open quantum systems: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Finkelstein-Shapiro, Daniel; Calatayud, Monica; Atabek, Osman; Mujica, Vladimiro; Keller, Arne

    2016-06-01

    We obtain an explicit solution for the stationary-state populations of a dissipative Fano model, where a discrete excited state is coupled to a continuum set of states; both excited sets of states are reachable by photoexcitation from the ground state. The dissipative dynamic is described by a Liouville equation in Lindblad form and the field intensity can take arbitrary values within the model. We show that the population of the continuum states as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed as a linear transformation of the kernel of a 4 ×4 matrix which has the meaning of an effective Liouvillian. We unveil key notable processes related to the optical nonlinearity and which had not been reported to date: electromagnetic-induced transparency, population inversions, power narrowing and broadening, as well as an effective reduction of the Fano asymmetry parameter.

  5. Integrable model for density-modulated quantum condensates: Solitons passing through a soliton lattice.

    PubMed

    Takahashi, Daisuke A

    2016-06-01

    An integrable model possessing inhomogeneous ground states is proposed as an effective model of nonuniform quantum condensates such as supersolids and Fulde-Ferrell-Larkin-Ovchinnikov superfluids. The model is a higher-order analog of the nonlinear Schrödinger equation. We derive an n-soliton solution via the inverse scattering theory with elliptic-functional background and reveal various kinds of soliton dynamics such as dark soliton billiards, dislocations, gray solitons, and envelope solitons. We also provide the exact bosonic and fermionic quasiparticle eigenstates and show their tunneling phenomena. The solutions are expressed by a determinant of theta functions.

  6. Exact solutions for a type of electron pairing model with spin-orbit interactions and Zeeman coupling.

    PubMed

    Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D

    2011-07-08

    A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.

  7. Simulating contaminant attenuation, double-porosity exchange, and water age in aquifers using MOC3D

    USGS Publications Warehouse

    Goode, Daniel J.

    1999-01-01

    MOC3D is a general-purpose computer model developed by the U.S. Geological Survey (USGS) for simulation of three-dimensional solute transport in ground water (Konikow and others, 1996). The model is an update to the widely used USGS two-dimensional solute-transport model (MOC) and is implemented as an optional “package” for the ground-water flow model MODFLOW (Harbaugh and McDonald, 1996). Directly coupling the time-tested MOC transport algorithms with the widely used MODFLOW program makes MOC3D a powerful tool for simulation of solute transport in ground water in many hydrogeologic settings. The model simulates transport processes that include:Advection - Transport of dissolved solutes at the same rate as the average ground-water flow velocity.Diffusion - Spreading of solute from areas of high concentration to areas of low concentration, caused by “random” molecular motionDispersion - Diffusion-like spreading of solute that is caused primarily by spatial variability in aquifer properties, which results in spatial variability in transport velocity.Retardation - Reduction in the apparent solute velocity, compared to the ground-water velocity, caused by linear equilibrium sorption on aquifer materials.Decay - Disappearance of solute caused by reactions such as radioactive decay or biodegradation that are proportional to concentration.Growth - Creation (or disappearance) of solute mass caused by reactions that proceed independent of the solute concentration, such as some cases of biodegradationDouble-porosity exchange - rate-limited exchange of solute mass between mobile and immobile zones; for example, between fractures and the rock matrix.

  8. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  9. Evaluating excited state atomic polarizabilities of chromophores.

    PubMed

    Heid, Esther; Hunt, Patricia A; Schröder, Christian

    2018-03-28

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered.

  10. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  11. Ground-water contamination by crude oil: Section B in U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the technical meeting, Charleston, South Carolina, March 8-12, 1999: Volume 3 (Part C)

    USGS Publications Warehouse

    Delin, G.N.; Herkelrath, W.N.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    Ground water contamination by crude oil, and other petroleum-based liquids, is a widespread problem. An average of 83 crude-oil spills occurred per year during 1994-96 in the United States, each spilling an average of about 50,000 barrels of crude oil (U.S. Office of Pipeline Safety, electronic commun., 1997). An understanding of the fate of organic contaminants (such as oil and gasoline) in the subsurface is needed to design innovative and cost-effective remedial solutions at contaminated sites.

  12. Review of simulation techniques for Aquifer Thermal Energy Storage (ATES)

    NASA Astrophysics Data System (ADS)

    Mercer, J. W.; Faust, C. R.; Miller, W. J.; Pearson, F. J., Jr.

    1981-03-01

    The analysis of aquifer thermal energy storage (ATES) systems rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES were reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities.

  13. Research perspectives in the field of ground penetrating radars in Armenia

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik; Knyazyan, Tamara; Hovhannisyan, Tamara

    2014-05-01

    Armenia is a country located in a very complicated region from geophysical point of view. It is situated on a cross of several tectonic plates and a lot of dormant volcanoes. The main danger is earthquakes and the last big disaster was in 1988 in the northwest part of contemporary Armenia. As a consequence, the main direction of geophysical research is directed towards monitoring and data analysis of seismic activity. National Academy of Sciences of Armenia is conducting these activities in the Institute of Geological Sciences and in the Institute of Geophysics and Engineering Seismology. Research in the field of ground penetrating radars is considered in Armenia as an advanced and perspective complement to the already exploiting research tools. The previous achievements of Armenia in the fields of radiophysics, antenna measurements, laser physics and existing relevant research would permit to initiate new promising area of research in the direction of theory and experiments of ground penetrating radars. One of the key problems in the operation of ground penetrating radars is correct analysis of peculiarities of electromagnetic wave interaction with different layers of the earth. For this, the well-known methods of electromagnetic boundary problem solutions are applied. In addition to the existing methods our research group of Fiber Optics Communication Laboratory at the State Engineering University of Armenia declares its interest in exploring the possibilities of new non-traditional method of boundary problems solution for electromagnetic wave interaction with the ground. This new method for solving boundary problems of electrodynamics is called the method of single expression (MSE) [1-3]. The distinctive feature of this method is denial from the presentation of wave equation's solution in the form of counter-propagating waves, i.e. denial from the superposition principal application. This permits to solve linear and nonlinear (field intensity-dependent) problems with the same exactness, without any approximations. It is favourable also since in solution of boundary problems in the MSE there is no necessity in applying absorbing boundary conditions at the model edges by terminating the computational domain. In the MSE the computational process starts from the rear side of any multilayer structure that ensures the uniqueness of problem solution without application of any artificial absorbing boundary conditions. Previous success of the MSE application in optical domain gives us confidence in successful extension of this method's use for solution of different problems related to electromagnetic wave interaction with the layers of the earth and buried objects in the ground. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." 1. H.V. Baghdasaryan, T.M. Knyazyan, 'Problem of Plane EM Wave Self-action in Multilayer Structure: an Exact Solution', Optical and Quantum Electronics, vol. 31, 1999, pp.1059-1072. 2. H.V. Baghdasaryan, T.M. Knyazyan, 'Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression', Optical and Quantum Electronics, vol. 32, 2000, pp. 869-883. 3. H.V. Baghdasaryan, 'Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics', Yerevan, Chartaraget, 2013.

  14. Adiabatic Quantum Computation with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant

    2013-03-01

    We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

  15. Experimental Studies of Quasi-Adiabatic Quantum-dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Orlov, Alexei; Amlani, Islamshah; Kummamuru, Ravi; Toth, Geza; Bernstein, Gary; Lent, Craig; Snider, Gregory

    2000-03-01

    The computational approach known as Quantum-dot Cellular Automata (QCA) uses interacting quantum dots to encode and process binary information. The first realization of a functioning QCA cell has already been reported. Recently, quasi-adiabatic switching of QCA in a metal dot system near the instantaneous ground state was proposed [1]. The advantage if this approach is that it allows both logic and addressable memory to be implemented within the QCA framework. We report on the fabrication and measurement of such a device in the Al-AlOx tunnel junction system. This basic building block consists of three metal islands connected in series by tunnel junctions, where an electron can be moved between islands by means of electrostatic perturbation on either control electrodes or adjacent cells. The cell can have three operational modes, i.e. active, locked and null, which provide a solution for ground state computing that is not susceptible to metastable states. [1] G. Toth and C. S. Lent, J. appl. Phys. 85 5, 2977-2984, 1999.

  16. Nonadiabatic Photodynamics of a Retinal Model in Polar and Nonpolar Environment

    PubMed Central

    2013-01-01

    The nonadiabatic photodynamics of the all-trans-2,4-pentadiene-iminium cation (protonated Schiff base 3, PSB3) and the all-trans-3-methyl-2,4-pentadiene-iminium cation (MePSB3) were investigated in the gas phase and in polar (aqueous) and nonpolar (n-hexane) solutions by means of surface hopping using a multireference configuration-interaction (MRCI) quantum mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for radiationless deactivation to the ground state, and structural and electronic parameters are compared. A strong influence of the polar solvent on the location of the crossing seam, in particular in the bond length alternation (BLA) coordinate, is found. Additionally, inclusion of the polar solvent changes the orientation of the intersection cone from sloped in the gas phase to peaked, thus enhancing considerably its efficiency for deactivation of the molecular system to the ground state. These factors cause, especially for MePSB3, a substantial decrease in the lifetime of the excited state despite the steric inhibition by the solvent. PMID:23470211

  17. Lawful Hacking: Toward a Middle-Ground Solution to the Going Dark Problem

    DTIC Science & Technology

    2017-03-01

    14 2. 9/11 Terrorist Attacks..................................................................17 3. The Rise of Encryption Post -Snowden’s...taking pictures, posting pictures, shopping, conducting business, and searching the web. To investigate these 100,000 [the number of criminal cases his...non-U.S. person who does not have strong ties to the United States, FISA is the de facto Fourth Amendment limitation on government’s domestic

  18. Engaging Stakeholders in Generating Solutions to Address Enrollment Decline in an Urban Faith-Based Elementary School

    ERIC Educational Resources Information Center

    Jackson, Monica B.

    2014-01-01

    The United States has a tradition of faith-based K-12 education that can be traced back to the 1600s. This sector of education has played a vital role in America's urban communities. Faith-based schools have a strong record of serving disadvantaged families. They provide moral grounding, community ethic, safe and structured environment, academic…

  19. Variational calculations of subbands in a quantum well with uniform electric field - Gram-Schmidt orthogonalization approach

    NASA Technical Reports Server (NTRS)

    Ahn, Doyeol; Chuang, S. L.

    1986-01-01

    Variational calculations of subband eigenstates in an infinite quantum well with an applied electric field using Gram-Schmidt orthogonalized trial wave functions are presented. The results agree very well with the exact numerical solutions even up to 1200 kV/cm. It is also shown that, for increasing electric fields, the energy of the ground state decreases, while that of higher subband states increases slightly up to 1000 kV/cm and then decreases for a well size of 100 A.

  20. A device-oriented optimizer for solving ground state problems on an approximate quantum computer, Part II: Experiments for interacting spin and molecular systems

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay

    Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.

  1. A finite-element model for simulation of two-dimensional steady-state ground-water flow in confined aquifers

    USGS Publications Warehouse

    Kuniansky, E.L.

    1990-01-01

    A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.

  2. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    PubMed

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  3. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: properties of the triplet state and singlet oxygen photogeneration and quenching

    NASA Technical Reports Server (NTRS)

    Krasnovsky, A. A. Jr; Cheng, P.; Blankenship, R. E.; Moore, T. A.; Gust, D.

    1993-01-01

    Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.

  4. Low-lying energy spectrum of the cerium dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. V.; Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob'evy Gory 1/2, 119991, Moscow

    2011-07-15

    The electronic structure of Ce{sub 2} is studied in a valence bond model with two 4f electrons localized at two cerium sites. It is shown that the low-lying energy spectrum of the simplest cerium chemical bond is determined by peculiarities of the occupied 4f states. The model allows for an analytical solution, which is discussed along with the numerical analysis. The energy spectrum is a result of the interplay between the 4f valence bond exchange, the 4f Coulomb repulsion, and the spin-orbit coupling. The calculated ground state is the even {Omega}={Lambda}={Sigma}=0 level, the lowest excitations situated at {approx}30 K aremore » the odd {Omega}={Lambda}={Sigma}=0 state and the {sup 3}6{sub 5} doublet ({Omega}={+-}5,{Lambda}={+-}6,{Sigma}={+-}1). The calculated magnetic susceptibility displays different behavior at high and low temperatures. In the absence of the spin-orbit coupling the ground state is the {sup 3}{Sigma}{sub g}{sup -} triplet. The results are compared with other many-electron calculations and experimental data.« less

  5. Stability properties of solitary waves for fractional KdV and BBM equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime

    2018-03-01

    This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.

  6. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    PubMed

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising chain and 2D classical Ising model, showing the remarkable efficiency and accuracy of the AOP.

  7. Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model.

    PubMed

    Liu, Jie; Liang, WanZhen

    2013-01-14

    This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011); J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011)] on analytical excited-state Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with a conductor-like polarizable continuum model (CPCM). The formalism, implementation, and application of analytical first and second energy derivatives of TDDFT/CPCM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of excitation energies, excited-state geometries, and harmonic vibrational frequencies for a number of benchmark systems. The calculated results are in good agreement with the corresponding experimental data or other theoretical calculations, indicating the reliability of the current computer implementation of the developed algorithms. Then we made some preliminary applications to calculate the resonant Raman spectrum of 4-hydroxybenzylidene-2,3-dimethyl-imidazolinone in ethanol solution and the infrared spectra of ground and excited states of 9-fluorenone in methanol solution.

  8. Quantum solution for the one-dimensional Coulomb problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is notmore » its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.« less

  9. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2015-12-14

    We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.

  10. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    PubMed

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  11. Infiltration and solute transport experiments in unsaturated sand and gravel, Cape Cod, Massachusetts: Experimental design and overview of results

    USGS Publications Warehouse

    Rudolph, David L.; Kachanoski , R. Gary; Celia, Michael A.; LeBlanc, Denis R.; Stevens, Jonathon H.

    1996-01-01

    A series of infiltration and tracer experiments was conducted in unsaturated sand and gravel deposits on Cape Cod, Massachusetts. A network of 112 porous cup lysimeters and 168 time domain reflectometry (TDR) probes was deployed at depths from 0.25 to 2.0 m below ground surface along the centerline of a 2-m by 10-m test plot. The test plot was irrigated at rates ranging from 7.9 to 37.0 cm h−1 through a sprinkler system. Transient and steady state water content distributions were monitored with the TDR probes and spatial properties of water content distributions were determined from the TDR data. The spatial variance of the water content tended to increase as the average water content increased. In addition, estimated horizontal correlation length scales for water content were significantly smaller than those estimated by previous investigators for saturated hydraulic conductivity. Under steady state flow conditions at each irrigation rate, a sodium chloride solution was released as a tracer at ground surface and tracked with both the lysimeter and TDR networks. Transect-averaged breakthrough curves at each monitoring depth were constructed both from solute concentrations measured in the water samples and flux concentrations inferred from the TDR measurements. Transport properties, including apparent solute velocities, dispersion coefficients, and total mass balances, were determined independently from both sets of breakthrough curves. The dispersion coefficients tended to increase with depth, reaching a constant value with the lysimeter data and appearing to increase continually with the TDR data. The variations with depth of the solute transport parameters, along with observations of water and solute mass balance and spatial distributions of water content, provide evidence of significant three-dimensional flow during the irrigation experiments. The TDR methods are shown to efficiently provide dense spatial and temporal data sets for both flow and solute transport in unsaturated sediments with minimal sediment and flow field disturbance. Combined implementation of lysimeters and TDR probes can enhance data interpretation particularly when three-dimensional flow conditions are anticipated.

  12. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions

    USGS Publications Warehouse

    Cooley, Richard L.

    1992-01-01

    MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.

  13. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.

    PubMed

    Papagiannakis, Emmanouil; Vengris, Mikas; Larsen, Delmar S; van Stokkum, Ivo H M; Hiller, Roger G; van Grondelle, Rienk

    2006-01-12

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.

  14. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.

    PubMed

    Pollum, Marvin; Martínez-Fernández, Lara; Crespo-Hernández, Carlos E

    2015-01-01

    The steady-state and time-resolved photochemistry of the natural nucleic acid bases and their sulfur- and nitrogen-substituted analogues in solution is reviewed. Emphasis is given to the experimental studies performed over the last 3-5 years that showcase topical areas of scientific inquiry and those that require further scrutiny. Significant progress has been made toward mapping the radiative and nonradiative decay pathways of nucleic acid bases. There is a consensus that ultrafast internal conversion to the ground state is the primary relaxation pathway in the nucleic acid bases, whereas the mechanism of this relaxation and the level of participation of the (1)πσ*, (1) nπ*, and (3)ππ* states are still matters of debate. Although impressive research has been performed in recent years, the microscopic mechanism(s) by which the nucleic acid bases dissipate excess vibrational energy to their environment, and the role of the N-glycosidic group in this and in other nonradiative decay pathways, are still poorly understood. The simple replacement of a single atom in a nucleobase with a sulfur or nitrogen atom severely restricts access to the conical intersections responsible for the intrinsic internal conversion pathways to the ground state in the nucleic acid bases. It also enhances access to ultrafast and efficient inter-system crossing pathways that populate the triplet manifold in yields close to unity. Determining the coupled nuclear and electronic pathways responsible for the significantly different photochemistry in these nucleic acid base analogues serves as a convenient platform to examine the current state of knowledge regarding the photodynamic properties of the DNA and RNA bases from both experimental and computational perspectives. Further investigations should also aid in forecasting the prospective use of sulfur- and nitrogen-substituted base analogues in photochemotherapeutic applications.

  15. Multilayer Markov Random Field models for change detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  16. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    NASA Astrophysics Data System (ADS)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  17. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  18. Ground control failures. A pictorial view of case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, S.S.

    2007-07-01

    The book shows, in pictorial views, many forms and/or stages of types of failures in mines, for instance, cutter, roof falls, and cribs. In each case, the year of occurrence is stated in the beginning so that the environment or technological background under which it occurred are reflected. The narrative than begins with the mining and geological conditions, followed by a description of the ground control problems and recommended solutions and results, if any. The sections cover failure of pillars, roof falls, longwall, roof bolting, multiple-seam mining, floor heave, longwall, flooding and weathering of coal, old workings, and shortwall andmore » thin-seam plow longwall.« less

  19. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.

  20. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  1. Effect of solvent polarity on the spectroscopic properties of an alkynyl gold(i) gelator. The particular case of water.

    PubMed

    Gavara, Raquel; Lima, João Carlos; Rodríguez, Laura

    2016-05-11

    The spectroscopic properties of aggregates obtained from the hydrogelator [Au(4-pyridylethynyl)(PTA)] were studied in solvents of different polarities. Inspection of the absorption and emission spectra of diluted solutions showed that the singlet ground state of the monomeric species is sensitive to polarity and is stabilized in more polar solvents whereas the triplet excited state is rather insensitive to changes in polarity. The study of relatively concentrated solutions revealed the presence of new emission and excitation bands at 77 K that was attributed to the presence of different kinds of aggregates. Particularly interesting behaviour was revealed in water where aggregation is observed to be more efficient. For this, absorption, emission quantum yields and luminescence lifetimes of aqueous solutions at different concentrations were investigated in more detail. These data permitted one to correlate the increase of non-radiative and radiative rate constants of the low lying triplet emissive state with concentration, and therefore with the low limit concentration for aggregation, due to the shortening of the AuAu average distances in the aggregates and consequent enhancement of the spin-orbit coupling in the system.

  2. Ground-water resources of the Cahaba River basin in Alabama - Subarea 7 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa river basins

    USGS Publications Warehouse

    Mooty, Will S.; Kidd, Robert E.

    1997-01-01

    Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahooochee-Flint and Alabama-Coosa-Tallapoosa River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availablity in the Cahaba River basin in Alabama, Subarea 7 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basins, and to estimate the possible effects of increased ground-water use within the basin. Subarea 7 encompasses about 1,030 square miles in north-central Alabama. Subarea 7 encompasses parts of the Piedmont, Valley and Ridge, and Coastal Plain physiographic provinces. The Piedmont Province is underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which can behave as a porous-media aquifer. The Valley and Ridge Province is underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont Province. Fracture-conduit aquifers predominante in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers dedominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground- water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Cahaba River. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an atuomated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be 763 cubic feet per second at Centreville, Ala., where the Cahaba River exits Subarea 7 into Subarea 8. Mean-annual baseflow represented about 48 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Cahaba River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basin area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of these droughts averaged about 21 percent of the estimated mean-annual baseflow in Subarea 7 (ranged from about 16 to 25 percent for individual drought years). The potential exists for the development of ground-water resources on a regional scale throughout Subarea 7. Estimated ground-water use in 1990 was about 2 percent of the estimated mean-annual baseflow, and 9.7 percent of the average drought baseflow near the end of the droughts of 1941, 1954, and 1986. Because ground- water use in Subarea 7 represents a relatively minor percentage of ground- water recharge, even a large increase in ground-water use in Subarea 7 is likely to have little effect on ground-water and surface-water occurrernce in Alabama. Indications of long-term ground-water dec

  3. Combined TDDFT and AIM Insights into Photoinduced Excited State Intramolecular Proton Transfer (ESIPT) Mechanism in Hydroxyl- and Amino-Anthraquinone Solution.

    PubMed

    Zheng, Daoyuan; Zhang, Mingzhen; Zhao, Guangjiu

    2017-10-23

    Time-dependent density functional theory (TDDFT) and atoms in molecules (AIM) theory are combined to study the photoinduced excited state intramolecular proton transfer (ESIPT) dynamics for eight anthraquinones (AQs) derivatives in solution. The calculated absorption and emission spectra are consistent with the available experimental data, verifying the suitability of the theory selected. The systems with the excited-state exothermic proton transfer, such as 1-HAQ, 1,5-DHAQ and TFAQ, emit completely from transfer structure (T), while the reactions for those without ESIPT including 1,4-DHAQ and AAAQ appear to be endothermic. Three reaction properties of three systems (1,8-DHAQ, DCAQ and CAAQ) are between the exothermic and endothermic, sensitive to the solvent. Energy scanning shows that 1,4-DHAQ and AAAQ exhibit the higher ESIPT energy barriers compared to 1-HAQ, 1,5-DHAQ and TFAQ with the "barrierless" ESIPT process. The ESIPT process is facilitated by the strengthening of hydrogen bonds in excited state. With AIM theory, it is observed that the change in electrons density ρ(r) and potential energy density V(r) at BCP position between ground state and excited state are crucial factors to quantitatively elucidate the ESIPT.

  4. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    PubMed

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  5. Satellite-Relayed Intercontinental Quantum Network.

    PubMed

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-19

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  6. Satellite-Relayed Intercontinental Quantum Network

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-01

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  7. Unique role of ionic liquid [bmin][BF 4] during curcumin-surfactant association and micellization of cationic, anionic and non-ionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.

  8. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    NASA Astrophysics Data System (ADS)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  9. Magnetic helices as metastable states of finite XY ferromagnetic chains: An analytical study

    NASA Astrophysics Data System (ADS)

    Popov, Alexander P.; Pini, Maria Gloria

    2018-04-01

    We investigated a simple but non trivial model, consisting of a chain of N classical XY spins with nearest neighbor ferromagnetic interaction, where each of the two end-point spins is assumed to be exchange-coupled to a fully-pinned fictitious spin. In the mean field approximation, the system might be representative of a soft ferromagnetic film sandwiched between two magnetically hard layers. We show that, while the ground state is ferromagnetic and collinear, the system can attain non-collinear metastable states in the form of magnetic helices. The helical solutions and their stability were studied analytically in the absence of an external magnetic field. There are four possible classes of solutions. Only one class is metastable, and its helical states contain an integer number of turns. Among the remaining unstable classes, there is a class of helices which contain an integer number of turns. Therefore, an integer number of turns in a helical configuration is a necessary, but not a sufficient, condition for metastability. These results may be useful to devise future applications of metastable magnetic helices as energy-storing elements.

  10. Photophysical and Photochemical Properties of Some Fluorescent Derivatives of Vitamin B1

    NASA Astrophysics Data System (ADS)

    Marciniak, B.

    1987-05-01

    Absorption and emission spectra, depopulation kinetics of the lowest excited singlet and triplet states and acid-base equilibria of two fluorescent vitamin B, derivatives, the products I and II of the reaction of N-methylated vitamine B, with cytidine and adenosine, respectively, were investigated. Analysis of the lifetime and quantum yield data indicate that at 77 K emissions are the main processes of deactivation of the S1 and T1 states for the free ion and protonated forms. The pKa values indicate a much higher acidity in the excited singlet and triplet states than in the ground state. I and II undergo very slow photochemical reactions in solution in the presence of oxygen (Φ ~ 10-4).

  11. Exotic superconducting states in the extended attractive Hubbard model.

    PubMed

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-04

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  12. Exotic superconducting states in the extended attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-01

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with dx^2-y^2 + i [s + s^*] and dx^2-y^2 + px symmetries, and a novel px + i py state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  13. Precise calculation of quasienergies of a driven two-level atom based on the Guo-Wu-Van Woerkom solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yi; Zhang Jingtao; Xu Zhizhan

    2010-07-15

    The exact algebraic solution recently obtained by Guo, Wu, and Van Woerkom (Phys. Rev. A 73 (2006) 023419) made possible accurate calculations of quasienergies of a driven two-level atom with an arbitrary original energy spacing and laser intensity. Due to the complication of the analytic solutions that involves an infinite number of infinite determinants, many mathematical difficulties must be overcome to obtain precise values of quasienergies. In this paper, with a further developed algebraic method, we show how to solve the computational problem completely and results are presented in a data table. With this table, one can easily obtain allmore » quasienergies of a driven two-level atom with an arbitrary original energy spacing and arbitrary intensity and frequency of the driving laser. The numerical solution technique developed here can be applied to the calculation of Freeman resonances in photoelectron energy spectra. As an example for applications, we show how to use the data table to calculate the peak laser intensity at which a Freeman resonance occurs in the transition between the ground Xe 5p P{sub 3/2} state and the Rydberg state Xe 8p P{sub 3/2}.« less

  14. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  15. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  16. Neutron Protection Factor Determination and Validation for a Vehicle Surrogate Using a Californium Fission Source

    DTIC Science & Technology

    2017-06-01

    protection factors . The success of this research is a direct result of the immense collaboration across a number of institutions that all shared a...at post detonation neutron transport, an exact solution is not needed. Instead, the RPF research campaign uses a statistical-based method through a... factors of selected light vehicles against residual radiation,” United States Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1988

  17. Topological view of quantum tunneling coherent destruction

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Chinaglia, Mariana

    2017-08-01

    Quantum tunneling of the ground and first excited states in a quantum superposition driven by a novel analytical configuration of a double-well (DW) potential is investigated. Symmetric and asymmetric potentials are considered as to support quantum mechanical zero mode and first excited state analytical solutions. Reporting about a symmetry breaking that supports the quantum conversion of a zero-mode stable vacuum into an unstable tachyonic quantum state, two inequivalent topological scenarios are supposed to drive stable tunneling and coherent tunneling destruction respectively. A complete prospect of the Wigner function dynamics, vector field fluxes and the time dependence of stagnation points is obtained for the analytical potentials that support stable and tachyonic modes.

  18. Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water

    NASA Astrophysics Data System (ADS)

    Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio

    2010-10-01

    Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.

  19. Two-state model based on the block-localized wave function method

    NASA Astrophysics Data System (ADS)

    Mo, Yirong

    2007-06-01

    The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).

  20. Continual approach at T=0 in the mean field theory of incommensurate magnetic states in the frustrated Heisenberg ferromagnet with an easy axis anisotropy

    NASA Astrophysics Data System (ADS)

    Martynov, S. N.; Tugarinov, V. I.; Martynov, A. S.

    2017-10-01

    The algorithm of approximate solution was developed for the differential equation describing the anharmonical change of the spin orientation angle in the model of ferromagnet with the exchange competition between nearest and next nearest magnetic neighbors and the easy axis exchange anisotropy. The equation was obtained from the collinearity constraint on the discrete lattice. In the low anharmonicity approximation the equation is resulted to an autonomous form and is integrated in quadratures. The obvious dependence of the angle velocity and second derivative of angle from angle and initial condition was derived by expanding the first integral of the equation in the Taylor series in vicinity of initial condition. The ground state of the soliton solutions was calculated by a numerical minimization of the energy integral. The evaluation of the used approximation was made for a triple point of the phase diagram.

  1. Effect of Processing Parameters on the Morphology of PVDF Electrospun Nanofiber

    NASA Astrophysics Data System (ADS)

    Zulfikar, M. A.; Afrianingsih, I.; Nasir, M.; Alni, A.

    2018-03-01

    Electrospinning is a process that produces continuous polymer fibers with diameters in the submicron range through the action of an external electric field imposed on a polymer solution or melt. Because of the tiny diameter in several hundreds of nanometers and the high porosity, electrospun membranes show potential applications in extensive areas such as filtration systems, biomedical tissue templates, drug delivery membranes, and so on. In the electrospinning process, some parameters such as polymer concentration, feeding rate of the polymer solution, additives, humidity, viscosity, surface tension, applied voltage, and nozzle-to ground collector distance will affect the fiber diameter and morphology. In this work, we have evaluated the effects of two processing parameters including the flow rate of the polymer solution and nozzle-to ground collector distance, on the morphology of the fibers formed. The solutions used in the electrospinning experiments were prepared using Poly(vinylidene fluoride) (PVDF). This material was dissolved in N,N-dimethylformamide (DMF) to make solutions with concentrations of 20 wt%. These solutions was electrospun using a 5 mL plastic syringe with an 8 gauge stainless needle at an applied voltage of 20.0 kV, a flow rate of 0.02-0.04 mL/min and nozzle-to ground collector distance of 12 and 15 cm. Electrospinning of PVDF polymer solution was performed in horizontal alignment having a grounded aluminum foil which serves as a collector. The nanofibers obtained were characterized by polarizing optical microscope. We find that the low flow rate of the polymer solution and nozzle-to ground collector distance are strongly correlated with the formation of bead defects in the fibers.

  2. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  3. Taking the plunge: chemical reaction dynamics in liquids.

    PubMed

    Orr-Ewing, Andrew J

    2017-12-11

    The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.

  4. VUV Absorption Spectra of Gas-Phase Quinoline in the 3.5 - 10.7 eV Photon Energy Range.

    PubMed

    Leach, Sydney; Jones, Nykola C; Hoffmann, Søren Vrønning; Un, Sun

    2018-06-16

    The absorption spectrum of quinoline was measured in the gas phase between 3.5 and 10.7 eV using a synchrotron photon source. A large number of sharp and broad spectral features were observed, some of which have plasmon-type collective π-electron modes contributing to their intensities. Eight valence electronic transitions were assigned, considerably extending the number of π-π* transitions previously observed mainly in solution. The principal factor in solution red-shifts is found to be the Lorentz-Lorenz polarizability parameter. Rydberg bands, observed for the first time, are analysed into eight different series, converging to the D0 ground and two excited electronic states, D3 and D4, of the quinoline cation. The R1 series limit is 8.628 eV for the first ionization energy of quinoline, a value more precise than previously published. This value, combined with cation electronic transition data provides precise energies, respectively 10.623 eV and 11.355 eV, for the D3 and D4 states. The valence transition assignments are based on DFT calculations as well as on earlier Pariser-Parr-Pople SCF LCAO MO results. The relative quality of the P-P-P and DFT data is discussed. Both are far from spectroscopic accuracy concerning electronic excited states but were nevertheless useful for our assignments. Our time-dependent DFT calculations of quinoline are excellent for its ground state properties such as geometry, rotational constants, dipole moment and vibrational frequencies, which agree well with experimental observations. Vibrational components of the valence and Rydberg transitions mainly involve C-H bend and C=C and C=N stretch modes. Astrophysical applications of the VUV absorption of quinoline are briefly discussed.

  5. Fluorescence spectroscopy and amplified spontaneous emission (ASE) of phenylimidazoles: predicted vibronic coupling along the excited-state intramolecular proton transfer in 2-(2'-hydroxyphenyl)imidazoles.

    PubMed

    del Valle, Juan Carlos; Claramunt, R M; Catalán, J

    2008-06-26

    Methylation at the 1N position of 2-phenylimidazole provides the shortest wavelength for a liquid-state laser dye reported to date; that is, the 1-methyl-2-phenylimidazole molecule in cyclohexane solution yields amplified spontaneous emission (ASE) with a peak wavelength at 314.5 nm and a constant laser gain value of 5 cm(-1) from 310 to 317 nm. Methyl substitution in this case favors the appearance of laser action (owing to a torsion-vibrational mechanism) in cyclohexane as compared with the nonmethylated species which does not exhibit ASE in this solvent. The 2-(2'-hydroxyphenyl)imidazole molecules give rise to ASE with high gain values (ca. 9 cm(-1)) at 450 and 466 nm. The mechanism of population inversion is understood in terms of a vibronic coupling between the hydroxyl stretching motion and the torsional vibration of the phenyl and imidazole rings. The proton-transfer spectroscopy of 2-(2'-hydroxyphenyl)imidazoles is studied in dioxane, cyclohexane, dimethyl sulfoxide, methanol, and water. The greater the acidity of the solvent the greater the disruption of the intramolecular hydrogen bond; solvent acidity is the main parameter which favors formation of the open-form species in the ground electronic state. Methyl substitution at the 1N position favors formation of the open species for 2-hydroxyphenylimidazoles in the ground electronic state, which decreases their own capacity to undergo ASE. Low-temperature absorption spectroscopy confirms aggregation processes for 2-(2'-hydroxyphenyl)imidazoles in solution. In accordance with X-ray analyses in the solid phase, these molecules form associations through intermolecular chains of the type N-H...O or O-H...N.

  6. Kinks and antikinks of buckled graphene: A testing ground for the φ4 field model

    NASA Astrophysics Data System (ADS)

    Yamaletdinov, R. D.; Slipko, V. A.; Pershin, Y. V.

    2017-09-01

    Kinks and antikinks of the classical φ4 field model are topological solutions connecting its two distinct ground states. Here we establish an analogy between the excitations of a long graphene nanoribbon buckled in the transverse direction and φ4 model results. Using molecular dynamics simulations, we investigated the dynamics of a buckled graphene nanoribbon with a single kink and with a kink-antikink pair. Several features of the φ4 model have been observed including the kink-antikink capture at low energies, kink-antikink reflection at high energies, and a bounce resonance. Our results pave the way towards the experimental observation of a rich variety of φ4 model predictions based on graphene.

  7. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  8. Evaluating excited state atomic polarizabilities of chromophores† †Electronic supplementary information (ESI) available: Basis set dependence, definition of bond charges, Romberg differentiation, python script to calculate atomic polarizabilities, influence of the cavity radius, atomic polarizabilities of coumarin 153, all tables in atomic units. See DOI: 10.1039/c7cp08549d

    PubMed Central

    Heid, Esther

    2018-01-01

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered. PMID:29542743

  9. Ground-water resources of the Coosa River basin in Georgia and Alabama; Subarea 6 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa river basins

    USGS Publications Warehouse

    Robinson, James L.; Journey, Celeste A.; Atkins, J. Brian

    1997-01-01

    Drought conditions in the 1980's focused attention on the multiple uses of the surface- and ground-water resources in the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Tallapoosa (ACT) River basins in Georgia, Alabama, and Florida. State and Federal agencies also have proposed projects that would require additional water resources and revise operating practices within the river basins. The existing and proposed water projects create conflicting demands for water by the States and emphasize the problem of water-resource allocation. This study was initiated to describe ground-water availability in the Coosa River basin of Georgia and Alabama, Subarea 6 of the ACF and ACT River basins, and estimate the possible effects of increased ground-water use within the basin. Subarea 6 encompasses about 10,060 square miles in Georgia and Alabama, totaling all but about 100 mi2 of the total area of the Coosa River basin; the remainder of the basin is in Tennessee. Subarea 6 encompasses parts of the Piedmont, Blue Ridge, Cumberland Plateau, Valley and Ridge, and Coastal Plain physiographic provinces. The major rivers of the subarea are the Oostanaula, Etowah, and Coosa. The Etowah and Oostanaula join in Floyd County, Ga., to form the Coosa River. The Coosa River flows southwestward and joins with the Tallapoosa River near Wetumpka, Ala., to form the Alabama River. The Piedmont and Blue Ridge Provinces are underlain by a two-component aquifer system that is composed of a fractured, crystalline-rock aquifer characterized by little or no primary porosity or permeability; and the overlying regolith, which generally behaves as a porous-media aquifer. The Valley and Ridge and Cumberland Plateau Provinces are underlain by fracture- and solution-conduit aquifer systems, similar in some ways to those in the Piedmont and Blue Ridge Provinces. Fracture-conduit aquifers predominate in the well-consolidated sandstones and shales of Paleozoic age; solution-conduit aquifers predominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground-water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Coosa River, and in upstream areas, to the Etowah and Oostanaula Rivers. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an automated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be about 4,000 cubic feet per second (ft3/s) (from the headwaters to the Georgia-Alabama State Line), 5,360 ft3/s in Alabama, and 9,960 ft3/s for all of Subarea 6 (at the Subarea 7-Subarea 8 boundary). Mean annual baseflow represented about 60 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Coosa River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the ACF-ACT area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of the individual drought years ranged from about 11 to 27 percent of the estimated mean-annual baseflow in Subarea 6. The potential exists for the development of ground-water resources on a regional scale throughout Su

  10. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  11. Semantic Entity-Component State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.

    PubMed

    Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich

    2017-04-01

    Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

  12. Homogeneous, anisotropic three-manifolds of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Baekler, P.

    1989-10-01

    We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant μ which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX lead to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action. Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constituent of anti-de Sitter space which is the ground state solution in higher dimensional generalization of Einstein's general relativity.

  13. Homogeneous, anisotropic three-manifolds of topologically massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.; Baekler, P.

    1989-10-01

    We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant {mu}m which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX leadmore » to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action, Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constitent of anti-de Sitter space which is the ground state solution in higher dimensional generalizations of Einstein's general relativity. {copyright} 1989 Academic Press, Inc.« less

  14. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  15. Analytical study of STOL Aircraft in ground effect. Part 1: Nonplanar, nonlinear wing/jet lifting surface method

    NASA Technical Reports Server (NTRS)

    Shollenberger, C. A.; Smyth, D. N.

    1978-01-01

    A nonlinear, nonplanar three dimensional jet flap analysis, applicable to the ground effect problem, is presented. Lifting surface methodology is developed for a wing with arbitrary planform operating in an inviscid and incompressible fluid. The classical, infintely thin jet flap model is employed to simulate power induced effects. An iterative solution procedure is applied within the analysis to successively approximate the jet shape until a converged solution is obtained which closely satisfies jet and wing boundary conditions. Solution characteristics of the method are discussed and example results are presented for unpowered, basic powered and complex powered configurations. Comparisons between predictions of the present method and experimental measurements indicate that the improvement of the jet with the ground plane is important in the analyses of powered lift systems operating in ground proximity. Further development of the method is suggested in the areas of improved solution convergence, more realistic modeling of jet impingement and calculation efficiency enhancements.

  16. Properties of isoscalar-pair condensates

    DOE PAGES

    Van Isacker, P.; Macchiavelli, A. O.; Fallon, P.; ...

    2016-08-17

    In this work, it is pointed out that the ground state of $n$ neutrons and n protons in a single-$j$ shell, interacting through an isoscalar ($T=0$) pairing force, is not paired, $J=0$, but rather spin aligned, $J=n$. This observation is explained in the context of a model of isoscalar $P(J=1)$ pairs, which is mapped onto a system of $p$ bosons, leading to an approximate analytic solution of the isoscalar-pairing limit in $jj$ coupling.

  17. Solvent and temperature effects on the decay dynamics of [p-N,N-(dialkylamino)benzylidene]malononitriles

    NASA Astrophysics Data System (ADS)

    Safarzadeh-Amiri, A.

    1986-08-01

    The effects of solvent and temperature on the decay kinetics of p-(dialkylamino)benzylidenemalononitrile (1) and julodinemalononitrile (3) has been studied in glycerol and triacetin. The fluorescence decay curves of these compounds were non-exponential and varied slightly with wavelength. This is attributed to the existence of two ground state conformers and to reorientation of the solvent cage around solute molecules. The results were explained in terms of trans → cisphotoisomerization.

  18. Career Profiles- Aero-Mechanical Design- Operations Engineering Branch

    NASA Image and Video Library

    2015-10-26

    NASA Armstrong’s Aeromechanical Design Group provides mechanical design solutions ranging from research and development to ground support equipment. With an aerospace or mechanical engineering background, team members use the latest computer-aided design software to create one-of-kind parts, assemblies, and drawings, and aid in the design’s fabrication and integration. Reverse engineering and inspection of Armstrong’s fleet of aircraft is made possible by using state-of-the-art coordinate measuring machines and laser scanning equipment.

  19. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant improvements in understanding and predicting the occurrence and fate of pesticides in ground water are likely to depend on: (1) greater coordination of ground-water sampling across the nation to ensure consistency of study design, and thus comparability of results; (2) more extensive analyses for pesticide transformation products during ground-water monitoring studies; (3) substantially enhanced communication among investigators conducting laboratory experiments, small-scale field studies and large-scale monitoring studies; and (4) more routine testing of predictions of pesticide behavior and ground-water vulnerability against actual field observations of pesticide occurrence in ground water

  20. Scaling behavior of ground-state energy cluster expansion for linear polyenes

    NASA Astrophysics Data System (ADS)

    Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.

    Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.

  1. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.

    PubMed

    King, Andrew W; Baskerville, Adam L; Cox, Hazel

    2018-03-13

    An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  2. Synthesis, Characterization, Tautomeric Structure and Solvatochromic Behavior of Novel 4-(5-Arylazo-2-Hydroxystyryl)-1-Methylpyridinium Iodide as Potential Molecular Photoprobe

    PubMed Central

    Altalbawy, Farag; Darwish, Elham; Medhat, Mohamed; El-Zaiat, Sayed; Saleh, Hagar

    2016-01-01

    A novel series of the title compound 4-(5-arylazo-2-hydroxystyryl)-1-methylpyridinium iodide 6 has been synthesized via condensation reactions of the arylazosalicylaldehyde derivatives 4a–i with 1-methyl-picolinium iodide 5. The structures of the new arylazo compounds were characterized by 1H NMR, IR, mass spectroscopy, as well as spectral and elemental analyses. The electronic absorption spectra of arylazomerocyanine compounds 6 were measured in different buffer solutions and solvents. The pK′s and pK*′s in both the ground and excited states, respectively, were determined for the series and their correlations with the Hammett equation were examined. The results indicated that the title arylazomerocyanine dyes 6 exist in the azo form 6A in both ground and excited states. The substituent and solvent effects (solvatochromism) of the title compound arylazomerocyanine dyes were determined using the Kamlet-Taft equation and subsequently discussed. PMID:28774142

  3. Synthesis, Characterization, Tautomeric Structure and Solvatochromic Behavior of Novel 4-(5-Arylazo-2-Hydroxystyryl)-1-Methylpyridinium Iodide as Potential Molecular Photoprobe.

    PubMed

    Altalbawy, Farag; Darwish, Elham; Medhat, Mohamed; El-Zaiat, Sayed; Saleh, Hagar

    2016-12-19

    A novel series of the title compound 4-(5-arylazo-2-hydroxystyryl)-1-methylpyridinium iodide 6 has been synthesized via condensation reactions of the arylazosalicylaldehyde derivatives 4a - i with 1-methyl-picolinium iodide 5 . The structures of the new arylazo compounds were characterized by ¹H NMR, IR, mass spectroscopy, as well as spectral and elemental analyses. The electronic absorption spectra of arylazomerocyanine compounds 6 were measured in different buffer solutions and solvents. The pK's and pK*'s in both the ground and excited states, respectively, were determined for the series and their correlations with the Hammett equation were examined. The results indicated that the title arylazomerocyanine dyes 6 exist in the azo form 6A in both ground and excited states. The substituent and solvent effects (solvatochromism) of the title compound arylazomerocyanine dyes were determined using the Kamlet-Taft equation and subsequently discussed.

  4. Application of artificial intelligence to search ground-state geometry of clusters

    NASA Astrophysics Data System (ADS)

    Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.

    2002-08-01

    We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.

  5. Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang

    2017-01-01

    A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.

  6. Variational Monte Carlo study of pentaquark states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark W. Paris

    2005-07-01

    Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo. The spectrum is assumed to exhibit a narrow resonance with strangeness S=+1. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with J=1/2 and negative (positive) parity is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent latticemore » results. The short-range structure of the state is analyzed via its diquark content.« less

  7. Charge Redistribution in the β-NAPHTHOL-WATER Complex as Measured by High Resolution Stark Spectroscopy in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Pratt, David W.; Cembran, Alessandro; Gao, Jiali

    2010-06-01

    The extensively studied photoacid β-naphthol exhibits a large decrease in pKa upon irradiation with ultraviolet light, in the condensed phase. β-naphthol is almost 10 million times more acidic in the excited electronic state, compared to the ground state. Motivated by this fact, we report here the measurement of the electronic dipole moments of the β-naphthol-water complex in both electronic states, from which estimates of the charge transfer from solute to solvent in both states will be made. Comparisons to ab initio and density functional theory calculations will also be reported. N. Mataga and T. Kubota, Molecular Interactions and Electronic Spectra (Marcel Dekker, New York, 1970). Y. Mo, J. Gao, S.D. Peyerimhoff, J. Chem. Phys. 112, 5530 (2000).

  8. Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies.

    PubMed

    Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L

    2011-11-21

    The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.

  9. Transient diffraction grating measurements of molecular diffusion in the undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Spiegel, Daniel R.; Tuli, Santona

    2011-07-01

    Diffusion is a central process in many biological, chemical, and physical systems. We describe an experiment that employs the interference of laser beams to allow the measurement of molecular diffusion on submillimeter length scales. The interference fringes of two intersecting pump beams within a dye solution create a sinusoidal distribution of long-lived molecular excited states. A third probe beam is incident at a wavelength at which the indices of refraction of the ground and excited states are different, so the probe beam diffracts from the spatially periodic excited-state pattern. After the pump beams are switched off, the excited-state periodicity washes out as the system diffuses back to equilibrium. The molecular diffusion constant is obtained from the rate constant of the exponential decay of the diffracted beam. It is also possible to measure the excited-state lifetime.

  10. Perturbations and moduli space dynamics of tachyon kinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Li Huiquan

    2008-03-15

    The dynamic process of unstable D-branes decaying into stable ones with one dimension lower can be described by a tachyon field with a Dirac-Born-Infeld effective action. In this paper we investigate the fluctuation modes of the tachyon field around a two-parameter family of static solutions representing an array of brane-antibrane pairs. Besides a pair of zero modes associated with the parameters of the solution, and instabilities associated with annihilation of the brane-antibrane pairs, we find states corresponding to excitations of the tachyon field around the brane and in the bulk. In the limit that the brane thickness tends to zero,more » the support of the eigenmodes is limited to the brane, consistent with the idea that propagating tachyon modes drop out of the spectrum as the tachyon field approaches its ground state. The zero modes, and other low-lying excited states, show a fourfold degeneracy in this limit, which can be identified with some of the massless superstring modes in the brane-antibrane system. Finally, we also discuss the slow motion of the solution corresponding to the decay process in the moduli space, finding a trajectory which oscillates periodically between the unstable D-brane and the brane-antibrane pairs of one dimension lower.« less

  11. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems - An introduction

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.

    1987-01-01

    Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.

  12. Computer model of two-dimensional solute transport and dispersion in ground water

    USGS Publications Warehouse

    Konikow, Leonard F.; Bredehoeft, J.D.

    1978-01-01

    This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the calculations. The data input formats for the model require three data cards and from seven to nine data sets to describe the aquifer properties, boundaries, and stresses. The accuracy of the model was evaluated for two idealized problems for which analytical solutions could be obtained. In the case of one-dimensional flow the agreement was nearly exact, but in the case of plane radial flow a small amount of numerical dispersion occurred. An analysis of several test problems indicates that the error in the mass balance will be generally less than 10 percent. The test problems demonstrated that the accuracy and precision of the numerical solution is sensitive to the initial number of particles placed in each cell and to the size of the time increment, as determined by the stability criteria. Mass balance errors are commonly the greatest during the first several time increments, but tend to decrease and stabilize with time.

  13. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape.

    PubMed

    Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik

    2015-02-16

    Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable. Overall, the different exchange-correlation functionals provided a qualitatively consistent and plausible picture of the low-energy d-d excited states of the complexes.

  14. Density-Difference-Driven Optimized Embedding Potential Method To Study the Spectroscopy of Br₂ in Water Clusters.

    PubMed

    Roncero, Octavio; Aguado, Alfredo; Batista-Romero, Fidel A; Bernal-Uruchurtu, Margarita I; Hernández-Lamoneda, Ramón

    2015-03-10

    A variant of the density difference driven optimized embedding potential (DDD-OEP) method, proposed by Roncero et al. (J. Chem. Phys. 2009, 131, 234110), has been applied to the calculation of excited states of Br2 within small water clusters. It is found that the strong interaction of Br2 with the lone electronic pair of the water molecules makes necessary to optimize specific embedding potentials for ground and excited electronic states, separately and using the corresponding densities. Diagnosis and convergence studies are presented with the aim of providing methods to be applied for the study of chromophores in solution. Also, some preliminary results obtained for the study of electronic states of Br2 in clathrate cages are presented.

  15. Dissipation-based entanglement via quantum Zeno dynamics and Rydberg antiblockade

    NASA Astrophysics Data System (ADS)

    Shao, X. Q.; Wu, J. H.; Yi, X. X.

    2017-06-01

    A scheme is proposed for dissipative generation of maximally entanglement between two Rydberg atoms in the context of cavity QED. The spontaneous emission of atoms combined with quantum Zeno dynamics and the Rydberg antiblockade guarantees a unique steady solution of the master equation of the system, which just corresponds to the antisymmetric Bell state |S > . The convergence rate can be accelerated by the ground-state blockade mechanism of Rydberg atoms. Meanwhile the effect of cavity decay is suppressed by the Zeno requirement, leading to a steady-state fidelity about 90 % as the single-atom cooperativity parameter C ≡g2/(κ γ ) =10 , and this restriction is further relaxed to C =5.2 once the quantum-jump-based feedback control is exploited.

  16. Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Konikow, Leonard F.

    1977-01-01

    A solute-transport model that can be used to predict the movement of dissolved chemicals in flowing ground water was applied to a problem of ground-water contamination at the Rocky Mountain Arsenal, near Denver, Colo. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation. From 1943 to 1956 liquid industrial wastes containing high chloride concentrations were disposed into unlined ponds at the Arsenal. Wastes seeped out of the unlined disposal ponds and spread for many square miles in the underlying shallow alluvial aquifer. Since 1956 disposal has been into an asphalt-lined reservoir, which contributed to a decline in ground-water contamination by 1972. The simulation model quantitatively integrated the effects of the major factors that controlled changes in chloride concentrations and accurately reproduced the 30-year history of chloride ground-water contamination. Analysis of the simulation results indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water.

  17. Is the ground state of Yang-Mills theory Coulombic?

    NASA Astrophysics Data System (ADS)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  18. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other components of the linear management formulation to form a complete linear formulation; the formulation is then solved by use of the simplex algorithm, which is incorporated into the RMS Package. Nonlinear formulations arise for simulated conditions that include water?table (unconfined) aquifers or head?dependent boundary conditions (such as streams, drains, or evapotranspiration from the water table). Nonlinear formulations are solved by sequential linear programming; that is, repeated linearization of the nonlinear features of the management problem. In this approach, response coefficients are recalculated for each iteration of the solution process. Mixed?binary linear (or mildly nonlinear) formulations are solved by use of the branch and bound algorithm, which is also incorporated into the RMS Package. Three sample problems are provided to demonstrate the use of GWM for typical ground?water flow management problems. These sample problems provide examples of how GWM input files are constructed to specify the decision variables, objective function, constraints, and solution process for a GWM run. The GWM Process runs with the MODFLOW?2000 Global and Ground?Water Flow Processes, but in its current form GWM cannot be used with the Observation, Sensitivity, Parameter?Estimation, or Ground?Water Transport Processes. The GWM Process is written with a modular structure so that new objective functions, constraint types, and solution algorithms can be added.

  19. PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.

    2006-11-01

    This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.

  20. Design of Distributed Controllers Seeking Optimal Power Flow Solutions Under Communication Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

    This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less

  1. Design of Distributed Controllers Seeking Optimal Power Flow Solutions under Communication Constraints: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

    This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltagemore » measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.« less

  2. Sharp threshold of blow-up and scattering for the fractional Hartree equation

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Zhu, Shihui

    2018-02-01

    We consider the fractional Hartree equation in the L2-supercritical case, and find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If M[u0 ]s -sc/sc E [u0 ] < M[ Q ]s -sc/sc E [ Q ] and M[u0 ]s -sc/sc ‖u0‖ H˙s 2 < M[ Q ]s -sc/sc ‖Q‖ H˙s 2 , then the solution u (t) is globally well-posed and scatters; if M[u0 ]s -sc/sc E [u0 ] < M[ Q ]s -sc/sc E [ Q ] and M[u0 ]s -sc/sc ‖u0‖ H˙s 2 > M[ Q ]s -sc/sc ‖Q‖ H˙s 2 , the solution u (t) blows up in finite time. This condition is sharp in the sense that the solitary wave solution eit Q (x) is global but not scattering, which satisfies the equality in the above conditions. Here, Q is the ground-state solution for the fractional Hartree equation.

  3. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Rational decisions, random matrices and spin glasses

    NASA Astrophysics Data System (ADS)

    Galluccio, Stefano; Bouchaud, Jean-Philippe; Potters, Marc

    We consider the problem of rational decision making in the presence of nonlinear constraints. By using tools borrowed from spin glass and random matrix theory, we focus on the portfolio optimisation problem. We show that the number of optimal solutions is generally exponentially large, and each of them is fragile: rationality is in this case of limited use. In addition, this problem is related to spin glasses with Lévy-like (long-ranged) couplings, for which we show that the ground state is not exponentially degenerate.

  5. Intertwining solutions for magnetic relativistic Hartree type equations

    NASA Astrophysics Data System (ADS)

    Cingolani, Silvia; Secchi, Simone

    2018-05-01

    We consider the magnetic pseudo-relativistic Schrödinger equation where , m  >  0, is an external continuous scalar potential, is a continuous vector potential and is a convolution kernel, is a constant, , . We assume that A and V are symmetric with respect to a closed subgroup G of the group of orthogonal linear transformations of . If for any , the cardinality of the G-orbit of x is infinite, then we prove the existence of infinitely many intertwining solutions assuming that is either linear in x or uniformly bounded. The results are proved by means of a new local realization of the square root of the magnetic laplacian to a local elliptic operator with Neumann boundary condition on a half-space. Moreover we derive an existence result of a ground state intertwining solution for bounded vector potentials, if G admits a finite orbit.

  6. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  7. Efficiency of quantum vs. classical annealing in nonconvex learning problems

    PubMed Central

    Zecchina, Riccardo

    2018-01-01

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764

  8. Symmetry laws improve electronegativity equalization by orders of magnitude and call for a paradigm shift in conceptual density functional theory.

    PubMed

    von Szentpály, László

    2015-03-05

    The strict Wigner-Witmer symmetry constraints on chemical bonding are shown to determine the accuracy of electronegativity equalization (ENE) to a high degree. Bonding models employing the electronic chemical potential, μ, as the negative of the ground-state electronegativity, χ(GS), frequently collide with the Wigner-Witmer laws in molecule formation. The violations are presented as the root of the substantially disturbing lack of chemical potential equalization (CPE) in diatomic molecules. For the operational chemical potential, μ(op), the relative deviations from CPE fall between -31% ≤ δμ(op) ≤ +70%. Conceptual density functional theory (cDFT) cannot claim to have operationally (not to mention, rigorously) proven and unified the CPE and ENE principles. The solution to this limitation of cDFT and the symmetry violations is found in substituting μ(op) (i) by Mulliken's valence-state electronegativity, χ(M), for atoms and (ii) its new generalization, the valence-pair-affinity, α(VP), for diatomic molecules. Mulliken's χ(M) is equalized into the α(VP) of the bond, and the accuracy of ENE is orders of magnitude better than that of CPE using μ(op). A paradigm shift replacing the dominance of ground states by emphasizing valence states seems to be in order for conceptual DFT.

  9. Gravitationally self-bound quantum states in unstable potentials

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Markku

    2018-04-01

    Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials, although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these effects demanding and requires further developments in the cooling of material particles. In addition, the influence of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet and controlled environments such as those provided by recently proposed space-borne experiments.

  10. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: Excited-state dynamics in 1-nitronaphthalene.

    PubMed

    Reichardt, Christian; Vogt, R Aaron; Crespo-Hernández, Carlos E

    2009-12-14

    The electronic energy relaxation of 1-nitronaphthalene was studied in nonpolar, aprotic, and protic solvents in the time window from femtoseconds to microseconds. Excitation at 340 or 360 nm populates the Franck-Condon S(1)(pipi( *)) state, which is proposed to bifurcate into two essentially barrierless nonradiative decay channels with sub-200 fs lifetimes. The first main decay channel connects the S(1) state with a receiver T(n) state that has considerable npi( *) character. The receiver T(n) state undergoes internal conversion to populate the vibrationally excited T(1)(pipi( *)) state in 2-4 ps. It is shown that vibrational cooling dynamics in the T(1) state depends on the solvent used, with average lifetimes in the range from 6 to 12 ps. Furthermore, solvation dynamics competes effectively with vibrational cooling in the triplet manifold in primary alcohols. The relaxed T(1) state undergoes intersystem crossing back to the ground state within a few microseconds in N(2)-saturated solutions in all the solvents studied. The second minor channel involves conformational relaxation of the bright S(1) state (primarily rotation of the NO(2)-group) to populate a dissociative singlet state with significant charge-transfer character and negligible oscillator strength. This dissociative channel is proposed to be responsible for the observed photochemistry in 1-nitronaphthalene. Ground- and excited-state calculations at the density functional level of theory that include bulk and explicit solvent effects lend support to the proposed mechanism where the fluorescent S(1) state decays rapidly and irreversibly to dark excited states. A four-state kinetic model is proposed that satisfactorily explains the origin of the nonradiative electronic relaxation pathways in 1-nitronaphthalene.

  11. Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Demler, Eugene; Ignacio Cirac, J.

    2018-03-01

    We present a new variational method for investigating the ground state and out of equilibrium dynamics of quantum many-body bosonic and fermionic systems. Our approach is based on constructing variational wavefunctions which extend Gaussian states by including generalized canonical transformations between the fields. The key advantage of such states compared to simple Gaussian states is presence of non-factorizable correlations and the possibility of describing states with strong entanglement between particles. In contrast to the commonly used canonical transformations, such as the polaron or Lang-Firsov transformations, we allow parameters of the transformations to be time dependent, which extends their regions of applicability. We derive equations of motion for the parameters characterizing the states both in real and imaginary time using the differential structure of the variational manifold. The ground state can be found by following the imaginary time evolution until it converges to a steady state. Collective excitations in the system can be obtained by linearizing the real-time equations of motion in the vicinity of the imaginary time steady-state solution. Our formalism allows us not only to determine the energy spectrum of quasiparticles and their lifetime, but to obtain the complete spectral functions and to explore far out of equilibrium dynamics such as coherent evolution following a quantum quench. We illustrate and benchmark this framework with several examples: a single polaron in the Holstein and Su-Schrieffer-Heeger models, non-equilibrium dynamics in the spin-boson and Kondo models, the superconducting to charge density wave phase transitions in the Holstein model.

  12. Laser Ranging to the Lunar Reconnaissance Orbiter: improved timing and orbits

    NASA Astrophysics Data System (ADS)

    Mao, D.; Mcgarry, J.; Sun, X.; Torrence, M. H.; Skillman, D.; Hoffman, E.; Mazarico, E.; Rowlands, D. D.; Golder, J.; Barker, M. K.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Laser ranging (LR) experiment to the Lunar Reconnaissance Orbiter (LRO) has been under operation for more than 4 years, since the launch of the spacecraft in June 2009. Led by NASA's Next Generation Satellite Laser Ranging(NGSLR) station at Greenbelt, Maryland, ten laser ranging stations over the world have been participating in the experiment and have collected over 3,200 hours of ranging data. These range measurements are used to monitor the behavior of the LRO clock and to generate orbital solutions for LRO. To achieve high-quality results in range, ground stations like NGSLR are using H-maser clocks to obtain a stable and continuous time baseline for the orbit solutions. An All-View GPS receiver was included at NGSLR since January 2013 which monitors the H-maser time against the master clock at the United State Naval Observatory (USNO) via the GPS satellites. NGSLR has successfully established nano-second level epoch time accuracy and 10-15 clock stability since then. Time transfer experiments using LRO as a common receiver have been verified in ground testing between NGSLR and MOBLAS7 via a ground terminal with a Lunar Orbiter Laser Altimeter (LOLA)-like receiver at Greenbelt, Maryland. Two hour-long ground tests using a LOLA-like detector and two different ground targets yielded results consistent with each other, and those from the previous 10-minute test completed one year ago. Time transfer tests between NGSLR and MOBLAS7 via LRO are ongoing. More time transfer tests are being planned from NGSLR to McDonald Laser Ranging Station (MLRS) in Texas and later from NGSLR to European satellite laser ranging (SLR) stations. Upon the completion of these time transfer experiments, nanosecond-level epoch time accuracy will be brought to stations besides NGSLR, and such high precision of the ground time can contribute to the LRO precision orbit determination (POD) process. Presently, by using the high-resolution GRAIL gravity models, the LRO orbits determined from LR data alone have a total position error of 10 meters in average, and show the same quality as those generated using conventional radiometric tracking data. In these LR orbital solutions, a bias was adjusted to compensate both the ground and spacecraft clock characteristics. By taking advantage of the knowledge we have gained through LR of the long-term stability of the LRO clock, the spacecraft clock behavior is separated from the ground station clocks and modeled over a 10-month time span in our current POD process. Here we present the results from this new approach, and further improvements in the quality of the orbital reconstruction.

  13. Temperature of water available for industrial use in the United States: Chapter F in Contributions to the hydrology of the United States, 1923-1924

    USGS Publications Warehouse

    Collins, W.D.

    1925-01-01

    The importance of water supply as a limiting factor in industrial development is becoming more evident each year. The limitation in a particular instance may be the quantity of water available, the quality determined by the mineral matter in solution or in suspension or by organic pollution, or the temperature of the water. Generally it is a combination of two or more of these factors.Many publications of the Geological Survey give data in regard to the quantity of surface water and ground water obtainable at different points. Other publications of this Survey and of other organizations give data on the quality of waters available for industrial use. The temperature of these waters is discussed in the present report.Data in regard to ground water have been obtained from Geological Survey water-supply papers, from the publications indicated in footnotes, and from an unpublished compilation of temperature records prepared by C. E. Van Orstrand, of the Geological Survey, in connection with studies of deep earth temperature. Data on temperature of surface water have been obtained mainly from officials of waterworks, as noted in the accompanying table. Data on air temperature have been obtained from reports of the United States Weather Bureau. The maps showing temperature of ground water and surface water (Pls. VIII and IX) are taken directly from Weather Bureau charts of temperature distribution.

  14. Photodynamics of intramolecular proton transfer in polar and nonpolar biflavonoid solutions

    NASA Astrophysics Data System (ADS)

    Bondarev, S. L.; Knyukshto, V. N.; Tikhomirov, S. A.; Buganov, O. V.; Pyrko, A. N.

    2012-10-01

    Using methods of steady state luminescence and femtosecond spectroscopy, we have studied the mechanism of intramolecular proton transfer in synthesized 3,7-dihydroxy-2,8-di(4-methoxyphenyl)-4H,6H-pyrano[3,2- g]chromen-4,6-dion in polar and nonpolar solutions, films, and polycrystals at 293 and 77 K. In an excited singlet state, intramolecular proton transfer occurs in two stages. At the first stage, a tautomer with one transferred proton (OTP tautomer) is formed from the Franck-Condon state within τ1 = 0.6 ps. At the second stage, the second proton is transferred within τ2 = 3.1 ps and a tautomer with two transferred protons (TTP tautomer) is formed, which fluoresces in toluene at 293 K with a high quantum yield, Φ f = 0.66, and the fluorescence spectrum of which is characterized by a large Stokes shift, 9900 cm-1. At 293 K, polar solvents (dimethylformamide, dimethyl sulfoxide, ethanol, etc.) solvate the BFV molecule in the ground state, while, in the excited state, an OTP tautomer is mainly formed. In polar ethanol at 77 K, a dual fluorescence spectrum is observed, which is caused by the fluorescence emission of polysolvates with λ{max/ f } = 460 nm and TTP phototautomers at λ{max/ f }= 610 nm.

  15. Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution.

    PubMed

    Clements, Andrew F; Haley, Joy E; Urbas, Augustine M; Kost, Alan; Rauh, R David; Bertone, Jane F; Wang, Fei; Wiers, Brian M; Gao, De; Stefanik, Todd S; Mott, Andrew G; Mackie, David M

    2009-06-11

    We examine the photophysics of a colloidal suspension of C(60) particles in a micellar solution of Triton X-100 and water, prepared via a new synthesis which allows high-concentration suspensions. The particle sizes are characterized by transmission electron microscopy and dynamic light scattering and found to be somewhat polydisperse in the range of 10-100 nm. The suspension is characterized optically by UV-vis spectroscopy, femtosecond transient absorption spectroscopy, laser flash photolysis, and z-scan. The ground-state absorbance spectrum shows a broad absorbance feature centered near 450 nm which is indicative of colloidal C(60). The transient absorption dynamics, presented for the first time with femtosecond resolution, are very similar to that of thin films of C(60) and indicate a strong quenching of the singlet excited state on short time scales and evidence of little intersystem crossing to a triplet excited state. Laser flash photolysis reveals that a triplet excited-state absorption spectrum, which is essentially identical in shape to that of molecular C(60) solutions, does indeed arise, but with much lower magnitude and somewhat shorter lifetime. Z-scan analysis confirms that the optical response of this material is dominated by nonlinear scattering.

  16. Area law from loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Hung, Ling-Yan; Marcianò, Antonino; Zhang, Mingyi

    2018-03-01

    We explore the constraints following from requiring the area law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to multilink coherent states, and find that the area law is preserved very generically using our single-link wave function as a building block. Finally, we develop the framework that generates families of multilink states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schrödinger's cat." We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.

  17. Gauss Seidel-type methods for energy states of a multi-component Bose Einstein condensate

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Ming; Lin, Wen-Wei; Shieh, Shih-Feng

    2005-01-01

    In this paper, we propose two iterative methods, a Jacobi-type iteration (JI) and a Gauss-Seidel-type iteration (GSI), for the computation of energy states of the time-independent vector Gross-Pitaevskii equation (VGPE) which describes a multi-component Bose-Einstein condensate (BEC). A discretization of the VGPE leads to a nonlinear algebraic eigenvalue problem (NAEP). We prove that the GSI method converges locally and linearly to a solution of the NAEP if and only if the associated minimized energy functional problem has a strictly local minimum. The GSI method can thus be used to compute ground states and positive bound states, as well as the corresponding energies of a multi-component BEC. Numerical experience shows that the GSI converges much faster than JI and converges globally within 10-20 steps.

  18. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  19. Photochemical Kinetics of a Phosphine Oxide Free Radical Initiator from Femtosecond UV-Pump/Mid-IR-Probe Spectroscopy.

    PubMed

    Straub, Steffen; Lindner, Jörg; Vöhringer, Peter

    2017-07-06

    Femtosecond UV-pump/mid-infrared-probe spectroscopy was used to explore in detail the primary photochemical events of the free radical initiator, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, in liquid dichloromethane solution at room temperature. Following electronic excitation of its lowest excited singlet state, S 1 , the radical initiator undergoes an intersystem crossing to the triplet ground state, T 1 , with a time constant of 135 ps. A subsequent α-cleavage occurs from the triplet state with a time constant of 15 ps and yields a trimethylbenzoyl radical together with a diphenylphosphinoyl radical. Transient absorptions from the S 1 and T 1 states are observed that can be assigned to the P═O stretching mode and the symmetric in-plane deformation mode of the trimethylphenyl moiety of the radical initiator.

  20. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  1. Near-infrared photoabsorption by C60 dianions in a storage ring.

    PubMed

    Kadhane, U; Andersen, J U; Bonderup, E; Concina, B; Hvelplund, P; Suhr Kirketerp, M-B; Liu, B; Nielsen, S Brøndsted; Panja, S; Rangama, J; Støchkel, K; Tomita, S; Zettergren, H; Hansen, K; Sundén, A E K; Canton, S E; Echt, O; Forster, J S

    2009-07-07

    We present a detailed study of the electronic structure and the stability of C(60) dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least approximately 1.5 eV. For C(60)(2-) ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C(60)(2-) ions is singlet. The observed spectrum corresponds to an electronic transition from a t(1u) lowest unoccupied molecular orbital (LUMO) of C(60) to the t(1g) LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10,723 cm(-1) corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm(-1) and (probably) 420 cm(-1) excitation are observed. We argue that a very broad absorption band from about 11,500 cm(-1) to 13,500 cm(-1) consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C(60)(-) may also be a transition to a cone state.

  2. Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries.

    PubMed

    Sarsa, Antonio; Le Sech, Claude

    2011-09-13

    Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.

  3. A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Attele, Rohan; Koshak, William

    2011-01-01

    A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.

  4. Electron-rich triphenylamine-based sensors for picric acid detection.

    PubMed

    Chowdhury, Aniket; Mukherjee, Partha Sarathi

    2015-04-17

    This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

  5. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    NASA Astrophysics Data System (ADS)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  6. On Medicaid and the Affordable Care Act in Connecticut

    PubMed Central

    Manthous, Constantine A.; Sofair, Andre N.

    2014-01-01

    Background: Medicaid is the federal program, administered by states, for health care for the poor. The Affordable Care Act (ACA) has added a large number of new recipients to this program. Hypothesis: Medicaid programs in some, if not many, states do not provide patients uniform access to subspecialty care guaranteed by the federal statutes. Insofar as the ACA does not address this pre-existing “sub-specialty gap” and more patients are now covered by Medicaid under the ACA, the gap is likely to increase and may contribute to disparities of health care access and outcomes. Methods: A brief description of previous studies demonstrating or suggesting a subspecialty gap in Medicaid services is accompanied by perspectives of the authors, using published literature — most notably the Denver, Colorado health care system — to propose various solutions that may be deployed to address gaps in subspecialty coverage. Results: All published studies describing the Medicaid subspecialty gap are qualitative, survey designs. There are no authoritative objective data regarding the exact prevalence of gaps for each subspecialty in each state. However, surveys of caregivers suggest that gaps were prevalent in the United States prior to initiation of the ACA. Even fewer papers have addressed solutions (in light of the paucity of data describing the magnitude of the problem), and proposed solutions remain speculative and not grounded in objective data. Conclusions: There is reason to believe that a substantial proportion of U.S. citizens — those who are guaranteed a full complement of health services through Medicaid — have difficult or no access to some subspecialty services, many of which other citizens take for granted. This problem deserves greater attention to verify its existence, quantify its magnitude, and develop solutions. PMID:25506291

  7. Photo-physical properties and triplet-triplet absorption of platinum(II) acetylides in solid PMMA matrices

    NASA Astrophysics Data System (ADS)

    Glimsdal, Eirik; Westlund, Robert; Lindgren, Mikael

    2009-05-01

    Because of their strong nonlinear optical properties, Platinum(II) acetylides are investigated as potential chromophores for optical power limiting (OPL) applications. The strong excited state absorption and efficient intersystem crossing to the triplet states in these materials are desired properties for good OPL performance. We recently reported on OPL and photo-physical properties of Pt(II)-acetylide chromophores in solution, modified with thiophenyl or triazole groups. [R. Westlund et al. J. Mater. Chem. 18, 166 (2008); E. Glimsdal et al. Proc. SPIE 6740, 67400M (2007)] The chromophores were later incorporated into poly(methyl-methacrylate) (PMMA) glasses. A variety of doped organic solids were prepared, reaching concentrations of up to 13 wt% of the guest molecule. Raman spectra of the doped solid devices proved that the chemical structure of the nonlinear dyes remains intact upon the polymerization of the solid matrix. Luminescence spectra confirm that the basic photo-physical properties (absorption, emission and inter-system crossing) observed for the solute molecules in THF are maintained also in the solid state. In particular, the phosphorescence lifetime stays in the order of μs to ms, just as in the oxygen evacuated liquid samples. Also, the wavelength dependence and time-dynamics of the triplet absorption spectra of the dyes, dissolved in THF solution and dispersed in solid PMMA matrices, were investigated and compared. Ground state UV absorption spectra between 300 and 420 nm have corresponding broad band visible triplet-triplet absorption between 400 and 800 nm. The triplet state extinction coefficients were determined to be in the order of 104 M-1cm-1.

  8. Photophysical study of the interaction between ZnO nanoparticles and globular protein bovine serum albumin in solution and in a layer-by-layer self-assembled film

    NASA Astrophysics Data System (ADS)

    Hansda, Chaitali; Maiti, Pradip; Singha, Tanmoy; Pal, Manisha; Hussain, Syed Arshad; Paul, Sharmistha; Paul, Pabitra Kumar

    2018-10-01

    In this study, we investigated the spectroscopic properties of the water-soluble globular protein bovine serum albumin (BSA) while interacting with zinc oxide (ZnO) semiconductor nanoparticles (NPs) in aqueous medium and in a ZnO/BSA layer-by-layer (LbL) self-assembled film fabricated on poly (acrylic acid) (PAA)-coated quartz or a Si substrate via electrostatic interactions. BSA formed a ground state complex due to its interaction with ZnO NPs, which was confirmed by ultraviolet-visible absorption, and steady state and time-resolved fluorescence emission spectroscopic techniques. However, due to its interaction with ZnO, the photophysical properties of BSA depend significantly on the concentration of ZnO NPs in the mixed solution. The quenching of the fluorescence intensity of BSA in the presence of ZnO NPs was due to the interaction between ZnO and BSA, and the formation of their stable ground state complex, as well as energy transfer from the excited BSA to ZnO NPs in the complex nano-bioconjugated species. Multilayer growth of the ZnO/BSA LbL self-assembled film on the quartz substrate was confirmed by monitoring the characteristic absorption band of BSA (280 nm), where the nature of the film growth depends on the number of bilayers deposited on the quartz substrate. BSA formed a well-ordered molecular network-type morphology due to its adsorption onto the surface of the ZnO nanostructure in the backbone of the PAA-coated Si substrate in the LbL film according to atomic force microscopic study. The as-synthesized ZnO NPs were characterized by field emission scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering techniques.

  9. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr; Jacquemin, Denis; Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases ofmore » interest in organic optoelectronics, wet chemistry, and biology.« less

  10. Anomalies of the electronic structure and physical properties of rare-earth cobaltites near spin crossover

    NASA Astrophysics Data System (ADS)

    Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Platunov, M. S.; Ovchinnikov, S. G.

    2016-10-01

    The features of the characteristics of LnCoO3 cobaltites, where Ln is a rare-earth element, are discussed. Both experiment and theory demonstrate that their essentials are related to the low-spin ground state of cobalt ions. The thermally induced occupation of the excited high-spin state gives rise to peaks in the magnetic susceptibility, specific heat, and thermal expansion, as well as to a smooth insulator-metal transition. The analysis is based both on the data from the current literature concerning LaCoO3 and in many aspects on our own studies of GdCoO3 and La1- x Gd x CoO3 solid solutions.

  11. Enhanced Reverse Saturable Absorption and Optical Limiting in Heavy-Atom Substituted Phthalocyanines

    NASA Technical Reports Server (NTRS)

    Perry, J. W.; Mansour, K.; Marder, S. R.; Alvarez, D., Jr.; Perry, K. J.; Choong, I.

    1994-01-01

    The reverse saturable absorption and optical limiting response of metal phthalocyaninies can be enhanced by using the heavy-atom effect. Phthalocyanines containing heavy metal atoms, such as In, Sn, and Pb show nearly a factor of two enhancement in the ratio of effective excited-state to ground-state absorption cross sections compared to those containing lighter atoms, such as Al and Si. In an f/8 optical geometry, homogeneous solutions of heavy metal phthalocyanines, at 30% linear transmission, limit 8-ns, 532-nm laser pulses to less than or equal to 3 (micro)J (the energy for 50% probability of eye damage) for incident pulses up to 800 (micro)J.

  12. Entropy of the Bose-Einstein-condensate ground state: Correlation versus ground-state entropy

    NASA Astrophysics Data System (ADS)

    Kim, Moochan B.; Svidzinsky, Anatoly; Agarwal, Girish S.; Scully, Marlan O.

    2018-01-01

    Calculation of the entropy of an ideal Bose-Einstein condensate (BEC) in a three-dimensional trap reveals unusual, previously unrecognized, features of the canonical ensemble. It is found that, for any temperature, the entropy of the Bose gas is equal to the entropy of the excited particles although the entropy of the particles in the ground state is nonzero. We explain this by considering the correlations between the ground-state particles and particles in the excited states. These correlations lead to a correlation entropy which is exactly equal to the contribution from the ground state. The correlations themselves arise from the fact that we have a fixed number of particles obeying quantum statistics. We present results for correlation functions between the ground and excited states in a Bose gas, so as to clarify the role of fluctuations in the system. We also report the sub-Poissonian nature of the ground-state fluctuations.

  13. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    PubMed

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  14. Simulation of Ground-Water Flow and Optimization of Withdrawals from Aquifers at the Naval Air Station Patuxent River, St. Mary's County, Maryland

    USGS Publications Warehouse

    Dieter, Cheryl A.; Fleck, William B.

    2008-01-01

    Potentiometric surfaces in the Piney Point-Nanjemoy, Aquia, and Upper Patapsco aquifers have declined from 1950 through 2000 throughout southern Maryland. In the vicinity of Lexington Park, Maryland, the potentiometric surface in the Aquia aquifer in 2000 was as much as 170 feet below sea level, approximately 150 feet lower than estimated pre-pumping levels before 1940. At the present rate, the water levels will have declined to the regulatory allowable maximum of 80 percent of available drawdown in the Aquia aquifer by about 2050. The effect of the withdrawals from these aquifers by the Naval Air Station Patuxent River and surrounding users on the declining potentiometric surface has raised concern for future availability of ground water. Growth at Naval Air Station Patuxent River may increase withdrawals, resulting in further drawdown. A ground-water-flow model, combined with optimization modeling, was used to develop withdrawal scenarios that minimize the effects (drawdown) of hypothetical future withdrawals. A three-dimensional finite-difference ground-water-flow model was developed to simulate the ground-water-flow system in the Piney Point-Nanjemoy, Aquia, and Upper Patapsco aquifers beneath the Naval Air Station Patuxent River. Transient and steady-state conditions were simulated to give water-resource managers additional tools to manage the ground-water resources. The transient simulation, representing 1900 through 2002, showed that the magnitude of withdrawal has increased over that time, causing ground-water flow to change direction in some areas. The steady-state simulation was linked to an optimization model to determine optimal solutions to hypothetical water-management scenarios. Two optimization scenarios were evaluated. The first scenario was designed to determine the optimal pumping rates for wells screened in the Aquia aquifer within three supply groups to meet a 25-percent increase in withdrawal demands, while minimizing the drawdown at a control location. The resulting optimal solution showed that pumping six wells above the rate required for maintenance produced the least amount of drawdown in the local potentiometric surface. The second hypothetical scenario was designed to determine the optimal location for an additional well in the Aquia aquifer in the northeastern part of the main air station. The additional well was needed to meet an increase in withdrawal of 43,000 cubic feet per day. The optimization model determined the optimal location for the new well, out of a possible 10 locations, while minimizing drawdown at control nodes located outside the western boundary of the main air station. The optimal location is about 1,500 feet to the east-northeast of the existing well.

  15. MODFLOW-2005, the U.S. Geological Survey modular ground-water model - documentation of shared node local grid refinement (LGR) and the boundary flow and head (BFH) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2006-01-01

    This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.

  16. Adiabatic two-qubit state preparation in a superconducting qubit system

    NASA Astrophysics Data System (ADS)

    Filipp, Stefan; Ganzhorn, Marc; Egger, Daniel; Fuhrer, Andreas; Moll, Nikolaj; Mueller, Peter; Roth, Marco; Schmidt, Sebastian

    The adiabatic transport of a quantum system from an initial eigenstate to its final state while remaining in the instantaneous eigenstate of the driving Hamiltonian can be used for robust state preparation. With control over both qubit frequencies and qubit-qubit couplings this method can be used to drive the system from initially trivial eigenstates of the uncoupled qubits to complex entangled multi-qubit states. In the context of quantum simulation, the final state may encode a non-trivial ground-state of a complex molecule or, in the context of adiabatic quantum computing, the solution to an optimization problem. Here, we present experimental results on a system comprising fixed-frequency superconducting transmon qubits and a tunable coupler to adjust the qubit-qubit coupling via parametric frequency modulation. We realize different types of interaction by adjusting the frequency of the modulation. A slow variation of drive amplitude and phase leads to an adiabatic steering of the system to its final state showing entanglement between the qubits.

  17. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    PubMed

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma < 250 fs) modulation components arising from intermolecular modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile and dimethylsulfoxide. The results strongly support a structural assignment of the low-frequency modes that are coupled to the primary and secondary electron-transfer reactions in photosynthetic reaction centers to intermolecular modes between the redox-active chromophores and first-solvation shell groups from the surrounding protein, and an important additional function of the intermolecular modes in the stabilization of charged intermediates is suggested.

  18. Multi-flexible-body analysis for application to wind turbine control design

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon

    The objective of the present research is to build a theoretical and computational framework for the aeroelastic analysis of flexible rotating systems, more specifically with special application to a wind turbine control design. The methodology is based on the integration of Kane's approach for the analysis of the multi-rigid-body subsystem and a mixed finite element method for the analysis of the flexible-body subsystem. The combined analysis is then strongly coupled with an aerodynamic model based on Blade Element Momentum theory for inflow model. The unified framework from the analysis of subsystems is represented as, in a symbolic manner, a set of nonlinear ordinary differential equations with time-variant, periodic coefficients, which describe the aeroelastic behavior of whole system. The framework can be directly applied to control design due to its symbolic characteristics. The solution procedures for the equations are presented for the study of nonlinear simulation, periodic steady-state solution, and Floquet stability of the linearized system about the steady-state solution. Finally the linear periodic system equation can be obtained with both system and control matrices as explicit functions of time, which can be directly applicable to control design. The structural model is validated by comparison of its results with those from software, some of which is commercial. The stability of the linearized system about periodic steady-state solution is different from that obtained about a constant steady-state solution, which have been conventional in the field of wind turbine dynamics. Parametric studies are performed on a wind turbine model with various pitch angles, precone angles, and rotor speeds. Combined with composite material, their effects on wind turbine aeroelastic stability are investigated. Finally it is suggested that the aeroelastic stability analysis and control design for the whole system is crucial for the design of wind turbines, and the present research breaks new ground in the ability to treat the issue.

  19. Mimicking multichannel scattering with single-channel approaches

    NASA Astrophysics Data System (ADS)

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2010-02-01

    The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold Li6 and Rb87 atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.

  20. The geochemical evolution of aqueous sodium in the Black Creek Aquifer, Horry and Georgetown counties, South Carolina

    USGS Publications Warehouse

    Zack, Allen L.; Roberts, Ivan

    1988-01-01

    The Black Creek aquifer contains dilute seawater near the North Carolina State line, probably the result of incomplete flushing of ancient seawater. Data do not indicate that the dilute seawater has migrated toward areas of fresh ground-water withdrawals. The concentration of chloride in ground-water samples ranges from 5 to 720 milligrams per liter and that of sodium from 160 to 690 milligrams per liter. Ion-exchange reactions (sodium for calcium and fluoride for hydroxyl) occur with the calcium carbonate dissolution reaction which produces calcium, bicarbonate, and hydroxyl ions. The reaction sequence and stoichiometry result in an aqueous solution in which the sum of bicarbonate and chloride equivalents per liter is equal to the equivalents per liter of sodium. Calcium ions are exchanged for sodium ions derived from sodium-rich clays upgradient of the dilute seawater. The cation-exchange reaction equilibrates at a sodium concentration of 280 milligrams per liter. Amounts of sodium greater than 280 milligrams per liter are contributed from dilute seawater. The cation-exchange reaction approaches an equilibrium which represents a mass-action limit in terms of the ratio of sodium to calcium in solution versus the ratio of exchangeable sodium to calcium on clay surfaces. Where the limit of calcium carbonate solubility is approached and dissolution ceases, some precipitation of calcite probably takes place. The dissolution of calcite exposes fossil shark teeth which release fluoride ions to the ground water through anion exchange with aqueous hydroxyl ions.

  1. Testing the sensitivity of pumpage to increases in surficial aquifer system heads in the Cypress Creek well-field area, West-Central Florida : an optimization technique

    USGS Publications Warehouse

    Yobbi, Dann K.

    2002-01-01

    Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads are maximized in cells located at or near the production wells. Additionally, the ratio of head recovery per unit decrease in pumpage was about three times more for the area where confining-unit leakance is the highest than for other leakance zone areas of the well field. For many head control sites, optimal heads corresponding to optimal pumpage deviated from the desired target recovery heads. Overall, pumping solutions were constrained by the limiting recovery values, initial head conditions, and by upper boundary conditions of the ground-water flow model.

  2. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for variousmore » physical analyses and the method used here could also be applied to other atomic systems.« less

  3. Multistimuli-responsive benzothiadiazole-cored phenylene vinylene derivative with nanoassembly properties.

    PubMed

    Dou, Chuandong; Chen, Dong; Iqbal, Javed; Yuan, Yang; Zhang, Hongyu; Wang, Yue

    2011-05-17

    A trifluoromethyl-substituted benzothiadiazole-cored phenylene vinylene fluorophore (1) was synthesized and displayed piezo- and vapochromism and thermo-induced fluorescence variation in solid phase. Grinding could disrupt the crystalline compound 1 with orange emission into amorphous compound 1 with green emission, and heating treatment could change the amorphous compound 1 into crystalline compound 1. Ultraviolet-visible (UV-vis) absorption spectra, (13)C nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) characterizations demonstrated that crystalline and amorphous compound 1 possess different molecular packing. A differential scanning calorimetry (DSC) measurement revealed that the emission switching was due to the exchange between the thermodynamic-stable crystalline and metastable amorphous states. The ground sample exhibited vapochromic fluorescence property. Furthermore, compound 1 showed interesting supramolecular assembly characteristics in solution. Slowly cooling the hot N,N-dimethylformamide (DMF) solution of compound 1 resulted in the formation of orange fluorescent fibers, whereas sonication treatment of the cooling solution led to the generation of organic molecular gel. The field emission scanning electronic microscope (FESEM) and fluorescent microscopy images revealed smooth nano- or microfiber and network morphology properties. The PXRD spectra confirmed that these nano- or microstructures had a similar molecular-packing model with the crystalline state of compound 1. Slow evaporation of the toluene solution of compound 1 could produce green emissive microrods, which exhibited interesting thermo-induced fluorescence variation.

  4. Analysis of filter tuning techniques for sequential orbit determination

    NASA Technical Reports Server (NTRS)

    Lee, T.; Yee, C.; Oza, D.

    1995-01-01

    This paper examines filter tuning techniques for a sequential orbit determination (OD) covariance analysis. Recently, there has been a renewed interest in sequential OD, primarily due to the successful flight qualification of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) using Doppler data extracted onboard the Extreme Ultraviolet Explorer (EUVE) spacecraft. TONS computes highly accurate orbit solutions onboard the spacecraft in realtime using a sequential filter. As the result of the successful TONS-EUVE flight qualification experiment, the Earth Observing System (EOS) AM-1 Project has selected TONS as the prime navigation system. In addition, sequential OD methods can be used successfully for ground OD. Whether data are processed onboard or on the ground, a sequential OD procedure is generally favored over a batch technique when a realtime automated OD system is desired. Recently, OD covariance analyses were performed for the TONS-EUVE and TONS-EOS missions using the sequential processing options of the Orbit Determination Error Analysis System (ODEAS). ODEAS is the primary covariance analysis system used by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The results of these analyses revealed a high sensitivity of the OD solutions to the state process noise filter tuning parameters. The covariance analysis results show that the state estimate error contributions from measurement-related error sources, especially those due to the random noise and satellite-to-satellite ionospheric refraction correction errors, increase rapidly as the state process noise increases. These results prompted an in-depth investigation of the role of the filter tuning parameters in sequential OD covariance analysis. This paper analyzes how the spacecraft state estimate errors due to dynamic and measurement-related error sources are affected by the process noise level used. This information is then used to establish guidelines for determining optimal filter tuning parameters in a given sequential OD scenario for both covariance analysis and actual OD. Comparisons are also made with corresponding definitive OD results available from the TONS-EUVE analysis.

  5. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): Heavy atom effect

    NASA Astrophysics Data System (ADS)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl Cdbnd O, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 108 M-1 s-1) as compared to that for indole (6.8 × 107 M-1 s-1) and I2C (2.3 × 107 M-1 s-1). The determined bimolecular rate constant for triplet state quenching by iodide kqT1 is equal to 1 × 104 M-1 s-1; 6 × 103 M-1 s-1 and 2.7 × 104 M-1 s-1 for indole, I2C and I5C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in Arrhenius form. The linearity of the obtained Arrhenius plots clearly indicated the existence of one temperature-dependent non-radiative process for the de-excitation of I2C and I5C triplet state in the presence of iodide. This process may be attributed to the solute-quenching by iodide and, most probably, proceeds via reversibly formed exciplex. The activation energies obtained from linear Arrhenius plots (1.89 kcal/mol for I5C; 2.55 kcal/mol for I2C) are smaller as compared to that for diffusion controlled reactions in aqueous solution (about 4 kcal/mol), which may indicate the great importance of the electrostatic interactions between solute and iodide ions in lowering the energy barrier needed for the formation of the triplet-quencher complex. Based on the theoretical predictions (at the DFT(CAM-B3LYP)/6-31 + G(d,p) level of theory) and careful analysis of the obtained FTIR spectra it may be concluded that in the solid state I2C and I5C molecules form associates by intermolecular NH⋯Odbnd C and OH⋯Odbnd C hydrogen bonding interactions, whereas the existence of intramolecular NH⋯Odbnd C interactions in the solid state of I2C and I5C is highly unlikely.

  6. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.

    PubMed

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl CO, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5 C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 10(8)M(-1)s(-1)) as compared to that for indole (6.8 × 10(7)M(-1)s(-1)) and I2C (2.3 × 10(7)M(-1)s(-1)). The determined bimolecular rate constant for triplet state quenching by iodide [Formula: see text] is equal to 1 × 10(4)M(-1)s(-1); 6 × 10(3)M(-1)s(-1) and 2.7 × 10(4)M(-1)s(-1) for indole, I2 C and I5 C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in Arrhenius form. The linearity of the obtained Arrhenius plots clearly indicated the existence of one temperature-dependent non-radiative process for the de-excitation of I2C and I5C triplet state in the presence of iodide. This process may be attributed to the solute-quenching by iodide and, most probably, proceeds via reversibly formed exciplex. The activation energies obtained from linear Arrhenius plots (1.89 kcal/mol for I5 C; 2.55 kcal/mol for I2 C) are smaller as compared to that for diffusion controlled reactions in aqueous solution (about 4 kcal/mol), which may indicate the great importance of the electrostatic interactions between solute and iodide ions in lowering the energy barrier needed for the formation of the triplet-quencher complex. Based on the theoretical predictions (at the DFT(CAM-B3LYP)/6-31+G(d,p) level of theory) and careful analysis of the obtained FTIR spectra it may be concluded that in the solid state I2 C and I5 C molecules form associates by intermolecular NH · · · OC and OH · · · OC hydrogen bonding interactions, whereas the existence of intramolecular NH · · · OC interactions in the solid state of I2C and I5C is highly unlikely. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Platinum CCC-NHC benzimidazolyl pincer complexes: synthesis, characterization, photostability, and theoretical investigation of a blue-green emitter.

    PubMed

    Huckaba, Aron J; Cao, Bei; Hollis, T Keith; Valle, Henry U; Kelly, John T; Hammer, Nathan I; Oliver, Allen G; Webster, Charles Edwin

    2013-06-28

    The recently reported metallation/transmetallation route for the synthesis of CCC-bis(NHC) pincer ligand architectures was extended to 1,3-bis(3'-(trimethylsilylmethyl)-benzimidizol-1'-yl)benzene. The precursor was metallated with Zr(NMe2)4 and transmetallated to Pt using [Pt(COD)Cl2]. This Pt complex was found to resist photobleaching under UV irradiation in ambient conditions. Density functional theory (DFT) computations were used to generate the emission spectrum of the complex and reveal that this spectrum is the result of a transition from the triplet excited state (T1) to the ground state (S0). The Pt complex's molecular structure was determined by X-ray crystallography. The UV-vis absorption and emission spectra in solution and the solid-state emission spectra are reported. The solid-state photostability data and the radiative lifetime is also reported.

  8. Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency.

    PubMed

    Moradi, Sharif; Sharifi-Zarchi, Ali; Ahmadi, Amirhossein; Mollamohammadi, Sepideh; Stubenvoll, Alexander; Günther, Stefan; Salekdeh, Ghasem Hosseini; Asgari, Sassan; Braun, Thomas; Baharvand, Hossein

    2017-12-12

    Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the "miRNome" of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most "ground-state miRNAs" are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Ground water investigations in Utah to June 30, 1936: A part of Chapter 8 in Twentieth biennial report of the State Engineer to the governor of Utah: 1935-1936

    USGS Publications Warehouse

    Taylor, G.H.; Thomas, H.E.

    1936-01-01

    During the past few years of drouth the importance of ground-water supplies has become more fully appreciated. During this time, because of subnormal replenishment of the ground-water reservoirs and the increased withdrawals from wells, the ground-water levels have declined in most developed areas in the State, a condition which has made the well owners acutely aware that ground water is not inexhaustible. Numerous cases of contention between well owners resulted in increased demands for adequate regulation of the appropriation and use of ground water. Realizing that more information concerning the ground water of the State was imperative, not only to administer the ground-water regulations but to prepare for the conservation and replenishment of existing supplies and development of new supplies, the State Legislature enacted, during its 1935 session, Senate Bill 206, which authorized the State Engineer to make an investigation of the ground water of the State. To provide for the expenses of the investigation, the bill allotted /$10,000 to the State Engineer, this sum to be matched by a State or Federal organization, and the investigation to be carried out co-operatively during the biennium beginning July 1, 1935. A co-operative agreement between the State Engineer and the United States Geological Survey was made on July 1, 1935.

  10. Effects of ΛΛ ‑ ΞN mixing in the decay of {}_{{\\rm{\\Lambda }}{\\rm{\\Lambda }}}{}^{6}{\\rm{H}}{\\rm{e}}

    NASA Astrophysics Data System (ADS)

    Maneu, J.; Parreño, A.; Ramos, A.

    2018-05-01

    A one-meson exchange model including the ground state of the pseudoscalar octet is used to describe the weak two-body interactions responsible for the decay of {}{{Λ }{{Λ }}}{}6{{H}}{{e}}. Strong interaction effects are taken into account by a microscopic study based on the solution of G-matrix and T-matrix equations for the initial and final interacting pairs respectively. Results for the decay induced by {{Λ }}{{Λ }}\\to {{Λ }}N({{Σ }}N) transitions are given.

  11. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  12. Ground state of the time-independent Gross Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Dion, Claude M.; Cancès, Eric

    2007-11-01

    We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence to the true ground state. Versions are given for the one-, two-, and three-dimensional equation, using either a spectral method, well suited for harmonic trapping potentials, or a spatial grid. Program summaryProgram title: GPODA Catalogue identifier: ADZN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5339 No. of bytes in distributed program, including test data, etc.: 19 426 Distribution format: tar.gz Programming language: Fortran 90 Computer: ANY (Compilers under which the program has been tested: Absoft Pro Fortran, The Portland Group Fortran 90/95 compiler, Intel Fortran Compiler) RAM: From <1 MB in 1D to ˜10 MB for a large 3D grid Classification: 2.7, 4.9 External routines: LAPACK, BLAS, DFFTPACK Nature of problem: The order parameter (or wave function) of a Bose-Einstein condensate (BEC) is obtained, in a mean field approximation, by the Gross-Pitaevskii equation (GPE) [F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463]. The GPE is a nonlinear Schrödinger-like equation, including here a confining potential. The stationary state of a BEC is obtained by finding the ground state of the time-independent GPE, i.e., the order parameter that minimizes the energy. In addition to the standard three-dimensional GPE, tight traps can lead to effective two- or even one-dimensional BECs, so the 2D and 1D GPEs are also considered. Solution method: The ground state of the time-independent of the GPE is calculated using the Optimal Damping Algorithm [E. Cancès, C. Le Bris, Int. J. Quantum Chem. 79 (2000) 82]. Two sets of programs are given, using either a spectral representation of the order parameter [C.M. Dion, E. Cancès, Phys. Rev. E 67 (2003) 046706], suitable for a (quasi) harmonic trapping potential, or by discretizing the order parameter on a spatial grid. Running time: From seconds in 1D to a few hours for large 3D grids

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, I.Y.; Tirziu, A.; Tseytlin, A.A.

    We consider circular strings rotating with equal spins S{sub 1}=S{sub 2}=S in two orthogonal planes in AdS{sub 5} and suggest that they may be dual to long gauge-theory operators built out of self-dual components of gauge field strength. As was found in hep-th/0404187, the one-loop anomalous dimensions of the such gauge-theory operators are described by an antiferromagnetic XXX{sub 1} spin chain and scale linearly with length L>>1. We find that in the case of rigid rotating string both the classical energy E{sub 0} and the 1-loop string correction E{sub 1} depend linearly on the spin S (within the stability regionmore » of the solution). This supports the identification of the rigid rotating string with the gauge-theory operator corresponding to the maximal-spin (ferromagnetic) state of the XXX{sub 1} spin chain. The energy of more general rotating and pulsating strings also happens to scale linearly with both the spin and the oscillation number. Such solutions should be dual to other lower-spin states of the spin chain, with the antiferromagnetic ground state presumably corresponding to the string pulsating in two planes with no rotation.« less

  14. Simulation of ground-water flow and transport of chlorinated hydrocarbons at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, Frederick J.; Fleck, William B.

    2001-01-01

    Military activity at Graces Quarters, a former open-air chemical-agent facility at Aberdeen Proving Ground, Maryland, has resulted in ground-water contamination by chlorinated hydrocarbons. As part of a ground-water remediation feasibility study, a three-dimensional model was constructed to simulate transport of four chlorinated hydrocarbons (1,1,2,2-tetrachloroethane, trichloroethene, carbon tetrachloride, and chloroform) that are components of a contaminant plume in the surficial and middle aquifers underlying the east-central part of Graces Quarters. The model was calibrated to steady-state hydraulic head at 58 observation wells and to the concentration of 1,1,2,2-tetrachloroethane in 58 observation wells and 101direct-push probe samples from the mid-1990s. Simulations using the same basic model with minor adjustments were then run for each of the other plume constituents. The error statistics between the simulated and measured concentrations of each of the constituents compared favorably to the error statisticst,1,2,2-tetrachloroethane calibration. Model simulations were used in conjunction with contaminant concentration data to examine the sources and degradation of the plume constituents. It was determined from this that mixed contaminant sources with no ambient degradation was the best approach for simulating multi-species solute transport at the site. Forward simulations were run to show potential solute transport 30 years and 100 years into the future with and without source removal. Although forward simulations are subject to uncertainty, they can be useful for illustrating various aspects of the conceptual model and its implementation. The forward simulation with no source removal indicates that contaminants would spread throughout various parts of the surficial and middle aquifers, with the100-year simulation showing potential discharge areas in either the marshes at the end of the Graces Quarters peninsula or just offshore in the estuaries. The simulation with source removal indicates that if the modeling assumptions are reasonable and ground-water cleanup within30 years is important, source removal alone is not a sufficient remedy, and cleanup might not even occur within 100 years.

  15. Classical many-particle systems with unique disordered ground states

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  16. Protonation of Excited State Pyrene-1-Carboxylate by Phosphate and Organic Acids in Aqueous Solution Studied by Fluorescence Spectroscopy

    PubMed Central

    Zelent, Bogumil; Vanderkooi, Jane M.; Coleman, Ryan G.; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2006-01-01

    Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH ∼5–8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO− by acetic, chloroacetic, lactic, and cacodylic acids is a function of ΔpK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism. PMID:16920831

  17. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  18. An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains

    NASA Astrophysics Data System (ADS)

    Drukker, Karen; Hammes-Schiffer, Sharon

    1997-07-01

    This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.

  19. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data filesmore » from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.« less

  20. Photophysics of Zinc Porphyrin Aggregates in Dilute Water-Ethanol Solutions.

    PubMed

    Stevens, Amy L; Joshi, Neeraj K; Paige, Matthew F; Steer, Ronald P

    2017-12-14

    Dimeric and multimeric aggregates of a model metalloporphyrin, zinc tetraphenylporphyrin (ZnTPP), have been produced in a controlled manner by incrementally increasing the water content of dilute aqueous ethanol solutions. Steady state absorption, fluorescence emission, and fluorescence excitation spectra have been measured to identify the aggregates present as a function of solvent composition. The dynamics of the excited states of the aggregates produced initially by excitation in the Soret region have been measured by ultrafast fluorescence upconversion techniques. Only the monomer produces measurable emission from S 2 with a picosecond lifetime; all Soret-excited aggregates, including the dimer, decay radiationlessly on a femtosecond time scale. The S 1 state is the only significant product of the radiationless decay of the S 2 state of the excited monomer, and the aggregates also produce substantial quantum yields of S 1 fluorescence when initially excited in the Soret region. The resulting fluorescent aggregates all decay on a subnanosecond time scale, likely by a mechanism that involves dissociation of the excited monomer from the excitonic multimer. The ZnTPP dimers excited at their ground state geometries in the Soret region exhibit a dynamic behavior that is quite different from those produced following noncoherent triplet-triplet annihilation under the same conditions. The important implications of these observations in determining the aggregation conditions promoting efficient photon upconversion by excitonic annihilation in a variety of media are thoroughly discussed.

  1. Entanglement and nonlocality in multi-particle systems

    NASA Astrophysics Data System (ADS)

    Reid, Margaret D.; He, Qiong-Yi; Drummond, Peter D.

    2012-02-01

    Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hiddenvariable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.

  2. Mean-Field Approach to Superdeformed High-Spin States in 40CA and Neutron-Rich 50S Regions

    NASA Astrophysics Data System (ADS)

    Inakura, T.; Yamagami, M.; Matsuyanagi, K.; Mizutori, S.

    2003-12-01

    With the use of the symmetry-unrestricted cranked SHF method in the 3D coordinate-mesh representation, a systematic search for the SD and HD rotational bands in the N=Z nuclei from 32S to 48Cr has been done, and SD and HD solutions have been found in 32S, 36Ar, 40Ca, 44Ti, and in 36Ar, 40Ca, 44Ti, 48Cr, respectively. The SD band in 40Ca is found to be extremely soft against both the axially symmetric (Y30) and asymmetric (Y31) octupole deformations. Possible presense of SD states in neutron-rich sulfur isotopes from 46S to 52S has also been investigated, and deformation properties of neutron skins both in the ground and SD states are discussed.

  3. Building Common Ground for Environmental Flows using Traditional Techniques and Novel Engagement Approaches.

    PubMed

    Mott Lacroix, Kelly E; Xiu, Brittany C; Megdal, Sharon B

    2016-04-01

    Despite increased understanding of the science of environmental flows, identification and implementation of effective environmental flow policies remains elusive. Perhaps the greatest barrier to implementing flow policies is the framework for water management. An alternative management approach is needed when legal rights for environmental flows do not exist, or are ineffective at protecting ecosystems. The research presented here, conducted in the U.S. state of Arizona, provides an empirical example of engagement to promote social learning as an approach to finding ways to provide water for the environment where legal rights for environmental flows are inadequate. Based on our engagement process we propose that identifying and then building common ground require attention to the process of analyzing qualitative data and the methods for displaying complex information, two aspects not frequently discussed in the social learning or stakeholder engagement literature. The results and methods from this study can help communities develop an engagement process that will find and build common ground, increase stakeholder involvement, and identify innovative solutions to provide water for the environment that reflect the concerns of current water users.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robledo, L. M.; Baldo, M.; Schuck, P.

    We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP) energy density functionals for two sets of isotopes, those of radium and barium, in which it is believed that octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean field framework (Hartree-Fock-Bogoliubov approximation) by using the axially symmetric octupole moment as a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest-lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry spontaneously broken by the mean fieldmore » and also incorporate octupole fluctuations around the ground-state solution. For each isotope the energy of the lowest lying 1{sup -} state and the B(E1) and B(E3) transition probabilities have been computed and compared to both the experimental data and the results obtained in the same framework with the Gogny D1S interaction, which are used here as a well-established benchmark. Finally, the octupolarity of the configurations involved in the way down to fission of {sup 240}Pu, which is strongly connected to the asymmetric fragment mass distribution, is studied. We confirm with this thorough study the suitability of the BCP functionals to describe octupole-related phenomena.« less

  5. Self consistent field theory of virus assembly

    NASA Astrophysics Data System (ADS)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  6. High-speed civil transport issues and technology program

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  7. Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO) 5 to Fe(CO) 4EtOH

    DOE PAGES

    Kunnus, K.; Josefsson, I.; Rajkovic, I.; ...

    2016-02-09

    We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO) 5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO) 4 which are observed following a charge transfer photoexcitation of Fe(CO) 5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the 1A 1 state of Fe(CO) 4. A sub-picosecond time constant of themore » spin crossover from 1B 2 to 3B 2 is rationalized by the proposed 1B 2 → 1A 1 → 3B 2 mechanism. Ultrafast ligation of the 1B 2 Fe(CO) 4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the 3B 2 Fe(CO) 4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via 1B 2 → 1A 1 → 1A' Fe(CO) 4EtOH pathway and the time scale of the 1A 1 Fe(CO) 4 state ligation is governed by the solute-solvent collision frequency. In conclusion, our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.« less

  8. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  9. Local Field Response Method Phenomenologically Introducing Spin Correlations

    NASA Astrophysics Data System (ADS)

    Tomaru, Tatsuya

    2018-03-01

    The local field response (LFR) method is a way of searching for the ground state in a similar manner to quantum annealing. However, the LFR method operates on a classical machine, and quantum effects are introduced through a priori information and through phenomenological means reflecting the states during the computations. The LFR method has been treated with a one-body approximation, and therefore, the effect of entanglement has not been sufficiently taken into account. In this report, spin correlations are phenomenologically introduced as one of the effects of entanglement, by which multiple tunneling at anticrossing points is taken into account. As a result, the accuracy of solutions for a 128-bit system increases by 31% compared with that without spin correlations.

  10. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-04-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  11. Boundary layer models for calving marine outlet glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.

    We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controllingmore » the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.« less

  12. Boundary layer models for calving marine outlet glaciers

    DOE PAGES

    Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.

    2017-10-05

    We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controllingmore » the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.« less

  13. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  14. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.

    2005-01-01

    The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.

  15. Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in R2

    NASA Astrophysics Data System (ADS)

    Lin, Tai-Chia; Wang, Xiaoming; Wang, Zhi-Qiang

    2017-10-01

    Conventionally, the existence and orbital stability of ground states of nonlinear Schrödinger (NLS) equations with power-law nonlinearity (subcritical case) can be proved by an argument using strict subadditivity of the ground state energy and the concentration compactness method of Cazenave and Lions [4]. However, for saturable nonlinearity, such an argument is not applicable because strict subadditivity of the ground state energy fails in this case. Here we use a convexity argument to prove the existence and orbital stability of ground states of NLS equations with saturable nonlinearity and intensity functions in R2. Besides, we derive the energy estimate of ground states of saturable NLS equations with intensity functions using the eigenvalue estimate of saturable NLS equations without intensity function.

  16. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    USGS Publications Warehouse

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute transport. The first three problems considered in model verification were compared to either analytical or numerical solutions, whereas the coupled problem was compared to measured laboratory results for which no known analytic solutions or numerical models are available. The test results indicate the model is accurate and applicable for a wide range of conditions, including when water (liquid and vapor), heat (sensible and latent), and solute are coupled in ground-water systems. The cumulative residual errors for the coupled problem tested was less than 10-8 cubic centimeter per cubic centimeter, 10-5 moles per kilogram, and 102 calories per cubic meter for liquid water content, solute concentration and heat content, respectively. This model should be useful to hydrologists, engineers, and researchers interested in studying coupled processes associated with variably saturated transport in ground-water systems.

  17. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  18. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  19. Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Li, Tongcang; Yin, Zhang-qi

    2018-01-01

    We study the dynamics of the Lipkin-Meshkov-Glick (LMG) model with a finite number of spins. In the thermodynamic limit, the ground state of the LMG model with an isotropic Hamiltonian in the broken phase breaks to a mean-field ground state with a certain direction. However, when the spin number N is finite, the exact ground state is always unique and is not given by a classical mean-field ground state. Here, we prove that when N is large but finite, through a tiny external perturbation, a localized state which is close to a mean-field ground state can be prepared, which mimics spontaneous symmetry breaking. Also, we find the localized in-plane spin polarization oscillates with two different frequencies ˜O (1 /N ) , and the lifetime of the localized state is long enough to exhibit this oscillation. We numerically test the analytical results and find that they agree very well with each other. Finally, we link the phenomena to quantum time crystals and time quasicrystals.

  20. Optical Feshbach resonances and ground-state-molecule production in the RbHg system

    NASA Astrophysics Data System (ADS)

    Borkowski, Mateusz; Muñoz Rodriguez, Rodolfo; Kosicki, Maciej B.; Ciuryło, Roman; Żuchowski, Piotr S.

    2017-12-01

    We present the prospects for photoassociation, optical control of interspecies scattering lengths, and, finally, the production of ultracold absolute ground-state molecules in the Rb+Hg system. We use the state-of-the-art ab initio methods for the calculations of ground- [CCSD(T)] and excited-state (EOM-CCSD) potential curves. The RbHg system, thanks to the wide range of stable Hg bosonic isotopes, offers possibilities for mass tuning of ground-state interactions. The optical lengths describing the strengths of optical Feshbach resonances near the Rb transitions are favorable even at large laser detunings. Ground-state RbHg molecules can be produced with efficiencies ranging from about 20% for deeply bound to at least 50% for weakly bound states close to the dissociation limit. Finally, electronic transitions with favorable Franck-Condon factors can be found for the purposes of a STIRAP transfer of the weakly bound RbHg molecules to the absolute ground state using commercially available lasers.

  1. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    USGS Publications Warehouse

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates

    USGS Publications Warehouse

    Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.

    1995-01-01

    Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).

  3. ESIPT and photodissociation of 3-hydroxychromone in solution: photoinduced processes studied by static and time-resolved UV/Vis, fluorescence, and IR spectroscopy.

    PubMed

    Chevalier, Katharina; Grün, Anneken; Stamm, Anke; Schmitt, Yvonne; Gerhards, Markus; Diller, Rolf

    2013-11-07

    The spectral properties of fluorescence sensors such as 3-hydroxychromone (3-HC) and its derivatives are sensitive to interaction with the surrounding medium as well as to substitution. 3-HC is a prototype system for other derivatives because it is the basic unit of all flavonoides undergoing ESIPT and is not perturbed by a substituent. In this study, the elementary processes and intermediate states in the photocycle of 3-HC as well as its anion were identified and characterized by the use of static and femtosecond time-resolved spectroscopy in different solvents (methylcyclohexane, acetonitrile, ethanol, and water at different pH). Electronic absorption and fluorescence spectra and lifetimes of the intermediate states were obtained for the normal, tautomer and anionic excited state, while mid-IR vibrational spectra yielded structural information on ground and excited states of 3-HC. A high sensitivity on hydrogen-bonding perturbations was observed, leading to photoinduced anion formation in water, while in organic solvents, different processes are suggested, including slow picosecond ESIPT and contribution of the trans-structure excited state or a different stable solvation state with different direction of OH. The formation of the latter could be favored by the lack of a substituent increasing contact points for specific solute-solvent interactions at the hydroxyl group compared to substituted derivatives. The effect of substituents has to be considered for the design of future fluorescence sensors based on 3-HC.

  4. Upsets related to spacecraft charging

    NASA Astrophysics Data System (ADS)

    Frederickson, A. R.

    1996-04-01

    The charging of spacecraft components by high energy radiation can result in spontaneous pulsed discharges. The pulses can interrupt normal operations of spacecraft electronics. The 20-year history of ground studies and spacecraft studies of this phenomenon are reviewed. The data from space are not sufficient to unambiguously point to a few specific solutions. The ground based data continue to find more problem areas the longer one looks. As spacecraft become more complex and carry less radiation shielding, the charging and discharging of insulators is becoming a more critical problem area. Ground experiments indicate that solutions for spacecraft are multiple and diverse, and many technical details are reviewed or introduced here.

  5. A point particle model of lightly bound skyrmions

    NASA Astrophysics Data System (ADS)

    Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin

    2017-04-01

    A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.

  6. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    PubMed Central

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  7. Acid-base properties of the N3 ruthenium(II) solar cell sensitizer: a combined experimental and computational analysis.

    PubMed

    Pizzoli, Giuliano; Lobello, Maria Grazia; Carlotti, Benedetta; Elisei, Fausto; Nazeeruddin, Mohammad K; Vitillaro, Giuseppe; De Angelis, Filippo

    2012-10-14

    We report a combined spectro-photometric and computational investigation of the acid-base equilibria of the N3 solar cell sensitizer [Ru(dcbpyH(2))(2)(NCS)(2)] (dcbpyH(2) = 4,4'-dicarboxyl-2,2' bipyridine) in aqueous/ethanol solutions. The absorption spectra of N3 recorded at various pH values were analyzed by Single Value Decomposition techniques, followed by Global Fitting procedures, allowing us to identify four separate acid-base equilibria and their corresponding ground state pK(a) values. DFT/TDDFT calculations were performed for the N3 dye in solution, investigating the possible relevant species obtained by sequential deprotonation of the four dye carboxylic groups. TDDFT excited state calculations provided UV-vis absorption spectra which nicely agree with the experimental spectral shapes at various pH values. The calculated pK(a) values are also in good agreement with experimental data, within <1 pK(a) unit. Based on the calculated energy differences a tentative assignment of the N3 deprotonation pathway is reported.

  8. Direct deconvolution of two-state pump-probe X-ray absorption spectra and the structural changes in a 100 ps transient of Ni(II)-tetramesitylporphyrin.

    PubMed

    Della-Longa, S; Chen, L X; Frank, P; Hayakawa, K; Hatada, K; Benfatto, M

    2009-05-04

    Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 +/- 0.02) A and d(Ni-C) = (2.94 +/- 0.03) A, in agreement with a previous EXAFS result. The time-resolved XANES difference spectrum was obtained (1) from the spectra of Ni(II)TMP in its photoexcited T(1) state and its ground state, S(0). The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T(1) state. If the T(1) fraction is kept fixed at the value (0.37 +/- 0.10) determined by optical transient spectroscopy, a 0.07 A elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T(1) fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T(1) fraction is (0.60 +/- 0.15) with d(Ni-N) = (1.98 +/- 0.03) A (0.05 A elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T(1) fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T(1) and S(0) states. The T(1) excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground-state molecules but also on very short-lived excited states through differential analysis applied to transient photoexcited species from time-resolved experiments.

  9. Evaluation of ground-water quality in the Santa Maria Valley, California

    USGS Publications Warehouse

    Hughes, Jerry L.

    1977-01-01

    The quality and quantity of recharge to the Santa Maria Valley, Calif., ground-water basin from natural sources, point sources, and agriculture are expressed in terms of a hydrologic budget, a solute balance, and maps showing the distribution of select chemical constituents. Point sources includes a sugar-beet refinery, oil refineries, stockyards, golf courses, poultry farms, solid-waste landfills, and municipal and industrial wastewater-treatment facilities. Pumpage has exceeded recharge by about 10,000 acre-feet per year. The result is a declining potentiometric surface with an accumulation of solutes and an increase in nitrogen in ground water. Nitrogen concentrations have reached as much as 50 milligrams per liter. In comparison to the solutes from irrigation return, natural recharge, and rain, discharge of wastewater from municipal and industrial wastewater-treatment facilities contributes less than 10 percent. The quality of treated wastewater is often lower in select chemical constituents than the receiving water. (Woodard-USGS)

  10. Precise tracking of remote sensing satellites with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong; Thornton, Catherine L.

    1990-01-01

    The Global Positioning System (GPS) can be applied in a number of ways to track remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm. All techniques use a precise global network of GPS ground receivers operating in concert with a receiver aboard the user satellite, and all estimate the user orbit, GPS orbits, and selected ground locations simultaneously. The GPS orbit solutions are always dynamic, relying on the laws of motion, while the user orbit solution can range from purely dynamic to purely kinematic (geometric). Two variations show considerable promise. The first one features an optimal synthesis of dynamics and kinematics in the user solution, while the second introduces a novel gravity model adjustment technique to exploit data from repeat ground tracks. These techniques, to be demonstrated on the Topex/Poseidon mission in 1992, will offer subdecimeter tracking accuracy for dynamically unpredictable satellites down to the lowest orbital altitudes.

  11. Ground and excited states of zinc phthalocyanine, zinc tetrabenzoporphyrin, and azaporphyrin analogs using DFT and TDDFT with Franck-Condon analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theisen, Rebekah F., E-mail: rtheisen@asu.edu; Huang, Liang; Fleetham, Tyler

    2015-03-07

    The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrinmore » (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π{sup ∗} transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D{sub 4h} symmetry at ground state, a C{sub 4v} symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.« less

  12. Numerical Simulations of STOVL Hot Gas Ingestion in Ground Proximity Using a Multigrid Solution Procedure

    NASA Technical Reports Server (NTRS)

    Wang, Gang

    2003-01-01

    A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.

  13. Dynamics, chemical properties and bioavailability of DOC in an early successional catchment

    NASA Astrophysics Data System (ADS)

    Risse-Buhl, U.; Hagedorn, F.; Dümig, A.; Gessner, M. O.; Schaaf, W.; Nii-Annang, S.; Gerull, L.; Mutz, M.

    2013-01-01

    The dynamics of dissolved organic carbon (DOC) have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany). Soil solution, upwelling ground water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages of 6.0-11.6 mg DOC L-1), despite small carbon stocks in either vegetation or soil of the early-successional catchment. The mean 14C age of DOC in upwelling ground water was 2600 to 2800 yr. Solid-state CPMAS 13C NMR revealed a higher proportion of aromatic compounds (32%) and a lower proportion of carbohydrates (33%) in upwelling ground water than in pond water (18% and 45%, respectively). The 14C age and 13C NMR spectra suggest that DOC was partly mobilized from charred organic matter of the Quaternary substrate. In an experimental 70-days incubation experiment, 20% of the total DOC was found to be bioavailable, irrespective of the water type. Origin of microbial communities (enriched from soil, stream sediment or pond water) had only marginal effects on overall DOC utilization. Overall, these data suggest that the old DOC can support microbial activity during early ecosystem succession to some extent, although the largest fraction is recalcitrant DOC that is exported from the catchment once it has been mobilized.

  14. Movement and Fate of Solutes in a Plume of Sewage-Contaminated Ground Water, Cape Cod, Massachusetts: U.S. Geological Survey Toxic Waste Ground-Water Contamination Program

    DTIC Science & Technology

    1984-03-01

    contains many inorganic and organic chemicals such as sodium , nitrate, detergents, and volatile organic compounds which can be toxic and render a ground­...1983-- 51 24 . sodium in ground water, 1983---------------------------- 53 25 . chloride in ground water, 1983-------------------------- 54 26...contains elevated concentrations of chloride, sodium , boron, nitrogen, detergents, and other constituents of the treated sewage. The plume was

  15. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Sanitary surveys for ground water...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a) Ground water systems must provide the State, at the State's...

  16. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    PubMed Central

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.

    2008-01-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2’-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs – 3 µs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ~1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4=O carbonyl exhibits substantial single-bond character, explaining the large (~70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor. PMID:19936322

  17. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage can occur and that the calibrated model resulted in smaller differences than the alternative models between simulated and interpreted ages and measured tracer concentrations in most, but not all, wells. Results of the first alternative model indicate that the distribution of young water in the upper confined aquifer is substantially different when well-bore leakage at known abandoned wells and test holes is removed from the model. In the second alternative model, simulated age near the bottom of the unconfined aquifer was younger than interpreted ages and simulated chlorofluorocarbon-11 concentrations in the upper confined aquifer were zero in five out of six wells because the conventional Well Package fails to account for flow between model layers though well bores. The third alternative model produced differences between simulated and interpreted ground-water ages and measured chlorofluorocarbon-11 concentrations that were comparable to the calibrated model. However, simulated hydraulic heads deviated from measured hydraulic heads by a greater amount than for the calibrated model. Even so, because the third alternative model simulates steady-state flow, additional analysis was possible using steady-state particle tracking to assess the contributing recharge area to a public supply well selected for analysis of factors contributing to well vulnerability. Results from particle-tracking software (MODPATH) using the third alternative model indicates that the contributing recharge area of the study public-supply well is a composite of elongated, seemingly isolated areas associated with wells that are screened in multiple aquifers. The simulated age distribution of particles at the study public-supply well indicates that all water younger than 58 years travels through well bores of wells screened in multiple aquifers. The age distribution from the steady-state model using MODPATH estimates the youngest 7 percent of the water to have a flow-weighted mean age

  18. Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States

    USGS Publications Warehouse

    Kuiper, L.K.

    1994-01-01

    A multiple-regression methodology was used to help answer questions concerning model reliability, and to calibrate a time-dependent variable-density ground-water flow model of the gulf coast aquifer systems in the south-central United States. More than 40 regression models with 2 to 31 regressions parameters are used and detailed results are presented for 12 of the models. More than 3,000 values for grid-element volume-averaged head and hydraulic conductivity are used for the regression model observations. Calculated prediction interval half widths, though perhaps inaccurate due to a lack of normality of the residuals, are the smallest for models with only four regression parameters. In addition, the root-mean weighted residual decreases very little with an increase in the number of regression parameters. The various models showed considerable overlap between the prediction inter- vals for shallow head and hydraulic conductivity. Approximate 95-percent prediction interval half widths for volume-averaged freshwater head exceed 108 feet; for volume-averaged base 10 logarithm hydraulic conductivity, they exceed 0.89. All of the models are unreliable for the prediction of head and ground-water flow in the deeper parts of the aquifer systems, including the amount of flow coming from the underlying geopressured zone. Truncating the domain of solution of one model to exclude that part of the system having a ground-water density greater than 1.005 grams per cubic centimeter or to exclude that part of the systems below a depth of 3,000 feet, and setting the density to that of freshwater does not appreciably change the results for head and ground-water flow, except for locations close to the truncation surface.

  19. Generalized Jastrow variational method for liquid3He-4He mixtures at T=0 K

    NASA Astrophysics Data System (ADS)

    Mirabbaszadeh, K.

    1989-07-01

    The ground state energy of a dilute solution of mass-3 fermions in liquid4He is analyzed by a variational procedure based on the Jastrow many body theory. The antisymmetry of the wave function for fermions is incorporated following the procedure given by Lado, Inguva, and Smith. A set of coupled integrodifferential equations is solved in the hypernetted chain approximation yielding expressions for the binding energy of3He-4He mixtures; the radial distribution function is given together with the total energy for various values of density and the interparticle separation r s.

  20. RADIOCARBON DATING: A CASE AGAINST THE PROPOSED LINK BETWEEN RIVER MOLLUSKS AND SOIL HUMUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broecker, W.

    The C/sup 14/ link between river mollusks and soil humus is discussed. It is stated that the explanation that the C/sup 13/ deficiency should be attributed to the uptake of soil CO/sub 2/ by ground water (oxidation of humus in the soil, rather than after it has been transported into streams) and the C/sup 14/ deficiency to the solution of limestone is far more plausible. It was concluded that any relation between the radiocarbon concentrations in soil humus and fresh water mollusks is almost certainly coincidental. (P.C.H.)

  1. Ground-state and Thermodynamic Properties of an S = 1 Kitaev Model

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Tomishige, Hiroyuki; Nasu, Joji

    2018-06-01

    We study the ground-state and thermodynamic properties of an S = 1 Kitaev model. We first clarify the existence of global parity symmetry in addition to the local symmetry on each plaquette, which enables us to perform large-scale calculations on up to 24 sites. It is found that the ground state should be singlet, and its energy is estimated as E/N ˜ -0.65J, where J is the Kitaev exchange coupling. We find that the lowest excited state belongs to the same subspace as the ground state, and that the gap decreases monotonically with increasing system size, which suggests that the ground state of the S = 1 Kitaev model is gapless. Using the thermal pure quantum states, we clarify the finite temperature properties characteristic of the Kitaev models with S ≤ 2.

  2. On the ground state of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  3. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  4. Reversible exciplex formation followed charge separation.

    PubMed

    Petrova, M V; Burshtein, A I

    2008-12-25

    The reversible exciplex formation followed by its decomposition into an ion pair is considered, taking into account the subsequent geminate and bulk ion recombination to the triplet and singlet products (in excited and ground states). The integral kinetic equations are derived for all state populations, assuming that the spin conversion is performed by the simplest incoherent (rate) mechanism. When the forward and backward electron transfer is in contact as well as all dissociation/association reactions of heavy particles, the kernels of integral equations are specified and expressed through numerous reaction constants and characteristics of encounter diffusion. The solutions of these equations are used to specify the quantum yields of the excited state and exciplex fluorescence induced by pulse or stationary pumping. In the former case, the yields of the free ions and triplet products are also found, while in the latter case their stationary concentrations are obtained.

  5. Relativistic excited state binding energies and RMS radii of Λ-hypernuclei

    NASA Astrophysics Data System (ADS)

    Nejad, S. Mohammad Moosavi; Armat, A.

    2018-02-01

    Using an analytical solution for the relativistic equation of single Λ-hypernuclei in the presence of Woods-Saxon (WS) potential we present, for the first time, an analytical form for the excited state binding energies of 1p, 1d, 1f and 1g shells of a number of hypernuclei. Based on phenomenological analysis of the Λ binding energies in a set of Λ-hypernuclei, the WS potential parameters are obtained phenomenologically for the set of Λ-hypernuclei. Systematic study of the energy levels of single Λ-hypernuclei enables us to extract more detailed information about the Λ-nucleon interaction. We also study the root mean square (RMS) radii of the Λ orbits in the hypernuclear ground states. Our results are presented for several hypernuclei and it is shown that our results for the binding energies are in good agreement with experimental data.

  6. Excited-state dynamics of bis(9-fluorenyl)methane and its derivative 9-(9-ethylfluorenyl)-9'-fluorenylmethane: steric effect on energetics and dynamics of ground- and excited-state conformations.

    PubMed

    Boo, Bong Hyun; Lee, Minyung; Jeon, Ki-Seok; Kim, Seung-Joon

    2014-03-27

    Intramolecular excimer formation of bis(9-fluorenyl)methane (BFM) and 9-(9'-ethylfluorenyl)-9-fluorenylmethane (EFFM), in which an ethyl group is substituted to a 9-H atom in BFM, was studied by means of steady-state and time-resolved fluorescence. Ab initio and DFT calculations enabled the prediction of three conformers as stable species of orthogonal, trans-gauche, and gauche-gauche. The theoretical and experimental results reveal that the substitution effect is also found to appreciably influence the energies, spectroscopy, and kinetics associated with the interconversion of various conformers of the diaryl compounds. We have not observed the rising components in the excimer fluorescence decay of BFM and EFFM in PMMA as observed in the liquid solutions probably because of the existence of the sandwich conformer responsible for the excimer fluorescence prior to the laser irradiation.

  7. Picosecond absorption studies of photoinduced charge separation in polyelectrolyte bound aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Shand, M. A.; Rodgers, M. A. J.; Webber, S. E.

    1991-02-01

    Picosecond absorption studies of photoinduced electron transfer between aromatic chromophores bound to polymethacrylic acid (P) and methylviologen (MV 2+ have been carried out in aqueous solution. The diphenylanthracene copolymer/viologen system at pH 2.8 shows the corresponding redox products DPA + rad and MV + rad arising from the singlet state of DPA with a forward rate constant of electron transfer of 2.6 × 10 9 s -1. At pH 9.0 the quenching of the S 1 state of DPA occurs with no charge separated products being observed. The pyrene copolymer shows no evidence of charge separated products at any pH in the range 2.8-9.0. It is proposed that the differences in the radical pair kinetics arise from differences in the degree of binding of the ground state complexes formed by the donor and acceptor species.

  8. Quantum Black Hole Model and HAWKING’S Radiation

    NASA Astrophysics Data System (ADS)

    Berezin, Victor

    The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.

  9. Acid-Base Electronic Properties in the Gas Phase: Permanent Electric Dipole Moments of a Photoacidic Substrate.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Morgan, Philip J.; Pratt, David W.

    2009-06-01

    The permanent electric dipole moments of two conformers of 2-naphthol (2HN) in their ground and electronically excited states have been experimentally determined by Stark-effect measurements in a molecular beam. When in solution, 2HN is a weak base in the S{_0} state and a strong acid in the S{_1} state. Using sequential solvation of the cis-2HN photoacid with the base ammonia, we have begun to approach condensed phase acid-base interactions with gas phase rotational resolution. Our study, void of bulk solvent perturbations, is of importance to the larger community currently describing aromatic biomolecule and "super" photoacid behavior via theoretical modeling and condensed phase solvatochromism. [2] A. Weller. Prog. React. Kinet. 5, 273 (1970). [3] D. F. Plusquellic, X. -Q. Tan, and D. W. Pratt. J. Chem. Phys. 96, 8026 (1992).

  10. Electron impact ionization-excitation of Helium

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  11. Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid

    NASA Astrophysics Data System (ADS)

    Chomaz, L.; Baier, S.; Petter, D.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.

    2016-10-01

    In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s -wave scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 ×104 atoms . Based on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite scattering length.

  12. Numerical solutions of anharmonic vibration of BaO and SrO molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda; Sumaryada, Tony, E-mail: tsumaryada@ipb.ac.id

    2016-03-11

    The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function’s profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potentialmore » solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.« less

  13. Comparison of Heat and Bromide as Ground Water Tracers Near Streams

    USGS Publications Warehouse

    Constantz, J.; Cox, M.H.; Su, G.W.

    2003-01-01

    Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.

  14. Time series inversion of spectra from ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.

    2013-02-01

    Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the OSO water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.

  15. Computing eigenfunctions and eigenvalues of boundary-value problems with the orthogonal spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter

    2018-03-01

    The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.

  16. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CCmore » self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.« less

  17. Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George

    2012-02-01

    Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.

  18. Knowledge and Understanding of the Hydrogeology of the Salt Basin in South-Central New Mexico and Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.; Chace, D.A.

    2006-01-01

    The Salt Basin covers about 2,400 square miles of south-central New Mexico and extends across the State line into Texas. As much as 57 million acre-feet of ground water may be stored within the New Mexico part of the Salt Basin of which 15 million acre-feet are potentially potable and recoverable. Recent work suggests that the volume of ground water in storage within the New Mexico portion of the Salt Basin may be substantially greater than 57 million acre-feet. In this report, aquifers contained in the San Andres, Bone Spring, and Victorio Peak Limestones and in the Yeso, Hueco, and Abo Formations are collectively referred to as the carbonate aquifer. Porosity and permeability of the major aquifer are primarily determined by the density and interconnectedness of fractures and karstic solution channels. The spatial variability of these fractures and karstic features leads to a large spatial variability in hydraulic properties in the carbonate aquifer. Ground water generally moves southward away from recharge areas along the northern border of the Salt Basin and generally moves eastward to southeastward away from areas of distributed recharge on the Otero Mesa and the Diablo Plateau. Ground water originating from these recharge areas generally moves toward the central valley. Present day discharge is mostly through ground-water withdrawal for agricultural irrigation. A zone of relatively low hydraulic gradient, corresponding to the location of the Otero Break, extends from near the Sacramento River watershed southward toward Dell City, Texas. Ground water in the carbonate aquifer generally is very hard and has dissolved-solids concentrations ranging from 500 to 6,500 milligrams per liter. Substantial variability exists in current estimates of (1) ground-water recharge, (2) natural ground-water discharge, (3) the volume of ground water in storage, (4) the volume of recoverable ground water, (5) the conceptual model of ground-water flow, (6) the distribution of ground-water quality, and (7) the distribution of hydraulic characteristics. Future study could reduce uncertainty in these estimates and allow for better management of ground-water resources in the Salt Basin.

  19. Photochemistry of the alkaloids eudistomin N (6-bromo-nor-harmane) and eudistomin O (8-bromo-nor-harmane) and other bromo-beta-carbolines.

    PubMed

    Tarzi, Olga I; Erra-Balsells, Rosa

    2005-07-01

    The UV-absorption, fluorescence excitation and emission spectra of the alkaloids eudistomin N (6-bromo-nor-harmane) and eudistomin O (8-bromo-nor-harmane) were described. In order to perform a comparative analysis, we also studied other bromo-beta-carbolines and the corresponding non-substituted-carboline. Thus, 6-bromo-, 8-bromo-, 6,8-dibromo-, 3,6-dibromo- and 3,6,8-tribromo-derivatives of nor-harmane, harmane and harmine were studied. These studies were performed in EtOH and in EtOH + 1% perchloric acid solutions (pa). Furthermore, fluorescence quantum yields (phi(f)) in acetonitrile and acetonitrile + 1% perchloric acid solutions at 298 K were measured. The HOMO and LUMO energy, the positions (lambda(max)) and oscillator strength (f) of the (1)S(1) <--(1)S(0) band for all the neutral and protonated beta-carbolines studied was calculated and compared with the experimental data. The pK(a) values in aqueous solution for eudistomin N and O (6-bromo- and 8-bromo-nor-harmane), for 6-bromo-, 8-bromo- and 6,8-dibromo-harmane, and for 6-bromo- and 8-bromo-harmine were spectrophotometrically measured (pK((a)(H(2)O))) . The change of the acid-base character of these compounds on going from the ground state (pK(a)) to the first electronic excited singlet state (pK(a)(*)) as DeltapK(a) = pK(a)(*)-pK(a) = 0.625 Deltanu /T, in ethanol solution at 298 K were calculated (DeltapK(a(EtOH))). Proton affinities (PA) for all the compounds studied defined as minus the enthalpy change of the reaction M+H(+)--> MH(+) (gas state) were calculated. Basicity relative to pyridine (DeltaH(rPy)) defined as the enthalpy change of the isodesmic reaction MH(+) + Py--> M + PyH(+) (gas state) was also calculated. The effect of bromine as substituent on the properties of the beta-carboline moiety in nor-harmane, harmane and harmine is discussed.

  20. Welding fixture for joining bar-wound stator conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, Urban J.; Rhoads, Frederick W.; Hanson, Justin

    A fixture assembly for welding a plurality of stator wire end pairs may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state. The moveable clamp includes a separator feature that generally extends toward the anvil. Each of the first grounding electrode and second grounding electrodes may be configured to translate between a clamped state and an unclamped state. When in themore » clamped state, each of the first and second grounding electrodes is configured to urge a pair of the plurality of stator wire end pairs against the separator feature.« less

  1. The Dielectric Permittivity of Crystals in the Reduced Hartree-Fock Approximation

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Lewin, Mathieu

    2010-07-01

    In a recent article (Cancès et al. in Commun Math Phys 281:129-177, 2008), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree-Fock model, the ground state electronic density matrix is decomposed as {γ = γ^0_per + Q_{ν,\\varepsilon_F}}, where {γ^0_per} is the ground state density matrix of the host crystal and {Q_{ν,\\varepsilon_F}} the modification of the electronic density matrix generated by a modification ν of the nuclear charge of the host crystal, the Fermi level ɛ F being kept fixed. The purpose of the present article is twofold. First, we study in more detail the mathematical properties of the density matrix {Q_{ν,\\varepsilon_F}} (which is known to be a self-adjoint Hilbert-Schmidt operator on {L^2(mathbb{R}^3)}). We show in particular that if {int_{mathbb{R}^3} ν neq 0, Q_{ν,\\varepsilon_F}} is not trace-class. Moreover, the associated density of charge is not in {L^1(mathbb{R}^3)} if the crystal exhibits anisotropic dielectric properties. These results are obtained by analyzing, for a small defect ν, the linear and nonlinear terms of the resolvent expansion of {Q_{ν,\\varepsilon_F}}. Second, we show that, after an appropriate rescaling, the potential generated by the microscopic total charge (nuclear plus electronic contributions) of the crystal in the presence of the defect converges to a homogenized electrostatic potential solution to a Poisson equation involving the macroscopic dielectric permittivity of the crystal. This provides an alternative (and rigorous) derivation of the Adler-Wiser formula.

  2. Sources of Water to Wells for Transient Cyclic Systems

    USGS Publications Warehouse

    Reilly, T.E.; Pollock, D.W.

    1996-01-01

    Many state agencies are currently (1995) developing wellhead protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. The area contributing recharge to a discharging well is the surface area at the water table through which the water flowing to the well entered the ground-water system. In the analyses of ground-water flow systems, steady-state average conditions are commonly used to simplify the problem and make a solution tractable. However, recharge is usually cyclic in nature, with seasonal cycles and longer term climatic cycles. The effect of these cyclic stresses on the area contributing recharge to wells is quantitatively analyzed for a hypothetical alluvial valley aquifer system that is representative of a large class of ground-water systems that are extensively developed for water supply. The analysis shows that, in many cases, these cyclic changes in the recharge rates do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to be an indicator of whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. However, cyclic stresses on systems with ratios less than one do have an effect on the location and size of the areas contributing recharge to wells.

  3. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Seamless Flaps

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2016-01-01

    Computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) swept wing modified with an experimental seamless, compliant flap called the Adaptive Compliant Trailing Edge (ACTE) flap. The stall characteristics of the modified ACTE wing were analyzed and compared with the unmodified, clean wing at the flight speed of 120 knots and altitude of 2300 feet above mean sea level, in free air as well as in ground effect. A polyhedral finite-volume unstructured full Navier-Stokes CFD code, STAR-CCM (registered trademark) plus (CD-adapco [Computational Dynamics Limited, United Kingdom, and Analysis & Design Application Co., United States]), was used. Steady Reynolds-averaged Navier-Stokes CFD simulations were conducted for a clean wing and the ACTE wings at various ACTE deflection angles in free air (-2 degrees, 15 degrees, and 30 degrees) as well as in ground effect (15 degrees and 30 degrees). Solution sensitivities to grid densities were examined. In free air, the ACTE wings are predicted to stall at lower angles of attack than the clean wing. In ground effect, all wings are predicted to stall at lower angles of attack than the corresponding wings in free air. Even though the lift curves are higher in ground effect than in free air, the maximum lift coefficients for all wings are lower in ground effect. Finally, the lift increase due to ground effect for the ACTE wing is predicted to be less than the clean wing.

  4. Preformation probability inside α emitters around the shell closures Z = 50 and N = 82

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Ismail, M.; Zeini, E. T.

    2017-05-01

    The preformation of an α-particle as a distinct entity inside the α-emitter is the first move towards α-decay. We investigate the α-particle preformation probability (S α ) in ordinary and exotic α-decays. We consider favored and unfavored decays at which the α-emitters and the produced daughter nuclides are in their ground or isomeric states. The study of 244 α-decay modes with 52≤slant Z≤slant 81 and 53≤slant N≤slant 112 is accomplished using the preformed cluster model. The preformation probabilities were estimated from the experimental half-lives and the computed decay widths based on the Wentzel-Kramers-Brillouin tunneling penetrability and knocking frequency, and the Skyrme-SLy4 interaction potential. We found that the favored α-decay mode from a ground state to an isomeric state shows larger α-preformation probability than the favored and unfavored decays of the same isotope but from isomeric to ground states. The favored decay mode from isomeric- to ground-state exhibits rather less S α relative to the other decay modes from the same nuclide. The favored decay modes between two isomeric states tend to yield larger S α and less partial half-life compared with the favored and unfavored decays from the same nuclides but between two ground states. For the decays involving two ground states, the preformation probability is larger for the favored decay modes than for the unfavored ones. The unfavored α-decay modes from ground- to isomeric-states are rare. The unfavored decay modes from isomeric- to ground-states show less S α than that for the favored decays from the ground states of the same emitters. The unfavored α-decay modes between two isomeric states exhibit larger S α than the other α-decay modes from the same isomers.

  5. Massive graviton geons

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Maeda, Kei-ichi; Misonoh, Yosuke; Okawa, Hirotada

    2018-02-01

    We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-Poisson equations with the tensor "wave function" in the Newtonian limit. We obtain a nonspherically symmetric solution with j =2 , ℓ=0 as well as a spherically symmetric solution with j =0 , ℓ=2 in this system where j is the total angular momentum quantum number and ℓ is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)stability of the Minkowski spacetime, and a quantum transition of the spacetime.

  6. Enhancement of short-pulse recombination-pumped gain by soft-x-ray photoionization of the ground state

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Umstadter, D.

    1996-02-01

    The gain achieved in lasing to the ground state following short-pulse field ionization by a pump laser is highly transient. It will usually persist for only tens of picoseconds because of the rapid filling and negligible emptying of the ground state. Employing a detailed atomic model of lasing in hydrogen, we show that the removal of ground-state population by an appropriate broadband ionizing radiation field can enhance and prolong the gain in such a laser.

  7. Effect of temperature on the single-particle ground-state energy of a polar quantum dot with Gaussian confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahan, Luhluh K., E-mail: luhluhjahan@gmail.com; Chatterjee, Ashok

    2016-05-23

    The temperature and size dependence of the ground-state energy of a polaron in a Gaussian quantum dot have been investigated by using a variational technique. It is found that the ground-state energy increases with increasing temperature and decreases with the size of the quantum dot. Also, it is found that the ground-state energy is larger for a three-dimensional quantum dot as compared to a two-dimensional dot.

  8. Quantum lattice representations for vector solitons in external potentials

    NASA Astrophysics Data System (ADS)

    Vahala, George; Vahala, Linda; Yepez, Jeffrey

    2006-03-01

    A quantum lattice algorithm is developed to examine the effect of an external potential well on exactly integrable vector Manakov solitons. It is found that the exact solutions to the coupled nonlinear Schrodinger equations act like quasi-solitons in weak potentials, leading to mode-locking, trapping and untrapping. Stronger potential wells will lead to the emission of radiation modes from the quasi-soliton initial conditions. If the external potential is applied to that particular mode polarization, then the radiation will be trapped within the potential well. The algorithm developed leads to a finite difference scheme that is unconditionally stable. The Manakov system in an external potential is very closely related to the Gross-Pitaevskii equation for the ground state wave functions of a coupled BEC state at T=0 K.

  9. Pump-dump iterative squeezing of vibrational wave packets.

    PubMed

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  10. Grounding electrode and method of reducing the electrical resistance of soils

    DOEpatents

    Koehmstedt, Paul L.

    1980-01-01

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  11. Photochemical properties of squarylium cyanine dyes.

    PubMed

    Ferreira, D P; Conceição, D S; Ferreira, V R A; Graça, V C; Santos, P F; Vieira Ferreira, L F

    2013-11-01

    This study presents several new squarylium dyes derived from benzothiazole and benzoselenazole with several structural variations, namely the nature of the heteroaromatic ring and the length of the N,N'-dialkyl groups. Before being investigated in connection with their effect on living cells and/or tissues, these novel compounds were characterized, namely with respect to the determination of their main photophysical parameters. Therefore, a study of the ground state absorption, fluorescence emission (quantum yields and lifetimes) and singlet oxygen generation quantum yields was performed for all the compounds synthesized in order to evaluate their efficiency as photosensitizers. An increase of the alkyl chain length from ethyl to hexyl did not produce a clear change in the fluorescence quantum yields, showing no influence on the photoisomerization process. Heavy atom inclusion (Se instead of S) enhanced the singlet oxygen generation efficiency and decreased the intensity of the fluorescence emission. The external heavy atom effect (I(-) as a counterion instead of CF3SO3(-)) produced a significant increase in the singlet oxygen formation quantum yield (about 20%). Transient absorption studies in aerated and oxygen free samples revealed that the photoisomerization process, which could compete with the triplet state formation for all dyes in solution, is a negligible pathway for the excited state deactivation, in accordance with the rigidity introduced by the squaric ring into the polymethine chain of the dye, both in chloroform and ethanol. However, in the case of the chloroform solution a new transient was detected in air equilibrated solutions, resulting from a reaction of the excited squarylium dye in the singlet state with CHCl3˙, and assigned to the radical cation (SQ(+)˙) of the dye.

  12. Thermally-Activated, Delayed Fluorescence in O,B,O- and N,B,O-Strapped Boron Dipyrromethene Derivatives.

    PubMed

    Stachelek, Patrycja; Alsimaree, Abdulrahman A; Alnoman, Rua B; Harriman, Anthony; Knight, Julian G

    2017-03-16

    A small series of boron dipyrromethene (BODIPY) dyes has been synthesized whereby the boron atom is constrained in a five-membered ring formed from either o-dihydroxypyridine or o-aminophenol. In the latter case, the amino group has been converted into the corresponding amide derivative so as to curtail the possibility for light-induced charge transfer from strap to BODIPY. These compounds are weakly emissive in fluid solution but cleavage of the strap, by treatment with a photoacid generator, restores strong fluorescence. Surprisingly, the same compounds remain weakly fluorescent in a rigid glass at 80 K where light-induced charge transfer is most unlikely. In fluid solution, the fluorescence quantum yield increases with increasing temperature due to a thermally activated step but does not correlate with the thermodynamics for intramolecular charge transfer. It is proposed that the strap causes rupture of the potential energy surface for the excited state, creating traps that provide new routes by which the wave packet can return to the ground state. Access to the trap from the excited state is reversible, leading to the delayed emission. Analysis of the temperature dependent emission intensities allows estimation of the kinetic parameters associated with entering and leaving the trap.

  13. Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: Aromatic hydrocarbon-acid anhydride, -tetracyanoethylene, and -tetracyanoquinodimethane systems in acetonitrile solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi, Tsuyoshi; Mataga, Noboru

    1991-03-07

    Formation processes of contact ion pairs (CIP) from the excited Franck-Condon (FC) state of charge-transfer (CT) complexes of aromatic hydrocarbons with acid anhydride as well as cyano compound acceptors in acetonitrile solution and charge recombination (CR) rates (k{sub CR}{sup CIP}) of produced CIP states have been investigated by femtosecond and picosecond laser phototlysis and time-resolved absorption spectral measurements covering a wide range of free energy gap-{Delta}G{degree}{sub ip} between the ion pair and the ground state. It has been confirmed that the CIP formation becomes faster and k{sub CR}{sup CIP} of the produced CIP increases with increase of the strengths ofmore » the electron donor (D) and acceptor (A) in the complex, i.e., with decrease of the {minus}{Delta}G{degree}{sub ip} value. This peculiar energy gap dependence of k{sub CR}{sup CIP}, quite different from the bell-shaped one observed in the case of the solvent-separated ion pairs (SSIP) or loose ion pairs (LIP) formed by encounter between fluorescer and quencher in the fluoresence quenching reaction, has been interpreted by assuming the change of electronic and geometrical structures of CIP depending on the strengths of D and A.« less

  14. Analytical approach to the multi-state lasing phenomenon in quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-03-01

    We introduce an analytical approach to describe the multi-state lasing phenomenon in quantum dot lasers. We show that the key parameter is the hole-to-electron capture rate ratio. If it is lower than a certain critical value, the complete quenching of ground-state lasing takes place at high injection levels. At higher values of the ratio, the model predicts saturation of the ground-state power. This explains the diversity of experimental results and their contradiction to the conventional rate equation model. Recently found enhancement of ground-state lasing in p-doped samples and temperature dependence of the ground-state power are also discussed.

  15. Structure Effect of Squarylium Cyanine Dyes on Third-Order Optical Nonlinearities in Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Liu, Xu-chun; Xu, Gang; Si, Jin-hai; Ye, Pei-xian; Lin, Tong; Peng, Bi-xian

    1999-08-01

    A series of squarylium cyanine dyes with different substituents were synthesized and the third-order optical nonlinearities of their ground and excited states were investigated by backward degenerate four-wave-mixing. For the ground state, the molecular hyperpolarizability γg increases with the red-shift of the absorption peak λmaxab of the squaraine with different substituents, whereas for the excited-state molecular hyperpolarizability γe, the nonlinear enhancement γe/γg decreases, which may indicate that in the excited state the electron accepting-donating ability of different substituents changes in the reverse order compared with the order in the ground state.

  16. H2+, HeH and H2: Approximating potential curves, calculating rovibrational states

    NASA Astrophysics Data System (ADS)

    Olivares-Pilón, Horacio; Turbiner, Alexander V.

    2018-06-01

    Analytic consideration of the Bohr-Oppenheimer (BO) potential curves for diatomic molecules is proposed: accurate analytic interpolation for a potential curve consistent with its rovibrational spectra is found. It is shown that in the BO approximation for four lowest electronic states 1 sσg and 2 pσu, 2 pπu and 3 dπg of H2+, the ground state X2Σ+ of HeH and the two lowest states 1 Σg+ and 3 Σu+ of H2, the potential curves can be analytically interpolated in full range of internuclear distances R with not less than 4-5-6 s.d. Approximation based on matching the Laurant-type expansion at small R and a combination of the multipole expansion with one-instanton type contribution at large distances R is given by two-point Padé approximant. The position of minimum, when exists, is predicted within 1% or better. For the molecular ion H2+ in the Lagrange mesh method, the spectra of vibrational, rotational and rovibrational states (ν , L) associated with 1 sσg and 2 pσu, 2 pπu and 3 dπg potential curves are calculated. In general, it coincides with spectra found via numerical solution of the Schrödinger equation (when available) within six s.d. It is shown that 1 sσg curve contains 19 vibrational states (ν , 0) , while 2 pσu curve contains a single one (0 , 0) and 2 pπu state contains 12 vibrational states (ν , 0) . In general, 1 sσg electronic curve contains 420 rovibrational states, which increases up to 423 when we are beyond BO approximation. For the state 2 pσu the total number of rovibrational states (all with ν = 0) is equal to 3, within or beyond Bohr-Oppenheimer approximation. As for the state 2 pπu within the Bohr-Oppenheimer approximation the total number of the rovibrational bound states is equal to 284. The state 3 dπg is repulsive, no rovibrational state is found. It is confirmed in Lagrange mesh formalism the statement that the ground state potential curve of the heteronuclear molecule HeH does not support rovibrational states. Accurate analytical expression for the potential curves of the hydrogen molecule H2 for the states 1Σg+ and 3 Σu+ is presented. The ground state 1 Σg+ contains 15 vibrational states (ν , 0) , ν = 0- 14. In general, this state supports 301 rovibrational states. The potential curve of the state 3Σu+ has a shallow minimum: it does not support any rovibrational state, it is repulsive.

  17. Ground and excited states of CaSH through electron propagator calculations

    NASA Astrophysics Data System (ADS)

    Ortiz, J. V.

    1990-05-01

    Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.

  18. How Single-site Mutation Affects HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Landau, David P.; Vogel, Thomas; Wüst, Thomas; Li, Ying Wai

    2014-03-01

    We developed a heuristic method based on Wang-Landauand multicanonical sampling for determining the ground-state degeneracy of HP lattice proteins . Our algorithm allowed the most precise estimations of the (sometimes substantial) ground-state degeneracies of some widely studied HP sequences. We investigated the effects of single-site mutation on specific long HP lattice proteins comprehensively, including structural changes in ground-states, changes of ground-state degeneracy and thermodynamic properties of the systems. Both extremely sensitive and insensitive cases have been observed; consequently, properties such as specific heat, tortuosities etc. may be either largely unaffected or may change significantly due to mutation. More interestingly, mutation can even induce a lower ground-state energy in a few cases. Supported by NSF.

  19. A finite-volume ELLAM for three-dimensional solute-transport modeling

    USGS Publications Warehouse

    Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.

    2003-01-01

    A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.

  20. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.

  1. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.

    PubMed

    Carlow, D C; Short, S A; Wolfenden, R

    1996-01-23

    The 19F-NMR resonance of 5-[19F]fluoropyrimidin-2-one ribonucleoside moves upfield when it is bound by wild-type cytidine deaminase from Escherichia coli, in agreement with UV and X-ray spectroscopic indications that this inhibitor is bound as the rate 3,4-hydrated species 5-fluoro-3,4-dihydrouridine, a transition state analogue inhibitor resembling an intermediate in direct water attack on 5-fluorocytidine. Comparison of pKa values of model compounds indicates that the equilibrium constant for 3,4-hydration of this inhibitor in free solution is 3.5 x 10(-4) M, so that the corrected dissociation constant of 5-fluoro-3,4-dihydrouridine from the wild-type enzyme is 3.9 x 10(-11) M. Very different behavior is observed for a mutant enzyme in which alanine replaces Glu-104 at the active site, and kcat has been reduced by a factor of 10(8). 5-[19F]Fluoropyrimidin-2-one ribonucleoside is strongly fluorescent, making it possible to observe that the mutant enzyme binds this inhibitor even more tightly (Kd = 4.4 x 10(-8) M) than does the native enzyme (Kd = 1.1 x 10(-7) M). 19F-NMR indicates, however, that the E104A mutant enzyme binds the inhibitor without modification, in a form that resembles the substrate in the ground state. These results are consistent with a major role for Glu-104, not only in stabilizing the ES++ complex in the transition state, but also in destabilizing the ES complex in the ground state.

  2. A low temperature furnace for solution crystal growth on the International Space Station

    NASA Astrophysics Data System (ADS)

    Baç, Nurcan; Harpster, Joseph; Maston, Robert A.; Sacco, Albert

    2000-01-01

    The Zeolite Crystal Growth Furnace Unit (ZCG-FU) is the first module in an integrated payload designed for low temperature crystal growth in solutions on the International Space Station (ISS). This payload is scheduled to fly on the ISS flight 7A.1 in an EXPRESS rack. Its name originated from early shuttle flight experiments limited to the growth of zeolite crystals but has since grown to include other materials of significant commercial interest using the solution method of crystal growth. Zeolites, ferroelectrics, piezeoelectrics and silver halides are some of the materials considered. The ZCG-FU experiment consists of a furnace unit and its electronic control system, and mechanically complex, crystal growth autoclaves suitable for use with a particular furnace and solution. The ZCG facility is being designed to grow into four independent furnaces controlled by IZECS (Improved Zeolite Electronic Control System). IZECS provides monitoring of critical parameters, data logging, safety monitoring, air-to-ground control and operator interfacing. It is suitable for controlling the four furnaces either individually or all at one time. It also contains the power management solid-state drivers and switches for the ZCG-FU furnace. The furnace contains 19 tubes operating at three different temperature zones. .

  3. An Automated Method to Compute Orbital Re-entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the 'best' solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre- determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be converted to do the job. Non-convergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantiaL This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to Earth. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  4. Stat3 phosphorylation is required for embryonic stem cells ground state maintenance in 2i culture media.

    PubMed

    Wang, Dan; Sang, Hui; Zhang, Kaiyue; Nie, Yan; Zhao, Shuang; Zhang, Yan; He, Ningning; Wang, Yuebing; Xu, Yang; Xie, Xiaoyan; Li, Zongjin; Liu, Na

    2017-05-09

    Embryonic stem cells (ES cells) can be maintained its undifferentiated state with feeder cells or LIF, which can activate Jak/Stat3 pathway. Recently, it has been reported a new culture condition comprising serum-free medium with ERK and GSK3β inhibitors (2i) could drive ES cells into a state of pluripotency more like inner cell mass (ICM) in mouse blastocysts called ground state. However, although 2i could sustain ES cells self-renewal, LIF is routinely added. The roles of Stat3 activation are still unclear now. Here we investigated whether Jak/Stat3 might also contribute to the induction of ground state pluripotency. We introduced a lentiviral construct with 7-repeat Stat3-binding sequence to drive Renilla luciferase into ES cells, which can be used as a reporter to detect Stat3 activation by noninvasive bioluminescence imaging. Using this ES cells, we investigated the role of Stat3 activation in ground state maintenance. The results showed that Stat3 could be activated by 2i. Stattic, a chemical inhibitor of Stat3 phosphorylation, could effectively inhibit Stat3 activation in ES cells. When Stat3 activation was suppressed, ground state related genes were down regulated, and ES cells could not be maintained the ground state pluripotency even in 2i medium. All of these results indicate Stat3 activation is required in ground state maintenance.

  5. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    PubMed Central

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607

  6. Effects of temperature on the ground state of a strongly-coupling magnetic polaron and mean phonon number in RbCl quantum pseudodot

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    2016-07-01

    On the condition of strong electron-LO phonon coupling in a RbCl quantum pseudodot (QPD), the ground state energy and the mean number of phonons are calculated by using the Pekar variational method and quantum statistical theory. The variations of the ground state energy and the mean number with respect to the temperature and the cyclotron frequency of the magnetic field are studied in detail. We find that the absolute value of the ground state energy increases (decreases) with increasing temperature when the temperature is in the lower (higher) temperature region, and that the mean number increases with increasing temperature. The absolute value of the ground state energy is a decreasing function of the cyclotron frequency of the magnetic field whereas the mean number is an increasing function of it. We find two ways to tune the ground state energy and the mean number: controlling the temperature and controlling the cyclotron frequency of the magnetic field.

  7. Identification of ground-state spin ordering in antiferromagnetic transition metal oxides using the Ising model and a genetic algorithm

    PubMed Central

    Lee, Kyuhyun; Youn, Yong; Han, Seungwu

    2017-01-01

    Abstract We identify ground-state collinear spin ordering in various antiferromagnetic transition metal oxides by constructing the Ising model from first-principles results and applying a genetic algorithm to find its minimum energy state. The present method can correctly reproduce the ground state of well-known antiferromagnetic oxides such as NiO, Fe2O3, Cr2O3 and MnO2. Furthermore, we identify the ground-state spin ordering in more complicated materials such as Mn3O4 and CoCr2O4. PMID:28458746

  8. An excited state underlies gene regulation of a transcriptional riboswitch

    PubMed Central

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  9. Snake states and their symmetries in graphene

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Tiwari, Rakesh P.; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.

    2015-12-01

    Snake states are open trajectories for charged particles propagating in two dimensions under the influence of a spatially varying perpendicular magnetic field. In the quantum limit they are protected edge modes that separate topologically inequivalent ground states and can also occur when the particle density rather than the field is made nonuniform. We examine the correspondence of snake trajectories in single-layer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric field profile and (b) antisymmetric carrier distribution in a uniform field. These families support different internal symmetries but the same pattern of boundary and interface currents. We demonstrate that these physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p -wave paired state. A variational model is introduced to interpret the interfacial solutions of both domain wall problems.

  10. TDA and RPA pseudoscalar and vector solutions for the low energy regime of a motivated QCD Hamiltonian.

    NASA Astrophysics Data System (ADS)

    Yépez-Martínez, T.; Amor Quiroz, D. A.; Hess, P. O.; Civitarese, O.

    2017-07-01

    We present the low energy meson spectrum of a Coulomb gauge QCD motivated Hamiltonian for light and strange quarks. We have used the harmonic oscillator as a trial basis and performed a pre-diagonalization of the kinetic energy term in order to get an effective basis where quark and anti-quark degrees of freedom are defined. For the relevant interactions between quarks and anti-quarks, we have implemented a confining interaction between color sources, in order to account in an effective way for the gluonic degrees of freedom. The low energy meson spectrum is obtained from the implementation of the TDA and RPA many-body-methods. The physical states have been described as TDA and RPA collective states with a relatively good agreement. Particularly, the particle-hole correlations of the RPA ground state improve the RPA pion-like state (159.7 MeV) close to its physical value while the TDA one remains at a higher energy (269.2 MeV).

  11. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  12. Applications of Ergodic Theory to Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.

    2003-01-01

    The study of differential equations, or dynamical systems in general, has two fundamentally different approaches. We are most familiar with the construction of solutions to differential equations. Another approach is to study the statistical behavior of the solutions. Ergodic Theory is one of the most developed methods to study the statistical behavior of the solutions of differential equations. In the theory of satellite orbits, the statistical behavior of the orbits is used to produce 'Coverage Analysis' or how often a spacecraft is in view of a site on the ground. In this paper, we consider the use of Ergodic Theory for Coverage Analysis. This allows us to greatly simplify the computation of quantities such as the total time for which a ground station can see a satellite without ever integrating the trajectory, see Lo 1,2. More over, for any quantity which is an integrable function of the ground track, its average may be computed similarly without the integration of the trajectory. For example, the data rate for a simple telecom system is a function of the distance between the satellite and the ground station. We show that such a function may be averaged using the Ergodic Theorem.

  13. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.

  14. Ambient Stable Radical Cations, Diradicaloid π-Dimeric Dications, Closed-Shell Dications, and Diradical Dications of Methylthio-Capped Rylenes.

    PubMed

    Qi, Qingbiao; Burrezo, Paula Mayorga; Phan, Hoa; Herng, Tun Seng; Gopalakrishna, Tullimilli Y; Zeng, Wangdong; Ding, Jun; Casado, Juan; Wu, Jishan

    2017-06-01

    Radical cations and dications of π-conjugated systems play vital roles in organic electronic devices, organic conductors, and conducting polymers. Their structures, charge and spin distribution, and mechanism of charge transport are of great interest. In this article, radical cations and dications of a series of newly synthesized methylthio-capped rylenes were synthesized and isolated. Their ground-state structures, physical properties, and solid-state packing were systematically investigated by various experimental methods, such as X-ray crystallographic analysis, UV/Vis/NIR absorption spectroscopy, (spectro-)electrochemistry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, superconducting quantum interference device, and Raman spectroscopy, assisted by DFT calculations. It was found that all the charged species show an exceptional stability under ambient air and light conditions due to the efficient spin and charge delocalization over the whole rylene backbone. The dication of hexarylene turned out to have an unusual open-shell singlet rather than closed-shell ground state, thus it can be described as a diradical dication. Dimerization was observed for the radical cations and even the dications in crystals due to the strong intermolecular antiferromagnetic spin-spin interaction and π-π interaction, which result in unique magnetic properties. Such intermolecular association was also observed in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.

    PubMed

    Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G

    2018-04-18

    We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.

  16. The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion.

    PubMed

    Hindmarsh, Richard C A

    2006-07-15

    Membrane stresses act along thin bodies which are relatively well lubricated on both surfaces. They operate in ice sheets because the bottom is either sliding, or is much less viscous than the top owing to stress and heat softening of the basal ice. Ice streams flow over very well lubricated beds, and are restrained at their sides. The ideal of the perfectly slippery bed is considered in this paper, and the propagation of mechanical effects along an ice stream considered by applying spatially varying horizontal body forces. Propagation distances depend sensitively on the rheological index, and can be very large for ice-type rheologies.A new analytical solution for ice-shelf profiles and grounded tractionless stream profiles is presented, which show blow up of the profile in a finite distance upstream at locations where the flux is non-zero. This is a feature of an earlier analytical solution for a floating shelf.The length scale of decay of membrane stresses from the grounding line is investigated through scale analysis. In ice sheets, such effects decay over distances of several tens of kilometres, creating a vertical boundary layer between sheet flow and shelf flow, where membrane stresses adjust. Bounded, physically reasonable steady surface profiles only exist conditionally in this boundary layer. Where bounded steady profiles exist, adjacent profile equilibria for the whole ice sheet corresponding to different grounded areas occur (neutral equilibrium). If no solution in the boundary layer can exist, the ice-sheet profile must change.The conditions for existence can be written in terms of whether the basal rate factor (sliding or internal deformation) is too large to permit a steady solution. The critical value depends extremely sensitively on ice velocity and the back stress applied at the grounding line. High ice velocity and high stress both favour the existence of solutions and stability. Changes in these parameters can cause the steady solution existence criterion to be traversed, and the ice-sheet dynamics to change.A finite difference model which represents both neutral equilibrium and the dynamical transition is presented, and preliminary investigations into its numerical sensitivity are carried out. Evidence for the existence of a long wavelength instability is presented through the solution of a numerical eigenproblem, which will hamper predictability.

  17. Moment Magnitude discussion in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  18. Filter Tuning Using the Chi-Squared Statistic

    NASA Technical Reports Server (NTRS)

    Lilly-Salkowski, Tyler

    2017-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) performs orbit determination (OD) for the Aqua and Aura satellites. Both satellites are located in low Earth orbit (LEO), and are part of what is considered the A-Train satellite constellation. Both spacecraft are currently in the science phase of their respective missions. The FDF has recently been tasked with delivering definitive covariance for each satellite.The main source of orbit determination used for these missions is the Orbit Determination Toolkit developed by Analytical Graphics Inc. (AGI). This software uses an Extended Kalman Filter (EKF) to estimate the states of both spacecraft. The filter incorporates force modelling, ground station and space network measurements to determine spacecraft states. It also generates a covariance at each measurement. This covariance can be useful for evaluating the overall performance of the tracking data measurements and the filter itself. An accurate covariance is also useful for covariance propagation which is utilized in collision avoidance operations. It is also valuable when attempting to determine if the current orbital solution will meet mission requirements in the future.This paper examines the use of the Chi-square statistic as a means of evaluating filter performance. The Chi-square statistic is calculated to determine the realism of a covariance based on the prediction accuracy and the covariance values at a given point in time. Once calculated, it is the distribution of this statistic that provides insight on the accuracy of the covariance.For the EKF to correctly calculate the covariance, error models associated with tracking data measurements must be accurately tuned. Over estimating or under estimating these error values can have detrimental effects on the overall filter performance. The filter incorporates ground station measurements, which can be tuned based on the accuracy of the individual ground stations. It also includes measurements from the NASA space network (SN), which can be affected by the assumed accuracy of the TDRS satellite state at the time of the measurement.The force modelling in the EKF is also an important factor that affects the propagation accuracy and covariance sizing. The dominant force in the LEO orbit regime is the drag force caused by atmospheric drag. Accurate accounting of the drag force is especially important for the accuracy of the propagated state. The implementation of a box and wing model to improve drag estimation accuracy, and its overall effect on the covariance state is explored.The process of tuning the EKF for Aqua and Aura support is described, including examination of the measurement errors of available observation types (Doppler and range), and methods of dealing with potentially volatile atmospheric drag modeling. Predictive accuracy and the distribution of the Chi-square statistic, calculated based of the ODTK EKF solutions, are assessed versus accepted norms for the orbit regime.

  19. Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation

    NASA Astrophysics Data System (ADS)

    Bizoń, Piotr; Chmaj, Tadeusz; Szpak, Nikodem

    2011-10-01

    We study dynamics near the threshold for blowup in the focusing nonlinear Klein-Gordon equation utt - uxx + u - |u|2αu = 0 on the line. Using mixed numerical and analytical methods we find that solutions starting from even initial data, fine-tuned to the threshold, are trapped by the static solution S for intermediate times. The details of trapping are shown to depend on the power α, namely, we observe fast convergence to S for α > 1, slow convergence for α = 1, and very slow (if any) convergence for 0 < α < 1. Our findings are complementary with respect to the recent rigorous analysis of the same problem (for α > 2) by Krieger, Nakanishi, and Schlag ["Global dynamics above from the ground state energy for the one-dimensional NLKG equation," preprint arXiv:1011.1776 [math.AP

  20. Interaction of marine geodesy, satellite technology and ocean physics

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Fubara, D. M. J.

    1972-01-01

    The possible applications of satellite technology in marine geodesy and geodetic related ocean physics were investigated. Four major problems were identified in the areas of geodesy and ocean physics: (1) geodetic positioning and control establishment; (2) sea surface topography and geoid determination; (3) geodetic applications to ocean physics; and (4) ground truth establishment. It was found that satellite technology can play a major role in their solution. For solution of the first problem, the use of satellite geodetic techniques, such as Doppler and C-band radar ranging, is demonstrated to fix the three-dimensional coordinates of marine geodetic control if multi-satellite passes are used. The second problem is shown to require the use of satellite altimetry, along with accurate knowledge of ocean-dynamics parameters such as sea state, ocean tides, and mean sea level. The use of both conventional and advanced satellite techniques appeared to be necessary to solve the third and fourth problems.

  1. Analytical Wave Functions for Ultracold Collisions.

    NASA Astrophysics Data System (ADS)

    Cavagnero, M. J.

    1998-05-01

    Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.

  2. Ground state of Ho atoms on Pt(111) metal surfaces: Implications for magnetism

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Rudowicz, C.

    2016-05-01

    We investigated the ground state of Ho atoms adsorbed on the Pt(111) surface, for which conflicting results exist. The density functional theory (DFT) calculations yielded the Ho ground state as | Jz=±8 > . Interpretation of x-ray absorption spectroscopy and x-ray magnetic circular dichroism spectra and the magnetization curves indicated the ground state as | Jz=±6 > . Superposition model is employed to predict the crystal-field (CF) parameters based on the structural data for the system Ho/Pt(111) obtained from the DFT modeling. Simultaneous diagonalization of the free-ion (HFI) and the trigonal CF Hamiltonian (HCF) within the whole configuration 4 f10 of H o3 + ion was performed. The role of the trigonal CF terms, neglected in the pure uniaxial CF model used previously for interpretation of experimental spectra, is found significant, whereas the sixth-rank CF terms may be neglected in agreement with the DFT predictions. The results provide substantial support for the experimental designation of the | Jz=±6 > ground state, albeit with subtle difference due to admixture of other | Jz> states, but run against the DFT-based designation of the | Jz=±8 > ground state. A subtle splitting of the ground energy level with the state (predominantly), | Jz=±6 > is predicted. This paper provides better insight into the single-ion magnetic behavior of the Ho/Pt(111) system by helping to resolve the controversy concerning the Ho ground state. Experimental techniques with greater resolution powers are suggested for direct confirmation of this splitting and C3 v symmetry experienced by the Ho atom.

  3. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the moving target Kalman filter(KF). Experimental results show that our method can instantaneously geo-locate the moving target by operator's single click and can reach 15 meters accuracy for an MAV flying at 200 meters above the ground.

  4. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  5. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  6. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  7. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  8. Reply to the 'Comment on "Proton transport in barium stannate: classical, semi-classical and quantum regime"'.

    PubMed

    Geneste, Grégory; Hermet, Jessica; Dezanneau, Guilhem

    2017-08-09

    We respond to the erroneous criticisms about our modeling of proton transport in barium stannate [G. Geneste et al., Phys. Chem. Chem. Phys., 2015, 17, 19104]. In this previous work, we described, on the basis of density-functional calculations, proton transport in the classical and semi-classical regimes, and provided arguments in favor of an adiabatic picture for proton transfer at low temperature. We re-explain here our article (with more detail and precision), the content of which has been distorted in the Comment, and reiterate our arguments in this reply. We refute all criticisms. They are completely wrong in the context of our article. Even though a few of them are based on considerations probably true in some metals, they make no sense here since they do not correspond to the content of our work. It has not been understood in the Comment that two competitive configurations, associated with radically different transfer mechanisms, have been studied in our work. It has also not been understood in the Comment that the adiabatic regime described for transfer occurs in the protonic ground state, in a very-low barrier configuration with the protonic ground state energy larger than the barrier. Serious confusion has been made in the Comment with the case of H in metals like Nb or Ta, leading to the introduction of the notion of (protonic) "excited-state proton transfer", relevant for H in some metals, but (i) that does not correspond to the (ground state) adiabatic transfers here described, and (ii) that does not correspond to what is commonly described as the "adiabatic limit for proton transfer" in the scientific literature. We emphasize, accordingly, the large differences between proton transfer in the present oxide and hydrogen jumps in metals like Nb or Ta, and the similarities between proton transfer in the present oxide and in acid-base solutions. We finally describe a scenario for proton transfer in the present oxide regardless of the temperature regime.

  9. Enhancing the Cassini Mission Through FP Applications After Launch

    NASA Technical Reports Server (NTRS)

    Morgan, Paula S.

    2016-01-01

    Although rigorous pre-emptive measures are taken to preclude failures and anomalous conditions from occurring in JPL spacecraft missions prior to launch, unforeseeable problems can still surface after liftoff. In the case of the Cassini/Huygens Mission-to-Saturn spacecraft, several problems were observed post-launch: 1) immediately after takeoff, the collected engineering/science data stored on the Solid State Recorders (SSR) contained a significantly higher number of corrupted bits than was expected (considerably over spec) due to human error in the memory mapping of these devices, 2) numerous Solid State Power Switches (SSPS) sporadically tripped off throughout the mission due to cosmic ray bombardment from the unique space environment, and 3) false assumptions in the pressure regulator design in combination with missing heritage test data led to inaccurate design conclusions, causing the issuance of two waivers for the regulator to close properly (a potentially mission catastrophic single-point failure which occurred 24 days after launch) - amongst other problems. For Cassini, some of these anomalies led to arduous work-arounds or required continuous monitoring of telemetry variables by the ground-based Spacecraft Operations Flight Support (SOFS) team in order to detect and fix fault occurrences as they happened. Fortunately, sufficient funding and schedule margin allowed several Fault Protection (FP) solutions to be implemented into post-launch Flight Software (FSW) uploads to help resolve these issues autonomously, reducing SOFS ground support efforts while improving anomaly recovery time in order to preserve maximum science capture. This paper details the FP applications used to resolve the above issues as well as to optimize solutions for several other problems experienced by the Cassini spacecraft during its fight, in order to enhance the spacecraft's overall mission success throughout the 18 years of its 20 year expedition to and within the Saturnian system.

  10. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    PubMed

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  11. Two types of phase diagrams for two-species Bose-Einstein condensates and the combined effect of the parameters

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Liu, Y. M.; Yao, D. X.; Bao, C. G.

    2017-07-01

    Under the Thomas-Fermi approximation, an approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) for the two-species Bose-Einstein condensate analytically. The essence of this approach is to find out the building blocks to build the solution. By introducing the weighted strengths, relatively simpler analytical solutions have been obtained. A number of formulae have been deduced to relate the parameters when the system is experimentally tuned at various status. These formulae demonstrate the combined effect of the parameters, and are useful for the evaluation of their magnitudes. The whole parameter space is divided into zones, where each supports a specific phase. All the boundaries separating these zones have analytical expressions. Based on the division, the phase diagrams against any set of parameters can be plotted. In addition, by introducing a model for the asymmetric states, the total energies of the lowest symmetric and asymmetric states have been compared. Thereby, in which case the former will be replaced by the latter has been evaluated. The CGP can be written in a matrix form. For repulsive inter-species interaction V AB , when the parameters vary and cross over the singular point of the matrix, a specific state transition will happen and the total energy of the lowest symmetric state will increase remarkably. This provides an excellent opportunity for the lowest asymmetric state to emerge as the ground state. For attractive V AB , when the parameters tend to a singular point, the system will tend to collapse. The effects caused by the singular points have been particularly studied.

  12. Mechanisms of low-power noncoherent photon upconversion in metalloporphyrin-organic blue emitter systems in solution.

    PubMed

    Sugunan, Sunish K; Tripathy, Umakanta; Brunet, Sophie M K; Paige, Matthew F; Steer, Ronald P

    2009-07-30

    The mechanisms of noncoherent photon upconversion that involve triplet-triplet annihilation (TTA) in solution have been investigated for two model systems. ZnTPP (meso-tetraphenylporphine zinc) is used as the model visible light-absorbing metalloporphyrin because its S(1) fluorescence intensity can be used to monitor the initial rate of porphyrin triplet state production and because its S(2) fluorescence intensity can be used as a direct measure of the rate of porphyrin TTA. When perylene, which has a triplet energy lower than that of ZnTPP, is added as a signaling blue emitter (BE), the mechanism of photon upconversion involves triplet energy transfer from the porphyrin to the BE followed by TTA in the BE to form the fluorescent perylene S(1) state. The kinetics of this process have been characterized and are unremarkable. When coumarin 343 (C343), which has photophysical properties similar to those of perylene except that it has a much higher triplet energy than ZnTPP, is added as the signaling BE, emission from the ZnTPP S(2) state is quenched and fluorescence from the C343 grows in. Contrary to previous suggestions, the mechanism of photon upconversion in this system does not involve singlet energy transfer from the porphyrin S(2) state to the BE. Instead, ground-state C343 complexes with the ZnTPP triplet to form a triplet exciplex, which then undergoes TTA with a second ZnTPP triplet to give the fluorescent state of the BE in a three-center process.

  13. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  14. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  15. Femtosecond spectroscopic study of the solvation of amphiphilic molecules by water

    NASA Astrophysics Data System (ADS)

    Rezus, Y. L. A.; Bakker, H. J.

    2008-06-01

    We use polarization-resolved mid-infrared pump-probe spectroscopy to study the aqueous solvation of proline and N-methylacetamide. These molecules serve as models to study the solvation of proteins. We monitor the orientational dynamics of partly deuterated water molecules (HDO) that are present at a low concentration in the water. We find that the OD vibration of HDO relaxes via an intermediate level, that is characterized by a hydrogen-bond that is stronger than in the ground state. With increasing concentration the lifetime of the excited state increases from 1.8 ps to 2.4 ps and the lifetime of the intermediate level from 0.6 ps to 1.0 ps. Regarding the orientational dynamics we observe biexponential behavior, which finds its origin in the presence of two classes of water molecules. There is a fraction of water molecules that has bulk-like orientational dynamics ( τrot = 2.5 ps) and a fraction of immobilized water molecules ( τrot > 10 ps). The relative abundance of the two fractions is determined by the nature and concentration of the solute. We find that the hydrophobic solute groups are responsible for the immobilization of water molecules. Every methyl group causes the immobilization of approximately 4 water OH groups. The hydrophilic solute groups, on the other hand, do not hinder the reorientation and the water molecules solvating them reorient with the same rate as in the bulk liquid.

  16. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  17. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream

    USGS Publications Warehouse

    Katz, B.G.; Catches, J.S.; Bullen, T.D.; Michel, R.L.

    1998-01-01

    The Little River, an ephemeral stream that drains a watershed of approximately 88 km2 in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta 18O and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) 87Sr/86Sr ratios, and lower concentrations of 222Rn, silica, and alkalinity compared to low-flow conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers 18O, deuterium, tannic acid, silica, 222Rn, and 87Sr/86Sr. On the basis of mass-balance modeling during steady-state flow conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.The Little River of northern Florida disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Based on mass-balance modeling during steady-state flow conditions, it was found that the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.

  18. Considerations for sampling inorganic constituents in ground water using diffusion samplers

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,

    2002-01-01

    Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.

  19. Molecular spectroscopy for producing ultracold ground-state NaRb molecules

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    Recently, we have successfully created an ultracold sample of absolute ground-state NaRb molecules by two-photon Raman transfer of weakly bound Feshbach molecules. Here we will present the detailed spectroscopic investigations on both the excited and the rovibrational ground states for finding the two-photon path. For the excited state, we focus on the A1Σ+ /b3 Π singlet and triplet admixture. We discovered an anomalously strong coupling between the Ω =0+ and 0- components which renders efficient population transfer possible. In the ground state, the pure nuclear hyperfine levels have been clearly resolved, which allows us to create molecules in the absolute ground state directly with Raman transfer. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13- IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  20. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  1. Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain

    USGS Publications Warehouse

    Sacks, Laura A.; Herman, Janet S.; Konikow, Leonard F.; Vela, Antonio L.

    1992-01-01

    The hydrologic and solute budgets of a lake can be strongly influenced by transient groundwater flow. Several shallow interdunal lakes in southwest Spain are in close hydraulic connection with the shallow ground water. Two permanent lakes and one intermittent lake have chloride concentrations that differ by almost an order of magnitude. A two-dimensional solute-transport model, modified to simulate transient groundwater-lake interaction, suggests that the rising water table during the wet season leads to local flow reversals toward the lakes. Response of the individual lakes, however, varies depending on the lake's position in the regional flow system. The most dilute lake is a flow-through lake during the entire year; the through flow is driven by regional groundwater flow. The other permanent lake, which has a higher solute concentration, undergoes seasonal groundwater flow reversals at its downgradient end, resulting in complex seepage patterns and higher solute concentrations in the ground water near the lake. The solute concentration of the intermittent lake is influenced more strongly by the seasonal wetting and drying cycle than by the regional flow system. Although evaporation is the major process affecting the concentration of conservative solutes in the lakes, geochemical and biochemical reactions influence the concentration of nonconservative solutes. Probable reactions in the lakes include biological uptake of solutes and calcite precipitation; probable reactions as lake water seeps into the aquifer are sulfate reduction and calcite dissolution. Seepage reversals can result in water composition that appears inconsistent with predictions based on head measurements because, under transient flow conditions, the flow direction at any instant may not satisfactorily depict the source of the water. Understanding the dynamic nature of groundwater-lake interaction aids in the interpretation of hydrologic and chemical relations between the lakes and the ground water.

  2. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  3. Parametric Study of a YAV-8B Harrier in Ground Effect using Time-Dependent Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.

  4. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  5. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  6. Pre-Hardware Optimization of Spacecraft Image Processing Algorithms and Hardware Implementation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Petrick, David J.; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Day, John H. (Technical Monitor)

    2002-01-01

    Spacecraft telemetry rates and telemetry product complexity have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image data processing and color picture generation application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The proposed solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms, and reconfigurable computing hardware (RC) technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processors (DSP). It has been shown that this approach can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft.

  7. Boots on the Ground in the Virgin Islands: Hurricane Recovery Efforts Under

    Science.gov Websites

    Way | Integrated Energy Solutions | NREL Boots on the Ground in the Virgin Islands: Hurricane Recovery Efforts Under Way Boots on the Ground in the Virgin Islands: Hurricane Recovery Efforts Under Way 2017. Photo of two men and a woman standing next to debris from a hurricane. Gregg Tomberlin (left

  8. Ground-contact durability of wood treated with borax-copper preservative

    Treesearch

    Stan T. Lebow; Bessie Woodward; Patricia K. Lebow

    2007-01-01

    This study evaluated the ability of a borax-copper(BC) preservative to protect wood exposed in ground contact. Southern pine sapwood stakes were pressure-treated with 0.9%, 1.4%, 2.3%, and 4.7% BC solution concentrations and placed into the ground at test sites near Mississippi, or Madison, Wisconsin. Untreated stakes and stakes treated with 1% chromated copper...

  9. Dynamics, chemical properties and bioavailability of DOC in an early successional catchment

    NASA Astrophysics Data System (ADS)

    Risse-Buhl, U.; Hagedorn, F.; Dümig, A.; Gessner, M. O.; Schaaf, W.; Nii-Annang, S.; Gerull, L.; Mutz, M.

    2013-07-01

    The dynamics of dissolved organic carbon (DOC) have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany). Soil solution, upwelling ground water, stream water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages: 6.0-11.6 mg DOC L-1), despite small carbon stocks in both vegetation and soil of the catchment. Solid-state CPMAS 13C NMR of DOC in upwelling ground water revealed a higher proportion of aromatic compounds (32%) and a lower proportion of carbohydrates (33%) than in pond water (18% and 45%, respectively). The average 14C age of DOC in upwelling ground water was 2600 to 2900 yr, while organic matter of the Quaternary substrate of the catchment had a 14C age of 3000 to 16 000 yr. Both the 14C age data and 13C NMR spectra suggest that DOC partly derived from organic matter of the Quaternary substrate (about 40 to 90% of the C in the DOC), indicating that both recent and old C of the DOC can support microbial activity during early ecosystem succession. However, in a 70 day incubation experiment, only about 11% of the total DOC was found to be bioavailable. This proportion was irrespective of the water type. Origin of the microbial communities within the catchment (enriched from soil, stream sediment or pond water) also had only a marginal effect on overall DOC utilization.

  10. Solution-focused premarital counseling: helping couples build a vision for their marriage.

    PubMed

    Murray, Christine E; Murray, Thomas L

    2004-07-01

    This article outlines a solution-focused approach to premarital counseling. Solution-focused premarital counseling is a strength-based approach that focuses on a couple's resources to develop a shared vision for the marriage. Background information about premarital counseling and solution-focused therapy provide the framework for the development of intervention strategies that are grounded in the solution-focused approach. Solution-oriented interventions include solution-oriented questions, providing feedback, and the Couple's Resource Map, an original intervention that is described in this article.

  11. Evidence for a low-temperature magnetic ground state in double-perovskite iridates with I r5 +(5 d4) ions

    NASA Astrophysics Data System (ADS)

    Terzic, J.; Zheng, H.; Ye, Feng; Zhao, H. D.; Schlottmann, P.; De Long, L. E.; Yuan, S. J.; Cao, G.

    2017-08-01

    We report an unusual magnetic ground state in single-crystal, double-perovskite B a2YIr O6 and Sr-doped B a2YIr O6 with I r5 +(5 d4) ions. Long-range magnetic order below 1.7 K is confirmed by dc magnetization, ac magnetic susceptibility, and heat-capacity measurements. The observed magnetic order is extraordinarily delicate and cannot be explained in terms of either a low-spin S =1 state, or a singlet Jeff=0 state imposed by the spin-orbit interactions (SOI). Alternatively, the magnetic ground state appears consistent with a SOI that competes with comparable Hund's rule coupling and inherently large electron hopping, which cannot stabilize the singlet Jeff=0 ground state. However, this picture is controversial, and conflicting magnetic behavior for these materials is reported in both experimental and theoretical studies, which highlights the intricate interplay of interactions that determine the ground state of materials with strong SOI.

  12. On Adopting Solutions to Improve Population Health: Do We Have the Political Will?

    ERIC Educational Resources Information Center

    Galea, Sandro

    2016-01-01

    In this column, Sandro Galea addresses what would be required to identify and implement solutions that can improve the health of populations. Galea suggests that two perspectives need to inform solutions that might prove successful. First, solutions that aim to improve the health of populations need to be grounded in clarity of purpose, aiming to…

  13. Photoexcitation dynamics of NO-bound ferric myoglobin investigated by femtosecond vibrational spectroscopy.

    PubMed

    Park, Jaeheung; Lee, Taegon; Park, Jaehun; Lim, Manho

    2013-03-14

    Femtosecond vibrational spectroscopy was used to investigate the photoexcitation dynamics of NO-bound ferric myoglobin (Mb(III)NO) in D2O solution at 294 K after excitation with a 575 nm pulse. The stretching mode of NO in Mb(III)NO consists of a major band at 1922 cm(-1) (97.7%) and a minor band at 1902 cm(-1) (2.3%), suggesting that Mb(III)NO in room temperature solution has two conformational substates. The time-resolved spectra show small but significant new absorption features at the lower-energy side of the main band (1920-1800 cm(-1)). One new absorption feature in the region of 1920-1880 cm(-1) exhibits the (15)NO isotope shift (37 cm(-1)) the same as that of the NO band in the ground electronic state of Mb(III)NO. This absorption shifts toward higher energy and narrows with a time constant of 2.4 ps, indicating that it evolves with rapid electronic and thermal relaxation of the photoexcited Mb(III)NO without photodeligation of the NO from the heme. Absorption features assigned to proteins undergoing thermal relaxation without NO deligation add up to 14 ± 1% of the total bleach, implying that the photolysis quantum yield of Mb(III)NO with a Q-band excitation is ≤0.86 ± 0.01. The remaining absorption bands peaked near 1867, 1845, and 1815 cm(-1), each showing the (15)NO isotope shift the same as that of the free NO radical (33 cm(-1)), were assigned to the vibrational band of the photodeligated NO, the NO band of Mb(III)NO in an intermediate electronic state with low-spin Fe(III)-NO(radical) character (denoted as the R state), and the NO band of the vibrationally excited NO in the R state, respectively. A kinetics model successfully reproducing the time-dependent intensity changes of the transient bands suggests that every rebound NO forms the R state that eventually relaxes into the ground electronic state nonexponentially. Most of the photodissociated NO undergoes fast geminate recombination (GR), and the rebinding kinetics depends on the conformation of the protein. GR of NO to Mb(III) in the major conformation shows highly nonexponential kinetics described by a stretched exponential function, exp(-(t/290 ps)(0.44). The NO rebinding to Mb(III) in the minor conformation is exponential, exp(-t/1.8 ns), suggesting that the distal histidine, the interaction of which dictates the conformation of Mb(III)NO, participates in mediating the binding of NO to Mb(III). In Mb(III)NO, the elusive low-spin Fe(III)-NO(radical) state, proposed in electronic structure calculations, indeed exists at >12 kJ/mol above the ground state and takes part in the bond formation of Fe(III)-NO, suggesting that it plays a significant role in the function of NO-bound ferric protein. Time-resolved vibrational spectra with high sensitivity reveal rich photophysical and photochemical processes of photoexcited Mb(III)NO.

  14. Exact ground states and topological order in interacting Kitaev/Majorana chains

    NASA Astrophysics Data System (ADS)

    Katsura, Hosho; Schuricht, Dirk; Takahashi, Masahiro

    2015-09-01

    We study a system of interacting spinless fermions in one dimension that, in the absence of interactions, reduces to the Kitaev chain [Kitaev, Phys. Usp. 44, 131 (2001), 10.1070/1063-7869/44/10S/S29]. In the noninteracting case, a signal of topological order appears as zero-energy modes localized near the edges. We show that the exact ground states can be obtained analytically even in the presence of nearest-neighbor repulsive interactions when the on-site (chemical) potential is tuned to a particular function of the other parameters. As with the noninteracting case, the obtained ground states are twofold degenerate and differ in fermionic parity. We prove the uniqueness of the obtained ground states and show that they can be continuously deformed to the ground states of the noninteracting Kitaev chain without gap closing. We also demonstrate explicitly that there exists a set of operators each of which maps one of the ground states to the other with opposite fermionic parity. These operators can be thought of as an interacting generalization of Majorana edge zero modes.

  15. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  16. Ground-water data collected in the Missouri River basin units in Kansas during 1950

    USGS Publications Warehouse

    Berry, Delmar W.

    1951-01-01

    Ground-water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the United States Geological Survey, the State Geological Survey of Kansas,the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.

  17. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  18. Ground state structure of random magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastea, S.; Duxbury, P.M.

    1998-10-01

    Using exact optimization methods, we find all of the ground states of ({plus_minus}h) random-field Ising magnets (RFIM) and of dilute antiferromagnets in a field (DAFF). The degenerate ground states are usually composed of isolated clusters (two-level systems) embedded in a frozen background. We calculate the paramagnetic response (sublattice response) and the ground state entropy for the RFIM (DAFF) due to these clusters. In both two and three dimensions there is a broad regime in which these quantities are strictly positive, even at irrational values of h/J (J is the exchange constant). {copyright} {ital 1998} {ital The American Physical Society}

  19. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  20. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  1. Sensitivity of grounding line dynamics to basal conditions

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Brondex, J.; Chauveau, G.; Gillet-chaulet, F.; Durand, G.

    2017-12-01

    In the context of a warming climate, the dynamical contribution of Antarctica to future sea level rise is still tainted by high uncertainties. Among the processes entering these uncertainties is the link between basal hydrology, friction and grounding line dynamics. Recent works have shown how sensitive is the response of the grounding line retreat to the choice of the form of the friction law. Indeed, starting from the same initial state, grounding line retreat rates can range over almost two orders of magnitude depending on the friction law formulation.Here, we use a phenomenological law that depends on the water pressure and allows a continuous transition from a Weertman-type friction at low water pressure to a Coulomb-type friction at high water pressure. This friction law depends on two main parameters that control the Weertman and Coulomb regimes. The range of values for these two parameters is only weakly physically constrained, and it can be shown that, for a given basal shear stress, different couples of parameters can conduct to the same sliding velocity. In addition, we show that close to the grounding line where basal water pressure is high, determining these two parameters might conduct to an ill-posed inverse problem with no solution.The aim of this presentation is to discuss a methodology to guide the choice of the two friction parameters and explore the sensitivity of the grounding line dynamics to this initial choice. We present results obtained both on a synthetic configuration used by the Marine Ice Sheet Model Intercomparison exercise and for the Amundsen sea sector using the experiments proposed by InitMIP-Antarctica, the first exercise in a series of ISMIP6 ice-sheet model intercomparison activities.

  2. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Catches, John S.; Bullen, Thomas D.; Michel, Robert L.

    1998-11-01

    The Little River, an ephemeral stream that drains a watershed of approximately 88 km 2 in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta 18O and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) 87Sr/ 86Sr ratios, and lower concentrations of 222Rn, silica, and alkalinity compared to low-flow conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers 18O, deuterium, tannic acid, silica, 222Rn, and 87Sr/ 86Sr. On the basis of mass-balance modeling during steady-state flow conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.

  3. The change in hydrogen bond strength accompanying charge rearrangement: Implications for enzymatic catalysis

    PubMed Central

    Shan, Shu-ou; Herschlag, Daniel

    1996-01-01

    The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of ΔpKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon ΔpKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased. PMID:8962076

  4. Improved belief propagation algorithm finds many Bethe states in the random-field Ising model on random graphs

    NASA Astrophysics Data System (ADS)

    Perugini, G.; Ricci-Tersenghi, F.

    2018-01-01

    We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.

  5. A Mixed Methods Approach to Identify Cognitive Warning Signs for Suicide Attempts.

    PubMed

    Adler, Abby; Bush, Ashley; Barg, Frances K; Weissinger, Guy; Beck, Aaron T; Brown, Gregory K

    2016-01-01

    This study used a mixed methods approach to examine pathways to suicidal behavior by identifying cognitive warning signs that occurred within 1 day of a suicide attempt. Transcripts of cognitive therapy sessions from 35 patients who attempted suicide were analyzed using a modified grounded theory approach. Cognitive themes emerging from these transcripts included: state hopelessness, focus on escape, suicide as a solution, fixation on suicide, and aloneness. Differences in demographic and baseline diagnostic and symptom data were explored in relation to each cognitive theme. We propose a potential conceptual model of cognitive warning signs for suicide attempts that requires further testing.

  6. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  7. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Yu; Yang, Bin; Liao, Sheng-Kai; Zhang, Liang; Shen, Qi; Hu, Xiao-Fang; Wu, Jin-Cai; Yang, Shi-Ji; Jiang, Hao; Tang, Yan-Lin; Zhong, Bo; Liang, Hao; Liu, Wei-Yue; Hu, Yi-Hua; Huang, Yong-Mei; Qi, Bo; Ren, Ji-Gang; Pan, Ge-Sheng; Yin, Juan; Jia, Jian-Jun; Chen, Yu-Ao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-05-01

    Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground-satellite QKD and a global quantum communication network.

  8. Electrochemical stabilization of clayey ground

    USGS Publications Warehouse

    Rzhanitzin, B.A.; Sokoloff, V.P.

    1947-01-01

    Recently developed new methods of stabilization of weak grounds (e.g. the silicate treatment) are based on injection of chemical solutions into the ground. Such methods are applicable accordingly only to the kinds of ground that have the coefficient of filtration higher than 2 meters per 24 hours and permit penetration of the chemical solutions under pressure. This limit, however, as it is shown by our experience in construction, excludes a numerous and an important class of grounds, stabilization of which is indispensable in many instances. For example, digging of trenches and pits in clayey, silty, or sandy ground shows that all these types act like typical "floaters" (sluds? -S) in the presence of the ground water pressure. There were several instances in the canalization of the city of Moskow where the laying of trenches below the ground water level has led to extreme difficulties with clayey and silty ground. Similar examples could be cited in mining, engineering hydrology, and railroad construction. For these reasons, the development of methods of stabilizing such difficult types of ground has become an urgent problem of our day. In 1936, the author began his investigations, at the ground Stabilization Laboratory of VODGEO Institute, with direct electrical current as the means of stabilization of grounds. Experiments had shown that a large number of clayey types, following passage of direct electrical current, undergoes a transformation of its physico-chemical properties. It was established that the (apparent -S) density of the ground is substantially increased in consequence of the application of direct electrical current. The ground loses also its capacity to swell and to soften in water. Later, after a more detailed study of the physico-chemical mechanism of the electrical stabilization, it became possible to develop the method so as to make it applicable to sandy and silty as well as to clayey ground. By this time (1941, S.), the method has already been tested in the field, was found satisfactory, and is being introduced into construction practice.

  9. Application of mineral-solution equilibria to geochemical exploration for sandstone-hosted uranium deposits in two basins in west central Utah.

    USGS Publications Warehouse

    Miller, W.R.; Wanty, R.B.; McHugh, J.B.

    1984-01-01

    This study applies mineral-solution equilibrium methods to the interpretation of ground-water chemistry in evaluating the uranium potential of the Beaver and Milford basins in west central Utah. Waters were collected mainly from wells and springs at 100 sites in limited areas in the basins, and in part from mixed sources. The waters were analysed for T, pH, alkalinity, specific conductance, SO4, Cl, F, NO3, Ca, Mg, Na, K, SiO2, Zn, Cu, Mo, As, U, V, Se, Li, Fe, Mn, and Al on different fractions. A computer model (WATEQ3) was used to calculate the redox potential and the state of saturation of the waters with respect to uraninite, coffinite, realgar and arsenopyrite. Mineral saturation studies have reliably predicted the location of known (none given here) U deposits and are more diagnostic of these deposits than are concentrations of indicator elements (U, Mo, As, Se). Several areas in the basins have ground-water environments of reducing redox potential, favourable for precipitation of reduced U minerals, and some of these areas are saturated or near-saturated with respect to uraninite and coffinite. The approach shows only that the environment is favourable locally for precipitation of reduced U minerals, but thereby locates exploration targets for (modern?) sandstone-hosted U deposits.-G.J.N.

  10. Post place and route design-technology co-optimization for scaling at single-digit nodes with constant ground rules

    NASA Astrophysics Data System (ADS)

    Mattii, Luca; Milojevic, Dragomir; Debacker, Peter; Berekovic, Mladen; Sherazi, Syed Muhammad Yasser; Chava, Bharani; Bardon, Marie Garcia; Schuddinck, Pieter; Rodopoulos, Dimitrios; Baert, Rogier; Gerousis, Vassilios; Ryckaert, Julien; Raghavan, Praveen

    2018-01-01

    Standard-cell design, technology choices, and place and route (P&R) efficiency are deeply interrelated in CMOS technology nodes below 10 nm, where lower number of tracks cells and higher pin densities pose increasingly challenging problems to the router in terms of congestion and pin accessibility. To evaluate and downselect the best solutions, a holistic design-technology co-optimization approach leveraging state-of-the-art P&R tools is thus necessary. We adopt such an approach using the imec N7 technology platform, with contacted poly pitch of 42 nm and tightest metal pitch of 32 nm, by comparing post P&R area of an IP block for different standard cell configurations, technology options, and cell height. Keeping the technology node and the set of ground rules unchanged, we demonstrate that a careful combination of these solutions can enable area gains of up to 50%, comparable with the area benefits of migrating to another node. We further demonstrate that these area benefits can be achieved at isoperformance with >20% reduced power. As at the end of the CMOS roadmap, conventional scaling enacted through pitch reduction is made more and more challenging by constraints imposed by lithography limits, material resistivity, manufacturability, and ultimately wafer cost, the approach shown herein offers a valid, attractive, and low-cost alternative.

  11. Analysis & Tools to Spur Increased Deployment of “Waste Heat” Rejection/Recycling Hybrid Ground-source Heat Pump Systems in Hot, Arid or Semiarid Climates Like Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Glenn; Moon, Tess

    2013-09-01

    This project team analyzed supplemental heat rejection/recovery (SHR) devices or systems that could be used in hybrid ground source heat pump (HGHP) systems located in arid or semi-arid regions in southwestern U.S. Identification of effective SHR solutions would enhance the deployment of ground source heat pumps (GHP) in these regions. In a parallel effort, the team developed integrated GHP models that coupled the building load, heat pump, and ground loop subsystems and which could be applied to residential and commercial office buildings. Then GHP and HGHP performances could be compared in terms of operational performance and life-cycle costs. Several potentialmore » SHR devices were analyzed by applying two strategies: 1) to remove heat directly from the water in the ground loop before it enters the ground and 2) to remove heat in the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC. Cooling towers, adsorption coolers, and thermoelectric liquid coolers were included in strategy 1, and expanded desuperheaters, thermosyphons, and an optimized VCC were included in strategy 2. Of all SHR devices analyzed, only the cooling tower provided a cost-effective performance enhancement. For the integrated GHP model, the project team selected the building load model HAMBASE and its powerful computational Simulink/MatLab platform, empirical performance map models of the heat pumps based upon manufacturers’ performance data, and a ground loop model developed by Oklahoma State University and rewritten for this project in Simulink/MatLab. The design process used GLHEPRO, also from Oklahoma State University, to size the borehole fields. The building load and ground loop models were compared with simulations from eQuest, ASHRAE 140-2008 standards, EnergyPlus, and GLHEPRO and were found to predict those subsystems’ performance well. The integrated GHP model was applied to a 195m 2 (2100ft 2) residential building and a 4,982m 2 (53,628ft 2) three-story commercial office building, and it ran 10-15 year simulations. The integrated GHP model and its Simulink platform provided residential data, ranging from seconds to years, and commercial office building data, ranging from minutes to years. A cooling tower model was coupled to the base case integrated GHP model for the residential building and the resulting HGHP system provided a cost-effective solution for the Austin, TX location. Simulations for both the residential and commercial building models were run with varying degrees of SHR (device/system not identified) and the results were found to significantly decrease installation costs, increase heat pump efficiency (lower entering water temperature), and prolong the lifetime of the borehole field. Lifetime cycle costs were estimated from the simulation results. Sensitivity studies on system operating performance and lifetime costs were performed on design parameters, such as construction materials, borehole length, borehole configuration and spacing, grout conductivity, and effects of SHR. While some of the results are intuitive, these studies provided quantitative estimates of improved performance and cost. One of the most important results of this sensitivity study is that overall system performance is very sensitive to these design parameters and that modeling and simulation are essential tools to design cost-effective systems.« less

  12. Hanle model of a spin-orbit coupled Bose-Einstein condensate of excitons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Andreev, S. V.; Nalitov, A. V.

    2018-04-01

    We present a theoretical model of a driven-dissipative spin-orbit coupled Bose-Einstein condensate of indirect excitons in semiconductor quantum wells (QW's). Our steady-state solution of the problem shares analogies with the Hanle effect in an optical orientation experiment. The role of the spin pump in our case is played by Bose-stimulated scattering into a linearly-polarized ground state and the depolarization occurs as a result of exchange interaction between electrons and holes. Our theory agrees with the recent experiment [A. A. High et al., Phys. Rev. Lett. 110, 246403 (2013), 10.1103/PhysRevLett.110.246403], where spontaneous emergence of spatial coherence and polarization textures have been observed. As a complementary test, we discuss a configuration where an external magnetic field is applied in the structure plane.

  13. How does the trans-cis photoisomerization of azobenzene take place in organic solvents?

    PubMed

    Tiberio, Giustiniano; Muccioli, Luca; Berardi, Roberto; Zannoni, Claudio

    2010-04-06

    The trans-cis photoisomerization of azobenzene-containing materials is key to a number of photomechanical applications, but the actual conversion mechanism in condensed phases is still largely unknown. Herein, we study the n, pi* isomerization in a vacuum and in various solvents via a modified molecular dynamics simulation adopting an ab initio torsion-inversion force field in the ground and excited states, while allowing for electronic transitions and a stochastic decay to the fundamental state. We determine the trans-cis photoisomerization quantum yield and decay times in various solvents (n-hexane, anisole, toluene, ethanol, and ethylene glycol), and obtain results comparable with experimental ones where available. A profound difference between the isomerization mechanism in vacuum and in solution is found, with the often neglected mixed torsional-inversion pathway being the most important in solvents.

  14. Luminorefrigeration: vibrational cooling of NaCs.

    PubMed

    Wakim, A; Zabawa, P; Haruza, M; Bigelow, N P

    2012-07-02

    We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.

  15. Heat of formation determination of the ground and excited state of cyanomethylene (HCCN) radical

    NASA Technical Reports Server (NTRS)

    Francisco, Joseph S.

    1994-01-01

    Ab initio electronic structure theory has been used to characterize the structure of the ground triplet and lowest singlet excited states of cyanomethylene. The geometries, vibrational frequencies, and heats of formation have been determined using second-order Moller-Plesset perturbation, single and double excitation configuration interaction, and quadratic configuration interaction theory. The heat of formation is predicted with isodesmic reaction and Gaussian-2 theory (G2) for the ground triplet and first excited singlet states of cyanomethylene. For the ground state Delta-H(sub 0)(sup f,0) is 114.8+/-2 kcal/mol while for the excited single state it is 126.5+/-2 kcal/mol.

  16. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  17. International Aerospace and Ground Conference on Lightning and Static Electricity (8th): Lightning Technology Roundup, held at Fort Worth, Texas on 21-23 June 1983.

    DTIC Science & Technology

    1983-06-01

    fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero

  18. State and territorial use of ground-water strategy grant funds (Section 106 Clean Water Act). Technical report (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-05-01

    This document reports on the activities of States in FY 85 and 86 in developing and implementing State ground-water protection strategies using Clean Water Act Section 106 funds. Every State and all but one territory has participated in the program. Strategies have included emphasis on the need to consolidate State and local agency efforts, and to provide clear policy direction, greater public awareness and education concerning ground-water protection.

  19. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  20. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  1. Semistable extremal ground states for nonlinear evolution equations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    2008-02-01

    In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.

  2. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.

  3. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.

  4. Optimization modeling to maximize population access to comprehensive stroke centers

    PubMed Central

    Branas, Charles C.; Kasner, Scott E.; Wolff, Catherine; Williams, Justin C.; Albright, Karen C.; Carr, Brendan G.

    2015-01-01

    Objective: The location of comprehensive stroke centers (CSCs) is critical to ensuring rapid access to acute stroke therapies; we conducted a population-level virtual trial simulating change in access to CSCs using optimization modeling to selectively convert primary stroke centers (PSCs) to CSCs. Methods: Up to 20 certified PSCs per state were selected for conversion to maximize the population with 60-minute CSC access by ground and air. Access was compared across states based on region and the presence of state-level emergency medical service policies preferentially routing patients to stroke centers. Results: In 2010, there were 811 Joint Commission PSCs and 0 CSCs in the United States. Of the US population, 65.8% had 60-minute ground access to PSCs. After adding up to 20 optimally located CSCs per state, 63.1% of the US population had 60-minute ground access and 86.0% had 60-minute ground/air access to a CSC. Across states, median CSC access was 55.7% by ground (interquartile range 35.7%–71.5%) and 85.3% by ground/air (interquartile range 59.8%–92.1%). Ground access was lower in Stroke Belt states compared with non–Stroke Belt states (32.0% vs 58.6%, p = 0.02) and lower in states without emergency medical service routing policies (52.7% vs 68.3%, p = 0.04). Conclusion: Optimal system simulation can be used to develop efficient care systems that maximize accessibility. Under optimal conditions, a large proportion of the US population will be unable to access a CSC within 60 minutes. PMID:25740858

  5. Optimization modeling to maximize population access to comprehensive stroke centers.

    PubMed

    Mullen, Michael T; Branas, Charles C; Kasner, Scott E; Wolff, Catherine; Williams, Justin C; Albright, Karen C; Carr, Brendan G

    2015-03-24

    The location of comprehensive stroke centers (CSCs) is critical to ensuring rapid access to acute stroke therapies; we conducted a population-level virtual trial simulating change in access to CSCs using optimization modeling to selectively convert primary stroke centers (PSCs) to CSCs. Up to 20 certified PSCs per state were selected for conversion to maximize the population with 60-minute CSC access by ground and air. Access was compared across states based on region and the presence of state-level emergency medical service policies preferentially routing patients to stroke centers. In 2010, there were 811 Joint Commission PSCs and 0 CSCs in the United States. Of the US population, 65.8% had 60-minute ground access to PSCs. After adding up to 20 optimally located CSCs per state, 63.1% of the US population had 60-minute ground access and 86.0% had 60-minute ground/air access to a CSC. Across states, median CSC access was 55.7% by ground (interquartile range 35.7%-71.5%) and 85.3% by ground/air (interquartile range 59.8%-92.1%). Ground access was lower in Stroke Belt states compared with non-Stroke Belt states (32.0% vs 58.6%, p = 0.02) and lower in states without emergency medical service routing policies (52.7% vs 68.3%, p = 0.04). Optimal system simulation can be used to develop efficient care systems that maximize accessibility. Under optimal conditions, a large proportion of the US population will be unable to access a CSC within 60 minutes. © 2015 American Academy of Neurology.

  6. Ground Systems Integration Domain (GSID) Materials for Ground Platforms

    DTIC Science & Technology

    2010-09-20

    Vehicles • Heavy Brigade Combat Team • Strykers • MRAPs • Ground Combat Vehicles (Future) Tactical Vehicles • HMMWVs • Trailers • Heavy, Medium and...efficient structural material solutions • Signature management, electromagnetic shielding over potentially non-metallic surfaces • Diagnostics...Occupant-Centric Survivability Focused): 1. 4500 lbs + trailer towing capacity; 4-6 man crew compartmentPayload 2. 14,000 lb curb vehicle weightPerformance

  7. Numerical modelling of GPR ground-matching enhancement by a chirped multilayer structure - output of cooperation within COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik V.; Knyazyan, Tamara M.; Hovhannisyan, Tamara. T.; Marciniak, Marian; Pajewski, Lara

    2016-04-01

    As is well know, Ground Penetrating Radar (GPR) is an electromagnetic technique for the detection and imaging of buried objects, with resolution ranging from centimeters to few meters [1, 2]. Though this technique is mature enough and different types of GPR devices are already in use, some problems are still waiting for their solution [3]. One of them is to achieve a better matching of transmitting GPR antenna to the ground, that will increase the signal penetration depth and the signal/noise ratio at the receiving end. In the current work, a full-wave electromagnetic modelling of the interaction of a plane wave with a chirped multilayered structure on the ground is performed, via numerical simulation. The method of single expression is used, which is a suitable technique for multi-boundary problems solution [4, 5]. The considered multilayer consists of two different dielectric slabs of low and high permittivity, where the highest value of permittivity doesn't exceed the permittivity of the ground. The losses in the ground are suitably taken into account. Two types of multilayers are analysed. Numerical results are obtained for the reflectance from the structure, as well as for the distributions of electric field components and power flow density in both the considered structures and the ground. The obtained results indicate that, for a better matching with the ground, the layer closer to the ground should be the high-permittivity one. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). Part of this work was developed during the Short-Term Scientific Mission COST-STSM-TU1208-25016, carried out by Prof. Baghdasaryan in the National Institute of Telecommunications in Warsaw, Poland. References [1] H. M. Jol. Ground Penetrating Radar: Theory and Applications. Elsevier, 2009. 509 pp. [2] R. Persico. Introduction to Ground Penetrating Radar. IEEE Press, Wiley, 2014. 368 pp. [3] A. Benedetto, L. Pajewski. Civil Engineering Applications of Ground Penetrating Radar. Springer, 2015. 371 pp. [4] H.V. Baghdasaryan, T.M. Knyazyan, "Problem of Plane EM-Wave Self-action in Multilayer Structure: an Exact Solution", Optical and Quantum Electronics, vol. 31, 1999, pp. 1059-1072. [5] H.V. Baghdasaryan, "Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics", Yerevan, Chartaraget, 2013.

  8. The geochemical evolution of riparian ground water in a forested piedmont catchment

    USGS Publications Warehouse

    Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter

    2003-01-01

    The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering. An accurate model of the geochemical evolution of riparian ground water is necessary to accurately model the geochemical evolution of stream water at PMRW.

  9. Antibonding ground state of adatom molecules in bulk Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Marques, Y.; Obispo, A. E.; Ricco, L. S.; de Souza, M.; Shelykh, I. A.; Seridonio, A. C.

    2017-07-01

    The ground state of the diatomic molecules in nature is inevitably bonding, and its first excited state is antibonding. We demonstrate theoretically that, for a pair of distant adatoms placed buried in three-dimensional-Dirac semimetals, this natural order of the states can be reversed and an antibonding ground state occurs at the lowest energy of the so-called bound states in the continuum. We propose an experimental protocol with the use of a scanning tunneling microscope tip to visualize the topographic map of the local density of states on the surface of the system to reveal the emerging physics.

  10. Experimental linear-optics simulation of ground-state of an Ising spin chain.

    PubMed

    Xue, Peng; Zhan, Xian; Bian, Zhihao

    2017-05-19

    We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.

  11. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  12. Near-optimal strategies for sub-decimeter satellite tracking with GPS

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong

    1986-01-01

    Decimeter tracking of low Earth orbiters using differential Global Positioning System (GPS) techniques is discussed. A precisely known global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite orbits. Strategies include a purely geometric, a fully dynamic, and a hybrid strategy. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the hybrid strategy show the most promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a gravity adjustment method to exploit data from repeat ground tracks. These techniques promise to deliver subdecimeter accuracy down to the lowest satellite altitudes.

  13. Ground-water management under the appropriation doctrine. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, D.; Bruhl, E.J.

    The purpose of the research is to better understand the characteristics of ground-water management under the prior-appropriation doctrine in the western United States. The general objective is to summarize the legal and administrative controls on ground-water use in eight western states and to compare the impacts of these controls on ground water systems.

  14. Detecting phase boundaries of quantum spin-1/2 XXZ ladder via bipartite and multipartite entanglement transitions

    NASA Astrophysics Data System (ADS)

    Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal

    2017-12-01

    Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.

  15. Ground-state information geometry and quantum criticality in an inhomogeneous spin model

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Quan

    2015-09-01

    We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).

  16. Doped colloidal artificial spin ice

    DOE PAGES

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-10-07

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  17. Doped colloidal artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  18. Approximating quantum many-body wave functions using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Cai, Zi; Liu, Jinguo

    2018-01-01

    In this paper, we demonstrate the expressibility of artificial neural networks (ANNs) in quantum many-body physics by showing that a feed-forward neural network with a small number of hidden layers can be trained to approximate with high precision the ground states of some notable quantum many-body systems. We consider the one-dimensional free bosons and fermions, spinless fermions on a square lattice away from half-filling, as well as frustrated quantum magnetism with a rapidly oscillating ground-state characteristic function. In the latter case, an ANN with a standard architecture fails, while that with a slightly modified one successfully learns the frustration-induced complex sign rule in the ground state and approximates the ground states with high precisions. As an example of practical use of our method, we also perform the variational method to explore the ground state of an antiferromagnetic J1-J2 Heisenberg model.

  19. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.

  20. Fabrication and Atomic Force Microscopy Characterization of Molecular Composites of Fullerenes in Aerogel Matrix for Optical Limiting

    NASA Technical Reports Server (NTRS)

    Lu, W. J .; Sunkara, H. B.; Shi, D.; Morgan, S. H.; Penn, B.; Frazier, D.; Collins, W. E.

    1998-01-01

    An optical limiter is a device which exhibits a decrease in the transmittance in a material with an increase in intensity of light. Sol-gel techniques offer many advantages in the fabrication of materials. These materials possess many desirable properties for nonlinear optical (NLO) device applications which include transparency, high thermal and chemical stabilities, very low refractive index and dielectric constants. C60 shows a higher excited state absorption cross section than the ground state absorption cross section over the complete visible spectrum, and the spectrum of the excited state absorption of C60 has the same general shape as the ground state absorption. This fact suggests that fullerenes are ideal optical limiting materials. Aerogels are fabricated by sol-gel processing. One of the key issues is the dispersion of fullerenes into small and uniform pores of silica aerogel host matrices. The aerogel network was characterized by Raman spectroscopy. Atomic force microscopy is a technique with many advantages to characterize the aerogel materials. The morphology of the cleaved surface for a C60/aerogel sample shows that there are long paralleled shaped stripes with 20-30 nm in width and about 500 nm in length on the cleaved surface. The cleaved surface also was etched by 5% HF solution for one minutes, and it became smoother after HF etching. The main feature in on the surface is the spherical particles with the size of few nanometers, and no aggregated fullerenes appear. The fullerenes are well dispersed in the aerogel matrices.

Top