Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.572 Grounding. Each metallic component of the fuel fill system and fuel tank which is in contact with fuel must be statically grounded so that the resistance between the ground and each metallic component of the fuel fill system and...
Advanced Ground Systems Maintenance Prognostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.
Noise isolation system for high-speed circuits
McNeilly, D.R.
1983-12-29
A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.
Noise isolation system for high-speed circuits
McNeilly, David R.
1986-01-01
A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.
High performance VLSI telemetry data systems
NASA Technical Reports Server (NTRS)
Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.
1990-01-01
NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.
2017-01-11
discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End-to... discrete system components or measurements of latency in autonomous systems. 1.1 Basic Video Latency. Teleoperation latency, or lag, describes
NASA Technical Reports Server (NTRS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-01-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-11-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Saykin, A. M.; Tuktakiev, G. S.; Zhuravlev, A. V.; Zaitseva, E. P.
2018-02-01
The paper contains the analysis of the main trends in the patenting of ground unmanned vehicles, driver assistance systems (ADAS) and unmanned vehicle components abroad during the period from 2010 to 2016. The conclusion was made that the intensity of their patenting abroad increased.
NASA Technical Reports Server (NTRS)
Monaghan, Mark W.; Gillespie, Amanda M.
2013-01-01
During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.
Case for Deploying Complex Systems Utilizing Commodity Components
NASA Technical Reports Server (NTRS)
Bryant, Barry S.; Pitts, R. Lee; Ritter, George
2003-01-01
This viewgraph representation presents a study of the transition of computer networks and software engineering at the Huntsville Operations Support Center (HOSC) from a client/server UNIX based system to a client/server system based on commodity priced and open system components. Topics covered include: an overview of HOSC ground support systems, an analysis for changes to the existing ground support system, an analysis of options considered for the transition to a new system, and a consideration of goals for a new system.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.
The advanced orbiting systems testbed program: Results to date
NASA Technical Reports Server (NTRS)
Newsome, Penny A.; Otranto, John F.
1993-01-01
The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.
A Framework for Prognostics Reasoning
2002-12-01
Center and School, Aberden Proving Ground , Maryland. Presented at the Advanced Information Systems and Technology Conference 28-30 March 1994. 44...stresses cannot be duplicated on the ground . The communication busses and permanent wiring on an aircraft are not tested at present. These components...functional aircraft components. Lastly, since CND results indicate an inability to duplicate on the ground a fault detected during flight, many
Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.
2008-01-01
The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.
Guide for inservice inspection of ground-based pressure vessels and systems
NASA Technical Reports Server (NTRS)
1976-01-01
This guide includes recommendations for inservice inspection and recertification of ground based, unfired pressure vessels and all pressurized systems including those served by fired pressure vessels hereinafter referred to as pressure vessels, systems and components of systems. It covers the vast array of pound based industrial and special purpose pressurized components and systems used at NASA field installations for research and development and those utility systems and components that require more than routine maintenance to insure continued structural integrity for their useful life. Through surveillance and correction of inservice deterioration, NASA will maintain a safe working environment for their own and contractor personnel, safety for the public sector and protection against loss of capital investment.
Flight service environmental effects on composite materials and structures
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Baker, Donald J.
1992-01-01
NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.
Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration
NASA Technical Reports Server (NTRS)
Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.
1993-01-01
Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.
Increasing the Automation and Autonomy for Spacecraft Operations with Criteria Action Table
NASA Technical Reports Server (NTRS)
Li, Zhen-Ping; Savki, Cetin
2005-01-01
The Criteria Action Table (CAT) is an automation tool developed for monitoring real time system messages for specific events and processes in order to take user defined actions based on a set of user-defined rules. CAT was developed by Lockheed Martin Space Operations as a part of a larger NASA effort at the Goddard Space Flight Center (GSFC) to create a component-based, middleware-based, and standard-based general purpose ground system architecture referred as GMSEC - the GSFC Mission Services Evolution Center. CAT has been integrated into the upgraded ground systems for Tropical Rainfall Measuring Mission (TRMM) and Small Explorer (SMEX) satellites and it plays the central role in their automation effort to reduce the cost and increase the reliability for spacecraft operations. The GMSEC architecture provides a standard communication interface and protocol for components to publish/describe messages to an information bus. It also provides a standard message definition so components can send and receive messages to the bus interface rather than each other, thus reducing the component-to-component coupling, interface, protocols, and link (socket) management. With the GMSEC architecture, components can publish standard event messages to the bus for all nominal, significant, and surprising events in regard to satellite, celestial, ground system, or any other activity. In addition to sending standard event messages, each GMSEC compliant component is required to accept and process GMSEC directive request messages.
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
Bantam System Technology Project
NASA Technical Reports Server (NTRS)
Moon, J. M.; Beveridge, J. R.
1998-01-01
This report focuses on determining a best value, low risk, low cost and highly reliable Data and Command System for support of the launch of low cost vehicles which are to carry small payloads into low earth orbit. The ground-based DCS is considered as a component of the overall ground and flight support system which includes the DCS, flight computer, mission planning system and simulator. Interfaces between the DCS and these other component systems are considered. Consideration is also given to the operational aspects of the mission and of the DCS selected. This project involved: defining requirements, defining an efficient operations concept, defining a DCS architecture which satisfies the requirements and concept, conducting a market survey of commercial and government off-the-shelf DCS candidate systems and rating the candidate systems against the requirements/concept. The primary conclusions are that several low cost, off-the-shelf DCS solutions exist and these can be employed to provide for very low cost operations and low recurring maintenance cost. The primary recommendation is that the DCS design/specification should be integrated within the ground and flight support system design as early as possible to ensure ease of interoperability and efficient allocation of automation functions among the component systems.
NASA Astrophysics Data System (ADS)
Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song
2018-01-01
We consider a nonlinear Schrödinger system arising in a two-component Bose-Einstein condensate (BEC) with attractive intraspecies interactions and repulsive interspecies interactions in R2. We get ground states of this system by solving a constrained minimization problem. For some kinds of trapping potentials, we prove that the minimization problem has a minimizer if and only if the attractive interaction strength ai (i = 1 , 2) of each component of the BEC system is strictly less than a threshold a*. Furthermore, as (a1 ,a2) ↗ (a* ,a*), the asymptotical behavior for the minimizers of the minimization problem is discussed. Our results show that each component of the BEC system concentrates at a global minimum of the associated trapping potential.
Partial Automated Alignment and Integration System
NASA Technical Reports Server (NTRS)
Kelley, Gary Wayne (Inventor)
2014-01-01
The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.
NASA Technical Reports Server (NTRS)
Cangahuala, L.; Drain, T. R.
1999-01-01
At present, ground navigation support for interplanetary spacecraft requires human intervention for data pre-processing, filtering, and post-processing activities; these actions must be repeated each time a new batch of data is collected by the ground data system.
NASA Technical Reports Server (NTRS)
Swenson, Paul
2017-01-01
Satellite/Payload Ground Systems - Typically highly-customized to a specific mission's use cases - Utilize hundreds (or thousands!) of specialized point-to-point interfaces for data flows / file transfers Documentation and tracking of these complex interfaces requires extensive time to develop and extremely high staffing costs Implementation and testing of these interfaces are even more cost-prohibitive, and documentation often lags behind implementation resulting in inconsistencies down the road With expanding threat vectors, IT Security, Information Assurance and Operational Security have become key Ground System architecture drivers New Federal security-related directives are generated on a daily basis, imposing new requirements on current / existing ground systems - These mandated activities and data calls typically carry little or no additional funding for implementation As a result, Ground System Sustaining Engineering groups and Information Technology staff continually struggle to keep up with the rolling tide of security Advancing security concerns and shrinking budgets are pushing these large stove-piped ground systems to begin sharing resources - I.e. Operational / SysAdmin staff, IT security baselines, architecture decisions or even networks / hosting infrastructure Refactoring these existing ground systems into multi-mission assets proves extremely challenging due to what is typically very tight coupling between legacy components As a result, many "Multi-Mission" ops. environments end up simply sharing compute resources and networks due to the difficulty of refactoring into true multi-mission systems Utilizing continuous integration / rapid system deployment technologies in conjunction with an open architecture messaging approach allows System Engineers and Architects to worry less about the low-level details of interfaces between components and configuration of systems GMSEC messaging is inherently designed to support multi-mission requirements, and allows components to aggregate data across multiple homogeneous or heterogeneous satellites or payloads - The highly-successful Goddard Science and Planetary Operations Control Center (SPOCC) utilizes GMSEC as the hub for it's automation and situational awareness capability Shifts focus towards getting GS to a final configuration-managed baseline, as well as multi-mission / big-picture capabilities that help increase situational awareness, promote cross-mission sharing and establish enhanced fleet management capabilities across all levels of the enterprise.
NASA Technical Reports Server (NTRS)
Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)
1999-01-01
Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.
Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.
2005-01-01
Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local variations in vertical gradients are apparent. Water-quality sampling and monitoring efforts were conducted to characterize the interaction of components of the ground-water system. Elevated nitrate concentrations as high as 22 milligrams per liter were detected in shallow ground water from the regolith at the study site. These elevated nitrate concentrations likely are related to land use, which includes agricultural practices that involve animal feeding operations and crop fertilization. Continuous ground-water-quality data indicate seasonal fluctuations in field water-quality properties, differences with respect to depth, and fluctuations during recharge events. Water-quality properties recorded in the regolith well following rainfall indicate the upwelling of deeper ground water in the discharge area, likely from ground water in the transition-zone fractures. Additionally, interaction with a surface-water boundary appears likely in the ground-water discharge area, as water levels in all three ground-water zones, including the deep bedrock, mimic the surface-water rise during rainfall.
The Ground Control Room as an Enabling Technology in the Unmanned Aerial System
NASA Technical Reports Server (NTRS)
Gear, Gary; Mace, Thomas
2007-01-01
This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.
System Testing of Ground Cooling System Components
NASA Technical Reports Server (NTRS)
Ensey, Tyler Steven
2014-01-01
This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.
LOX/hydrocarbon auxiliary propulsion system study
NASA Technical Reports Server (NTRS)
Orton, G. F.; Mark, T. D.; Weber, D. D.
1982-01-01
Liquid oxygen/hydrocarbon propulsion systems applicable to a second generation orbiter OMS/RCS were compared, and major system/component options were evaluated. A large number of propellant combinations and system concepts were evaluated. The ground rules were defined in terms of candidate propellants, system/component design options, and design requirements. System and engine component math models were incorporated into existing computer codes for system evaluations. The detailed system evaluations and comparisons were performed to identify the recommended propellant combination and system approach.
Navigation Operations for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Long, Anne; Farahmand, Mitra; Carpenter, Russell
2015-01-01
The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.
Advanced Ground Systems Maintenance Prognostics Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
The project implements prognostics capabilities to predict when a component, system or subsystem will no longer meet desired functional or performance criteria, called the "end of life." The capability also provides an assessment of the "remaining useful life" of a hardware component.
Characterization of an In-Situ Ground Terminal via a Geostationary Satellite
NASA Technical Reports Server (NTRS)
Piasecki, Marie T.; Welch, Bryan W.; Mueller, Carl H.
2015-01-01
In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus/emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.
Characterization of an In-Situ Ground Terminal via a Geostationary Satellite
NASA Technical Reports Server (NTRS)
Piasecki, Marie; Welch, Bryan; Mueller, Carl
2015-01-01
In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.
Response of pendulums to complex input ground motion
Graizer, V.; Kalkan, E.
2008-01-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component. ?? 2007 Elsevier Ltd. All rights reserved.
Strategies for Validation Testing of Ground Systems
NASA Technical Reports Server (NTRS)
Annis, Tammy; Sowards, Stephanie
2009-01-01
In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)
Water Budget for the Island of Kauai, Hawaii
Shade, Patricia J.
1995-01-01
A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).
NASA Technical Reports Server (NTRS)
Lynn, Keith C. (Inventor); Acheson, Michael J. (Inventor); Commo, Sean A. (Inventor); Landman, Drew (Inventor)
2016-01-01
An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.
Load control system. [for space shuttle external tank ground tests
NASA Technical Reports Server (NTRS)
Grosse, J. C.
1977-01-01
The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.
Meta II: Multi-Model Language Suite for Cyber Physical Systems
2013-03-01
AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling
2015-06-29
requirements for the system’s ground components to the generating capabilities of standard Marine Corps generators ). The Navy did not fully address two...dedicated generators to power the ground control stations. Recommendations The Navy and Marine Corps should consider the following recommendations in...components to the generating capabilities of standard Marine Corps generators ). The Navy did not fully address two recommendations (strengthening
NASA Technical Reports Server (NTRS)
Kennedy, Barbara J.
2004-01-01
The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.
Modeling and simulation of an unmanned ground vehicle power system
NASA Astrophysics Data System (ADS)
Broderick, John; Hartner, Jack; Tilbury, Dawn M.; Atkins, Ella M.
2014-06-01
Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or ultra-capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and switching between these different power components. The hybrid system allows modeling power source on/off switching and different regimes of operation, together with continuous parameters such as state of charge, temperature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strategies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal constraints.
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S.-Y.; Berman, A.; Austin, E. E.
1984-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S. Y.; Austin, E. E.; Berman, A.
1985-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
2015-04-01
troubleshooting avionics system faults while the aircraft is on the ground. The core component of the PATS-30, the ruggedized laptop, is no longer sustainable...as well as trouble shooting avionics system faults while the aircraft is on the ground. The PATS-70 utilizes up-to-date, sustainable technology for...Operational Flight Program (OFP) software loading and diagnostic avionics system testing and includes additional TPSs to enhance its capability
1025: MAGIC 2010 Multi Autonomous Ground International Challenge. Volume I
2010-10-22
the creation of software required to interact with the sensors for each subsystem. Most of the systems have been extensively developed and tested with...varying levels of success. All of the systems have been developed from the ground up and have been discussed in the report. 15. SUBJECT TERMS...the system . The system was broken down into several components. These were: (i) The ability to perform accurate localisation both indoors and outside
Space vehicle field unit and ground station system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry
A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.
Space vehicle field unit and ground station system
Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald
2016-10-25
A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.
McAda, D.P.
1996-01-01
The Albuquerque Basin in central New Mexico covers an area of about 3,060 square miles. Ground water from the Santa Fe Group aquifer system of the Albuquerque Basin is the principal source of water for municipal, domestic, commercial, and industrial uses in the Albuquerque area, an area of about 410 square miles. Ground- water withdrawal in the basin has increased from about 97,000 acre-feet in 1970 to about 171,000 acre-feet in 1994. About 92 percent of the 1994 total was withdrawn in the Albuquerque area. Management of ground water in the Albuquerque Basin is related to the surface water in the Rio Grande. Because the aquifer system is hydraulically connected to the Rio Grande and water in the river is fully appropriated, the ability to reliably estimate the effects of ground-water withdrawals on flow in the river is important. This report describes the components of the Rio Grande/Santa Fe Group aquifer system in the Albuquerque area and the data availability and data and interpretation needs relating to those components, and presents a plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system. The information needs related to the components of the river/aquifer system are prioritized. Information that is necessary to improve the understanding or quantification of a component in the river/aquifer system is prioritized as essential. Information that could add additional understanding of the system, but would not be necessary to improve the quantification of the system, is prioritized as useful. The study elements are prioritized in the same manner as the information needs; study elements designed to provide information considered necessary to improve the quantification of the system are prioritized as essential, and those designed to provide information that would add additional understanding of the system, but would not be necessary to improve the quantification of the system, are prioritized as useful.
Components of the airport access system
NASA Technical Reports Server (NTRS)
1978-01-01
The organizations and agencies which make up or influence the airport access system are examined. These include the airport, the airline industry, the public and private transit agencies which provide ground access to the airport, and the regulatory agencies which affect all of these organizations and their actions. Each component, with the exception of the regulatory agencies is described in terms of its legal status, its sources of funds, and the nature of its relationship with the other components. Conclusions regarding the system components' effects on airport access and recommendations for changes which appear practical are presented.
System for detecting and limiting electrical ground faults within electrical devices
Gaubatz, Donald C.
1990-01-01
An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Technical Reports Server (NTRS)
Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.
2016-01-01
Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.
Integration of Mobil Satellite and Cellular Systems
NASA Technical Reports Server (NTRS)
Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.
1993-01-01
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.
2013-09-01
Ground testing of prototype hardware and processing algorithms for a Wide Area Space Surveillance System (WASSS) Neil Goldstein, Rainer A...at Magdalena Ridge Observatory using the prototype Wide Area Space Surveillance System (WASSS) camera, which has a 4 x 60 field-of-view , < 0.05...objects with larger-aperture cameras. The sensitivity of the system depends on multi-frame averaging and a Principal Component Analysis based image
NASA Astrophysics Data System (ADS)
Li, Z.
2003-12-01
Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also helped to identify the temporal changes induced by human activities, such as pumping. For the San Jose area, a regional-scale ground-water/surface-water flow model was developed with 6 model layers, 360 monthly stress periods, and complex flow components. The model was visualized by creating animations for both hydraulic head and land subsidence. Cell-by-cell flow of individual flow components was also animated. These included simulated infiltration from climatically variable natural recharge, interlayer flow through multi-aquifer well bores, flow gains and losses along stream channels, and storage change in response to system recharge and discharge. These animations were used to examine consistency with other independent observations, such as measured water-level distribution, mapped gaining and losing stream reaches, and INSAR-interpreted subsidence and uplift. In addition, they revealed enormous detail on the spatial and temporal variation of both individual flow components as well as the entire flow system, and thus significantly increased understanding of system dynamics and improved the accuracy of model simulations.
Securing Ground Data System Applications for Space Operations
NASA Technical Reports Server (NTRS)
Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan
2014-01-01
The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.
NASA Technical Reports Server (NTRS)
Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith
2017-01-01
NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.
Adaptive pattern for autonomous UAV guidance
NASA Astrophysics Data System (ADS)
Sung, Chen-Ko; Segor, Florian
2013-09-01
The research done at the Fraunhofer IOSB in Karlsruhe within the AMFIS project is focusing on a mobile system to support rescue forces in accidents or disasters. The system consists of a ground control station which has the capability to communicate with a large number of heterogeneous sensors and sensor carriers and provides several open interfaces to allow easy integration of additional sensors into the system. Within this research we focus mainly on UAV such as VTOL (Vertical takeoff and Landing) systems because of their ease of use and their high maneuverability. To increase the positioning capability of the UAV, different onboard processing chains of image exploitation for real time detection of patterns on the ground and the interfacing technology for controlling the UAV from the payload during flight were examined. The earlier proposed static ground pattern was extended by an adaptive component which admits an additional visual communication channel to the aircraft. For this purpose different components were conceived to transfer additive information using changeable patterns on the ground. The adaptive ground pattern and their application suitability had to be tested under external influence. Beside the adaptive ground pattern, the onboard process chains and the adaptations to the demands of changing patterns are introduced in this paper. The tracking of the guiding points, the UAV navigation and the conversion of the guiding point positions from the images to real world co-ordinates in video sequences, as well as use limits and the possibilities of an adaptable pattern are examined.
NASA Astrophysics Data System (ADS)
Kuller, W. G.; Hanifen, D. W.
1982-07-01
Exoatmospheric detonations of nuclear weapons produce a broad spectrum of effects which can prevent operational space missions from being successfully accomplished. The spacecraft may be exposed to the prompt radiation from the detonations which can cause upset or burnout of critical mission components through Transient Radiation Effects on Electronics (TREE) or System Generated Electromagnetic Pulse (SGEMP). Continual exposure to the trapped radiation environment may cause component failure due to total dose or Electron Caused EMP (ECEMP). Satellite links to ground and airborne terminals are subject to serious degradation due to signal absorption and scintillation. The ground data stations and lines of communications are subject to failure from the broad range effects of high-altitude EMP.
Hydraulic Universal Display Processor System (HUDPS).
1981-11-21
emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices
Walker D.A.; Romanovsky V.E.; Ping C.L.; Michaelson G.J.; Daanen R.P.; Shur Y.; Peterson R.A.; Krantz W.B.; Raynolds M.K.; William Gould; Grizelle Gonzalez; Nicolsky D.J.; Vonlanthen C.M.; Kade A.N.; Kuss P.; Kelley A.M.; Munger C.A.; Tarnocai C.T.; Matveyeva N.V.; Daniels F.J.A.
2008-01-01
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The âBiocomplexity of Patterned Ground Ecosystemsâ project examined patterned-ground features (PGFs) in all five Arctic bioclimate...
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System
NASA Astrophysics Data System (ADS)
Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei
2018-01-01
Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.
NASA Technical Reports Server (NTRS)
Ensey, Tyler S.
2013-01-01
During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a fluid component, a discrete pressure switch. The switch takes a fluid pressure input, and if the pressure is greater than a designated cutoff pressure, the switch would stop fluid flow.
Fukui, Sadaaki; Salyers, Michelle P.; Rapp, Charlie; Goscha, Rick; Young, Leslie; Mabry, Ally
2015-01-01
Shared decision-making has become a central tenet of recovery-oriented, person-centered mental health care, yet the practice is not always transferred to the routine psychiatric visit. Supporting the practice at the system level, beyond the interactions of consumers and medication prescribers, is needed for successful adoption of shared decision-making. CommonGround is a systemic approach, intended to be part of a larger integration of shared decision-making tools and practices at the system level. We discuss the organizational components that CommonGround uses to facilitate shared decision-making, and we present a fidelity scale to assess how well the system is being implemented. PMID:28090194
Advanced Ground Systems Maintenance Physics Models For Diagnostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.
49 CFR 195.254 - Above ground components.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground in...
49 CFR 195.254 - Above ground components.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground in...
Infinite lattices of vortex molecules in Rabi-coupled condensates
NASA Astrophysics Data System (ADS)
Mencia Uranga, B.; Lamacraft, Austen
2018-04-01
Vortex molecules can form in a two-component superfluid when a Rabi field drives transitions between the two components. We study the ground state of an infinite system of vortex molecules in two dimensions, using a numerical scheme which makes no use of the lowest Landau level approximation. We find the ground state lattice geometry for different values of intercomponent interactions and strength of the Rabi field. In the limit of large field when molecules are tightly bound, we develop a complementary analytical description. The energy governing the alignment of molecules on a triangular lattice is found to correspond to that of an infinite system of two-dimensional quadrupoles, which may be written in terms of an elliptic function Q (zi j;ω1,ω2) . This allows for a numerical evaluation of the energy which enables us to find the ground state configuration of the molecules.
Nutritional and Flavor Components of Brassica Xapa L. Grown on ISS
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Blasiak, J.; Tuominen, L. K.; Levine, L. H.; Morrow, R. C.
2005-01-01
Brassica rapa L. cv. 'Astroplants' were grown on the International Space Station during April - June 2002 in the Biomass Production System. Plants were manually pollinated and were maturing seeds when they were harvested for preservation in flight by fixation or freezing. Overall growth and development were comparable between flight and ground control plants. Chlorophyll and carbohydrate content of the leaves were the same in the two treatments. Although comparable numbers of seeds were produced inside the seed pods, the developing seeds from the spaceflight treatment had only half of the dry weight of the ground controls and had altered storage components. Glucosinolate content of the stem tissue was also determined. The concentration of 3-butenyl-glucosinolate was on average 75% greater in the spaceflight samples than in the ground control. The results demonstrate how the spaceflight environment influences nutritional and flavor characteristics of a potential crop for use in a Biological Life Support System.
Sensor Amplifier for the Venus Ground Ambient
NASA Technical Reports Server (NTRS)
DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.
2006-01-01
Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.
Concept and realization of unmanned aerial system with different modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech
2014-12-10
In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of themore » system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.« less
Code of Federal Regulations, 2014 CFR
2014-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2013 CFR
2013-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2012 CFR
2012-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Software Assists in Responding to Anomalous Conditions
NASA Technical Reports Server (NTRS)
James, Mark; Kronbert, F.; Weiner, A.; Morgan, T.; Stroozas, B.; Girouard, F.; Hopkins, A.; Wong, L.; Kneubuhl, J.; Malina, R.
2004-01-01
Fault Induced Document Retrieval Officer (FIDO) is a computer program that reduces the need for a large and costly team of engineers and/or technicians to monitor the state of a spacecraft and associated ground systems and respond to anomalies. FIDO includes artificial-intelligence components that imitate the reasoning of human experts with reference to a knowledge base of rules that represent failure modes and to a database of engineering documentation. These components act together to give an unskilled operator instantaneous expert assistance and access to information that can enable resolution of most anomalies, without the need for highly paid experts. FIDO provides a system state summary (a configurable engineering summary) and documentation for diagnosis of a potentially failing component that might have caused a given error message or anomaly. FIDO also enables high-level browsing of documentation by use of an interface indexed to the particular error message. The collection of available documents includes information on operations and associated procedures, engineering problem reports, documentation of components, and engineering drawings. FIDO also affords a capability for combining information on the state of ground systems with detailed, hierarchically-organized, hypertext- enabled documentation.
A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, Son H.
1999-01-01
Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.
Overview of the solar dynamic ground test demonstration program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1993-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
NASA Technical Reports Server (NTRS)
Kostyk, Christopher B.
2012-01-01
The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a highly modified Boeing 747-SP with a 17- ton infrared telescope installed in the aft portion of the aircraft. Unlike ground- and space-based platforms, SOFIA can deploy to make observations anytime, anywhere, in the world. The originally designed aircraft configuration included a ground pre-cool system, however, due to various factors in the history of the project, that system was not installed. This lack of ground pre-cooling was the source of the concern about whether or not the imagers would be exposed to a potentially unsafe thermostructural environment. This concern was in addition to the already-existing concern of some project members that the air temperature rate of change during flight (both at the same altitude as well as ascent or descent) could cause the imagers to be exposed to an unsafe thermostructural environment. Four optical components were identified as the components of concern: two of higher concern (one in each imager), and two of lower concern (one in each imager). The analysis effort began by analyzing one component, after which the analyses for the other components was deemed unnecessary. The purpose of this report is to document these findings as well as lessons learned from the effort.
Achieving Operability via the Mission System Paradigm
NASA Technical Reports Server (NTRS)
Hammer, Fred J.; Kahr, Joseph R.
2006-01-01
In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.
NASA Technical Reports Server (NTRS)
Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.
2010-01-01
Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.
Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1994-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.
A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, S. H.
1999-01-01
Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.
Strong motion observations and recordings from the great Wenchuan Earthquake
Li, X.; Zhou, Z.; Yu, H.; Wen, R.; Lu, D.; Huang, M.; Zhou, Y.; Cu, J.
2008-01-01
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal. ?? 2008 Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag GmbH.
Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions
NASA Technical Reports Server (NTRS)
Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)
2000-01-01
With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.
EVALUATION OF CONTAINMENT SYSTEMS USING HYDRAULIC HEAD DATA
Subsurface vertical barriers have been used as components of containment systems to prevent or reduce the impact of containment sources on ground-water resources. Many containment systems also include a low permeability cover to prevent the infiltration-/recharge of precipitatio...
A Proven Ground System Architecture for Promoting Collaboration and Common Solutions at NASA
NASA Technical Reports Server (NTRS)
Smith, Danford
2005-01-01
Requirement: Improve how NASA develops and maintains ground data systems for dozens of missions, with a couple new missions always in the development phase. Decided in 2001 on enhanced message-bus architecture. Users offered choices for major components. They plug and play because key interfaces are all the same. Can support COTS, heritage, and new software. Even the middleware can be switched. Project name: GMSEC. Goddard Mission Services Evolution Center.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, N.L.
1997-11-01
This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components andmore » industry standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-12-14
The purpose of this test was to demonstrate that the alternator stator has satisfactorily completed sufficient testing to safisfy the requirements set forth within the Kilowatt Isotope Power System (KIPS) Component Test Specification for the GDS Alternator Stator (TS 2538). The results of the acceptance tests conducted on the alternator stator, S/N 003, are presented, and show that the stator did meet specified requirements.
A Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Stanley, M. D.; Leblanc, J. C.
1977-01-01
The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.
Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
Analysis of ground-motion simulation big data
NASA Astrophysics Data System (ADS)
Maeda, T.; Fujiwara, H.
2016-12-01
We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine particular scenario parameters which characterize the cluster. In other word, by utilizing this system, we can obtain critical scenario parameters of the ground-motion simulation for each evaluation point objectively. This research was supported by CREST, JST.
Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description
Christenson, S.C.; Parkhurst, D.L.
1987-01-01
In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium, selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.
Ground System Architectures Workshop GMSEC SERVICES SUITE (GSS): an Agile Development Story
NASA Technical Reports Server (NTRS)
Ly, Vuong
2017-01-01
The GMSEC (Goddard Mission Services Evolution Center) Services Suite (GSS) is a collection of tools and software services along with a robust customizable web-based portal that enables the user to capture, monitor, report, and analyze system-wide GMSEC data. Given our plug-and-play architecture and the needs for rapid system development, we opted to follow the Scrum Agile Methodology for software development. Being one of the first few projects to implement the Agile methodology at NASA GSFC, in this presentation we will present our approaches, tools, successes, and challenges in implementing this methodology. The GMSEC architecture provides a scalable, extensible ground and flight system for existing and future missions. GMSEC comes with a robust Application Programming Interface (GMSEC API) and a core set of Java-based GMSEC components that facilitate the development of a GMSEC-based ground system. Over the past few years, we have seen an upbeat in the number of customers who are moving from a native desktop application environment to a web based environment particularly for data monitoring and analysis. We also see a need to provide separation of the business logic from the GUI display for our Java-based components and also to consolidate all the GUI displays into one interface. This combination of separation and consolidation brings immediate value to a GMSEC-based ground system through increased ease of data access via a uniform interface, built-in security measures, centralized configuration management, and ease of feature extensibility.
NASA Astrophysics Data System (ADS)
Zuo, Ye; Sun, Guangjun; Li, Hongjing
2018-01-01
Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.
NASA Astrophysics Data System (ADS)
Yilmaz, Zeynep
Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future earthquakes. Findings from this study will contribute to the development of revised guidelines to address vertical ground motion effects, particularly in the near fault regions, in the seismic design of highway bridges.
Rotor component displacement measurement system
Mercer, Gary D.; Li, Ming C.; Baum, Charles R.
2003-05-27
A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.
MSFC Skylab Orbital Workshop, volume 4. [design and development of life support systems
NASA Technical Reports Server (NTRS)
1974-01-01
The design and development of specific systems on the Skylab Orbital Laboratory are discussed. The subjects considered are: (1) pressure garment conditioning system, (2) stowage system, (3) ground support equipment systems, and (4) marking systems illustrations of the system components are provided. Results of performance tests are discussed.
1993 Earth Observing System reference handbook
NASA Technical Reports Server (NTRS)
Asrar, Ghassem (Editor); Dokken, David Jon (Editor)
1993-01-01
Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.
Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2007-01-01
While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.
DEMONSTRATION AND EVALUATION OF AN AUTOMATED INFILTRATION GALLERY SYSTEM AT PORT HUENEME, CA
Laboratory and field studies have shown that is possible to degrade most fuel components under oxidizing conditions. The spread of soluble fuel components released to groundwater environments is often enhanced because ground water can not supply oxygen at a rate equal to the dema...
Space tug propulsion system failure mode, effects and criticality analysis
NASA Technical Reports Server (NTRS)
Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.
1972-01-01
For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.
Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot
1991-12-01
power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.
2008-01-01
The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...
40 CFR 141.401 - Sanitary surveys for ground water systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... systems. 141.401 Section 141.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... an evaluation of the applicable components listed in paragraphs (c)(1) through (8) of this section... facilities, and controls, (6) Monitoring, reporting, and data verification, (7) System management and...
Fast shut-down protection system for radio frequency breakdown and multipactor testing.
Graves, T P; Hanson, P; Michaelson, J M; Farkas, A D; Hubble, A A
2014-02-01
Radio frequency (RF) breakdown such as multipactor or ionization breakdown is a device-limiting phenomenon for on-orbit spacecraft used for communication, navigation, or other RF payloads. Ground testing is therefore part of the qualification process for all high power components used in these space systems. This paper illustrates a shut-down protection system to be incorporated into multipactor/ionization breakdown ground testing for susceptible RF devices. This 8 channel system allows simultaneous use of different diagnostic classes and different noise floors. With initiation of a breakdown event, diagnostic signals increase above a user-specified level, which then opens an RF switch to eliminate RF power from the high power amplifier. Examples of this system in use are shown for a typical setup, illustrating the reproducibility of breakdown threshold voltages and the lack of multipactor conditioning. This system can also be utilized to prevent excessive damage to RF components in tests with sensitive or flight hardware.
Aircraft noise synthesis system: Version 4 user instructions
NASA Technical Reports Server (NTRS)
Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.
1987-01-01
A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.
NASA Technical Reports Server (NTRS)
Dehghani, Navid; Tankenson, Michael
2006-01-01
This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.
Apollo experience report: Development of the extravehicular mobility unit
NASA Technical Reports Server (NTRS)
Lutz, C. C.; Stutesman, H. L.; Carson, M. A.; Mcbarron, J. W., II
1975-01-01
The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented.
NASA Technical Reports Server (NTRS)
Wright, J. P.; Wilson, D. E.
1976-01-01
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.
Aeronautical Engineering: A Continuing Bibliography. Supplement 384
NASA Technical Reports Server (NTRS)
1998-01-01
This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical Engineering: A Continuing Bibliography. Supplement 383
NASA Technical Reports Server (NTRS)
1998-01-01
This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.
1996-01-01
A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate
Danskin, Wesley R.; McPherson, Kelly R.; Woolfenden, Linda R.
2006-01-01
The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investigators and water managers in other areas, this report provides an expanded description of constrained optimization techniques and how to use them to better understand the local hydrogeology and to evaluate inter-related water-management problems. In this report, the hydrology of the San Bernardino area, defined as the Bunker Hill and Lytle Creek basins, is described and quantified for calendar years 1945-98. The major components of the surface-water system are identified, and a routing diagram of flow through these components is provided. Annual surface-water inflow and outflow for the area are tabulated using gaged measurements and estimated values derived from linear-regression equations. Average inflow for the 54-year period (1945-98) was 146,452 acre-feet per year; average outflow was 67,931 acre-feet per year. The probability of exceedance for annual surface-water inflow is calculated using a Log Pearson Type III analysis. Cumulative surface-water inflow and outflow and ground-water-level measurements indicate that the relation between the surface-water system and the ground-water system changed in about 1951, in about 1979, and again in about 1992. Higher ground-water levels prior to 1951 and between 1979 and 1992 induced ground-water discharge to Warm Creek. This discharge was quantified using streamflow measurements and can be estimated for other time periods using ground-water levels from a monitoring well (1S/4W-3Q1) and a logarithmic-regression equation. Annual wastewater discharge from the area is tabulated for the major sewage and power-plant facilities. More...
Ground Operations Aerospace Language (GOAL) textbook
NASA Technical Reports Server (NTRS)
Dickison, L. R.
1973-01-01
The textbook provides a semantical explanation accompanying a complete set of GOAL syntax diagrams, system concepts, language component interaction, and general language concepts necessary for efficient language implementation/execution.
Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux
1991-01-01
Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...
Fast and reliable obstacle detection and segmentation for cross-country navigation
NASA Technical Reports Server (NTRS)
Talukder, A.; Manduchi, R.; Rankin, A.; Matthies, L.
2002-01-01
Obstacle detection is one of the main components of the control system of autonomous vehicles. In the case of indoor/urban navigation, obstacles are typically defined as surface points that are higher than the ground plane. This characterization, however, cannot be used in cross-country and unstructured environments, where the notion of ground plane is often not meaningful.
NASA Technical Reports Server (NTRS)
Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.
1994-01-01
The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.
X-33/RLV System Health Management/ Vehicle Health Management
NASA Technical Reports Server (NTRS)
Garbos, Raymond J.; Mouyos, William
1998-01-01
To reduce operations cost, the RLV must include the following elements: highly reliable, robust subsystems designed for simple repair access with a simplified servicing infrastructure and incorporating expedited decision making about faults and anomalies. A key component for the Single Stage to Orbit (SSTO) RLV System used to meet these objectives is System Health Management (SHM). SHM deals with the vehicle component- Vehicle Health Management (VHM), the ground processing associated with the fleet (GVHM) and the Ground Infrastructure Health Management (GIHM). The objective is to provide an automated collection and paperless health decision, maintenance and logistics system. Many critical technologies are necessary to make the SHM (and more specifically VHM) practical, reliable and cost effective. Sanders is leading the design, development and integration of the SHM system for RLV and X-33 SHM (a sub-scale, sub-orbit Advanced Technology Demonstrator). This paper will present the X-33 SHM design which forms the baseline for RLV SHM. This paper will also discuss other applications of these technologies.
Optical and UV spectroscopy of the peculiar RS CVn system RT Lacertae
NASA Technical Reports Server (NTRS)
Huenemoerder, D. P.; Barden, S. C.
1986-01-01
H-alpha and H-beta spectra of the peculiar double-lined RS CVn binary RT Lacertae have been obtained using the IUE, together with a ground-based coude-feed telescope at KPNO. The ground-based spectra show an asymmetry related to the orbital phase in the H-alpha profile. H-beta profiles showed excess emission in one hemisphere and excess absorption in the other, with a broad Gaussian emission component superposed on the excess H-alpha line. A radial velocity curve was derived to estimate the mass ratio and geometry of the system. It is shown that the component of RT Lac fills 80-90 percent of the equilibrium Roche surface. Low-resolution ultraviolet data show that the supposed cooler component is bluer than its companion, suggesting evidence of a scattering shell or a cloud produced by the splash of a gas stream. The phase behavior of the low resolution ultraviolet data support the conclusion that RT Lac is a mass transfer system and that mass transfer is the primary cause of its activity.
A Ground Systems Architecture Transition for a Distributed Operations System
NASA Technical Reports Server (NTRS)
Sellers, Donna; Pitts, Lee; Bryant, Barry
2003-01-01
The Marshall Space Flight Center (MSFC) Ground Systems Department (GSD) recently undertook an architecture change in the product line that serves the ISS program. As a result, the architecture tradeoffs between data system product lines that serve remote users versus those that serve control center flight control teams were explored extensively. This paper describes the resulting architecture that will be used in the International Space Station (ISS) payloads program, and the resulting functional breakdown of the products that support this architecture. It also describes the lessons learned from the path that was followed, as a migration of products cause the need to reevaluate the allocation of functions across the architecture. The result is a set of innovative ground system solutions that is scalable so it can support facilities of wide-ranging sizes, from a small site up to large control centers. Effective use of system automation, custom components, design optimization for data management, data storage, data transmissions, and advanced local and wide area networking architectures, plus the effective use of Commercial-Off-The-Shelf (COTS) products, provides flexible Remote Ground System options that can be tailored to the needs of each user. This paper offers a description of the efficiency and effectiveness of the Ground Systems architectural options that have been implemented, and includes successful implementation examples and lessons learned.
A simplified fragility analysis of fan type cable stayed bridges
NASA Astrophysics Data System (ADS)
Khan, R. A.; Datta, T. K.; Ahmad, S.
2005-06-01
A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeles as a beam supported on spring at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges. The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi-static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase soft soil condition.
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation
NASA Technical Reports Server (NTRS)
Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.
NASA Technical Reports Server (NTRS)
Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.
2010-01-01
Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, within a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability, and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation, testing results, and other information. Where appropriate, actual performance history was used to calculate failure rates for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to assess compliance with requirements and to highlight design or performance shortcomings for further decision making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability, and maintainability analysis, and present findings and observation based on analysis leading to the Ground Operations Project Preliminary Design Review milestone.
Overview of an Integrated Medical System for Exploration Missions
NASA Technical Reports Server (NTRS)
Watkins, Sharmila; Rubin, David
2013-01-01
The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.
Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu
2015-01-01
It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146
Silicon carbide optics for space and ground based astronomical telescopes
NASA Astrophysics Data System (ADS)
Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court
2012-09-01
Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).
NASA Technical Reports Server (NTRS)
Morehouse, Dennis V.
2006-01-01
In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.
E-4 Test Facility Design Status
NASA Technical Reports Server (NTRS)
Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick
2001-01-01
Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.
ERIC Educational Resources Information Center
Magnasco, Valerio
2008-01-01
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…
Mapping above- and below-ground carbon pools in boreal forests: The case for airborne lidar
Terje Kristensen; Erik Naesset; Mikael Ohlson; Paul V. Bolstad; Randall Kolka
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest...
NASA Technical Reports Server (NTRS)
Losquadro, G.; Luglio, M.; Vatalaro, F.
1997-01-01
A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.
Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo
2014-12-01
The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
A new method for aerodynamic test of high altitude propellers
NASA Astrophysics Data System (ADS)
Gong, Xiying; Zhang, Lin
A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers' wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method.
Benefits of rotational ground motions for planetary seismology
NASA Astrophysics Data System (ADS)
Donner, S.; Joshi, R.; Hadziioannou, C.; Nunn, C.; van Driel, M.; Schmelzbach, C.; Wassermann, J. M.; Igel, H.
2017-12-01
Exploring the internal structure of planetary objects is fundamental to understand the evolution of our solar system. In contrast to Earth, planetary seismology is hampered by the limited number of stations available, often just a single one. Classic seismology is based on the measurement of three components of translational ground motion. Its methods are mainly developed for a larger number of available stations. Therefore, the application of classical seismological methods to other planets is very limited. Here, we show that the additional measurement of three components of rotational ground motion could substantially improve the situation. From sparse or single station networks measuring translational and rotational ground motions it is possible to obtain additional information on structure and source. This includes direct information on local subsurface seismic velocities, separation of seismic phases, propagation direction of seismic energy, crustal scattering properties, as well as moment tensor source parameters for regional sources. The potential of this methodology will be highlighted through synthetic forward and inverse modeling experiments.
Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.
Bradley, Marshall; Sabatier, James M
2012-03-01
Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels. © 2012 Acoustical Society of America
A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine
Daniel Joseph Yelle
2009-01-01
Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...
Clustering of Multispectral Airborne Laser Scanning Data Using Gaussian Decomposition
NASA Astrophysics Data System (ADS)
Morsy, S.; Shaker, A.; El-Rabbany, A.
2017-09-01
With the evolution of the LiDAR technology, multispectral airborne laser scanning systems are currently available. The first operational multispectral airborne LiDAR sensor, the Optech Titan, acquires LiDAR point clouds at three different wavelengths (1.550, 1.064, 0.532 μm), allowing the acquisition of different spectral information of land surface. Consequently, the recent studies are devoted to use the radiometric information (i.e., intensity) of the LiDAR data along with the geometric information (e.g., height) for classification purposes. In this study, a data clustering method, based on Gaussian decomposition, is presented. First, a ground filtering mechanism is applied to separate non-ground from ground points. Then, three normalized difference vegetation indices (NDVIs) are computed for both non-ground and ground points, followed by histograms construction from each NDVI. The Gaussian function model is used to decompose the histograms into a number of Gaussian components. The maximum likelihood estimate of the Gaussian components is then optimized using Expectation - Maximization algorithm. The intersection points of the adjacent Gaussian components are subsequently used as threshold values, whereas different classes can be clustered. This method is used to classify the terrain of an urban area in Oshawa, Ontario, Canada, into four main classes, namely roofs, trees, asphalt and grass. It is shown that the proposed method has achieved an overall accuracy up to 95.1 % using different NDVIs.
NASA Astrophysics Data System (ADS)
Oya, I.; Anguner, E. A.; Behera, B.; Birsin, E.; Fuessling, M.; Lindemann, R.; Melkumyan, D.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.
2014-07-01
The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high energy -ray observatory. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different sizes and types and in addition numerous auxiliary devices. In order to provide a test-ground for the CTA array control, the steering software of the 12-m medium size telescope (MST) prototype deployed in Berlin has been implemented using the tools and design concepts under consideration to be used for the control of the CTA array. The prototype control system is implemented based on the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) control middleware, with components implemented in Java, C++ and Python. The interfacing to the hardware is standardized via the Object Linking and Embedding for Process Control Unified Architecture (OPC UA). In order to access the OPC UA servers from the ACS framework in a common way, a library has been developed that allows to tie the OPC UA server nodes, methods and events to the equivalents in ACS components. The front-end of the archive system is able to identify the deployed components and to perform the sampling of the monitoring points of each component following time and value change triggers according to the selected configurations. The back-end of the archive system of the prototype is composed by two different databases: MySQL and MongoDB. MySQL has been selected as storage of the system configurations, while MongoDB is used to have an efficient storage of device monitoring data, CCD images, logging and alarm information. In this contribution, the details and conclusions on the implementation of the control software of the MST prototype are presented.
Emergency Systems Save Tens of Thousands of Lives
NASA Technical Reports Server (NTRS)
2013-01-01
To improve distress signal communications, NASA pioneered the Search and Rescue Satellite Aided Tracking (SARSAT) system. Since its inception, the international system known as Cospas-Sarsat has resulted in the rescue of more than 30,000 people. Techno-Sciences Inc., of Beltsville, Maryland, has been involved with the ground station component of the system from its earliest days.
Aeronautical engineering: A continuing bibliography with indexes (supplement 233)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 283)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 615 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 260)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 405 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 247)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 437 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 307)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 338 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 243)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 323)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 251)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 292)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 675 reports, articles, and other documents recently introduced into the NASA scientific and technical information system database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 321)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 496 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 273)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 808 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 269)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 281)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 596 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jul. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 245)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 537 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 314)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 144 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 246)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 690 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 252)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 425 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 308)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 269 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 264)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 558 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 297)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 825 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 263)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 517 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 238)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 458 reports, articles, and other documents introduced into the NASA scientific and technical information system in March, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 255)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 529 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 262)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 474 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 250)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 420 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 270)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 296)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 592 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 253)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 295)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 581 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Sep. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 239)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system in April, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 298)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 328 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following areas: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 242)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 466 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 304)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 272)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 322)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 317)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 224 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 257)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 560 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 265)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 554 reports, articles, and other documents introduced into the NASA scientific and technical information system in Apr. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 249)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 271)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 666 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 268)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 406 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 240)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 629 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 286)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 259)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 774 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 244)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 465 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 237)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 572 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 236)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 430 reports, articles, and other documents introduced into the NASA scientific and technical information system in January, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 266)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 645 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 288)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1993. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 318)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 241)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 279)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 759 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 276)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 705 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 299)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 315)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 256)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 426 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 290)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 1396 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Apr. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 309)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 212 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 291)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 757 reports, articles, and other documents introduced into the NASA scientific and technical information system in May. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 258)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 536 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 254)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 538 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 285)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 534 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Nov. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 234)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 293)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 476 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 305)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 239 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following: the design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 289)
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 301)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Development of Hybrid Product Breakdown Structure for NASA Ground Systems
NASA Technical Reports Server (NTRS)
Monaghan, Mark W.; Henry, Robert J.
2013-01-01
The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product Breakdown Structure. The purpose is to show how a project management and system engineering approach can be utilized for providing flexible customer service in an evolving manned space flight launch processing environment.
D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.
2002-01-01
In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat
Senior, Lisa A.; Cinotto, Peter J.
2007-01-01
On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.
Autonomous Payload Operations Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.
2007-01-01
Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.
A review of unmanned aircraft system ground risk models
NASA Astrophysics Data System (ADS)
Washington, Achim; Clothier, Reece A.; Silva, Jose
2017-11-01
There is much effort being directed towards the development of safety regulations for unmanned aircraft systems (UAS). National airworthiness authorities have advocated the adoption of a risk-based approach, whereby regulations are driven by the outcomes of a systematic process to assess and manage identified safety risks. Subsequently, models characterising the primary hazards associated with UAS operations have now become critical to the development of regulations and in turn, to the future of the industry. Key to the development of airworthiness regulations for UAS is a comprehensive understanding of the risks UAS operations pose to people and property on the ground. A comprehensive review of the literature identified 33 different models (and component sub models) used to estimate ground risk posed by UAS. These models comprise failure, impact location, recovery, stress, exposure, incident stress and harm sub-models. The underlying assumptions and treatment of uncertainties in each of these sub-models differ significantly between models, which can have a significant impact on the development of regulations. This paper reviews the state-of-the-art in research into UAS ground risk modelling, discusses how the various sub-models relate to the different components of the regulation, and explores how model-uncertainties potentially impact the development of regulations for UAS.
Jones, L. Elliott; Torak, Lynn J.
2004-01-01
Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).
NASA Astrophysics Data System (ADS)
Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.
2012-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system. As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. It also replaces the ground processing component of both Polar-orbiting Operational Environmental Satellites, as well as components of the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and solar-geophysical observations of the earth, atmosphere and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), which consists of a Command, Control and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S is currently flying the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The CGS also employs its ground stations at Svalbard, Norway and McMurdo Station, Antarctica, along with a global fiber communications network, to provide data acquisition and routing for multiple additional missions. These include POES, DMSP, NASA Space Communications and Navigation (SCaN, which includes the Earth Observing System [EOS]), Metop for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Coriolis/WindSat for the DoD, as well as research activities of the National Science Foundation (NSF). The CGS architecture is evolving over the next few years for several key reasons: 1. "Operationalizing" Suomi NPP, which had originally been intended as a risk reduction mission 2. Leveraging lessons learned to date in multi-mission support 3. Taking advantage of newer, more reliable and efficient technologies 4. Satisfying new requirements and constraints due to the continually evolving budgetary environment Three key aspects of the CGS architecture are being prototyped as part of the path to improve operations in the 2015 timeframe. First, the front end architecture for mission data transport is being re-architected to improve reliability and address the incorporation of new ground stations. Second, the IDPS is undergoing a decoupling process to enhance its flexibility and modularity for supporting an array of potential new missions beyond those listed above. Finally, a solution for complete situational awareness across the CGS is being developed, to facilitate quicker and more efficient identification and resolution of system anomalies. This paper discusses the evolution of the CGS architecture to address these future mission needs.
Command module/service module reaction control subsystem assessment
NASA Technical Reports Server (NTRS)
Weary, D. P.
1971-01-01
Detailed review of component failure histories, qualification adequacy, manufacturing flow, checkout requirements and flow, ground support equipment interfaces, subsystem interface verification, protective devices, and component design did not reveal major weaknesses in the command service module (CSM) reaction control system (RCS). No changes to the CSM RCS were recommended. The assessment reaffirmed the adequacy of the CSM RCS for future Apollo missions.
Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment
NASA Astrophysics Data System (ADS)
Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.
2014-10-01
The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.
Component-Level Electronic-Assembly Repair (CLEAR) System Architecture
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.
2011-01-01
This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.
Aeronautical engineering: A continuing bibliography with indexes (supplement 306)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 302)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 152 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 303)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 211 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.
2007-12-01
Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.
Overview of the Ares I Scale Model Acoustic Test Program
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2011-01-01
Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.
Plant diversity to support humans in a CELSS ground based demonstrator
NASA Technical Reports Server (NTRS)
Howe, J. M.; Hoff, J. E.
1981-01-01
A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
The German 'Dual System' of Occupational Training: A Much-Replicated but Oft-Failed Transfer.
ERIC Educational Resources Information Center
Wilson, David N.
Germany's Dual System, which consists of in-school and in-enterprise components, facilitates entry into 374 recognized technical, white-collar and blue-collar occupations listed in training regulations that are grounded in legislation. The Dual System's origins and development in Germany were examined along with several attempts to replicate the…
Inventory of File sref_em.t03z.pgrb212.p1.f00.grib2
Relative Humidity [%] 014.1 10 m above ground UGRD analysis U-Component of Wind [m/s] 014.2 10 m above ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated Wind [m/s] 032.2 30-0 mb above ground VGRD analysis V-Component of Wind [m/s] 033 30-0 mb above ground
Inventory of File sref_em.t03z.pgrb221.p1.f00.grib2
Relative Humidity [%] 014.1 10 m above ground UGRD analysis U-Component of Wind [m/s] 014.2 10 m above ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated Wind [m/s] 032.2 30-0 mb above ground VGRD analysis V-Component of Wind [m/s] 033 30-0 mb above ground
A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems.
1995-11-01
The dynamic response of magnetically levitated ( maglev ) ground transportation systems has important consequences for safety and ride quality...smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the...other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which
Cohen, Julien G; Goo, Jin Mo; Yoo, Roh-Eul; Park, Chang Min; Lee, Chang Hyun; van Ginneken, Bram; Chung, Doo Hyun; Kim, Young Tae
2016-12-01
To evaluate the performance of software in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas. Seventy-three pulmonary adenocarcinomas manifesting as subsolid nodules were included. Two radiologists measured the maximal axial diameter of the ground-glass components on lung windows and that of the solid components on lung and mediastinal windows. Nodules were segmented using software by applying five (-850 HU to -650 HU) and nine (-130 HU to -500 HU) attenuation thresholds. We compared the manual and software measurements of ground-glass and solid components with pathology measurements of tumour and invasive components. Segmentation of ground-glass components at a threshold of -750 HU yielded mean differences of +0.06 mm (p = 0.83, 95 % limits of agreement, 4.51 to 4.67) and -2.32 mm (p < 0.001, -8.27 to 3.63) when compared with pathology and manual measurements, respectively. For solid components, mean differences between the software (at -350 HU) and pathology measurements and between the manual (lung and mediastinal windows) and pathology measurements were -0.12 mm (p = 0.74, -5.73 to 5.55]), 0.15 mm (p = 0.73, -6.92 to 7.22), and -1.14 mm (p < 0.001, -7.93 to 5.64), respectively. Software segmentation of ground-glass and solid components in subsolid nodules showed no significant difference with pathology. • Software can effectively segment ground-glass and solid components in subsolid nodules. • Software measurements show no significant difference with pathology measurements. • Manual measurements are more accurate on lung windows than on mediastinal windows.
NASA Hitchhiker Program Customer Payload Requirements (CPR)
NASA Technical Reports Server (NTRS)
Horan, Stephen
1998-01-01
The mission objective is to demonstrate each of the three types of technology intended for future small-satellite communications system design. Each experiment in the overall package is designed to exercise a different technology objective that may be found in the overall satellite communications and telemetry system design. The data communications through TORSS portion is designed to demonstrate that low-power communications systems with non-gimbaled antenna systems can transport significant quantities of data through TDRSS to the ground based on only transmitting through a TDRS when the experiment is near the TDRS subsatellite point. The remaining time. the payload communications system is not active. The demand access experiment is to demonstrate that the request for a demand access service can be transmitted through TDRS and received and decoded at the ground station. In this mode, the TDRS does not track the experiment but signal processing components at the White Sands Complex are used to detect and track the transmitted request. The laser communications experiment is designed to demonstrate passive transmission of telemetry data from the experiment. This mode uses a ground-based laser source to illuminate the experiment and modulate the beam with the data. Ground-based reception recovers the data from the reflected beam back to the ground station.
Control structural interaction testbed: A model for multiple flexible body verification
NASA Technical Reports Server (NTRS)
Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.
1993-01-01
Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.
Automated Platform Management System Scheduling
NASA Technical Reports Server (NTRS)
Hull, Larry G.
1990-01-01
The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our work and results may be outdated when this paper is published.
NASA Technical Reports Server (NTRS)
Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace
2012-01-01
The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.
Propfan test assessment propfan propulsion system static test report
NASA Technical Reports Server (NTRS)
Orourke, D. M.
1987-01-01
The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.
NASA Astrophysics Data System (ADS)
Tonucci, R. J.; Jacobsen, S. M.; Yen, W. M.
1990-10-01
Using a tunable narrow-band infrared laser, we demonstrate for the first time infrared-fluorescnece line narrowing in the system Ni 2+:MgF 2. High-resolution emission spectra were obtained by pumping the lowest spin-orbit component B 3 ( 3T 2g) (orthorhombic notation with octahedral notation in parentheses) of the 3T 2g multiplet and observing the B 3( 3T 2g)→B 1, A, B 2( 3A 2g) luminescent transitions at low temperature. By tuning the narrow-band laser over the B 3( 3T 2g) band, resonant and non-resonant fluorescence were obtained which narrowed with respect to the inhomogeneously broadened profile, and additional lines were observed. The spectra can be understood in terms of a simultaneous excitation of two different subsets of Ni 2+ ions which have their B 2( 3A 2g)→B 3( 3T 2g) and A( 3A 2g)→B 3( 3T 2g) transitions in resonance with the laser. The A( 3A 2g) and B 1( 3A 2g) spin-orbit components of the ground-state multiplet lie 1.9 cm -1 and 6.5 cm -1 above the B 2( 3A 2g) ground state, respectively, at 2 K.
NASA Technical Reports Server (NTRS)
Bloomquist, C. E.; Kallmeyer, R. H.
1972-01-01
Field failure rates and confidence factors are presented for 88 identifiable components of the ground support equipment at the John F. Kennedy Space Center. For most of these, supplementary information regarding failure mode and cause is tabulated. Complete reliability assessments are included for three systems, eight subsystems, and nine generic piece-part classifications. Procedures for updating or augmenting the reliability results are also included.
Grubbs, J.W.
1995-01-01
Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.
Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.
2007-01-01
The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility
NASA Technical Reports Server (NTRS)
Myers, Dale
1987-01-01
An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Viewing ISS Data in Real Time via the Internet
NASA Technical Reports Server (NTRS)
Myers, Gerry; Chamberlain, Jim
2004-01-01
EZStream is a computer program that enables authorized users at diverse terrestrial locations to view, in real time, data generated by scientific payloads aboard the International Space Station (ISS). The only computation/communication resource needed for use of EZStream is a computer equipped with standard Web-browser software and a connection to the Internet. EZStream runs in conjunction with the TReK software, described in a prior NASA Tech Briefs article, that coordinates multiple streams of data for the ground communication system of the ISS. EZStream includes server components that interact with TReK within the ISS ground communication system and client components that reside in the users' remote computers. Once an authorized client has logged in, a server component of EZStream pulls the requested data from a TReK application-program interface and sends the data to the client. Future EZStream enhancements will include (1) extensions that enable the server to receive and process arbitrary data streams on its own and (2) a Web-based graphical-user-interface-building subprogram that enables a client who lacks programming expertise to create customized display Web pages.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding offtrack direct-current machines and...-UNDERGROUND COAL MINES Grounding § 75.703 Grounding offtrack direct-current machines and the enclosures of related detached components. [Statutory Provisions] The frames of all offtrack direct-current machines and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding offtrack direct-current machines and...-UNDERGROUND COAL MINES Grounding § 75.703 Grounding offtrack direct-current machines and the enclosures of related detached components. [Statutory Provisions] The frames of all offtrack direct-current machines and...
Comparison of batch and column tests for the elution of artificial turf system components.
Krüger, O; Kalbe, U; Berger, W; Nordhauβ, K; Christoph, G; Walzel, H-P
2012-12-18
Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil-groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release.
Developing UGVs for the FCS program
NASA Astrophysics Data System (ADS)
Kamsickas, Gary M.; Ward, John N.
2003-09-01
The FCS Operational Requirements Document (ORD) identifies unmanned systems as a key component of the FCS Unit of Action. FCS unmanned systems include Unmanned Aerial Vehicles (UAV), Unmanned Ground Vehicles (UGV), Unattended Ground Sensors (UGS) and Unattended Munitions (UM). Unmanned systems are intended to enhance the Unit of Action across the full range of operations when integrated with manned platforms. Unmanned systems will provide the commander with tools to gather battlespace information while significantly reducing overall soldier risk. Unmanned systems will be used in some cases to augment or replace human intervention to perform many of the dirty, dull and dangerous missions presently performed by soldiers and to serve as a combat multiplier for mission performance, force protection and survivability. This paper focuses on the application of UGVs within the FCS Unit of Action. There are three different UGVs planned to support the FCS Unit of Action; the Soldier Unmanned Ground Vehicle (SUGV); The Multi-role Utility Logistics Equipment (MULE) platform; and the Armed Robotic Vehicle (ARV).
NASA Technical Reports Server (NTRS)
Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary
1991-01-01
NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.
Alpha LAMP Integration Facility
NASA Technical Reports Server (NTRS)
Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark
1994-01-01
This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.
Hunt, Randall J.; Walker, John F.; Krabbenhoft, David P.
1999-01-01
Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.
An Autonomous Autopilot Control System Design for Small-Scale UAVs
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Pai, Ganeshmadhav J.; Denney, Ewen W.
2012-01-01
This paper describes the design and implementation of a fully autonomous and programmable autopilot system for small scale autonomous unmanned aerial vehicle (UAV) aircraft. This system was implemented in Reflection and has flown on the Exploration Aerial Vehicle (EAV) platform at NASA Ames Research Center, currently only as a safety backup for an experimental autopilot. The EAV and ground station are built on a component-based architecture called the Reflection Architecture. The Reflection Architecture is a prototype for a real-time embedded plug-and-play avionics system architecture which provides a transport layer for real-time communications between hardware and software components, allowing each component to focus solely on its implementation. The autopilot module described here, although developed in Reflection, contains no design elements dependent on this architecture.
Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot
Watson-Lamprey, J. A.; Boore, D.M.
2007-01-01
In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James
2002-01-01
Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
NASA Technical Reports Server (NTRS)
Dehghani, Navid; Tankenson, Michael
2006-01-01
This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
Aeronautical engineering: A continuing bibliography with indexes (supplement 316)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Oceanographic scanner system design study, volume 1
NASA Technical Reports Server (NTRS)
1971-01-01
The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.
Design evaluation: S-band exciters
NASA Technical Reports Server (NTRS)
1974-01-01
A design evaluation study was conducted to produce S-band exciter (SBE) system to provide a highly stable phase or modulated carrier for transmission to spacecraft. The exciter is part of an S-band receiver/exciter/ranging system at Spaceflight Tracking and Data Network (STDN) ground stations. The major features of the system are defined. Circuit diagrams of the electronic components are provided.
,
2003-01-01
The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.
Sneed, Michelle
2001-01-01
This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.
Knochenmus, Lari A.; Yobbi, Dann K.
2001-01-01
The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year). Recharge (rainfall minus evapotranspiration) to the Upper Floridan aquifer consists of vertical leakage through the surficial deposits. Discharge is primarily through springs and diffuse upward leakage that maintains the extensive swamps along the Gulf of Mexico. The ground-water basins had slightly different partitioning of hydrologic components, reflecting variation among the regions. Trends in hydrologic data were identified using nonparametric statistical techniques to infer long-term changes in hydrologic conditions, and yielded mixed results. No trend in rainfall was detected during the past century. No trend in spring flow was detected in 1931-98. Although monotonic trends were not detected, rainfall patterns are naturally variable from month to month and year to year; this variability is reflected in ground-water levels and spring flows. A decreasing trend in ground-water levels was detected in the Weeki Wachee well (1966-98), but the trend was statistically weak. At current ground-water withdrawal rates, there is no discernible affect on ground-water levels and spring flows. Sporadic data records, lack of continuous data, and inconsistent periods of record among the hydrologic components impeded analysis of long-term changes to the hydrologic system and interrelations among components. The ongoing collection of hydrologic data from index sites could provide much needed information to assess the hydrologic factors affecting the quantity and quality of spring flow in the Coastal Springs Ground-Water Basin.
Scalable Integrated Multi-Mission Support System Simulator Release 3.0
NASA Technical Reports Server (NTRS)
Kim, John; Velamuri, Sarma; Casey, Taylor; Bemann, Travis
2012-01-01
The Scalable Integrated Multi-mission Support System (SIMSS) is a tool that performs a variety of test activities related to spacecraft simulations and ground segment checks. SIMSS is a distributed, component-based, plug-and-play client-server system useful for performing real-time monitoring and communications testing. SIMSS runs on one or more workstations and is designed to be user-configurable or to use predefined configurations for routine operations. SIMSS consists of more than 100 modules that can be configured to create, receive, process, and/or transmit data. The SIMSS/GMSEC innovation is intended to provide missions with a low-cost solution for implementing their ground systems, as well as significantly reducing a mission s integration time and risk.
NASA Technical Reports Server (NTRS)
Sander, Erik J.; Gosdin, Dennis R.
1992-01-01
Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.
Radiofrequency testing of satellite segment of simulated 30/20 GHz satellite communications system
NASA Technical Reports Server (NTRS)
Leonard, R. F.; Kerczewski, R.
1985-01-01
A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.
Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.
2006-01-01
Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.
Belcher, Wayne R.
2004-01-01
A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener
NASA ground terminal communication equipment automated fault isolation expert systems
NASA Technical Reports Server (NTRS)
Tang, Y. K.; Wetzel, C. R.
1990-01-01
The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).
DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION
Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...
Understanding the yield gap in wheat production
USDA-ARS?s Scientific Manuscript database
Remote sensing has been used to assess various components of agricultural systems for several decades. Utilization of different wavebands in various combinations to form vegetative indices have been used to estimate ground cover, biomass, leaf chlorophyll content, light interception, leaf area index...
Satellite antenna management system and method
NASA Technical Reports Server (NTRS)
Leath, Timothy T (Inventor); Azzolini, John D (Inventor)
1999-01-01
The antenna management system and method allow a satellite to communicate with a ground station either directly or by an intermediary of a second satellite, thus permitting communication even when the satellite is not within range of the ground station. The system and method employ five major software components, which are the control and initialization module, the command and telemetry handler module, the contact schedule processor module, the contact state machining module, and the telemetry state machine module. The control and initialization module initializes the system and operates the main control cycle, in which the other modules are called. The command and telemetry handler module handles communication to and from the ground station. The contact scheduler processor module handles the contact entry schedules to allow scheduling of contacts with the second satellite. The contact and telemetry state machine modules handle the various states of the satellite in beginning, maintaining and ending contact with the second satellite and in beginning, maintaining and ending communication with the satellite.
Possibilities of Uas for Maritime Monitoring
NASA Astrophysics Data System (ADS)
Klimkowska, A.; Lee, I.; Choi, K.
2016-06-01
In the last few years, Unmanned Aircraft Systems (UAS) have become more important and its use for different application is appreciated. At the beginning UAS were used for military purposes. These successful applications initiated interest among researchers to find uses of UAS for civilian purposes, as they are alternative to both manned and satellite systems in acquiring high-resolution remote sensing data at lower cost while long flight duration. As UAS are built from many components such as unmanned aerial vehicle (UAV), sensing payloads, communication systems, ground control stations, recovery and launch equipment, and supporting equipment, knowledge about its functionality and characteristics is crucial for missions. Therefore, finding appropriate configuration of all elements to fulfill requirements of the mission is a very difficult, yet important task. UAS may be used in various maritime applications such as ship detection, red tide detection and monitoring, border patrol, tracking of pollution at sea and hurricane monitoring just to mention few. One of the greatest advantages of UAV is their ability to fly over dangerous and hazardous areas, where sending manned aircraft could be risky for a crew. In this article brief description of aerial unmanned system components is introduced. Firstly characteristics of unmanned aerial vehicles are presented, it continues with introducing inertial navigation system, communication systems, sensing payloads, ground control stations, and ground and recovery equipment. Next part introduces some examples of UAS for maritime applications. This is followed by suggestions of key indicators which should be taken into consideration while choosing UAS. Last part talks about configuration schemes of UAVs and sensor payloads suggested for some maritime applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brainard, E.L.
1978-04-25
Results are presented of acceptance tests conducted on the Alternator Stator, S/N 002, for the Kilowatt Isotope Power System. These results show that the Alternator Stator, S/N 002 for the Kilowatt Isotope Power System has satisfactorily completed the testing set forth within Sundstrand Test Specification 2538. Test requirements of TS 2538 were extracted from the Kilowatt Isotope Power System, and Phase I Test Plan.
Ground Operations Autonomous Control and Integrated Health Management
NASA Technical Reports Server (NTRS)
Daniels, James
2014-01-01
The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.
Safety-related requirements for photovoltaic modules and arrays. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levins, A.
1984-03-01
Underwriters Laboratories has conducted a study to identify and develop safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. This discussion of safety systems recognizes that there is little history on which to base the expected safety related performance of a photovoltaic system. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaicmore » systems is made. A discussion of the UL investigation of the photovoltaic module evaluated to the provisions of the Proposed UL Standard for Flat-Plate Photovoltaic Modules and Panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit grounding, and the type of circuit ground are covered. The development of the Standard for Flat-Plate Photovoltaic Modules and Panels has continued, and with both industry comment and a product submittal and listing, the Standard has been refined to a viable document allowing an objective safety review of photovoltaic modules and panels. How this document, and other UL documents would cover investigations of certain other photovoltaic system components is described.« less
Interplanetary travel: Is gravity needed to close the loop
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, Joan
1988-01-01
Evidence has been accumulating from spaceflight and ground simulation studies suggesting that the normal relationship between neuroendocrine driving mechanisms and their respective target organs may become uncoupled; and that the sensitivity of the various components of the closed-loop systems may be altered. Changes in the regulation of the pituitary-adrenal system and the angioten-sinaldosterone system is discussed in support of this thesis.
Aeronautical engineering: A continuing bibliography with indexes (supplement 267)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Navarro, Robert
1997-01-01
An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.
NASA Technical Reports Server (NTRS)
Bloomquist, C. E.; Kallmeyer, R. H.
1972-01-01
Field failure rates and confidence factors are presented for 88 identifiable components of the ground support equipment at the John F. Kennedy Space Center. For most of these, supplementary information regarding failure mode and cause is tabulated. Complete reliability assessments are included for three systems, eight subsystems, and nine generic piece-part classifications. Procedures for updating or augmenting the reliability results presented in this handbook are also included.
Inventory of File sref_nmb.t03z.pgrb212.p1.f00.grib2
Relative Humidity [%] 014.1 10 m above ground UGRD analysis U-Component of Wind [m/s] 014.2 10 m above ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated Relative Humidity [%] 033.1 30-0 mb above ground UGRD analysis U-Component of Wind [m/s] 033.2 30-0 mb
Inventory of File sref_nmm.t03z.pgrb212.p1.f00.grib2
Relative Humidity [%] 014.1 10 m above ground UGRD analysis U-Component of Wind [m/s] 014.2 10 m above ground VGRD analysis V-Component of Wind [m/s] 015 surface WEASD analysis Water Equivalent of Accumulated Relative Humidity [%] 033.1 30-0 mb above ground UGRD analysis U-Component of Wind [m/s] 033.2 30-0 mb
Effect of tilt on strong motion data processing
Graizer, V.M.
2005-01-01
In the near-field of an earthquake the effects of the rotational components of ground motion may not be negligible compared to the effects of translational motions. Analyses of the equations of motion of horizontal and vertical pendulums show that horizontal sensors are sensitive not only to translational motion but also to tilts. Ignoring this tilt sensitivity may produce unreliable results, especially in calculations of permanent displacements and long-period calculations. In contrast to horizontal sensors, vertical sensors do not have these limitations, since they are less sensitive to tilts. In general, only six-component systems measuring rotations and accelerations, or three-component systems similar to systems used in inertial navigation assuring purely translational motion of accelerometers can be used to calculate residual displacements. ?? 2004 Elsevier Ltd. All rights reserved.
Technology developments under consideration for future ground systems
NASA Astrophysics Data System (ADS)
Drewes, G. W. J.
A review is conducted of those areas of ground-system related technology which require for their appropriate development funding provided by ESA. ESA will, in this connection, financially support the development of a coaxial S and X band feed horn for use with its 15-m antenna for Villafranca and Carnarvon. With respect to RF techology, it is found that the required RF components and subsystems will be available, and, consequently, ESA will not provide any funds for developments in this area. Other sectors examined with respect to possible developments requiring ESA funding are related to modulation/demodulation, spacecraft position, data handling, timing, and development and standardization.
Tucci, Patrick; McKay, Robert M.
2006-01-01
The greatest limitation to the model is the lack of measured or estimated water-budget components for comparison to simulated water-budget components. Because the model is only calibrated to measured water levels, and not to water-budget components, the model results are nonunique. Other model limitations include the relatively coarse grid scale, lack of detailed information on pumpage from the quarry and from private developments and domestic wells, and the lack of separate water-level data for the Silurian- and Devonian-age rocks.
Flight Testing of an Airport Surface Guidance, Navigation, and Control System
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 (B-757) research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Hartsfield-Atlanta International Airport (ATL) in Atlanta, GA. The B-757 was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range (RVR) of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. The integrated ground and airborne components resulted in a system that has the potential to significantly improve the safety and efficiency of airport surface movements particularly as weather conditions deteriorate. Several advanced technologies were employed to show the validity of the operational concept at a major airport facility, to validate flight simulation findings, and to assess each of the individual technologies performance in an airport environment. Results show that while the maturity of some of the technologies does not permit immediate implementation, the operational concept is valid and the performance is more than adequate in many areas.
PIV Measurements of the CEV Hot Abort Motor Plume for CFD Validation
NASA Technical Reports Server (NTRS)
Wernet, Mark; Wolter, John D.; Locke, Randy; Wroblewski, Adam; Childs, Robert; Nelson, Andrea
2010-01-01
NASA s next manned launch platform for missions to the moon and Mars are the Orion and Ares systems. Many critical aspects of the launch system performance are being verified using computational fluid dynamics (CFD) predictions. The Orion Launch Abort Vehicle (LAV) consists of a tower mounted tractor rocket tasked with carrying the Crew Module (CM) safely away from the launch vehicle in the event of a catastrophic failure during the vehicle s ascent. Some of the predictions involving the launch abort system flow fields produced conflicting results, which required further investigation through ground test experiments. Ground tests were performed to acquire data from a hot supersonic jet in cross-flow for the purpose of validating CFD turbulence modeling relevant to the Orion Launch Abort Vehicle (LAV). Both 2-component axial plane Particle Image Velocimetry (PIV) and 3-component cross-stream Stereo Particle Image Velocimetry (SPIV) measurements were obtained on a model of an Abort Motor (AM). Actual flight conditions could not be simulated on the ground, so the highest temperature and pressure conditions that could be safely used in the test facility (nozzle pressure ratio 28.5 and a nozzle temperature ratio of 3) were used for the validation tests. These conditions are significantly different from those of the flight vehicle, but were sufficiently high enough to begin addressing turbulence modeling issues that predicated the need for the validation tests.
[Compatible biomass models of natural spruce (Picea asperata)].
Wang, Jin Chi; Deng, Hua Feng; Huang, Guo Sheng; Wang, Xue Jun; Zhang, Lu
2017-10-01
By using nonlinear measurement error method, the compatible tree volume and above ground biomass equations were established based on the volume and biomass data of 150 sampling trees of natural spruce (Picea asperata). Two approaches, controlling directly under total aboveground biomass and controlling jointly from level to level, were used to design the compatible system for the total aboveground biomass and the biomass of four components (stem, bark, branch and foliage), and the total ground biomass could be estimated independently or estimated simultaneously in the system. The results showed that the R 2 of the one variable and bivariate compatible tree volume and aboveground biomass equations were all above 0.85, and the maximum value reached 0.99. The prediction effect of the volume equations could be improved significantly when tree height was included as predictor, while it was not significant in biomass estimation. For the compatible biomass systems, the one variable model based on controlling jointly from level to level was better than the model using controlling directly under total above ground biomass, but the bivariate models of the two methods were similar. Comparing the imitative effects of the one variable and bivariate compatible biomass models, the results showed that the increase of explainable variables could significantly improve the fitness of branch and foliage biomass, but had little effect on other components. Besides, there was almost no difference between the two methods of estimation based on the comparison.
An Architecture to Enable Autonomous Control of Spacecraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Dever, Timothy P.; Soeder, James F.; George, Patrick J.; Morris, Paul H.; Colombano, Silvano P.; Frank, Jeremy D.; Schwabacher, Mark A.; Wang, Liu; LawLer, Dennis
2014-01-01
Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances.
The Canadian High Arctic Ionospheric Network (CHAIN)
NASA Astrophysics Data System (ADS)
Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.
2009-05-01
Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.
Hubert, Brian N.; Wu, Xin Di
1998-01-01
A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.
Evolving Reliability and Maintainability Allocations for NASA Ground Systems
NASA Technical Reports Server (NTRS)
Munoz, Gisela; Toon, T.; Toon, J.; Conner, A.; Adams, T.; Miranda, D.
2016-01-01
This paper describes the methodology and value of modifying allocations to reliability and maintainability requirements for the NASA Ground Systems Development and Operations (GSDO) programs subsystems. As systems progressed through their design life cycle and hardware data became available, it became necessary to reexamine the previously derived allocations. This iterative process provided an opportunity for the reliability engineering team to reevaluate allocations as systems moved beyond their conceptual and preliminary design phases. These new allocations are based on updated designs and maintainability characteristics of the components. It was found that trade-offs in reliability and maintainability were essential to ensuring the integrity of the reliability and maintainability analysis. This paper discusses the results of reliability and maintainability reallocations made for the GSDO subsystems as the program nears the end of its design phase.
Evolving Reliability and Maintainability Allocations for NASA Ground Systems
NASA Technical Reports Server (NTRS)
Munoz, Gisela; Toon, Troy; Toon, Jamie; Conner, Angelo C.; Adams, Timothy C.; Miranda, David J.
2016-01-01
This paper describes the methodology and value of modifying allocations to reliability and maintainability requirements for the NASA Ground Systems Development and Operations (GSDO) program’s subsystems. As systems progressed through their design life cycle and hardware data became available, it became necessary to reexamine the previously derived allocations. This iterative process provided an opportunity for the reliability engineering team to reevaluate allocations as systems moved beyond their conceptual and preliminary design phases. These new allocations are based on updated designs and maintainability characteristics of the components. It was found that trade-offs in reliability and maintainability were essential to ensuring the integrity of the reliability and maintainability analysis. This paper discusses the results of reliability and maintainability reallocations made for the GSDO subsystems as the program nears the end of its design phase.
Evolving Reliability and Maintainability Allocations for NASA Ground Systems
NASA Technical Reports Server (NTRS)
Munoz, Gisela; Toon, Jamie; Toon, Troy; Adams, Timothy C.; Miranda, David J.
2016-01-01
This paper describes the methodology that was developed to allocate reliability and maintainability requirements for the NASA Ground Systems Development and Operations (GSDO) program's subsystems. As systems progressed through their design life cycle and hardware data became available, it became necessary to reexamine the previously derived allocations. Allocating is an iterative process; as systems moved beyond their conceptual and preliminary design phases this provided an opportunity for the reliability engineering team to reevaluate allocations based on updated designs and maintainability characteristics of the components. Trade-offs in reliability and maintainability were essential to ensuring the integrity of the reliability and maintainability analysis. This paper will discuss the value of modifying reliability and maintainability allocations made for the GSDO subsystems as the program nears the end of its design phase.
High-speed optical feeder-link system using adaptive optics
NASA Astrophysics Data System (ADS)
Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner
1997-05-01
We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.
Anderson, Mark T.
1995-01-01
The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.
Terra Harvest Open Source Environment (THOSE): a universal unattended ground sensor controller
NASA Astrophysics Data System (ADS)
Gold, Joshua; Klawon, Kevin; Humeniuk, David; Landoll, Darren
2011-06-01
Under the Terra Harvest Program, the Defense Intelligence Agency (DIA) has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future Unattended Ground Sensor System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n-play contributions that include various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute (UDRI), is developing the Terra Harvest Open Source Environment (THOSE), a Java based system running on an embedded Linux Operating System (OS). The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor evaluation platform that is both energyefficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the implementation strategy for some of the key software components. Preliminary integration/test results and the Team's approach for transitioning the THOSE design and source code to the Government are also presented.
Flight-test evaluation of civil helicopter terminal approach operations using differential GPS
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hegarty, D. M.
1989-01-01
A civil code differential Global Positioning System (DGPS) has been developed and flight-tested by the NASA Ames Research Center. The system was used to evaluate the performance of the DGPS for support of helicopter terminal approach operations. The airborne component of the DGPS was installed in a NASA helicopter. The ground-reference component was installed in a mobile van and equipped with a real-time VHF telemetry data link to transmit correction information to the aircraft system. An extensive series of tests was conducted to evaluate the performance of the system for several different configurations of the airborne navigation filter. This paper will describe the systems, the results of the flight tests, and the results of the posttest analysis.
Reinventing the Solar Power Satellite
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Economy of scale is inherent in the microwave power transmission aperture/spot-size trade-off, resulting in a requirement for large space systems in the existing design concepts. Unfortunately, this large size means that the initial investment required before the first return, and the price of amortization of this initial investment, is a daunting (and perhaps insurmountable) barrier to economic viability. As the growth of ground-based solar power applications will fund the development of the PV technology required for space solar power and will also create the demand for space solar power by manufacturing a ready-made market, space power systems must be designed with an understanding that ground-based solar technologies will be implemented as a precursor to space-based solar. for low initial cost, (3) operation in synergy with ground solar systems, and (4) power production profile tailored to peak rates. A key to simplicity of design is to maximize the integration of the system components. Microwave, millimeter-wave, and laser systems are analyzed. A new solar power satellite design concept with no sun-tracking and no moving parts is proposed to reduce the required cost to initial operational capability.
The Spacecraft Emergency Response System (SERS) for Autonomous Mission Operations
NASA Technical Reports Server (NTRS)
Breed, Julia; Chu, Kai-Dee; Baker, Paul; Starr, Cynthia; Fox, Jeffrey; Baitinger, Mick
1998-01-01
Today, most mission operations are geared toward lowering cost through unmanned operations. 7-day/24-hour operations are reduced to either 5-day/8-hour operations or become totally autonomous, especially for deep-space missions. Proper and effective notification during a spacecraft emergency could mean success or failure for an entire mission. The Spacecraft Emergency Response System (SERS) is a tool designed for autonomous mission operations. The SERS automatically contacts on-call personnel as needed when crises occur, either on-board the spacecraft or within the automated ground systems. Plus, the SERS provides a group-ware solution to facilitate the work of the person(s) contacted. The SERS is independent of the spacecraft's automated ground system. It receives and catalogues reports for various ground system components in near real-time. Then, based on easily configurable parameters, the SERS determines whom, if anyone, should be alerted. Alerts may be issued via Sky-Tel 2-way pager, Telehony, or e-mail. The alerted personnel can then review and respond to the spacecraft anomalies through the Netscape Internet Web Browser, or directly review and respond from the Sky-Tel 2-way pager.
NASA Technical Reports Server (NTRS)
Atwell, William; Koontz, Steve; Normand, Eugene
2012-01-01
Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport codes are used to evaluate possible human health effects of cosmic ray exposure, however, the health effects are based on worst-case analysis and extrapolation of a very limited human exposure data base combined with some limited experimental animal data. Finally, the limitations on human space operations beyond low-Earth orbit imposed by long term exposure to galactic cosmic rays are discussed.
DEVELOPMENT OF AN IDENTIFICATION KIT FOR SPILLED HAZARDOUS MATERIALS
The Chemical Systems Laboratory (CSL) has developed a field kit to identify spilled hazardous materials in inland waters and on the ground. The Hazardous Materials Spills Identification Kit is a two-component kit consisting of an inverter/shortwave UV lamp unit for photochemical ...
Reassessing emotion in climate change communication
NASA Astrophysics Data System (ADS)
Chapman, Daniel A.; Lickel, Brian; Markowitz, Ezra M.
2017-12-01
Debate over effective climate change communication must be grounded in rigorous affective science. Rather than treating emotions as simple levers to be pulled to promote desired outcomes, emotions should be viewed as one integral component of a cognitive feedback system guiding responses to challenging decision-making problems.
Millimeter-scale MEMS enabled autonomous systems: system feasibility and mobility
NASA Astrophysics Data System (ADS)
Pulskamp, Jeffrey S.
2012-06-01
Millimeter-scale robotic systems based on highly integrated microelectronics and micro-electromechanical systems (MEMS) could offer unique benefits and attributes for small-scale autonomous systems. This extreme scale for robotics will naturally constrain the realizable system capabilities significantly. This paper assesses the feasibility of developing such systems by defining the fundamental design trade spaces between component design variables and system level performance parameters. This permits the development of mobility enabling component technologies within a system relevant context. Feasible ranges of system mass, required aerodynamic power, available battery power, load supported power, flight endurance, and required leg load bearing capability are presented for millimeter-scale platforms. The analysis illustrates the feasibility of developing both flight capable and ground mobile millimeter-scale autonomous systems while highlighting the significant challenges that must be overcome to realize their potential.
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
Aeronautical engineering: A continuing bibliography with indexes (supplement 277)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 467 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1992. Subject coverage includes: the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines); and associated aircraft components, equipment, and systems. It also includes research and development in ground support systems, theoretical and applied aspects of aerodynamics, and general fluid dynamics.
Skylab astronaut life support assembly
NASA Technical Reports Server (NTRS)
Brown, J. T.
1972-01-01
A comparative study was performed to define an optimum portable life support system for suited operations inside and outside the Skylab Program. Emphasis was placed on utilization of qualified equipment, modified versions of qualified equipment, and new systems made up to state-of-the-art components. Outlined are the mission constraints, operational modes, and evaluation ground rules by which the Skylab portable life support system was selected and the resulting design.
Missile Defense: Actions Needed to Improve Transparency and Accountability
2011-04-13
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway...Established resource, schedule, test, operational capacity, technical, and contract baselines for several missile defense systems. It reported...Europe as well as the Ground-based Midcourse Defense system. View GAO-11-555T or key components. For more information, contact Cristina T
ERIC Educational Resources Information Center
Stocco, Andrea
2018-01-01
Several attempts have been made previously to provide a biological grounding for cognitive architectures by relating their components to the computations of specific brain circuits. Often, the architecture's action selection system is identified with the basal ganglia. However, this identification overlooks one of the most important features of…
Aeronautical engineering: A continuing bibliography with indexes (supplement 284)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
The Apollo spacecraft: A chronology. Volume 2: 8 November 1962 - 30 September 1964
NASA Technical Reports Server (NTRS)
Morse, M. L.; Bays, J. K.
1973-01-01
A chronology of the Apollo spacecraft development and production program is presented. The subjects discussed are: (1) defining contractural relations, (2) developing hardware distinctions, and (3) developing software ground rules. Illustrations, drawings, and photographs are used extensively to supplement the technical writing. Descriptions of life support systems, communication equipment, propulsion systems, control devices, and spacecraft components are provided.
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
Design study of a HEAO-C spread spectrum transponder telemetry system for use with the TDRSS subnet
NASA Technical Reports Server (NTRS)
Weathers, G.
1975-01-01
The results of a design study of a spread spectrum transponder for use on the HEAO-C satellite were given. The transponder performs the functions of code turn-around for ground range and range-rate determination, ground command receiver, and telemetry data transmitter. The spacecraft transponder and associated communication system components will allow the HEAO-C satellite to utilize the Tracking and Data Relay Satellite System (TDRSS) subnet of the post 1978 STDN. The following areas were discussed in the report: TDRSS Subnet Description, TDRSS-HEAO-C System Configuration, Gold Code Generator, Convolutional Encoder Design and Decoder Algorithm, High Speed Sequence Generators, Statistical Evaluation of Candidate Code Sequences using Amplitude and Phase Moments, Code and Carrier Phase Lock Loops, Total Spread Spectrum Transponder System, and Reference Literature Search.
Dickinson, Jesse; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.
2006-01-01
The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A is nearly the same as the previous conceptual hydrogeologic model definition (Olmsted and others, 1973), except for a minor westward extension from the city of Yuma. Clay B is extended to the southerly international boundary and increased in areal extent by about two-thirds of the original extent (Olmsted and others, 1973). The other hydrogeologic units generally are the same as in the previous conceptual hydrogeologic model. Before development, the Colorado and Gila Rivers were the sources of nearly all the ground water in the Yuma area through direct infiltration of water from river channels and annual overbank flooding. After construction of upstream reservoirs and clearing and irrigation of the floodplains, the rivers now act as drains for the ground water. Ground-water levels in most of the Yuma area are higher now than they were in predevelopment time. A general gradient of ground-water flow toward the natural discharge area south of the Yuma area still exists, but many other changes in flow are evident. Ground water in Yuma Valley once flowed away from the Colorado River, but now has a component of flow towards the river and Mexicali Valley. A ground-water mound has formed under Yuma Mesa from long-term surface-water irrigation; about 600,000 to 800,000 acre-ft of water are stored in the mound. Ground-water withdrawals adjacent to the southerly international boundary have resulted in water-level declines in that area. The reviewed and documented water budget includes the following components: (1) recharge in irrigated areas, (2) evapotranspiration by irrigated crops and phreatophytes, (3) ground-water return flow to the Colorado River, and (4) ground-water withdrawals (including those in Mexicali Valley). Recharge components were calculated by subtracting the amount of water used by crops from the amount of water delivered. Evapotranspiration rates were calculated on the basis of established methods, thus were appropriate for input to the ground-wate
Smith, J. C.; Pribram-Jones, A.; Burke, K.
2016-06-14
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J. C.; Pribram-Jones, A.; Burke, K.
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
Components of nurse innovation: a model from acute care hospitals.
Neidlinger, S H; Drews, N; Hukari, D; Bartleson, B J; Abbott, F K; Harper, R; Lyon, J
1992-12-01
Components that promote nurse innovation in acute care hospitals are explicated in the Acute Care Nursing Innovation Model. Grounded in nursing care delivery systems and excellent management-organizations perspectives, nurse executives and 30 nurse "intrapreneurs" from 10 innovative hospitals spanning the United States shared their experiences and insights through semistructured, tape-recorded telephone interviews. Guided by interpretive interactionist strategies, the essential components, characteristics, and interrelationships are conceptualized and described so that others may be successful in their innovative endeavors. Successful innovation is dependent on the fit between and among the components; the better the fit, the more likely the innovation will succeed.
Apollo experience report: Descent propulsion system
NASA Technical Reports Server (NTRS)
Hammock, W. R., Jr.; Currie, E. C.; Fisher, A. E.
1973-01-01
The propulsion system for the descent stage of the lunar module was designed to provide thrust to transfer the fully loaded lunar module with two crewmen from the lunar parking orbit to the lunar surface. A history of the development of this system is presented. Development was accomplished primarily by ground testing of individual components and by testing the integrated system. Unique features of the descent propulsion system were the deep throttling capability and the use of a lightweight cryogenic helium pressurization system.
Systems engineering interfaces: A model based approach
NASA Astrophysics Data System (ADS)
Fosse, E.; Delp, C. L.
The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.
HST/STIS ULTRAVIOLET SPECTROSCOPY OF THE COMPONENTS OF THE MASSIVE TRIPLE STAR δ ORI A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Noel D.; Moffat, Anthony F. J.; Gull, Theodore R.
2015-07-20
The multiple star system of δ Orionis is one of the closest examples of a system containing a luminous O-type, bright giant star (component Aa1). It is often used as a spectral-type standard and has the highest observed X-ray flux of any hot-star binary. The main component Aa1 is orbited by two lower mass stars, faint Aa2 in a 5.7 day eclipsing binary, and Ab, an astrometric companion with an estimated period of 346 years. Generally the flux from all three stars is recorded in ground-based spectroscopy, and the spectral decomposition of the components has proved difficult. Here we presentmore » Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet spectroscopy of δ Ori A that provides us with spatially separated spectra of Aa and Ab for the first time. We measured radial velocities for Aa1 and Ab in two observations made near the velocity extrema of Aa1. We show tentative evidence for the detection of the Aa2 component in cross-correlation functions of the observed and model spectra. We discuss the appearance of the UV spectra of Aa1 and Ab with reference to model spectra. Both stars have similar effective temperatures, but Ab is fainter and is a rapid rotator. The results will help in the interpretation of ground-based spectroscopy and in understanding the physical and evolutionary parameters of these massive stars.« less
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Currently, spacecraft ground systems have a well defined and somewhat standard architecture and operations concept. Based on domain analysis studies of various control centers conducted over the years it is clear that ground systems have core capabilities and functionality that are common across all ground systems. This observation alone supports the realization of reuse. Additionally, spacecraft ground systems are increasing in their ability to do things autonomously. They are being engineered using advanced expert systems technology to provide automated support for operators. A clearer understanding of the possible roles of agent technology is advancing the prospects of greater autonomy for these systems. Many of their functional and management tasks are or could be supported by applied agent technology, the dynamics of the ground system's infrastructure could be monitored by agents, there are intelligent agent-based approaches to user-interfaces, etc. The premise of this paper is that the concepts associated with software reuse, applicable in consideration of classically-engineered ground systems, can be updated to address their application in highly agent-based realizations of future ground systems. As a somewhat simplified example consider the following situation, involving human agents in a ground system context. Let Group A of controllers be working on Mission X. They are responsible for the command, control and health and safety of the Mission X spacecraft. Let us suppose that mission X successfully completes it mission and is turned off. Group A could be dispersed or perhaps move to another Mission Y. In this case there would be reuse of the human agents from Mission X to Mission Y. The Group A agents perform their well-understood functions in a somewhat but related context. There will be a learning or familiarization process that the group A agents go through to make the new context, determined by the new Mission Y, understood. This simplified scenario highlights some of the major issues that need to be addressed when considering the situation where Group A is composed of software-based agents (not their human counterparts) and they migrate from one mission support system to another. This paper will address: - definition of an agent architecture appropriate to support reuse; - identification of non-mission-specific agent capabilities required; - appropriate knowledge representation schemes for mission-specific knowledge; - agent interface with mission-specific knowledge (a type of Learning); development of a fully-operational group of cooperative software agents for ground system support; architecture and operation of a repository of reusable agents that could be the source of intelligent components for realizing an autonomous (or nearly autonomous) agent-based ground system, and an agent-based approach to repository management and operation (an intelligent interface for human use of the repository in a ground-system development activity).
Systems tunnel linear shaped charge lightning strike
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.
MAVEN Information Security Governance, Risk Management, and Compliance (GRC): Lessons Learned
NASA Technical Reports Server (NTRS)
Takamura, Eduardo; Gomez-Rosa, Carlos A.; Mangum, Kevin; Wasiak, Fran
2014-01-01
As the first interplanetary mission managed by the NASA Goddard Space Flight Center, the Mars Atmosphere and Volatile EvolutioN (MAVEN) had three IT security goals for its ground system: COMPLIANCE, (IT) RISK REDUCTION, and COST REDUCTION. In a multiorganizational environment in which government, industry and academia work together in support of the ground system and mission operations, information security governance, risk management, and compliance (GRC) becomes a challenge as each component of the ground system has and follows its own set of IT security requirements. These requirements are not necessarily the same or even similar to each other's, making the auditing of the ground system security a challenging feat. A combination of standards-based information security management based on the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF), due diligence by the Mission's leadership, and effective collaboration among all elements of the ground system enabled MAVEN to successfully meet NASA's requirements for IT security, and therefore meet Federal Information Security Management Act (FISMA) mandate on the Agency. Throughout the implementation of GRC on MAVEN during the early stages of the mission development, the Project faced many challenges some of which have been identified in this paper. The purpose of this paper is to document these challenges, and provide a brief analysis of the lessons MAVEN learned. The historical information documented herein, derived from an internal pre-launch lessons learned analysis, can be used by current and future missions and organizations implementing and auditing GRC.
Ground Support Software for Spaceborne Instrumentation
NASA Technical Reports Server (NTRS)
Anicich, Vincent; Thorpe, rob; Fletcher, Greg; Waite, Hunter; Xu, Hykua; Walter, Erin; Frick, Kristie; Farris, Greg; Gell, Dave; Furman, Jufy;
2004-01-01
ION is a system of ground support software for the ion and neutral mass spectrometer (INMS) instrument aboard the Cassini spacecraft. By incorporating commercial off-the-shelf database, Web server, and Java application components, ION offers considerably more ground-support-service capability than was available previously. A member of the team that operates the INMS or a scientist who uses the data collected by the INMS can gain access to most of the services provided by ION via a standard pointand click hyperlink interface generated by almost any Web-browser program running in almost any operating system on almost any computer. Data are stored in one central location in a relational database in a non-proprietary format, are accessible in many combinations and formats, and can be combined with data from other instruments and spacecraft. The use of the Java programming language as a system-interface language offers numerous capabilities for object-oriented programming and for making the database accessible to participants using a variety of computer hardware and software.
A knowledge-based system for prototypical reasoning
NASA Astrophysics Data System (ADS)
Lieto, Antonio; Minieri, Andrea; Piana, Alberto; Radicioni, Daniele P.
2015-04-01
In this work we present a knowledge-based system equipped with a hybrid, cognitively inspired architecture for the representation of conceptual information. The proposed system aims at extending the classical representational and reasoning capabilities of the ontology-based frameworks towards the realm of the prototype theory. It is based on a hybrid knowledge base, composed of a classical symbolic component (grounded on a formal ontology) with a typicality based one (grounded on the conceptual spaces framework). The resulting system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science with the dual process theories of reasoning and rationality. The system has been experimentally assessed in a conceptual categorisation task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially extends the representational and reasoning 'conceptual' capabilities of standard ontology-based systems.
Barlow, Paul M.; Dickerman, David C.
2001-01-01
This report describes the development, application, and evaluation of numerical-simulation and conjunctive-management models of the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system in central Rhode Island. Steady-state transient numerical models were developed to improve the understanding of the hydrologic budget of the system, the interaction of ground-water and surface-water components of the system, and the contributing areas and sources of water to supply wells in the system. The numerical models were developed and calibrated on the basis of hydrologic data collected during this and previous investigations. These data include lithologic information for the aquifer; hydraulic properties of aquifer and streambed materials; recharge to the aquifer; water levels measured in wells, ponds, and streambed piezometers; streamflow measurements for various streams within the system; and ground-water withdrawal rates from, and wastewater discharge to, the aquifer.
SENSITIVITY OF DIFFERENT AEROMONAS SPECIES TO COPPER AND SILVER
Aeromonas bacteria are common flora in surface and ground waters and are considered to be human pathogens. They can also be found in municipally treated drinking water, likely as a component of biofilms, as found in distribution system pipes and point of use water filters. It ...
NASA Astrophysics Data System (ADS)
Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong
2016-11-01
The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.
Hubert, B.N.; Wu, X.D.
1998-10-13
A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.
Integrated Systems Health Management for Space Exploration
NASA Technical Reports Server (NTRS)
Uckun, Serdar
2005-01-01
Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, L.W.; Hunt, S.T.; Savage, S.F.
1992-04-01
The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Extensive numerical study of a D-brane, anti-D-brane system in AdS 5 /CFT 4
NASA Astrophysics Data System (ADS)
Hegedűs, Árpád
2015-04-01
In this paper the hybrid-NLIE approach of [38] is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L = 1 case is also commented in the paper.
Apollo experience report: Launch escape propulsion subsystem
NASA Technical Reports Server (NTRS)
Townsend, N. A.
1973-01-01
The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.
A System for Measurement of Convection Aboard Space Station
NASA Technical Reports Server (NTRS)
Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.
1996-01-01
A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.
NPSS Overview to TAFW Multidisciplinary Simulation Capabilities
NASA Technical Reports Server (NTRS)
Owen, Karl
2002-01-01
The Numerical Propulsion System Simulation (NPSS) is a concerted effort by NASA Glenn Research Center, the aerospace industry, and academia to develop an advanced engineering environment or integrated collection of software programs for the analysis and design of aircraft engines and, eventually, space transportation components. NPSS is now being applied by GE ground power to ground power generation with the view of expanding the capability to nontraditional power plant applications (example: fuel cells) and NPSS has an interest in in-space power and will be developing those simulation capabilities.
Swarzenski, Peter; Reich, Chris; Rudnick, David
2009-01-01
Estimates of submarine ground-water discharge (SGD) into Florida Bay remain one of the least understood components of a regional water balance. To quantify the magnitude and seasonality of SGD into upper Florida Bay, research activities included the use of the natural geochemical tracer, 222Rn, to examine potential SGD hotspots (222Rn surveys) and to quantify the total (saline + fresh water component) SGD rates at select sites (222Rn time-series). To obtain a synoptic map of the 222Rn distribution within our study site in Florida Bay, we set up a flow-through system on a small boat that consisted of a Differential Global Positioning System, a calibrated YSI, Inc CTD sensor with a sampling rate of 0.5 min, and a submersible pump (z = 0.5 m) that continuously fed water into an air/water exchanger that was plumbed simultaneously into four RAD7 222Rn air monitors. To obtain local advective ground-water flux estimates, 222Rn time-series experiments were deployed at strategic positions across hydrologic and geologic gradients within our study site. These time-series stations consisted of a submersible pump, a Solinist DIVER (to record continuous CTD parameters) and two RAD7 222Rn air monitors plumbed into an air/water exchanger. Repeat time-series 222Rn measurements were conducted for 3-4 days across several tidal excursions. Radon was also measured in the air during each sampling campaign by a dedicated RAD7. We obtained ground-water discharge information by calculating a 222Rn mass balance that accounted for lateral and horizontal exchange, as well as an appropriate ground-water 222Rn end member activity. Another research component utilized marine continuous resistivity profiling (CRP) surveys to examine the subsurface salinity structure within Florida Bay sediments. This system consisted of an AGI SuperSting 8 channel receiver attached to a streamer cable that had two current (A,B) electrodes and nine potential electrodes that were spaced 10 m apart. A separate DGPS continuously sent position information to the SuperSting. Results indicate that the 222Rn maps provide a useful gauge of relative ground-water discharge into upper Florida Bay. The 222Rn time-series measurements provide a reasonable estimate of site- specific total (saline and fresh) ground-water discharge (mean = 12.5+-11.8 cm d-1), while the saline nature of the shallow ground-water at our study site, as evidenced by CPR results, indicates that most of this discharge must be recycled sea water. The CRP data show some interesting trends that appear to be consistent with subsurface geologic and hydrologic characterization. For example, some of the highest resistivity (electrical conductivity-1) values were recorded where one would expect a slight subsurface freshening (for example bayside Key Largo, or below the C111 canal).
Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.
2001-01-01
The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.
Improving GPR image resolution in lossy ground using dispersive migration
Oden, C.P.; Powers, M.H.; Wright, D.L.; Olhoeft, G.R.
2007-01-01
As a compact wave packet travels through a dispersive medium, it becomes dilated and distorted. As a result, ground-penetrating radar (GPR) surveys over conductive and/or lossy soils often result in poor image resolution. A dispersive migration method is presented that combines an inverse dispersion filter with frequency-domain migration. The method requires a fully characterized GPR system including the antenna response, which is a function of the local soil properties for ground-coupled antennas. The GPR system response spectrum is used to stabilize the inverse dispersion filter. Dispersive migration restores attenuated spectral components when the signal-to-noise ratio is adequate. Applying the algorithm to simulated data shows that the improved spatial resolution is significant when data are acquired with a GPR system having 120 dB or more of dynamic range, and when the medium has a loss tangent of 0.3 or more. Results also show that dispersive migration provides no significant advantage over conventional migration when the loss tangent is less than 0.3, or when using a GPR system with a small dynamic range. ?? 2007 IEEE.
Experimental demonstration of a retro-reflective laser communication link on a mobile platform
NASA Astrophysics Data System (ADS)
Nikulin, Vladimir V.; Malowicki, John E.; Khandekar, Rahul M.; Skormin, Victor A.; Legare, David J.
2010-02-01
Successful pointing, acquisition, and tracking (PAT) are crucial for the implementation of laser communication links between ground and aerial vehicles. This technology has advantages over the traditional radio frequency communication, thus justifying the research efforts presented in this paper. The authors have been successful in the development of a high precision, agile, digitally controlled two-degree-of-freedom electromechanical system for positioning of optical instruments, cameras, telescopes, and communication lasers. The centerpiece of this system is a robotic manipulator capable of singularity-free operation throughout the full hemisphere range of yaw/pitch motion. The availability of efficient two-degree-of-freedom positioning facilitated the development of an optical platform stabilization system capable of rejecting resident vibrations with the angular and frequency range consistent with those caused by a ground vehicle moving on a rough terrain. This technology is being utilized for the development of a duplex mobile PAT system demonstrator that would provide valuable feedback for the development of practical laser communication systems intended for fleets of moving ground, and possibly aerial, vehicles. In this paper, a tracking system providing optical connectivity between stationary and mobile ground platforms is described. It utilizes mechanical manipulator to perform optical platform stabilization and initial beam positioning, and optical tracking for maintaining the line-of-sight communication. Particular system components and the challenges of their integration are described. The results of field testing of the resultant system under practical conditions are presented.
A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
1999-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
Aeronautical engineering: A continuing bibliography with indexes (supplement 119)
NASA Technical Reports Server (NTRS)
1980-01-01
This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1980. Abstracts on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems are presented. Research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles are also presented.
Reliability of Powertrain Components Exposed to Extreme Tribological Environments
2010-08-17
Tribological Environments, Fenske et al. UNCLASSIFIED: Dist A. Approved for public release 2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND...TRIBOLOGICAL ENVIRONMENTS G. R. Fenske , O. O. Ajayi, R. A. Erck, C. Lorenzo-Martin, and Ashley Masoner Energy Systems Division Argonne National...Tribological Environments, Fenske et al. UNCLASSIFIED: Dist A. Approved for public release presented below summarize a series of tests that was performed
Aeronautical engineering: A continuing bibliography with indexes (supplement 282)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1992. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical Engineering: A Continuing Bibliography with Indexes
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 193 reports, journal articles, and other documents introduced in the NASA scientific and technical system in Aug. 1995. Subject coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles
Aeronautical engineering: A continuing bibliography with indexes (supplement 324)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 149 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1995. Subject coverage includes engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical engineering: A continuing bibliography with indexes (supplement 313)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 179 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1995. Subject coverage includes: engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical engineering: A continuing bibliography with indexes (supplement 310)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 29 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1994. Subject coverage includes: engineering and theoretical aspects of design, construction,evaluation testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Direct Data Distribution From Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Budinger, James M.; Fujikawa, Gene; Kunath, Richard R.; Nguyen, Nam T.; Romanofsky, Robert R.; Spence, Rodney L.
1997-01-01
NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified.
Application of MODFLOW’s farm process to California’s Central Valley
Faunt, Claudia; Hanson, Randall T.; Schmid, Wolfgang; Belitz, Kenneth
2008-01-01
landscape processes. The FMP provides coupled simulation of the ground-water and surface-water components of the hydrologic cycle for irrigated and non-irrigated areas. A dynamic allocation of ground-water recharge and ground-water pumping is simulated on the basis of residual crop-water demand after surface-water deliveries and root uptake from shallow ground water. The FMP links with the Streamflow Routing Package SFR1) to facilitate the simulated conveyance of surface-water deliveries. Ground-water Pumpage through both single-aquifer and multi-node wells, irrigation return flow, and variable irrigation efficiencies also are simulated by the FMP. The simulated deliveries and ground-water pumpage in the updated model reflect climatic differences, differences among defined water-balance regions, and changes in the waterdelivery system, during the 1961–2003 simulation period. The model is designed to accept forecasts from Global Climate Models (GCMs) to simulate the potential effects on surface-water delivery, ground-water pumpage, and ground-water storage in response to climate change. The model provides a detailed transient analysis of changes in ground-water availability in relation to climatic variability, urbanization, and changes in irrigated agriculture.
How to protect a wind turbine from lightning
NASA Technical Reports Server (NTRS)
Dodd, C. W.; Mccalla, T., Jr.; Smith, J. G.
1983-01-01
Techniques for reducing the chances of lightning damage to wind turbines are discussed. The methods of providing a ground for a lightning strike are discussed. Then details are given on ways to protect electronic systems, generating and power equipment, blades, and mechanical components from direct and nearby lightning strikes.
Human Centered Modeling and Simulation
Contacts Researchers Thrust Area 2: Human Centered Modeling and Simulation Thrust Area Leader: Dr. Matthew performance of human occupants and operators are paramount in the achievement of ground vehicle design objectives, but these occupants are also the most variable components of the human-machine system. Modeling
Using component technology to facilitate external software reuse in ground-based planning systems
NASA Technical Reports Server (NTRS)
Chase, A.
2003-01-01
APGEN (Activity Plan GENerator - 314), a multi-mission planning tool, must interface with external software to vest serve its users. AP-GEN's original method for incorporating external software, the User-Defined library mechanism, has been very successful in allowing APGEN users access to external software functionality.
Empirical Predictions from a General Theory of Signs
ERIC Educational Resources Information Center
Oller, John W., Jr.; Chen, Liang; Oller, Stephen D.; Pan, Ning
2005-01-01
General sign theory (GST) deals with how distinct sign systems are grounded, developed with increasing abstractness over time, and differentiated in efficacies in experience and discourse. GST has 3 components: The theory of true narrative representations (TNR theory) shows that TNRs are unique in being relatively well determined with respect to…
Kalkan, E.; Graizer, V.
2007-01-01
Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.
NASA Technical Reports Server (NTRS)
Choudhary, Abdur Rahim
1994-01-01
The Science Operations Center (SOC) for the X-ray Timing Explorer (XTE) mission is an important component of the XTE ground system. Its mandate includes: (1) command and telemetry for the three XTE instruments, using CCSDS standards; (2) monitoring of the real-time science operations, reconfiguration of the experiment and the instruments, and real-time commanding to address the targets of opportunity (TOO) and alternate observations; and (3) analysis, processing, and archival of the XTE telemetry, and the timely delivery of the data products to the principal investigator (PI) teams and the guest observers (GO). The SOC has two major components: the science operations facility (SOF) that addresses the first two objectives stated above and the guest observer facility (GOF) that addresses the third. The SOF has subscribed to the object oriented design and implementation; while the GOF uses the traditional approach in order to take advantage of the existing software developed in support of previous missions. This paper details the SOF development using the object oriented design (OOD), and its implementation using the object oriented programming (OOP) in C++ under Unix environment on client-server architecture using Sun workstations. It also illustrates how the object oriented (OO) and the traditional approaches coexist in SOF and GOF, the lessons learned, and how the OOD facilitated the distributed software development collaboratively by four different teams. Details are presented for the SOF system, its major subsystems, its interfaces with the rest of the XTE ground data system, and its design and implementation approaches.
NASA Astrophysics Data System (ADS)
Bosela, P. A.; Fertis, D. G.; Shaker, F. J.
1992-09-01
Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.
Ground-water quality atlas of Wisconsin
Kammerer, Phil A.
1981-01-01
This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.
Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah
2016-01-01
High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.
Lightning protection of wind turbines
NASA Technical Reports Server (NTRS)
Dodd, C. W.
1982-01-01
Possible damages to wind turbine components due to lightning strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against lightning damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a lightning waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and lightning-resistant components be chosen early in the design phase.
Lightning protection of wind turbines
NASA Astrophysics Data System (ADS)
Dodd, C. W.
1982-05-01
Possible damages to wind turbine components due to lightning strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against lightning damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a lightning waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and lightning-resistant components be chosen early in the design phase.
Inventory of File sref.t03z.pgrb197.spread_ds_3hrly.grib2
3 hour fcst U-Component of Wind [m/s] std dev 002 10 m above ground VGRD 3 hour fcst V-Component of Wind [m/s] std dev 003 2 m above ground TMP 3 hour fcst Temperature [K] std dev 004 2 m above ground SPFH 3 hour fcst Specific Humidity [kg/kg] std dev 005 10 m above ground WIND 3 hour fcst Wind Speed [m
Inventory of File sref.t03z.pgrb197.mean_ds_3hrly.grib
3 hour fcst U-Component of Wind [m/s] wt ens-mean 002 10 m above ground VGRD 3 hour fcst V-Component of Wind [m/s] wt ens-mean 003 2 m above ground TMP 3 hour fcst Temperature [K] wt ens-mean 004 2 m above ground SPFH 3 hour fcst Specific Humidity [kg/kg] wt ens-mean 005 10 m above ground WIND 3 hour
Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature
NASA Astrophysics Data System (ADS)
Lee, K. L.; Jørgensen, N. B.; Wacker, L. J.; Skou, M. G.; Skalmstang, K. T.; Arlt, J. J.; Proukakis, N. P.
2018-05-01
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of 87Rb–39K Bose–Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight (TOF) for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the centre of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover, we analyse the situation where only one component is condensed and show that the density distribution of the thermal component also shows some distinct features. Our work sheds new light on the analysis of multi-component systems after TOF and will guide future experiments on the detection of miscibility in these systems.
AMS Ground Truth Measurements: Calibrations and Test Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasiolek, Piotr T.
2015-12-01
Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component ofmore » the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.« less
AMS Ground Truth Measurements: Calibration and Test Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasiolek, P.
2013-11-01
Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted tomore » the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.« less
NASA Astrophysics Data System (ADS)
Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.
2018-05-01
We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.
Using simple environmental variables to estimate below-ground productivity in grasslands
Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.
2002-01-01
In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.
Hydrogeologic characteristics of four public drinking-water supply springs in northern Arkansas
Galloway, Joel M.
2004-01-01
In October 2000, a study was undertaken by the U.S. Geological Survey (USGS) in cooperation with the Arkansas Department of Health to determine the hydrogeologic characteristics, including the extent of the recharge areas, for Hughes Spring, Stark Spring, Evening Shade Spring, and Roaring Spring, which are used for public-water supply in northern Arkansas. Information pertaining to each spring can be used to enable development of effective management plans to protect these water resources and public health. An integrated approach to determine the ground-water characteristics and the extent of the local recharge areas of the four springs incorporated tools and methods of hydrology, structural geology, geomorphology, geophysics, and geochemistry. Analyses of discharge, temperature, and water quality were completed to describe ground-water flow characteristics, source-water characteristics, and connectivity of the ground-water system with surface runoff. Water-level contour maps were constructed to determine ground-water flow directions and ground-water tracer tests were conducted to determine the extent of the recharge areas and ground-water flow velocities. Hughes Spring supplies water for the city of Marshall, Arkansas, and the surrounding area. The mean annual discharge for Hughes Spring was 2.9 and 5.2 cubic feet per second for water years 2001 and 2002, respectively. Recharge to the spring occurs mainly from the Boone Formation (Springfield Plateau aquifer). Ground-water tracer tests indicate the recharge area for Hughes Spring generally coincides with the surface drainage area (15.8 square miles) and that Hughes Spring is connected directly to the surface flow in Brush Creek. The geochemistry of Hughes Spring demonstrated variations with flow conditions and the influence of surface-runoff in the recharge area. Calcite saturation indices, total dissolved solids concentrations, and hardness demonstrate noticeable differences with flow conditions reflecting the reduced residence time and interaction of water with the source rock within the ground-water system at higher discharges for Hughes Spring. Concentrations of fecal indicator bacteria also demonstrated a substantial increase during high-flow conditions, suggesting that a non-point source of bacteria possibly from livestock may enter the system. Conversely, nutrient concentrations did not vary with flow and were similar to concentrations reported for undeveloped sites in the Springfield Plateau and Ozark aquifers in northern Arkansas and southern Missouri. Deuterium and oxygen-18 data show that the Hughes Spring discharge is representative of direct precipitation and not influenced by water enriched in oxygen-18 through evaporation. Discharge data show that Hughes Spring is dominated by conduit type ground-water flow, but a considerable component of diffuse flow also exists in the ground-water system. Carbon-13 data indicate a substantial component of the recharge water interacts with the surface material (soil and regolith) in the recharge area before entering the ground-water system for Hughes Spring. Tritium data for Hughes Spring indicate that the discharge water is a mixture of recent recharge and sub-modern water (recharged prior to 1952). Stark Spring supplies water for the city of Cushman, Arkansas, and the surrounding area. 2 Hydrogeologic Characteristics of Four Public Drinking-Water Supply Springs in Northern Arkansas The mean annual discharge for Stark Spring was 0.5 and 1.5 cubic feet per second for water years 2001 and 2002, respectively. The discharge and water-quality data show the ground-water system for Stark Spring is dominated by rapid recharge from surface runoff and mainly consists of a conduit- type flow system with little diffuse-type flow. Analyses of discharge data show that the estimated recharge area (0.79 square mile) is larger than the surface drainage area (0.34 square mile). Ground-water tracer tests and the outcrop of the
Equatorial ionospheric currents derived from MAGSAT data
NASA Technical Reports Server (NTRS)
Roy, M. (Principal Investigator)
1983-01-01
The MAGSAT data on the three component's of the geomagnetic field are subjected to ring current correction and crustal anomaly elimination near the dip equator. The evidence of a strong west east electrojet current below the satellite height (approximately 350 km) is confirmed. Strong evidence of east-west component of the field suggests the existence of a vertical current originating at the jet level and extending upwards. A model calculation shows that such a current system can explain the satellite data as well as the ground data.
ESTRACK Support for CCSDS Space Communication Cross Support Service Management
NASA Astrophysics Data System (ADS)
Dreihahn, H.; Unal, M.; Hoffmann, A.
2011-08-01
The CCSDS Recommended Standard for Space Communication Cross Support Service Management (SCCS SM) published as Blue Book in August 2009 is intended to provide standardised interfaces to negotiate, schedule, and manage the support of space missions by ground station network operators. ESA as a member of CCSDS has actively supported the development of the SCCS SM standard and is obviously interested in adopting it. Support of SCCS SM conforming interfaces and procedures includes:• Provision of SCCS SM conforming interfaces to non ESA missions;• Use of SCCS SM interfaces provided by other ground station operators to manage cross support of ESA missions;• In longer terms potentially use of SCCS SM interfaces and procedures also internally for support of ESA missions by ESTRACK.In the recent years ESOC has automated management and scheduling of ESA Tracking Network (ESTRACK) services by the specification, development, and deployment of the ESTRACK Management System (EMS), more specifically its planning and scheduling components ESTRACK Planning System and ESTRACK Scheduling System. While full support of the SCCS SM standard will involve also other elements of the ground segment operated by ESOC such as the Flight Dynamic System, EMS is at the core of service management and it is therefore appropriate to initially focus on the question to what extent EMS can support SCCS SM. This paper presents results of the initial analysis phase. After briefly presenting the SCCS SM standard and the relevant components of the ESTRACK management system, we will discuss the initial deployment options, open issues and a tentative roadmap for the way to proceed. Obviously the adoption of a cross support standard requires and discussion and coordination of the involved parties and agencies, especially in the light of the fact that the SCCS SM standard has many optional parts.
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter
2014-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.
Volcano Monitoring: A Case Study in Pervasive Computing
NASA Astrophysics Data System (ADS)
Peterson, Nina; Anusuya-Rangappa, Lohith; Shirazi, Behrooz A.; Song, Wenzhan; Huang, Renjie; Tran, Daniel; Chien, Steve; Lahusen, Rick
Recent advances in wireless sensor network technology have provided robust and reliable solutions for sophisticated pervasive computing applications such as inhospitable terrain environmental monitoring. We present a case study for developing a real-time pervasive computing system, called OASIS for optimized autonomous space in situ sensor-web, which combines ground assets (a sensor network) and space assets (NASA’s earth observing (EO-1) satellite) to monitor volcanic activities at Mount St. Helens. OASIS’s primary goals are: to integrate complementary space and in situ ground sensors into an interactive and autonomous sensorweb, to optimize power and communication resource management of the sensorweb and to provide mechanisms for seamless and scalable fusion of future space and in situ components. The OASIS in situ ground sensor network development addresses issues related to power management, bandwidth management, quality of service management, topology and routing management, and test-bed design. The space segment development consists of EO-1 architectural enhancements, feedback of EO-1 data into the in situ component, command and control integration, data ingestion and dissemination and field demonstrations.
The planned Alaska SAR Facility - An overview
NASA Technical Reports Server (NTRS)
Carsey, Frank; Weeks, Wilford
1987-01-01
The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.
NASA Technical Reports Server (NTRS)
Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.
1988-01-01
The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.
Inventory of File sref.t03z.pgrb212.spread_3hrly.grib2
ground UGRD analysis U-Component of Wind [m/s] std dev 002 10 m above ground VGRD analysis V-Component of Wind [m/s] std dev 003 1000 mb UGRD analysis U-Component of Wind [m/s] std dev 004 850 mb UGRD analysis U-Component of Wind [m/s] std dev 005 700 mb UGRD analysis U-Component of Wind [m/s] std dev 006 600
Inventory of File sref.t03z.pgrb216.spread_3hrly.grib2
ground UGRD analysis U-Component of Wind [m/s] std dev 002 10 m above ground VGRD analysis V-Component of Wind [m/s] std dev 003 1000 mb UGRD analysis U-Component of Wind [m/s] std dev 004 850 mb UGRD analysis U-Component of Wind [m/s] std dev 005 700 mb UGRD analysis U-Component of Wind [m/s] std dev 006 600
Inventory of File sref.t03z.pgrb243.spread_3hrly.grib2
ground UGRD analysis U-Component of Wind [m/s] std dev 002 10 m above ground VGRD analysis V-Component of Wind [m/s] std dev 003 1000 mb UGRD analysis U-Component of Wind [m/s] std dev 004 850 mb UGRD analysis U-Component of Wind [m/s] std dev 005 700 mb UGRD analysis U-Component of Wind [m/s] std dev 006 600
Inventory of File sref.t03z.pgrb132.spread_3hrly.grib2
ground UGRD analysis U-Component of Wind [m/s] std dev 002 10 m above ground VGRD analysis V-Component of Wind [m/s] std dev 003 1000 mb UGRD analysis U-Component of Wind [m/s] std dev 004 850 mb UGRD analysis U-Component of Wind [m/s] std dev 005 700 mb UGRD analysis U-Component of Wind [m/s] std dev 006 600
Modeling of GIC Impacts in Different Time Scales, and Validation with Measurement Data
NASA Astrophysics Data System (ADS)
Shetye, K.; Birchfield, A.; Overbye, T. J.; Gannon, J. L.
2016-12-01
Geomagnetically induced currents (GICs) have mostly been associated with geomagnetic disturbances (GMDs) originating from natural events such as solar coronal mass ejections. There is another, man-made, phenomenon that can induce GICs in the bulk power grid. Detonation of nuclear devices at high altitudes can give rise to electromagnetic pulses (EMPs) that induce electric fields at the earth's surface. EMPs cause three types of waves on different time scales, the slowest of which, E3, can induce GICs similar to the way GMDs do. The key difference between GMDs and EMPs is the rise time of the associated electric field. E3 electric fields are in the msec. to sec. range, whereas GMD electric fields are slower (sec. to min.). Similarly, the power grid and its components also operate and respond to disturbances in various time frames, right from electromagnetic transients (eg. lightning propagation) in the micro second range to steady state power flow ( hours). Hence, different power system component models need to be used to analyze the impacts of GICs caused by GMDs, and EMPs. For instance, for the slower GMD based GICs, a steady-state (static) analysis of the system is sufficient. That is, one does not need to model the dynamic components of a power system, such as the rotating machine of a generator, or generator controls such as exciters, etc. The latter become important in the case of an E3 EMP wave, which falls in the power system transient stability time frame of msec. to sec. This talk will first give an overview of the different time scales and models associated with power system operations, and where GMD and EMPs fit in. This is helpful to develop appropriate system models and test systems for analyzing impacts of GICs from various sources, and developing mitigation measures. Example test systems developed for GMD and EMP analysis, and their key modeling and analysis differences will be presented. After the modeling is discussed, results of validating simulated GICs with GIC measurements from a utility for a recent moderate GMD event will be shown, using NSF Earthscope derived electric fields. The end goal is to validate 1) power system models used for GICs, and 2) ground models to see whether 3D ground models provide better results than the hitherto-used 1D ground models.
Single-Frame Terrain Mapping Software for Robotic Vehicles
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2011-01-01
This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; generates terrain traversability cost; detects low overhangs and high-density obstacles; and can perform geometry-based terrain classification (ground, ground cover, unknown). A new origin is automatically selected for each single-frame terrain map in global coordinates such that it coincides with the corner of a world map cell. That way, single-frame terrain maps correctly line up with the world map, facilitating the merging of map data into the world map. Instead of using 32 bits to store the floating-point elevation for a map cell, the vehicle elevation is assigned to the map origin elevation and reports the change in elevation (from the origin elevation) in terms of the number of discrete steps. The single-frame terrain map elevation resolution is 2 cm. At that resolution, terrain elevation from 20.5 to 20.5 m (with respect to the vehicle's elevation) is encoded into 11 bits. For each four-byte map cell, bits are assigned to encode elevation, terrain roughness, terrain classification, object classification, terrain traversability cost, and a confidence value. The vehicle s current position and orientation, the map origin, and the map cell resolution are all included in a header for each map. The map is compressed into a vector prior to delivery to another system.
New shielding configurations for a simultaneous PET/MRI scanner at 7T
Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.
2014-01-01
Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems. PMID:24380812
NASA Technical Reports Server (NTRS)
Leach, Ronald J.
1997-01-01
The purpose of this project was to study the feasibility of reusing major components of a software system that had been used to control the operations of a spacecraft launched in the 1980s. The study was done in the context of a ground data processing system that was to be rehosted from a large mainframe to an inexpensive workstation. The study concluded that a systematic approach using inexpensive tools could aid in the reengineering process by identifying a set of certified reusable components. The study also developed procedures for determining duplicate versions of software, which were created because of inadequate naming conventions. Such procedures reduced reengineering costs by approximately 19.4 percent.
Popescu, Dan; Ichim, Loretta; Stoican, Florin
2017-02-23
Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes-fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms.
Popescu, Dan; Ichim, Loretta; Stoican, Florin
2017-01-01
Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms. PMID:28241479
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 2; Design Report
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
Critical Design Reviews (CDR's) were held on the Solar Dynamic Ground Test Demonstrator (SDGTD). This CDR summary report will provide the following information for each of the system components and the system integration: (1) A bibliography of design/design review documentation; (2) A summary of the major discussion issues from issues from each design review; (3) A definition of the component and system detail designs along with the bottom line from the supporting analysis; (4) Status and key results from pertinent development activities on-going in the CDR time period; (5) A brief description of planned testing; and (6) A discussion of issues stiff open at the completion of CDR. Appendix 1 to this report contains a listing and status (as of 28 June 1993) of all the action items generated during all SDGTD CDRs. The reader should remember that the SDGTD program is being conducted in an open communication forum, and program participants are encouraged to ask questions or request information. Team members are allowed and encouraged to participate in the reviews on an equal basis. No request for information, as long as it is within the work scope, is refused, so many action items are generated.
On sustainable and efficient design of ground-source heat pump systems
NASA Astrophysics Data System (ADS)
Grassi, W.; Conti, P.; Schito, E.; Testi, D.
2015-11-01
This paper is mainly aimed at stressing some fundamental features of the GSHP design and is based on a broad research we are performing at the University of Pisa. In particular, we focus the discussion on an environmentally sustainable approach, based on performance optimization during the entire operational life. The proposed methodology aims at investigating design and management strategies to find the optimal level of exploitation of the ground source and refer to other technical means to cover the remaining energy requirements and modulate the power peaks. The method is holistic, considering the system as a whole, rather than focusing only on some components, usually considered as the most important ones. Each subsystem is modeled and coupled to the others in a full set of equations, which is used within an optimization routine to reproduce the operative performances of the overall GSHP system. As a matter of fact, the recommended methodology is a 4-in-1 activity, including sizing of components, lifecycle performance evaluation, optimization process, and feasibility analysis. The paper reviews also some previous works concerning possible applications of the proposed methodology. In conclusion, we describe undergoing research activities and objectives of future works.
NASA Technical Reports Server (NTRS)
1975-01-01
The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.
Radial Velocities of 41 Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
Aeronautical Engineering: A special bibliography with indexes, supplement 13
NASA Technical Reports Server (NTRS)
1972-01-01
This special bibliography lists 283 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines), and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.
Aeronautical Engineering, a special bibliography with indexes, supplement 15
NASA Technical Reports Server (NTRS)
1972-01-01
This special bibliography lists 363 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1972. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.
Wargaming the Enemy Unmanned Aircraft System (UAS) Threat
2013-01-01
and various current and future short range air defense systems. In addition, the EWF experiments had Army high altitude airship (HAA) with a...component during these experiments dealt with controlling high speed fighters operating at low altitude over the ground commander’s AO. The...JAGIC).18 “”During experimentation with JAGIC, the ACA delegated a volume of airspace, either below a coordinating altitude or within a high density
NASA Astrophysics Data System (ADS)
Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Formhals, Julian; Bär, Kristian; Sass, Ingo
2017-04-01
Large-scale borehole thermal energy storage (BTES) is a promising technology in the development of sustainable, renewable and low-emission district heating concepts. Such systems consist of several components and assemblies like the borehole heat exchangers (BHE), other heat sources (e.g. solarthermics, combined heat and power plants, peak load boilers, heat pumps), distribution networks and heating installations. The complexity of these systems necessitates numerical simulations in the design and planning phase. Generally, the subsurface components are simulated separately from the above ground components of the district heating system. However, as fluid and heat are exchanged, the subsystems interact with each other and thereby mutually affect their performances. For a proper design of the overall system, it is therefore imperative to take into account the interdependencies of the subsystems. Based on a TCP/IP communication we have developed an interface for the coupling of a simulation package for heating installations with a finite element software for the modeling of the heat flow in the subsurface and the underground installations. This allows for a co-simulation of all system components, whereby the interaction of the different subsystems is considered. Furthermore, the concept allows for a mathematical optimization of the components and the operational parameters. Consequently, a finer adjustment of the system can be ensured and a more precise prognosis of the system's performance can be realized.
Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich
2017-04-01
Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.
Ground System Extensibility Considerations
NASA Astrophysics Data System (ADS)
Miller, S. W.; Greene, E.
2017-12-01
The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners, such as NASA's Earth Observation System (EOS), NOAA's current POES, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), and DoD's Defense Meteorological Satellite Program (DMSP). The CGS provides a wide range of support to a number of national and international missions, including command and control, mission management, data acquisition and routing, and environmental data processing and distribution. The current suite of CGS-supported missions has demonstrated the value of interagency and international partnerships to address global observation needs. With its established infrastructure and existing suite of missions, the CGS is extensible to a wider array of potential new missions. This paper will describe how the inherent scalability and extensibility of the CGS enables the addition of these new missions, with an eye on global enterprise needs in the 2020's and beyond.
Titan 3E/Centaur D-1T Systems Summary
NASA Technical Reports Server (NTRS)
1973-01-01
A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.
NASA Technical Reports Server (NTRS)
1978-01-01
Sea level, static, ground testing of the over-the-wing engine and boilerplate nacelle components was performed. The equipment tested and the test facility are described. Summaries of the instrumentations, the chronological history of the tests, and the test results are presented.
REMEDIATION FLUID RECYCLING - APPLICATION OF PERVAPORATION TECHNOLOGY TO MATERIAL RECOVERY AND REUSE
In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flusing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of ground...
Airborne Visible Laser Optical Communications Program (AVLOC)
NASA Technical Reports Server (NTRS)
Ward, J. H.
1975-01-01
The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.
Reliability of Multiple Component Systems
1975-07-15
George Washington University Bethesda, Maryland .20014 Dr. Larry Cornwell Western Illinois University Macomb, Illinois 61455 Dr. Lester A...Jersey 07801 Robert M. Eissner USA Materiel Sys Anal Agency Aberdeen Proving Ground, Md. 21005 Bernard Engebos USA Electronics Command White...Philadelphia, Pennsylvania 19137 587 J Attendee»-- 19lh Design of Experiments Conference (continued) Captain Bernard J. Lawless Hqs
Neuroanatomical Distribution of Five Semantic Components of Verbs: Evidence from fMRI
ERIC Educational Resources Information Center
Kemmerer, David; Castillo, Javier Gonzalez; Talavage, Thomas; Patterson, Stephanie; Wiley, Cynthia
2008-01-01
The Simulation Framework, also known as the Embodied Cognition Framework, maintains that conceptual knowledge is grounded in sensorimotor systems. To test several predictions that this theory makes about the neural substrates of verb meanings, we used functional magnetic resonance imaging (fMRI) to scan subjects' brains while they made semantic…
Study of Effective Alternative Education Programs: Final Grant Report
ERIC Educational Resources Information Center
Quinn, Mary Magee; Poirier, Jeffrey M.
2007-01-01
This report presents findings of a study conducted to identify the components of systems that effectively meet the diverse, ever changing needs of children with disabilities for whom traditional school settings do not work. A secondary goal of this study was to develop a conceptually clear and empirically grounded definition of alternative…
Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...
In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flusing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of ground...
Service-oriented architecture for the ARGOS instrument control software
NASA Astrophysics Data System (ADS)
Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian
2012-09-01
The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.
Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2016-01-01
Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.
DORIS Starec ground antenna characterization and impact on positioning
NASA Astrophysics Data System (ADS)
Tourain, C.; Moreaux, G.; Auriol, A.; Saunier, J.
2016-12-01
In a geodetic radio frequency observing system the phase center offsets and phase center variations of ground antennae are a fundamental component of mathematical models of the system observables. In this paper we describe work aimed at improving the DORIS Starec ground antenna phase center definition model. Seven antennas were analyzed in the Compact Antenna Test Range (CATR), a dedicated CNES facility. With respect to the manufacturer specified phase center offset, the measured antennae varied between -6 mm and +4 mm due to manufacturing variations. To solve this problem, discussions were held with the manufacturer, leading to an improvement of the manufacturing process. This work results in a reduction in the scatter to ±1 mm. The phase center position has been kept unchanged and associated phase law has been updated and provided to users of the International DORIS Service (IDS). This phase law is applicable to all Starec antennas (before and after manufacturing process consolidation) and is azimuth independent. An error budget taking into account these updated characteristics has been established for the antenna alone: ±2 mm on the horizontal plane and ±3 mm on the up component, maximum error values for antennas named type C (Saunier et al., 2016) produced with consolidated manufacturing process. Finally the impact of this updated characterization on positioning results has been analyzed and shows a scale offset only of the order of +12 mm for the Terrestrial Reference Frame.
Development of a filter regeneration system for advanced spacecraft fluid systems
NASA Technical Reports Server (NTRS)
Behrend, A. F., Jr.; Descamp, V. A.
1974-01-01
The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.
NASA Technical Reports Server (NTRS)
Tutt, Ben; Gill, Susannah; Wilson, Aaron; Johnson, Keith
2009-01-01
Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.
Inventory of File sref_nmb.t03z.pgrb221.ctl.grib2
006 10 m above ground UGRD analysis U-Component of Wind [m/s] ENS=low-res ctl 007 10 m above ground VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl 008 surface WEASD analysis Water Equivalent of -Component of Wind [m/s] ENS=low-res ctl 021 250 mb VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl
Inventory of File sref_nmb.t03z.pgrb132.ctl.grib2
006 10 m above ground UGRD analysis U-Component of Wind [m/s] ENS=low-res ctl 007 10 m above ground VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl 008 surface WEASD analysis Water Equivalent of -Component of Wind [m/s] ENS=low-res ctl 021 250 mb VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl
Inventory of File sref_nmb.t03z.pgrb243.ctl.grib2
006 10 m above ground UGRD analysis U-Component of Wind [m/s] ENS=low-res ctl 007 10 m above ground VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl 008 surface WEASD analysis Water Equivalent of -Component of Wind [m/s] ENS=low-res ctl 021 250 mb VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl
Inventory of File SN.2012091412.grib6th.f18.grib2
ground UGRD 18 hour fcst U-Component of Wind [m/s] 003.2 35 m above ground VGRD 18 hour fcst V-Component of Wind [m/s] 004 surface TMP 18 hour fcst Temperature [K] 005 0.5 m underground TMP 18 hour fcst ] 008.1 10 mb UGRD 18 hour fcst U-Component of Wind [m/s] 008.2 10 mb VGRD 18 hour fcst V-Component of
Inventory of File sref_nmb.t03z.pgrb216.ctl.grib2
006 10 m above ground UGRD analysis U-Component of Wind [m/s] ENS=low-res ctl 007 10 m above ground VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl 008 surface WEASD analysis Water Equivalent of -Component of Wind [m/s] ENS=low-res ctl 021 250 mb VGRD analysis V-Component of Wind [m/s] ENS=low-res ctl
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture
NASA Technical Reports Server (NTRS)
Smith, Dan; Bristow, John; Crouse, Patrick
2007-01-01
This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .
NASA Technical Reports Server (NTRS)
Maisel, James E.
1988-01-01
Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.
Numerical analysis of propeller induced ground vortices by actuator disk model.
Yang, Y; Veldhuis, L L M; Eitelberg, G
2018-01-01
During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the production of wall-parallel components of vorticity has a strong contribution from the wall-parallel components of the pressure gradient on the wall, which is generated by the action of the propulsor. This mechanism is a supplementation for the vorticity transported from the far-field boundary layer, which has been assumed the main vorticity source in a number of previous publications. Furthermore, the quantitative prediction of the occurrence of ground vortices is performed from the numerical results. As the distance of the propeller form the ground decreases, and as the thrust of the propeller increases, ground vortices are generated from the ground and enter the propeller. In addition, the vortices which exist near the ground but does not enter the propeller plane are observed and visualized by three-dimensional data.
Response of Pendulums to Translational and Rotational Components of Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.; Kalkan, E.
2008-12-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). Pendulum response is usually simplified by considering the input from uni-axial translational motion only. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). We consider complete equations of motion for three following types of pendulum: (i) conventional mass-on-rod, (ii) mass- on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. Inverted pendulums are used in seismology for more than 100 years, for example, classical Wiechert's horizontal seismograph built around 1905 and still used at some seismological observatories, and recent Guralp's horizontal seismometers CMG-40T and CMG-3T. Inverted pendulums also have significant importance for engineering applications where they are often used to simulate the dynamic response of various structural systems. The results of this study show that a horizontal pendulum similar to a modern accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The responses of pendulums are calculated in time-domain using close-form solution Duhamel's integral with complex input forcing functions. As compared to a common horizontal pendulum, response of an inverted pendulum is sensitive to acceleration of gravity and vertical acceleration when it reaches the level close to 1.0 g. Gravity effect introduces nonlinearity into the differential equation of motion, and results in shift of the frequency response to lower frequencies. The equations of inverted pendulum represent elastic response of pendulums (as material behavior), with nonlinearity created by time and amplitude dependence of equation coefficients. Sensitivity of inverted pendulum to angular acceleration of tilt is proportional to the length of a pendulum, and should be taken into consideration since it can produce significant effect especially for long pendulums, idealizing for instance, bridge piers, bents, elevated water tanks, telecommunication towers, etc.
Status of the Direct Data Distribution (D(exp 3)) Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence
2001-01-01
NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.
An adaptable product for material processing and life science missions
NASA Technical Reports Server (NTRS)
Wassick, Gregory; Dobbs, Michael
1995-01-01
The Experiment Control System II (ECS-II) is designed to make available to the microgravity research community the same tools and mode of automated experimentation that their ground-based counterparts have enjoyed for the last two decades. The design goal was accomplished by combining commercial automation tools familiar to the experimenter community with system control components that interface with the on-orbit platform in a distributed architecture. The architecture insulates the tools necessary for managing a payload. By using commercial software and hardware components whenever possible, development costs were greatly reduced when compared to traditional space development projects. Using commercial-off-the-shelf (COTS) components also improved the usability documentation, and reducing the need for training of the system by providing familiar user interfaces, providing a wealth of readily available documentation, and reducing the need for training on system-specific details. The modularity of the distributed architecture makes it very amenable for modification to different on-orbit experiments requiring robotics-based automation.
Automation of a N-S S and C Database Generation for the Harrier in Ground Effect
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Chaderjian, Neal M.; Pandya, Shishir; Kwak, Dochan (Technical Monitor)
2001-01-01
A method of automating the generation of a time-dependent, Navier-Stokes static stability and control database for the Harrier aircraft in ground effect is outlined. Reusable, lightweight components arc described which allow different facets of the computational fluid dynamic simulation process to utilize a consistent interface to a remote database. These components also allow changes and customizations to easily be facilitated into the solution process to enhance performance, without relying upon third-party support. An analysis of the multi-level parallel solver OVERFLOW-MLP is presented, and the results indicate that it is feasible to utilize large numbers of processors (= 100) even with a grid system with relatively small number of cells (= 10(exp 6)). A more detailed discussion of the simulation process, as well as refined data for the scaling of the OVERFLOW-MLP flow solver will be included in the full paper.
Development of a Free-Flight Simulation Infrastructure
NASA Technical Reports Server (NTRS)
Miles, Eric S.; Wing, David J.; Davis, Paul C.
1999-01-01
In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.
Electric field-decoupled electroosmotic pump for microfluidic devices.
Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J
2003-09-26
An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.
Evaluation of ground motion scaling methods for analysis of structural systems
O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.
2011-01-01
Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.
Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions.
Drut, Joaquín E; Porter, William J
2015-02-06
The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy derived recently, we prove nonperturbative analytic relations for the Rényi entropies of those systems. These relations are valid for all subsystem sizes, particle numbers, and dimensions, and in arbitrary external trapping potentials.
Programs for Testing an SSME-Monitoring System
NASA Technical Reports Server (NTRS)
Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary;
2007-01-01
A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
The electric test vehicle one (ETV-1) was built from the ground up with present state of the art technology. Two vehicles were built and are presently being evaluated by NASA's Jet Propulsion Laboratory (JPL). A duplicate set of propulsion system components was built, mounted on a breadboard, and delivered to NASA's Lewis Research Center for testing on the road load simulator (RLS). Driving cycle tests completed on the system are described.
Harrier Information Management System (HIMS): The system and the approach
NASA Astrophysics Data System (ADS)
Reynolds, D. J.
1990-01-01
The Harrier GR5 is to be fleet-fitted with an engine monitoring system. The ground station known as HIMS was developed to enable engineers to analyze parameter exceedance and component life count data collected from it. The HIMS and its development program are reviewed. Counts can vary from aircraft to aircraft for a given number of flying hours and lifting on this basis is expected to yield considerable savings. Aspects relevant to future aircraft health monitoring programs are considered.
A Framework for Dimensioning VDL-2 Air-Ground Networks
NASA Technical Reports Server (NTRS)
Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven
2014-01-01
This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.
A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication
NASA Technical Reports Server (NTRS)
McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe
2010-01-01
An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route Center in 1-2 years.
Development and Testing of the Orion CEV Parachute Assembly System (CPAS)
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; Taylor, Anthony P.; Sinclair, Robert; Olmstead, Randy; Kelley, Christopher; Johnson, Justin; Melgares, Michael; Morris, Aaron; Bledsoe, Kristin
2009-01-01
The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference.
Global ice-sheet system interlocked by sea level
NASA Astrophysics Data System (ADS)
Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn
1986-07-01
Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide ( W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature ( London) 315, 21-26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.
NASA Astrophysics Data System (ADS)
Valle, Fabio
The paper analyzes the satellite broadband systems for consumer from the perspective of technological innovation. The suggested interpretation relies upon such concepts as technological paradigm, technological trajectory and salient points. Satellite technology for broadband is a complex system on which each component (i.e. the satellite, the end-user equipment, the on-ground systems and related infrastructure) develops at different speed. Innovation in this industry concentrates recently on satellite space aircraft that seemed to be the component with the highest perceived opportunity for improvement. The industry has designed recently satellite systems with continuous dimensional increase of capacity available, suggesting that there is a technological trajectory in this area, similar to Moore’s law in the computer industry. The implications for industry players, Ka-band systems, and growth of future applications are also examined.
Simulation-optimization aids in resolving water conflict: Temecula Basin, Southern California
Hanson, Randall T.; Faunt, Claudia C.; Schmid, Wolfgang; Lear, Jonathan
2014-01-01
The productive agricultural areas of Pajaro Valley, California have exclusively relied on ground water from coastal aquifers in central Monterey Bay. As part of the Basin Management Plan (BMP), the Pajaro Valley Water Management Agency (PVWMA) is developing additional local supplies to replace coastal pumpage, which is causing seawater intrusion. The BMP includes an aquifer storage and recovery (ASR) system, which captures and stores local winter runoff, and supplies it to growers later in the growing season in lieu of ground-water pumpage. A Coastal Distribution System (CDS) distributes water from the ASR and other supplemental sources. A detailed model of the Pajaro Valley is being used to simulate the coupled supply and demand components of irrigated agriculture from 1963 to 2006. Recent upgrades to the Farm Process in MODFLOW (MF2K-FMP) allow simulating the effects of ASR deliveries and reduced pumping for farms in subregions connected to the CDS. The BMP includes a hierarchy of monthly supply alternatives, including a recovery well field around the ASR system, a supplemental wellfield, and onsite farm supply wells. The hierarchy of delivery requirements is used by MF2K-FMP to estimate the effects of these deliveries on coastal ground-water pumpage and recovery of water levels. This integrated approach can be used to assess the effectiveness of the BMP under variable climatic conditions, and to test the impacts of more complete subscription by coastal farmers to the CDS deliveries. The model will help managers assess the effects of new BMP components to further reduce pumpage and seawater intrusion.
Autonomous Spacecraft Communication Interface for Load Planning
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; May, Ryan D.; Morris, Paul H.
2014-01-01
Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.
Flight Model Discharge System.
1987-04-01
will immediately remove the charge from the front surface of the dielectric and return it to ground. The 2-hour time constant network will then reset the...ATDP programs. NEWT5 permits the digitized input of board and component position data, while ATDP automates certain phases of input and output table...format. 8.5 RESULTS The system-level results are presented as curves of AR (normalized radiator area) versus THOT and as curves of Q (heater
NASA Astrophysics Data System (ADS)
Black, Stephen T.; Eshleman, Wally
1997-01-01
This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.
NASA Astrophysics Data System (ADS)
Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee
2018-04-01
In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.
MTI science, data products, and ground-data processing overview
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Atkins, William H.; Balick, Lee K.; Borel, Christoph C.; Clodius, William B.; Christensen, R. Wynn; Davis, Anthony B.; Echohawk, J. C.; Galbraith, Amy E.; Hirsch, Karen L.; Krone, James B.; Little, Cynthia K.; McLachlan, Peter M.; Morrison, Aaron; Pollock, Kimberly A.; Pope, Paul A.; Novak, Curtis; Ramsey, Keri A.; Riddle, Emily E.; Rohde, Charles A.; Roussel-Dupre, Diane C.; Smith, Barham W.; Smith, Kathy; Starkovich, Kim; Theiler, James P.; Weber, Paul G.
2001-08-01
The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The MTI satellite also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data interpretation and analysis. Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. In addition, the MTI science team has produced detailed site, system and atmospheric models to aid in system design and data analysis. This paper provides an overview of the MTI research objectives, data products and ground data processing.
NASA Astrophysics Data System (ADS)
Benninghoff, Heike; Rems, Florian; Risse, Eicke; Brunner, Bernhard; Stelzer, Martin; Krenn, Rainer; Reiner, Matthias; Stangl, Christian; Gnat, Marcin
2018-01-01
In the framework of a project called on-orbit servicing end-to-end simulation, the final approach and capture of a tumbling client satellite in an on-orbit servicing mission are simulated. The necessary components are developed and the entire end-to-end chain is tested and verified. This involves both on-board and on-ground systems. The space segment comprises a passive client satellite, and an active service satellite with its rendezvous and berthing payload. The space segment is simulated using a software satellite simulator and two robotic, hardware-in-the-loop test beds, the European Proximity Operations Simulator (EPOS) 2.0 and the OOS-Sim. The ground segment is established as for a real servicing mission, such that realistic operations can be performed from the different consoles in the control room. During the simulation of the telerobotic operation, it is important to provide a realistic communication environment with different parameters like they occur in the real world (realistic delay and jitter, for example).
Resolution of massive compact clusters in the 30 Doradus periphery with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Walborn, Nolan R.; Mackenty, John W.; Saha, Abhijit; White, Richard L.; Parker, Joel WM.
1995-01-01
Hubble Space Telescope Wide Field/Planetary Camera UBV images of three massive, compact multiple systems with the SNR 30 Dor B/NGC 2060 and 30 Dor C/NGC 2044 are discussed and illustrated. In two cases, WN+OB objects have been resolved into additional components to those previously known from ground-based observations, substantially reducing the luminosities of the WN stars and rendering them currently unidentified; in the third case, the components of a B+K composite-spectrum object have been clearly identified. The results are of significance for evolutionary interpretations of these massive stars and for determinations of the upper IMF in extragalactic systems.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2011-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation
NASA Technical Reports Server (NTRS)
Hughes, Ryan; Walker, David
2009-01-01
This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.
Data systems elements technology assessment and system specifications, issue no. 2. [nasa programs
NASA Technical Reports Server (NTRS)
1978-01-01
The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.
Data systems elements technology assessment and system specifications, issue no. 1
NASA Technical Reports Server (NTRS)
1977-01-01
The ability to satisfy the objectives of future NASA Office of Applications Programs is dependent on technology advances in a number of areas of data systems. The technology of end-to-end data systems (space generator elements through ground processing, dissemination, and presentation, is examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.
NASA Technical Reports Server (NTRS)
Fields, Christina M.
2013-01-01
The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is,. responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) is a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The purpose of the UCTS is to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems s:luring their development. As an intern at KSC, my assignment was to develop a model component for the UCTS. I was given a fluid component (drier) to model in Matlab. The drier was a Catch All replaceable core type filter-drier. The filter-drier provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-drier also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. I completed training for UNIX and Simulink to help aid in my assignment. The filter-drier was modeled by determining affects it has on the pressure, velocity and temperature of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my model filter-drier in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements.
21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?
Code of Federal Regulations, 2014 CFR
2014-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Physical... contamination of components, dietary supplements, or contact surfaces. The methods for adequate ground... constitute a source of contamination in areas where components, dietary supplements, or contact surfaces are...
21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?
Code of Federal Regulations, 2012 CFR
2012-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Physical... contamination of components, dietary supplements, or contact surfaces. The methods for adequate ground... constitute a source of contamination in areas where components, dietary supplements, or contact surfaces are...
Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004
Bartolino, James R.
2009-01-01
The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through five main sources (from largest to smallest): Silver Creek streamflow gain, ground-water pumpage, Big Wood River streamflow gain, direct evapotranspiration from riparian vegetation, and subsurface outflow (treated separately). Total estimated mean 1995-2004 annual outflow or discharge from the aquifer system is 250,000 acre-ft/yr (350 ft3/s). Estimated total discharge is 240,000 acre-ft/yr (330 ft3/s) for both the wet year 1995 and the dry year 2001. The budget residual is the difference between estimated ground-water inflow and outflow and encompasses subsurface outflow, ground-water storage change, and budget error. For 1995-2004, mean annual inflow exceeded outflow by 20,000 acre-ft/yr (28 ft3/s); for the wet year 1995, mean annual inflow exceeded outflow by 30,000 acre-ft/yr (41 ft3/s); for the dry year 2001, mean annual outflow exceeded inflow by 20,000 acre-ft/yr (28 ft3/s). These values represent 8, 13, and 8 percent, respectively, of total outflows for the same periods. It is difficult to differentiate the relative contributions of the three residual components, although the estimated fluctuations between the wet and dry year budgets likely are primarily caused by changes in ground-water storage. The individual components in the wet and dry year ground-water budgets responded in a consistent manner to changes in precipitation and temperature. Although the ground-water budgets for the three periods indicated that ground-water storage is replenished in wet years, statistical analyses by Skinner and others (2007) suggest that such replenishment is not complete and over the long term more water is removed from storage than is replaced. In other words, despite restoration of water to ground-water storage in wet years, changes have occurred in either recharge and (or) discharge to cause ground-water storage to decline over time. Such changes may include, but are not limited to: lining or abandoning canals and ditches, conversion of surface-water irriga
Robotic Intelligence Kernel: Driver
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INL Robotic Intelligence Kernel-Driver is built on top of the RIK-A and implements a dynamic autonomy structure. The RIK-D is used to orchestrate hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a single cognitive behavior kernel that provides intrinsic intelligence for a wide variety of unmanned ground vehicle systems.
Aeronautical engineering. A continuing bibliography with indexes, supplement 127, October 1980
NASA Technical Reports Server (NTRS)
1980-01-01
A bibliography containing 431 abstracts addressing various topics in aeronautical engineering is given. The coverage includes engineering and theoretical aspects of design. construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
The treatment implementation advisor: a component of the GypsES project
Michael C. Saunders; Michael A. Foster
1991-01-01
The treatment implementation advisor is one of the knowledge based advisory modules of GypsES, a knowledge system environment for decision support in gypsy moth management. Its function is to provide detailed advice on intervention tactics for gypsy moth: e.g. aerial and ground application of insecticides and microbials, inundative or augmentative releases of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... (``ID'') (Order No. 20) issued by the presiding administrative law judge (``ALJ'') on January 24, 2011 granting a consent motion to terminate the above-captioned investigation in its entirety based upon a... consent motion to terminate the instant investigation on the ground that the parties have reached a...
Implementation of a system to provide mobile satellite services in North America
NASA Technical Reports Server (NTRS)
Johanson, Gary A.; Davies, N. George; Tisdale, William R. H.
1993-01-01
This paper describes the implementation of the ground network to support Mobile Satellite Services (MSS). The system is designed to take advantage of a powerful new satellite series and provides significant improvements in capacity and throughput over systems in service today. The system is described in terms of the services provided and the system architecture being implemented to deliver those services. The system operation is described including examples of a circuit switched and packet switched call placement. The physical architecture is presented showing the major hardware components and software functionality placement within the hardware.
NASA Technical Reports Server (NTRS)
Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface Control Documents (ICDs) for the FFMs and their usage will be addressed as the solution to this issue. In particular, the advantages and disadvantages of these ICDs across physically separate development groups will be delineated.
Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico.
Sracek, Ondra; Armienta, María Aurora; Rodríguez, Ramiro; Villaseñor, Guadalupe
2010-01-01
There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.
Early stages of figure-ground segregation during perception of the face-vase.
Pitts, Michael A; Martínez, Antígona; Brewer, James B; Hillyard, Steven A
2011-04-01
The temporal sequence of neural processes supporting figure-ground perception was investigated by recording ERPs associated with subjects' perceptions of the face-vase figure. In Experiment 1, subjects continuously reported whether they perceived the face or the vase as the foreground figure by pressing one of two buttons. Each button press triggered a probe flash to the face region, the vase region, or the borders between the two. The N170/vertex positive potential (VPP) component of the ERP elicited by probes to the face region was larger when subjects perceived the faces as figure. Preceding the N170/VPP, two additional components were identified. First, when the borders were probed, ERPs differed in amplitude as early as 110 msec after probe onset depending on subjects' figure-ground perceptions. Second, when the face or vase regions were probed, ERPs were more positive (at ∼ 150-200 msec) when that region was perceived as figure versus background. These components likely reflect an early "border ownership" stage, and a subsequent "figure-ground segregation" stage of processing. To explore the influence of attention on these stages of processing, two additional experiments were conducted. In Experiment 2, subjects selectively attended to the face or vase region, and the same early ERP components were again produced. In Experiment 3, subjects performed an identical selective attention task, but on a display lacking distinctive figure-ground borders, and neither of the early components were produced. Results from these experiments suggest sequential stages of processing underlying figure-ground perception, each which are subject to modifications by selective attention.
Early Stages of Figure–Ground Segregation during Perception of the Face–Vase
Pitts, Michael A.; Martínez, Antígona; Brewer, James B.; Hillyard, Steven A.
2011-01-01
The temporal sequence of neural processes supporting figure–ground perception was investigated by recording ERPs associated with subjects’ perceptions of the face–vase figure. In Experiment 1, subjects continuously reported whether they perceived the face or the vase as the foreground figure by pressing one of two buttons. Each button press triggered a probe flash to the face region, the vase region, or the borders between the two. The N170/vertex positive potential (VPP) component of the ERP elicited by probes to the face region was larger when subjects perceived the faces as figure. Preceding the N170/VPP, two additional components were identified. First, when the borders were probed, ERPs differed in amplitude as early as 110 msec after probe onset depending on subjects’ figure–ground perceptions. Second, when the face or vase regions were probed, ERPs were more positive (at ~150–200 msec) when that region was perceived as figure versus background. These components likely reflect an early “border ownership” stage, and a subsequent “figure–ground segregation” stage of processing. To explore the influence of attention on these stages of processing, two additional experiments were conducted. In Experiment 2, subjects selectively attended to the face or vase region, and the same early ERP components were again produced. In Experiment 3, subjects performed an identical selective attention task, but on a display lacking distinctive figure–ground borders, and neither of the early components were produced. Results from these experiments suggest sequential stages of processing underlying figure–ground perception, each which are subject to modifications by selective attention. PMID:20146604
Carter, Janet M.; Driscoll, Daniel G.; Hamade, Ghaith R.; Jarrell, Gregory J.
2001-01-01
The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area of South Dakota and Wyoming. Quantification and evaluation of various hydrologic budget components are important for managing and understanding these aquifers. Hydrologic budgets are developed for two scenarios, including an overall budget for the entire study area and more detailed budgets for subareas. Budgets generally are combined for the Madison and Minnelusa aquifers because most budget components cannot be quantified individually for the aquifers. An average hydrologic budget for the entire study area is computed for water years 1987-96, for which change in storage is approximately equal to zero. Annual estimates of budget components are included in detailed budgets for nine subareas, which consider periods of decreasing storage (1987-92) and increasing storage (1993-96). Inflow components include recharge, leakage from adjacent aquifers, and ground-water inflows across the study area boundary. Outflows include springflow (headwater and artesian), well withdrawals, leakage to adjacent aquifers, and ground-water outflow across the study area boundary. Leakage, ground-water inflows, and ground-water outflows are difficult to quantify and cannot be distinguished from one another. Thus, net ground-water flow, which includes these components, is calculated as a residual, using estimates for the other budget components. For the overall budget for water years 1987-96, net ground-water outflow from the study area is computed as 100 ft3/s (cubic feet per second). Estimates of average combined budget components for the Madison and Minnelusa aquifers are: 395 ft3/s for recharge, 78 ft3/s for headwater springflow, 189 ft3/s for artesian springflow, and 28 ft3/s for well withdrawals. Hydrologic budgets also are quantified for nine subareas for periods of decreasing storage (1987-92) and increasing storage (1993-96), with changes in storage assumed equal but opposite. Common subareas are identified for the Madison and Minnelusa aquifers, and previous components from the overall budget generally are distributed over the subareas. Estimates of net ground-water flow for the two aquifers are computed, with net ground-water outflow exceeding inflow for most subareas. Outflows range from 5.9 ft3/s in the area east of Rapid City to 48.6 ft3/s along the southwestern flanks of the Black Hills. Net groundwater inflow exceeds outflow for two subareas where the discharge of large artesian springs exceeds estimated recharge within the subareas. More detailed subarea budgets also are developed, which include estimates of flow components for the individual aquifers at specific flow zones. The net outflows and inflows from the preliminary subarea budgets are used to estimate transmissivity of flow across specific flow zones based on Darcy?s Law. For estimation purposes, it is assumed that transmissivities of the Madison and Minnelusa aquifers are equal in any particular flow zone. The resulting transmissivity estimates range from 90 ft2/d to about 7,400 ft2/d, which is similar to values reported by previous investigators. The highest transmissivity estimates are for areas in the northern and southwestern parts of the study area, and the lowest transmissivity estimates are along the eastern study area boundary. Evaluation of subarea budgets provides confidence in budget components developed for the overall budget, especially regarding precipitation recharge, which is particularly difficult to estimate. Recharge estimates are consistently compatible with other budget components, including artesian springflow, which is a dominant component in many subareas. Calculated storage changes for subareas also are consistent with other budget components, specifically artesian springflow and net ground-water flow, and also are consistent with water-level fluctuations for observation wells. Ground-water budgets and flowpaths are especially complex i
Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.
2008-01-01
Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.
Pleiades image quality: from users' needs to products definition
NASA Astrophysics Data System (ADS)
Kubik, Philippe; Pascal, Véronique; Latry, Christophe; Baillarin, Simon
2005-10-01
Pleiades is the highest resolution civilian earth observing system ever developed in Europe. This imagery programme is conducted by the French National Space Agency, CNES. It will operate in 2008-2009 two agile satellites designed to provide optical images to civilian and defence users. Images will be simultaneously acquired in Panchromatic (PA) and multispectral (XS) mode, which allows, in Nadir acquisition condition, to deliver 20 km wide, false or natural colored scenes with a 70 cm ground sampling distance after PA+XS fusion. Imaging capabilities have been highly optimized in order to acquire along-track mosaics, stereo pairs and triplets, and multi-targets. To fulfill the operational requirements and ensure quick access to information, ground processing has to automatically perform the radiometrical and geometrical corrections. Since ground processing capabilities have been taken into account very early in the programme development, it has been possible to relax some costly on-board components requirements, in order to achieve a cost effective on-board/ground compromise. Starting from an overview of the system characteristics, this paper deals with the image products definition (raw level, perfect sensor, orthoimage and along-track orthomosaics), and the main processing steps. It shows how each system performance is a result of the satellite performance followed by an appropriate ground processing. Finally, it focuses on the radiometrical performances of final products which are intimately linked to the following processing steps : radiometrical corrections, PA restoration, image resampling and PAN-sharpening.
NASA Astrophysics Data System (ADS)
Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.
2015-12-01
ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.
2007-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.
Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.
Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo
2017-09-20
Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.
Aircraft noise synthesis system
NASA Technical Reports Server (NTRS)
Mccurdy, David A.; Grandle, Robert E.
1987-01-01
A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.
The Business Case for Spiral Development in Heavy Lift Launch Vehicle Systems
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Christensen, David L.; Keith, Edward L.
2005-01-01
Performance capabilities of a specific combination of the Space Shuttle external tank and various liquid engines in an in-line configuration, two-stage core vehicle with multiple redesigned solid rocket motor strap-ons are reexamined. This concept proposes using existing assets, hardware, and capabilities that are already crew-rated, flight certified, being manufactured under existing contracts, have a long history of component and system ground testing, and have been flown for over 20 yr. This paper goes beyond describing potential performance capabilities of specific components to discuss the overall system feasibility-from end to end, start to finish-describing the inherent cost advantages of the Spiral Development concept, which builds on existing capabilities and assets, as opposed to starting up a "fresh sheet" heavy-lift launch vehicle program from scratch.
International Space Station (ISS)
2001-03-30
Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
ERIC Educational Resources Information Center
Storberg-Walker, Julia
2007-01-01
This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…
A Generic Modeling Process to Support Functional Fault Model Development
NASA Technical Reports Server (NTRS)
Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.
2016-01-01
Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.
Canadian High Arctic Ionospheric Network (CHAIN)
NASA Astrophysics Data System (ADS)
Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.
2009-02-01
Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.
X-Band CubeSat Communication System Demonstration
NASA Technical Reports Server (NTRS)
Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren
2015-01-01
Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system demonstration between a balloon and/or a sounding rocket and a Near Earth Network (NEN) ground system. This paper presents CubeSat communication systems simulation results, analysis of X-band and S-band antennas and RF front-end components, transceiver design, analysis and optimization of space-to-ground communication performance, subsystem development, as well as the test results for an end-to-end X-band CubeSat communication system demonstration. The outcome of this work will be used to pave the way for next generation NEN-compatible X-band CubeSat communication systems to support higher data rates with more advanced modulation and forward error correction (FEC) coding schemes, and to support and attract new science missions at lower cost. It also includes an abbreviated concept of operations for CubeSat users to utilize the NEN, starting from first contact with NASA's communication network and continuing through on-orbit operations.
Infrared Imagery of Shuttle (IRIS). Task 1
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
Assessment of available IR sensor technology showed that the four aerothermodynamic conditions of interest during the entry trajectory of space shuttle can be accommodated by an aircraft flying parallel to the orbiter reentry ground track. Thermal information from the sides of the vehicle can be obtained with degraded performance (temperatures below 800 K) by flying the C-141 aircraft on the opposite side of the shuttle ground track and in the direction opposite that which is optimum for lower surface viewing. An acquisition system using a 6.25-cm aperture telescope and a single indium antimonide detector were designed to meet the acquisition requirements and interface with the 91.5-cm telescope with minimum modification. An image plane system using 600 indium antimonide detectors in two arrays which requires no modification to the existing telescope was also designed. Currently available components were used in a data handling system with interfaces with the experimentors station and the HP2100 computer.
NASA Technical Reports Server (NTRS)
Norikane, L.; Freeman, A.; Way, J.; Okonek, S.; Casey, R.
1992-01-01
Recent updates to a geographical information system (GIS) called VICAR (Video Image Communication and Retrieval)/IBIS are described. The system is designed to handle data from many different formats (vector, raster, tabular) and many different sources (models, radar images, ground truth surveys, optical images). All the data are referenced to a single georeference plane, and average or typical values for parameters defined within a polygonal region are stored in a tabular file, called an info file. The info file format allows tracking of data in time, maintenance of links between component data sets and the georeference image, conversion of pixel values to `actual' values (e.g., radar cross-section, luminance, temperature), graph plotting, data manipulation, generation of training vectors for classification algorithms, and comparison between actual measurements and model predictions (with ground truth data as input).
James Webb Space Telescope - Applying Lessons Learned to I&T
NASA Technical Reports Server (NTRS)
Johns, Alan; Seaton, Bonita; Gal-Edd, Jonathan; Jones, Ronald; Fatig, Curtis; Wasiak, Francis
2008-01-01
The James Webb Space Telescope (JWST) is part of a new generation of spacecraft acquiring large data volumes from remote regions in space. To support a mission such as the JWST, it is imperative that lessons learned from the development of previous missions such as the Hubble Space Telescope and the Earth Observing System mission set be applied throughout the development and operational lifecycles. One example of a key lesson that should be applied is that core components, such as the command and telemetry system and the project database, should be developed early, used throughout development and testing, and evolved into the operational system. The purpose of applying lessons learned is to reap benefits in programmatic or technical parameters such as risk reduction, end product quality, cost efficiency, and schedule optimization. In the cited example, the early development and use of the operational command and telemetry system as well as the establishment of the intended operational database will allow these components to be used by the developers of various spacecraft components such that development, testing, and operations will all use the same core components. This will reduce risk through the elimination of transitions between development and operational components and improve end product quality by extending the verification of those components through continual use. This paper will discuss key lessons learned that have been or are being applied to the JWST Ground Segment integration and test program.
Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects
NASA Technical Reports Server (NTRS)
Gaier, James R.; Jaworske, Donald A.
2007-01-01
Heat rejection from power systems will be necessary for human and robotic activity on the lunar surface. Functional operation of such heat rejection systems is at risk of degradation as a consequence of dust accumulation. The Apollo astronauts encountered marked degradation of performance in heat rejection systems for the lunar roving vehicle, science packages, and other components. Although ground testing of dust mitigation concepts in support of the Apollo mission identified mitigation tools, the brush concept adopted by the Apollo astronauts proved essentially ineffective. A better understanding of the issues associated with the impact of lunar dust on the functional performance of heat rejection systems and its removal is needed as planning gets underway for human and robotic missions to the Moon. Renewed emphasis must also be placed on ground testing of pristine and dust-covered heat rejection system surfaces to quantify degradation and address mitigation concepts. This paper presents a review of the degradation in performance of heat rejection systems encountered on the lunar surface to-date, and will discuss current activities underway to evaluate the durability of candidate heat rejection system surfaces and current dust mitigation concepts.
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
NASA Technical Reports Server (NTRS)
Ramos, Alberto
2011-01-01
Projects assigned to: (1) Testing, fixing, and procuring enclosure systems and components for Kennedy Ground Controls Systems at launch pad B. (2) Organizational spreadsheets for all subsystems involved in the project. (Procurement, parts lists, drawings, purchase requests, etc) (3) Resolve is a project devoted to the lunar rover that will sample lunar soil in an effort to remove the moister and separate the metal from the oxygen to produce drinkable water. I helped with the humidity environmental generator for the experiment (moister detector).
NASA Astrophysics Data System (ADS)
Grant, K. D.; Panas, M.
2016-12-01
NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.
Pointing system for the balloon-borne astronomical payloads
NASA Astrophysics Data System (ADS)
Nirmal, Kaipacheri; Sreejith, Aickara Gopinathan; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, Suresh; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant
2016-10-01
We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 inertial measurement unit, and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle or in real photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.
Spacelab Life Sciences-1 electrical diagnostic expert system
NASA Technical Reports Server (NTRS)
Kao, C. Y.; Morris, W. S.
1989-01-01
The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.
Hanson, R.T.; Li, Zhen; Faunt, C.C.
2004-01-01
The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. Ground-water inflow occurs as natural recharge in the form of streamflow infiltration and areal infiltration of precipitation along stream channels, artificial recharge from infiltration of imported water at recharge ponds and along selected stream channels, and leakage along selected transmission pipelines. Ground-water outflow occurs as evapotranspiration, stream base flow, discharge through pumpage from wells, and subsurface flow to the San Francisco Bay. The geohydrologic framework of the regional ground-water flow system was represented as six model layers. The hydraulic properties were redefined on the basis of cell-based lithologic properties that were delineated in terms of aggregate thicknesses of coarse-grained, fine-grained, and mixed textural categories. The regional aquifer systems also are dissected by several laterally extensive faults that may form at least partial barriers to the lateral flow of ground water. The spatial extent of the ground-water flow model was extended and refined to cover the entire Santa Clara Valley, including the Evergreen subregion. The temporal discretization was refined and the period of simulation was extended to 197099. The model was upgraded to MODFLOW-2000 (MF2K) and was calibrated to fit historical ground-water levels, streamflow, and land subsidence for the period 197099. The revised model slightly overestimates measured water levels with an root-mean-square error of -7.34 feet. The streamflow generally shows a good match on gaged creeks and rivers for flows greater than 1.2 cubic feet per second. The revised model also fits the measured deformation at the borehole extensometer site located near San Jose within 16 to 27 percent and the extensometer site near Sunnyvale within 3 percent of the maximum measured seasonal deformation for the deepest extensometers. The total ground-water inflow and outflow of about 225,500 acre-feet per
Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter
2012-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.
Improved obstacle avoidance and navigation for an autonomous ground vehicle
NASA Astrophysics Data System (ADS)
Giri, Binod; Cho, Hyunsu; Williams, Benjamin C.; Tann, Hokchhay; Shakya, Bicky; Bharam, Vishal; Ahlgren, David J.
2015-01-01
This paper presents improvements made to the intelligence algorithms employed on Q, an autonomous ground vehicle, for the 2014 Intelligent Ground Vehicle Competition (IGVC). In 2012, the IGVC committee combined the formerly separate autonomous and navigation challenges into a single AUT-NAV challenge. In this new challenge, the vehicle is required to navigate through a grassy obstacle course and stay within the course boundaries (a lane of two white painted lines) that guide it toward a given GPS waypoint. Once the vehicle reaches this waypoint, it enters an open course where it is required to navigate to another GPS waypoint while avoiding obstacles. After reaching the final waypoint, the vehicle is required to traverse another obstacle course before completing the run. Q uses modular parallel software architecture in which image processing, navigation, and sensor control algorithms run concurrently. A tuned navigation algorithm allows Q to smoothly maneuver through obstacle fields. For the 2014 competition, most revisions occurred in the vision system, which detects white lines and informs the navigation component. Barrel obstacles of various colors presented a new challenge for image processing: the previous color plane extraction algorithm would not suffice. To overcome this difficulty, laser range sensor data were overlaid on visual data. Q also participates in the Joint Architecture for Unmanned Systems (JAUS) challenge at IGVC. For 2014, significant updates were implemented: the JAUS component accepted a greater variety of messages and showed better compliance to the JAUS technical standard. With these improvements, Q secured second place in the JAUS competition.
NASA Astrophysics Data System (ADS)
Kohno, Wataru; Kirikoshi, Akimitsu; Kita, Takafumi
2018-03-01
We construct a variational ground-state wave function of weakly interacting M-component Bose-Einstein condensates beyond the mean-field theory by incorporating the dynamical 3/2-body processes, where one of the two colliding particles drops into the condensate and vice versa. Our numerical results with various masses and particle numbers show that the 3/2-body processes between different particles make finite contributions to lowering the ground-state energy, implying that many-body correlation effects between different particles are essential even in the weak-coupling regime of the Bose-Einstein condensates. We also consider the stability condition for 2-component miscible states using the new ground-state wave function. Through this calculation, we obtain the relation UAB2/UAAUBB < 1 + α , where Uij is the effective contact potential between particles i and j and α is the correction, which originates from the 3/2- and 2-body processes.
Water Budget of East Maui, Hawaii
Shade, Patricia J.
1999-01-01
Ground-water recharge is estimated from six monthly water budgets calculated using long-term average rainfall and streamflow data, estimated pan-evaporation and fog-drip data, and soil characteristics. The water-budget components are defined seasonally, through the use of monthly data, and spatially by broad climatic and geohydrologic areas, through the use of a geographic information system model. The long-term average water budget for east Maui was estimated for natural land-use conditions. The average rainfall, fog-drip, runoff, evapotranspiration, and ground-water recharge volumes for the east Maui study area are 2,246 Mgal/d, 323 Mgal/d, 771 Mgal/d, 735 Mgal/d, and 1,064 Mgal/d, respectively.
Upper and lower bounds of ground-motion variabilities: implication for source properties
NASA Astrophysics Data System (ADS)
Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino
2017-04-01
One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).
Natural Attenuation of Chlorinated Solvents and Fuel Components (BTEX and MTBE) in Ground Water
Monitored Natural Attenuation is widely used in the USA to deal with ground water contamination from fuel components such as the BTEX compounds or MTBE or TBA and from chlorinated solvents such as PCE, TCE, and TCA. This presentation reviews the theory and practice of MNA in the...
NASA Technical Reports Server (NTRS)
Mennell, R. C.; Cameron, B. W.
1974-01-01
Experimental aerodynamic investigations were conducted on a .0405 scale representation of the space shuttle orbiter in a 7.75 x 11 foot low speed wind tunnel during the time period March 21, to April 17, 1973. The primary test objectives were to investigate both the aerodynamic and propulsion effects of various air breathing engine systems in free air and in the presence of the ground. The free air portion of this test investigated the aerodynamic effects of engine nacelle number, nacelle grouping, and nacelle location. For this testing the model was sting mounted on a six component internal strain gage balance entering through the model base. The ground plane portion of the aerodynamic test investigated the same nacelle effects at ground plane locations of full scale W.P. = 239.9, 209.3, 158.9, 108.5, and 7.78 in. At the conclusion of the aerodynamic test period the propulsion effects of various nacelle locations and freestream orientations in the presence of the ground were investigated.
DARPA super resolution vision system (SRVS) robust turbulence data collection and analysis
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Thompson, Roger; Tofsted, David; D'Arcy, Sean
2014-05-01
Atmospheric turbulence degrades the range performance of military imaging systems, specifically those intended for long range, ground-to-ground target identification. The recent Defense Advanced Research Projects Agency (DARPA) Super Resolution Vision System (SRVS) program developed novel post-processing system components to mitigate turbulence effects on visible and infrared sensor systems. As part of the program, the US Army RDECOM CERDEC NVESD and the US Army Research Laboratory Computational & Information Sciences Directorate (CISD) collaborated on a field collection and atmospheric characterization of a two-handed weapon identification dataset through a diurnal cycle for a variety of ranges and sensor systems. The robust dataset is useful in developing new models and simulations of turbulence, as well for providing as a standard baseline for comparison of sensor systems in the presence of turbulence degradation and mitigation. In this paper, we describe the field collection and atmospheric characterization and present the robust dataset to the defense, sensing, and security community. In addition, we present an expanded model validation of turbulence degradation using the field collected video sequences.
A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology
NASA Technical Reports Server (NTRS)
Hoy, Scott D.; Figueiredo, Marco A.
2006-01-01
Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability: