Sample records for ground system elements

  1. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    NASA Technical Reports Server (NTRS)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  2. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    PubMed Central

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed. PMID:24723838

  3. Three-dimensional dynamic analyses of track-embankment-ground system subjected to high speed train loads.

    PubMed

    Fu, Qiang; Zheng, Changjie

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.

  4. Annual Report by Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Elements of the shuttle program that directly affect the mission success and crew safety were investigated. These elements included the shuttle orbiter, the main engine, the solid rocket boosters, avionic system, ground support equipment and the approach and landing operations. The thermal protection systems were studied in detail. Crew training and ground simulation test procedures were reviewed.

  5. Applications of CCSDS recommendations to Integrated Ground Data Systems (IGDS)

    NASA Technical Reports Server (NTRS)

    Mizuta, Hiroshi; Martin, Daniel; Kato, Hatsuhiko; Ihara, Hirokazu

    1993-01-01

    This paper describes an application of the CCSDS Principle Network (CPH) service model to communications network elements of a postulated Integrated Ground Data System (IGDS). Functions are drawn principally from COSMICS (Cosmic Information and Control System), an integrated space control infrastructure, and the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). From functional requirements, this paper derives a set of five communications network partitions which, taken together, support proposed space control infrastructures and data distribution systems. Our functional analysis indicates that the five network partitions derived in this paper should effectively interconnect the users, centers, processors, and other architectural elements of an IGDS. This paper illustrates a useful application of the CCSDS (Consultive Committee for Space Data Systems) Recommendations to ground data system development.

  6. Solar and Heliospheric Observatory (SOHO) Experimenters' Operations Facility (EOF)

    NASA Technical Reports Server (NTRS)

    Larduinat, Eliane; Potter, William

    1994-01-01

    This paper describes the SOHO Instrumenters' Operations Facility (EOF) project. The EOF is the element of the SOHO ground system at the Goddard Space Flight Center that provides the interface between the SOHO scientists and the other ground system elements. This paper first describes the development context of the SOHO EOF. It provides an overview of the SOHO mission within the International Solar-Terrestrial Physics (ISTP) project, and discusses the SOHO scientific objectives. The second part of this paper presents the implementation of the SOHO EOF, its innovative features, its possible applications to other missions, and its potential for use as part of a fully integrated ground control system.

  7. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  8. High performance VLSI telemetry data systems

    NASA Technical Reports Server (NTRS)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  9. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  10. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  11. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  12. Corrosiveness of ground water in the Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Barringer, J.L.; Kish, G.R.; Velnich, A.J.

    1993-01-01

    Ground water from the unconfined part of the Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain typically is corrosive-- that is, it is acidic, soft, and has low concentrations of alkalinity. Corrosive ground water has the potential to leach trace elements and asbestos fibers from plumbing materials used in potable- water systems, thereby causing potentially harmful concentrations of these substances in drinking water. Corrosion indices were calculated from water-quality data for 370 wells in the unconfined Kirkwood-Cohansey aquifer system. Values of the Langelier Saturation Index are predominantly negative, indicating that the water is undersaturated with respect to calcium carbonate, and, therefore, is potentially corrosive. Values of the Aggressive Index, a similar estimator of the corrosiveness of water, range from 3.9 (highly corrosive) to 11.9 (moderately corrosive). The median Aggressive Index value calculated for the 370 wells is 6.0, a value that indicates that the water is highly corrosive. Moderately corrosive ground water is found in some coastal areas. Isolated instances of moderately corrosive water are found in northern Ocean County, and in Burlington, Camden, and Salem Counties. In the vicinity of Ocean County corrosion-index values change little with depth, but in Atlantic, Burlington, and Salem Counties the corrosiveness of ground water generally appears to decrease with depth. Analyses of standing tap water from newly constructed homes in the Coastal Plain show concentrations of lead and other trace elements are significantly higher than those in ambient ground water. The elevated trace-element concentrations are attributed to the corrosion of plumbing materials by ground water. Results of the tap-water analyses substantiate the corrosiveness of Kirkwood-Cohansey ground water, as estimated by corrosion-index values.

  13. Solar power satellite system definition study, phase 2. Volume 2: Reference system description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.

  14. Sail GTS ground system analysis: Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  15. Space shuttle/food system study. Volume 2, Appendix G: Ground support system analysis. Appendix H: Galley functional details analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.

  16. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    DTIC Science & Technology

    2014-08-07

    Modeling and Simulation of an Unmanned Ground Vehicle Power System John Broderick Jack Hartner Dawn Tilbury Ella Atkins Sponsored by U.S...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John Broderick ; Jack Hartner; Dawn Tilbury; Ella Atkins 5d. PROJECT

  17. Strategies for Validation Testing of Ground Systems

    NASA Technical Reports Server (NTRS)

    Annis, Tammy; Sowards, Stephanie

    2009-01-01

    In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)

  18. Storage, retrieval, and analysis of ST data

    NASA Technical Reports Server (NTRS)

    Albrecht, R.

    1984-01-01

    Space Telescope can generate multidimensional image data, very similar in nature to data produced with microdensitometers. An overview is presented of the ST science ground system between carrying out the observations and the interactive analysis of preprocessed data. The ground system elements used in data archival and retrieval are described and operational procedures are discussed. Emphasis is given to aspects of the ground system that are relevant to the science user and to general principles of system software development in a production environment. While the system being developed uses relatively conservative concepts for the launch baseline, concepts were developed to enhance the ground system. This includes networking, remote access, and the utilization of alternate data storage technologies.

  19. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  20. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  1. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.

    2016-01-01

    NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice for Mars, from which early return is likely to be impossible.

  2. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  3. Future's operation areas: new-generation suppression enemy air defence (SEAD) elements

    NASA Astrophysics Data System (ADS)

    Hazinedar, Ä.°lker

    2015-05-01

    Since air vehicles took place in the theater of operations, they have become the indispensable elements and the strongest attack power of armed forces. In the following period, with technological development, supersonic aircrafts took place in the operation area and this increased effectiveness of air vehicles much more. Air forces have used these aircrafts during important missions like strategic attack and air defense operations. On the other hand, decision makers understood that it was not feasible to intercept fighter aircrafts by executing combat air patrol flight missions. Since there is not enough reaction time to intercept the high speed aircrafts, ground stationed Surface to Air Missiles (SAM) system requirement has emerged. Therefore, SAM systems took place in the operation scene as well. Due to the fact that SAM systems emerged against the attack power, the attack aircrafts are to keep away from the fire of the ground stationed SAM systems. Hence, the requirement of Suppression Enemy Air Defense (SEAD) arose. SEAD elements take under suppression the radar of the SAM systems. In this way, attack aircrafts are able to attack without the risk of SAM systems. The purpose of this study is to find new methods or concepts in order to protect friendly attack aircrafts against ground based surface to air missiles' fires. Modernization of SAM systems and new generation SAM system producing activities have proceeded with positive acceleration. So, current SEAD elements and concepts are not able to cover the requirements due to the increased SAM system ranges. According to the concepts, SEAD weapons` ranges must be longer than the SAM weapons' ranges to protect friendly aircrafts. In this study, new concept was offered to overcome the deficiencies of current SEAD concept. The elements of new concepts were put forward. Classic SEAD concept and new generation concepts were assessed by using SWOT analysis technique. As a result, this study has revealed that, air forces' effectiveness can be enhanced by using new generation SEAD concepts against enemy SAM systems.

  4. Documentation of a finite-element two-layer model for simulation of ground-water flow

    USGS Publications Warehouse

    Mallory, Michael J.

    1979-01-01

    This report documents a finite-element model for simulation of ground-water flow in a two-aquifer system where the two aquifers are coupled by a leakage term that represents flow through a confining layer separating the two aquifers. The model was developed by Timothy J. Durbin (U.S. Geological Survey) for use in ground-water investigations in southern California. The documentation assumes that the reader is familiar with the physics of ground-water flow, numerical methods of solving partial-differential equations, and the FORTRAN IV computer language. It was prepared as part of the investigations made by the U.S. Geological Survey in cooperation with the San Bernardino Valley Municipal Water District. (Kosco-USGS)

  5. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. Themore » optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.« less

  6. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  7. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  8. Data systems elements technology assessment and system specifications, issue no. 2. [nasa programs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.

  9. Data systems elements technology assessment and system specifications, issue no. 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The ability to satisfy the objectives of future NASA Office of Applications Programs is dependent on technology advances in a number of areas of data systems. The technology of end-to-end data systems (space generator elements through ground processing, dissemination, and presentation, is examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.

  10. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or crewed missions. There are potential options for either modifying existing facilities or constructing new ground test facilities. At least three potential options exist for reducing (or eliminating) the release of radioactivity into the environment during ground testing. These include fully containing the NTP exhaust during the ground test, scrubbing the exhaust, or utilizing an existing borehole at the Nevada National Security Site (NNSS) to filter the exhaust. Finally, the project is considering the potential for an early flight demonstration of an engine very similar to one that could be used to support human Mars or other ambitious missions. The flight demonstration could be an important step towards the eventual utilization of NTP.

  11. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  12. Patterns and rates of ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Modica, Edward

    1992-01-01

    Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.

  13. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  14. Centralized vs decentralized options for an European Data Relay Satellite system

    NASA Astrophysics Data System (ADS)

    Saint Aubert, S.; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.

    1985-10-01

    The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the relay system as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programs foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment, and user ground segment for different options of data dissemination.

  15. Centralized vs decentralized options for a european data relay satellite system

    NASA Astrophysics Data System (ADS)

    Aubert, Ph. Saint; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.

    The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the Relay System as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programmes foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment and user ground segment for different options of data dissemination.

  16. Testing of Unmanned Ground Vehicle (UGV) Systems

    DTIC Science & Technology

    2009-02-12

    Emissions - Intra-system EMC TOP 1-2-51253 TOP 1-2-51154 TOP 2-2-61355 Determines whether the item tested meets the electromagnetic radiation ...effects, static electricity, and lightning criteria and the maximum electromagnetic radiation environment to which the test item may be exposed...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 2-2-540 Testing of Unmanned Ground Vehicle (UGV) Systems 5c. PROGRAM ELEMENT NUMBER 5d

  17. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  18. Timeline and the Timeline Exchange Infrastructure: a Framework for Exchanging Temporal Information

    NASA Technical Reports Server (NTRS)

    Donahue, Kenneth; Chung, Seung H,

    2013-01-01

    The concept of a timeline is used ubiquitously during space mission design and development to specify elements of flight and ground system designs. In this paper we introduce our Timeline Ontology. The Timeline Ontology is grounded in mathematical formalism, thus proving concrete semantics.

  19. MODELING TO EVOLVE UNDERSTANDING OF THE SHALLOW GROUND WATER FLOW SYSTEM BENEATH THE LIZZIE RESEARCH SITE, NC

    EPA Science Inventory

    The purpose of the modeling effort presented here is to evolve a conceptual model of ground-water flow at the Lizzie, NC research site using analytic solutions and field observations. The resulting analytic element parameterization of boundary conditions, aquifer transmissivitie...

  20. Perl Tools for Automating Satellite Ground Systems

    NASA Technical Reports Server (NTRS)

    McLean, David; Haar, Therese; McDonald, James

    2000-01-01

    The freeware scripting language Pert offers many opportunities for automating satellite ground systems for new satellites as well as older, in situ systems. This paper describes a toolkit that has evolved from of the experiences gained by using Pert to automate the ground system for the Compton Gamma Ray Observatory (CGRO) and for automating some of the elements in the Earth Observing System Data and Operations System (EDOS) ground system at Goddard Space Flight Center (GSFC). CGRO is an older ground system that was forced to automate because of fund cuts. Three 8 hour shifts were cut back to one 8 hour shift, 7 days per week. EDOS supports a new mission called Terra, launched December 1999 that requires distribution and tracking of mission-critical reports throughout the world. Both of these ground systems use Pert scripts to process data and display it on the Internet as well as scripts to coordinate many of the other systems that make these ground systems work as a coherent whole. Another task called Automated Multimodal Trend Analysis System (AMTAS) is looking at technology for isolation and recovery of spacecraft problems. This effort has led to prototypes that seek to evaluate various tools and technology that meet at least some of the AMTAS goals. The tools, experiences, and lessons learned by implementing these systems are described here.

  1. Rapid Network Design

    DTIC Science & Technology

    2013-09-01

    control GCE ground combat element LCE logistics combat element MAGTF Marine Air Ground Task Force MWCS Marine Wing Communications Squadron NPS Naval...elements: command element (CE), ground combat el- ement ( GCE ), aviation combat element (ACE), and logistics combat element (LCE). Each ele- ment...This layer provides unimpeded high-speed connectivity between remote sites and the Internet. Limited security policies are applied at this level to

  2. National Airspace System : status of wide area augmentation system project

    DOT National Transportation Integrated Search

    1998-04-30

    As a key element of its overall program for modernizing the National Airspace : System, the Federal Aviation Administration (FAA) is planning a transition from : ground- to satellite-based navigation by using satellite signals generated by : the Depa...

  3. Alternative Approach to Vehicle Element Processing

    NASA Technical Reports Server (NTRS)

    Huether, Jacob E.; Otto, Albert E.

    1995-01-01

    The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.

  4. A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.

  5. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.; Goodliff, Kandyce

    2016-01-01

    NASA is studying conceptual architectures for a "Proving Ground" near the Moon or in high lunar orbit to conduct human space exploration missions that bridge the gap between today's operations with the International Space Station (ISS) and future human exploration of Mars beginning in the 2030s. This paper describes the framework of a concept of operations ("Conops") for candidate activities in the Proving Ground. The Conops discusses broad goals that the Proving Ground might address, such as participation from commercial entities, support for human landings on the Moon, use of mature technologies, and growth of capability through a steady cadence of increasingly ambitious piloted missions. Additional Proving Ground objectives are outlined in a companion paper. Key elements in the Conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System (SLS) heavy-lift rocket. Potential additions include a new space suit, commercial launch vehicles and logistics carriers, Solar Electric Propulsion (SEP) stages to move elements between different orbits and eventually take them on excursions to deep space, a core module with multiple docking ports, a habitation block, and robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. A module providing advanced regenerative life support functions could launch to the ISS, and later move to the Proving Ground. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The Conops describes notional missions chosen to guide the design of the architecture and its elements. One such mission might be the delivery of a approximately 10-t Transit Habitat element, comanifested with Orion on a Block 1B SLS launcher, to the Proving Ground. In another mission, the architecture might participate in direct human exploration of an asteroidal boulder brought to high lunar orbit by the Asteroid Redirect Mission. The Proving Ground stack could serve as a staging point and tele-operation center for robotic and piloted Moon landings. With the addition of a SEP stage, the architecture could support months-long excursions within and beyond the Earth's sphere of influence, possibly culminating in a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to quantify the risk of landing deconditioned crews on Mars. In a conceptual mission particularly stressing to system design, Proving Ground elements could transit to Mars orbit. Other possible design-driving operations include relocation of the stack with no crew on board, the unpiloted journey of the advanced life support module from ISS to the lunar vicinity, excursions to other destinations in near-Earth space, and additional support for Mars exploration in conjunction with the Evolvable Mars Campaign. The Proving Ground Conops concludes with a discussion of aborts and contingency operations

  6. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas : shallow ground-water quality and land use in the Albuquerque area, central New Mexico, 1993

    USGS Publications Warehouse

    Anderholm, Scott K.

    1997-01-01

    This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells. Samples were analyzed for selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds, and pesticides. The study area, which is in the Albuquerque Basin in central New Mexico, was limited to the Rio Grande flood plain; depth to water in this area generally is less than 25 feet. The amount and composition of recharge to the shallow ground-water system are important factors that affect shallow ground-water composition in this area. Important sources of recharge that affect shallow ground-water quality in the area include infiltration of surface water, which is used in agricultural land-use areas to irrigate crops, and infiltration of septic-system effluent in residential areas. Agricultural land use represents about 28 percent of the area, and residential land use represents about 35 percent of the total study area. In most of the study area, agricultural land use is interspersed with residential land use and neither is the dominant land use in the area. Land use in the study area historically has been changing from agricultural to urban. The composition of shallow ground water in the study area varies considerably. The dissolved solids concentration in shallow ground water in the study area ranges from 272 to 1,650 milligrams per liter, although the relative percentages of selected cations and anions do not vary substantially. Calcium generally is the dominant cation and bicarbonate generally is the dominant anion. Concentrations of nutrients generally were less than 1 milligram per liter. The concentration of many trace elements in shallow ground water was below or slightly above 1 microgram per liter and there was little variation in the concentrations. Barium, iron, manganese, molybdenum, and uranium were the only trace elements analyzed for that had median concentrations greater than 5 micrograms per liter. Volatile organic compounds were detected in 5 of 24 samples. Cis-1,2-dichloroethene and 1,1-dichloroethane were the most commonly detected volatile organic compounds (detected in two samples each). Pesticides were detected in 8 of 24 samples. Prometon was the most commonly detected pesticide (detected in 5 of 24 samples). Concentrations of volatile organic compounds and pesticides detected were much smaller than any U.S. Environmental Protection Agency standards that have been established. Infiltration of surface water and the evaporation or transpiration of this water, which partially is the result of past and present agricultural land use, seem to affect the concentrations of common constituents in shallow ground water in the study area. The small excess chloride in shallow ground water relative to surface water that has been affected by evaporation or transpiration could be due to mixing of shallow ground water with small amounts of precipitation/bulk deposition or septic-system effluent. Infiltration of septic-system effluent (residential land use) has affected the shallow ground-water composition in parts of the study area on the basis of the small dissolved oxygen concentrations, large dissolved organic carbon concentrations, and excess chloride. Despite the loading of nitrogen to the shallow ground-water system as the result of infiltration of septic-system effluent, the small nitrogen concentrations in shallow ground water probably are due to the small dissolved oxygen concentrations and relatively large dissolved organic carbon concentrations. The small concentrations and lack of variation of most trace elements indicate that land use has not substantially affected the concentration

  7. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  8. Carrier fluid temperature data in vertical ground heat exchangers with a varying pipe separation.

    PubMed

    Makasis, Nikolas; Narsilio, Guillermo A; Bidarmaghz, Asal; Johnston, Ian W

    2018-06-01

    The dataset in this article is related to shallow geothermal energy systems, which efficiently provide renewable heating and cooling to buildings, and specifically to the performance of the vertical ground heat exchangers (GHE) embedded in the ground. GHEs incorporate pipes with a circulating (carrier) fluid, exchanging heat between the ground and the building. The data show the average and inlet temperatures of the carrier fluid circulating in the pipes embedded in the GHEs (which directly relate to the performance of these systems). These temperatures were generated using detailed finite element modelling and comprise part of the daily output of various one-year simulations, accounting for numerous design parameters (including different pipe geometries) and ground conditions. An expanded explanation of the data as well as comprehensive analyses on how they were used can be found in the article titled "Ground-source heat pump systems: the effect of variable pipe separation in ground heat exchangers" (Makasis N, Narsilio GA, Bidarmaghz A, Johnston IW, 2018) [1].

  9. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element concentrations. Strontium and barium were the most frequently detected and usually were present in the highest concentrations. Iron and manganese were the next most commonly detected and next highest in concentrations. Iron concentrations were the most variable with respect to the range of variations (both within local networks and aquifer-wide) and with respect to the disparity between magnitude of concentrations (detections) and the frequency of samples below reporting limits (nondetections). Antimony, beryllium, cadmium, silver, and thallium were detected too infrequently for substantial interpretation of their occurrence or distributions or potential human-health implications. For those elements that were more frequently detected, there are some geographic patterns in their occurrence that primarily reflect climate effects. The highest concentrations of several elements were found in the West-Central glacial framework area (High Plains and northern Plains areas). There are few important patterns for any element in relation to land use, well type, or network type. Shallow land-use (monitor) wells had iron concentrations generally lower than the glacial aquifer system wells overall and much lower than major-aquifer survey wells, which comprise mostly private- and public-supply wells. Unlike those for iron, concentration patterns for manganese were similar among shallow land-use wells and major-aquifer survey wells. An apparent relation between low pH and relatively low concentrations of many elements, except lead, may be more indicative of the relatively low dissolved-solids content in wells in the Northeastern United States that comprise the majority of low pH wells, than of a pH dependent pattern. Iron and manganese have higher concentrations and larger ranges of concentrations especially under more reducing conditions. Dissolved oxygen and well depth were related to iron and manganese concentrations. Redox conditions also affect several trace elements such

  10. Space Station needs, attributes and architectural options. Volume 2, book 2, part 2, Task 2: Information management system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.

  11. Space Station needs, attributes and architectural options. Volume 2, book 2, part 2, Task 2: Information management system

    NASA Astrophysics Data System (ADS)

    1983-04-01

    Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.

  12. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  13. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  14. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  15. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  16. Exploring Knowledge Exchange between Senior and Future Leaders: A Grounded-Theory Study

    ERIC Educational Resources Information Center

    Gonzaga, Stephanie Young

    2009-01-01

    A grounded theory study examined senior leaders methods of knowledge sharing with junior leaders in a small commercial mortgage company. The study was designed to develop an emergent theory to explain the cultural elements that influenced the methods leaders used to transfer knowledge to junior people. The study identified a systemic value of…

  17. Webinar on the Removal of Uranium from Drinking Water by Small System Treatment Technology

    EPA Science Inventory

    Abstract: Radionuclides, such as uranium (U), occur naturally as trace elements in rocks and soils and thus can be found in dissolved forms in ground waters. Uranium has four oxidation states (+3, +4, +5, and +6) and is a very reactive element forming a variety of stable complexe...

  18. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  19. Achieving Operability via the Mission System Paradigm

    NASA Technical Reports Server (NTRS)

    Hammer, Fred J.; Kahr, Joseph R.

    2006-01-01

    In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.

  20. KSC ground operations planning for Space Station

    NASA Technical Reports Server (NTRS)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  1. Response analysis of curved bridge with unseating failure control system under near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Zuo, Ye; Sun, Guangjun; Li, Hongjing

    2018-01-01

    Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.

  2. GPS net­work operations for the International GPS Geodynamics Service

    USGS Publications Warehouse

    Neilan, Ruth E.

    1993-01-01

    As GPS technology comes of age in the 1990’s, it is evident that an internationally sponsored GPS tracking system is called for to provide consistent, timely ground tracking data and data products to the geophysical community. The planning group for the International GPS Geodynamics Service (IGS), sponsored by the International Association of Geodesy (IAG), is addressing all elements of the end-to-end tracking system, ranging from data collection to data analysis and distribution of products (Mueller, 1992). Part of the planning process is to formulate how these various elements work together to create the common infrastructure needed to support a wide variety of GPS investigations. A key element for any permanent satellite tracking system is certainly the acquisition segment; the reliability and robustness of the ground network operations directly determine the fates and limitations of final products. The IGS planning group therefore included a committee tasked to develop and establish standards governing data acquisition and site-specific characteristics deemed necessary to ensure the collection of a high quality, continuous data set.

  3. Payload specialist station study. Volume 3: Program study cost estimates. Part 1: Work breakdown structure

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The work breakdown structure (WBS) for the Payload Specialist Station (PSS) is presented. The WBS is divided into two elements--PSS contractor and mission unique requirements. In accordance with the study ground rules, it is assumed that a single contractor, hereafter referred to as PSS Contractor will perform the following: (1) provide C and D hardware (MFDS and elements of MMSE), except for GFE; (2) identify software requirements; (3) provide GSE and ground test software; and (4) perform systems engineering and integration in support of the Aft Flight Deck (AFD) C and D concept. The PSS Contractor WBS element encompasses a core or standardized PSS concept. Payload peculiar C and D requirements identified by users will originate as a part of the WBS element mission unique requirements; these requirements will be provided to the PSS Contractor for implementation.

  4. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  5. Electronics systems test laboratory testing of shuttle communications systems

    NASA Technical Reports Server (NTRS)

    Stoker, C. J.; Bromley, L. K.

    1985-01-01

    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) ofmore » each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.« less

  7. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes Multibeam Antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  8. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes multibeam antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  9. Seasat. Volume 3: Ground systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    The Seasat Project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June of 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The ground systems using during the mission life are discussed. Descriptions of the operating organization, the system elements, and the testing program are included. The various phases of the mission: launch and orbit insertion; cruise; and calibration are discussed. A special section is included on the orbit maneuver activites. Operations during the satellite failure are reviewed and summarized.

  10. Evaluation of Commercially Available Cold Chain Shipping Systems

    DTIC Science & Technology

    2015-03-19

    instructions for the maceration of heart tissue. Briefly, 10 g of ground beef was placed alone or with 40 mL 4°C phosphate buffered saline (PBS) in...room temperature (25°C) raw ground beef was placed in a 50-mL IKA Turrax tube with rotor-stator elements and 40 mL of 4°C PBS. Temperature probes...were placed in the center of the ground beef to record the starting temperature and removed during the homogenization process. Turrax homogenization

  11. Ground vehicle control at NIST: From teleoperation to autonomy

    NASA Technical Reports Server (NTRS)

    Murphy, Karl N.; Juberts, Maris; Legowik, Steven A.; Nashman, Marilyn; Schneiderman, Henry; Scott, Harry A.; Szabo, Sandor

    1994-01-01

    NIST is applying their Real-time Control System (RCS) methodology for control of ground vehicles for both the U.S. Army Researh Lab, as part of the DOD's Unmanned Ground Vehicles program, and for the Department of Transportation's Intelligent Vehicle/Highway Systems (IVHS) program. The actuated vehicle, a military HMMWV, has motors for steering, brake, throttle, etc. and sensors for the dashboard gauges. For military operations, the vehicle has two modes of operation: a teleoperation mode--where an operator remotely controls the vehicle over an RF communications network; and a semi-autonomous mode called retro-traverse--where the control system uses an inertial navigation system to steer the vehicle along a prerecorded path. For the IVHS work, intelligent vision processing elements replace the human teleoperator to achieve autonomous, visually guided road following.

  12. Moving Towards a Common Ground and Flight Data Systems Architecture for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rader. Steve; Kearney, Mike; McVittie, Thom; Smith, Dan

    2006-01-01

    The National Aeronautics and Space Administration has embarked on an ambitious effort to return man to the moon and then on to Mars. The Exploration Vision requires development of major new space and ground assets and poses challenges well beyond those faced by many of NASA's recent programs. New crewed vehicles must be developed. Compatible supply vehicles, surface mobility modules and robotic exploration capabilities will supplement the manned exploration vehicle. New launch systems will be developed as well as a new ground communications and control infrastructure. The development must take place in a cost-constrained environment and must advance along an aggressive schedule. Common solutions and system interoperability and will be critical to the successful development of the Exploration data systems for this wide variety of flight and ground elements. To this end, NASA has assembled a team of engineers from across the agency to identify the key challenges for Exploration data systems and to establish the most beneficial strategic approach to be followed. Key challenges and the planned NASA approach for flight and ground systems will be discussed in the paper. The described approaches will capitalize on new technologies, and will result in cross-program interoperability between spacecraft and ground systems, from multiple suppliers and agencies.

  13. Effects of land use on ground-water quality in central Florida; preliminary results, US Geological Survey Toxic Waste-Ground Water Contamination Program

    USGS Publications Warehouse

    Rutledge, A.T.

    1987-01-01

    Groundwater is the principal source of drinking water in central Florida. The most important hydrogeologic unit is the Floridan aquifer system, consisting of fractured limestone and dolomite limestone. Activities of man in areas of recharge to the Floridian aquifer system that may be affecting groundwater quality include: (1) the use of drainage wells for stormwater disposal in urban areas, (2) the use of pesticides and fertilizers in citrus groves, and (3) the mining and processing of phosphate ore in mining areas. Preliminary findings about the impacts of these land uses on ground-water quality by comparison with a fourth land use representing the absence of human activity in another area of recharge are presented. Drainage wells convey excess urban stormwater directly to the Upper Floridian aquifer. The volatile organic compounds are the most common contaminants in ground water. Trace elements such as chromium and lead are entering the aquifer but their movement is apparently attenuated by precipitation reactions associated with high pH or by cation-exchange reactions. Among the trace elements and organic chemicals, most ground-water contamination in citrus production areas is caused by pesticides, which include the organic compounds simazine, ametryne, chlordane, DDE , bromacil, aldicarb, EDB, trifluralin, and diazinon, and the trace elements zinc and copper; other contaminants include benzene, toluene, napthalene, and indene compounds. In the phosphate mining area, constituents of concern are arsenic, selenium, and mercury, and secondarily lead, chromium, cadmium, and others. Organic compounds such as fluorene, naphthalene, di-n-butyl phthalate, alkylated benzenes and naphthalenes, and indene compounds also are entering groundwater. (Author 's abstract)

  14. Life sciences Spacelab Mission Development test 3 (SMD 3) data management report

    NASA Technical Reports Server (NTRS)

    Moseley, E. C.

    1977-01-01

    Development of a permanent data system for SMD tests was studied that would simulate all elements of the shuttle onboard, telemetry, and ground data systems that are involved with spacelab operations. The onboard data system (ODS) and the ground data system (GDS) were utilized. The air-to-ground link was simulated by a hardwired computer-to-computer interface. A patch board system was used on board to select experiment inputs, and the downlink configuration from the ODS was changed by a crew keyboard entry to support each experiment. The ODS provided a CRT display of experiment parameters to enable the crew to monitor experiment performance. An onboard analog system, with recording capability, was installed to handle high rate data and to provide a backup to the digital system. The GDS accomplished engineering unit conversion and limit sensing, and provided realtime parameter display on CRT's in the science monitoring area and the test control area.

  15. Entanglement entropy of highly degenerate States and fractal dimensions.

    PubMed

    Castro-Alvaredo, Olalla A; Doyon, Benjamin

    2012-03-23

    We consider the bipartite entanglement entropy of ground states of extended quantum systems with a large degeneracy. Often, as when there is a spontaneously broken global Lie group symmetry, basis elements of the lowest-energy space form a natural geometrical structure. For instance, the spins of a spin-1/2 representation, pointing in various directions, form a sphere. We show that for subsystems with a large number m of local degrees of freedom, the entanglement entropy diverges as d/2 logm, where d is the fractal dimension of the subset of basis elements with nonzero coefficients. We interpret this result by seeing d as the (not necessarily integer) number of zero-energy Goldstone bosons describing the ground state. We suggest that this result holds quite generally for largely degenerate ground states, with potential applications to spin glasses and quenched disorder.

  16. Adaptive ground implemented phase array

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  17. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper presents the results of the analyses performed, the potential changes to mission architectures and campaigns that result, and the general trends that are more broadly applicable to any element design or mission planning for human exploration.

  18. Solar power satellite cost estimate

    NASA Technical Reports Server (NTRS)

    Harron, R. J.; Wadle, R. C.

    1981-01-01

    The solar power configuration costed is the 5 GW silicon solar cell reference system. The subsystems identified by work breakdown structure elements to the lowest level for which cost information was generated. This breakdown divides into five sections: the satellite, construction, transportation, the ground receiving station and maintenance. For each work breakdown structure element, a definition, design description and cost estimate were included. An effort was made to include for each element a reference that more thoroughly describes the element and the method of costing used. All costs are in 1977 dollars.

  19. ISHM Implementation for Constellation Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzel, John; Duncavage, Dan; Crocker, Alan; Alena, Rick

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK) "not just data" to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of systems (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). This viewgraph presentation reviews the use of ISHM for the Constellation system.

  20. Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data

    Treesearch

    Wilfrid Schroeder; Evan Ellicott; Charles Ichoku; Luke Ellison; Matthew B. Dickinson; Roger D. Ottmar; Craig Clements; Dianne Hall; Vincent Ambrosia; Robert Kremens

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near-coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge...

  1. Development of the Cassini Ground Data System in a multimission environment

    NASA Technical Reports Server (NTRS)

    Madrid, G.; Wanczuk, G.

    1993-01-01

    As baselined, the Cassini Ground Data System (GDS) will be composed of Project specific and multimission elements. The former will be developed by the Cassini Project and the latter by two JPL institutional organizations, the Telecommunications and Data Acquisition Office (TDA) and the Multimission Operations Systems Office (MOSO). The GDS will be developed in three principal phases: Spacecraft Test, Launch-cruise, and Science Tour, with a significant part of the development deferred until the post-launch period. New capabilities are being introduced that are key to the achievement of more cost effective operations. Successful development of the system will require careful planning and will involve participation of diverse disciplines. This paper introduces the Cassini Project from the Ground Data System perspective and discusses development approaches expected to produce systems which meet functional and performance requirements and which will be delivered on schedule and within budget.

  2. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.

    PubMed

    Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao

    2018-02-19

    Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.

  3. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).

  4. Systems for Instructional Improvement: Creating Coherence from the Classroom to the District Office

    ERIC Educational Resources Information Center

    Cobb, Paul; Jackson, Kara; Henrick, Erin; Smith, Thomas M.

    2018-01-01

    In "Systems for Instructional Improvement," Paul Cobb and his colleagues draw on their extensive research to propose a series of specific, empirically grounded recommendations that together constitute a theory of action for advancing instruction at scale. The authors outline the elements of a coherent instructional system; describe…

  5. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    NASA Astrophysics Data System (ADS)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  6. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  7. A revolutionary and operational tethered aerostat system illustrating new LTA technology. [for ground-air-ground communications

    NASA Technical Reports Server (NTRS)

    Menke, J. A.

    1975-01-01

    An operational tethered aerostat system, which demonstrates utility of LTA systems, is described. It was made possible by development of a reliable tethered aerostat that is used to support broadcast equipment at an altitude of 10,000 feet. Two elements of the TCOM system, the aerostat and mooring station, are particularly relevant to the LTA Workshop. They demonstrate the feasibility of using LTA vehicles in real, operational, all-weather applications and, in addition, illustrate an advance in the overall technology base of LTA. The aerostat and the mooring station, including their technical design features and demonstrated performance characteristics, are described.

  8. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  9. A finite-element model for simulation of two-dimensional steady-state ground-water flow in confined aquifers

    USGS Publications Warehouse

    Kuniansky, E.L.

    1990-01-01

    A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.

  10. Modelling of percolation rate of stormwater from underground infiltration systems.

    PubMed

    Burszta-Adamiak, Ewa; Lomotowski, Janusz

    2013-01-01

    Underground or surface stormwater storage tank systems that enable the infiltration of water into the ground are basic elements used in Sustainable Urban Drainage Systems (SUDS). So far, the design methods for such facilities have not taken into account the phenomenon of ground clogging during stormwater infiltration. Top layer sealing of the filter bed influences the infiltration rate of water into the ground. This study presents an original mathematical model describing changes in the infiltration rate variability in the phases of filling and emptying the storage and infiltration tank systems, which enables the determination of the degree of top ground layer clogging. The input data for modelling were obtained from studies conducted on experimental sites on objects constructed on a semi-technological scale. The experiment conducted has proven that the application of the model developed for the phase of water infiltration enables us to estimate the degree of module clogging. However, this method is more suitable for reservoirs embedded in more permeable soils than for those located in cohesive soils.

  11. Study on finned pipe performance as a ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Lin, Qinglong; Ma, Jinghui; Shi, Lei

    2017-08-01

    The GHEs (ground heat exchangers) is an important element that determines the thermal efficiency of the entire ground-source heat-pump system. The aim of the present study is to clarify thermal performance of a new type GHE pipe, which consists straight fins of uniform cross sectional area. In this paper, GHE model is introduced and an analytical model of new type GHE pipe is developed. The heat exchange rate of BHEs utilizing finned pips is 40.42 W/m, which is 16.3% higher than normal BHEs, based on simulation analyses.

  12. Simulation of an urban ground-water-flow system in the Menomonee Valley, Milwaukee, Wisconsin using analytic element modeling

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.

    2004-01-01

    A single-layer, steady-state analytic element model was constructed to simulate shallow ground-water flow in the Menomonee Valley, an old industrial center southwest of downtown Milwaukee, Wisconsin. Project objectives were to develop an understanding of the shallow ground-water flow system and identify primary receptors of recharge to the valley. The analytic element model simulates flow in a 18.3 m (60 ft) thick layer of estuarine and alluvial sediments and man-made fill that comprises the shallow aquifer across the valley. The thin, laterally extensive nature of the shallow aquifer suggests horizontal-flow predominates, thus the system can appropriately be modeled with the Dupuit-Forchheimer approximation in an analytic element model. The model was calibrated to the measured baseflow increase between two USGS gages on the Menomonee River, 90 head measurements taken in and around the valley during December 1999, and vertical gradients measured at five locations under the river and estuary in the valley. Recent construction of the Milwaukee Metropolitan Sewer District Inline Storage System (ISS) in the Silurian dolomite under the Menomonee Valley has locally lowered heads in the dolomite appreciably, below levels caused by historic pumping. The ISS is a regional hydraulic sink which removes water from the bedrock even during dry weather. The potential effect on flow directions in the shallow aquifer of dry-weather infiltration to the ISS was evaluated by adjusting the resistance of the line-sink strings representing the ISS in the model to allow infiltration from 0 to 100% of the reported 9,500 m3/d. The best fit to calibration targets was found between 60% (5,700 m3/d) and 80% (7,600 m3/d) of the reported dry-weather infiltration. At 60% infiltration, 65% of the recharge falling on the valley terminates at the ISS and 35% at the Menomonee River and estuary. At 80% infiltration, 73% of the recharge terminates at the ISS, and 27% at the river and estuary. Model simulations suggest that the ISS has an greater influence on the shallow ground-water flow in the eastern half of valley as compared to the western half. Preliminary three-dimensional simulations using the numerical MODFLOW code show good agreement with the single-layer simulation and supports its use in evaluating the shallow system. Copyright ASCE 2004.

  13. Requirements Definition for Force Level Command and Control in the Tactical Air Control System: An Evolutionary Approach Toward Meeting Near Term and Future Operational Needs.

    DTIC Science & Technology

    1985-01-01

    numerous major exercises, such as WINTEX- CIMEX , REFORGER, CRESTED EAGLE, and BRIGHT STAR. USAFE is now actively planning an evolutionary approach toward C2...during WINTEX- CIMEX 85, we have been investigating a number of approaches to enhancing joint air-ground operations and providing a means for better...throughout the ground battle elements. The USAREUR Distributed Decision Aid System (UD[1AS) was initially deployed in Exercise WINTEX- CIMEX 84. During

  14. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  15. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  16. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  17. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  18. Systems Engineering Management Procedures

    DTIC Science & Technology

    1966-03-10

    load -..................................................... tch 2 1t55 𔄃 Trade Study-Companson ,f Methods for Measuring Quantities of Loaded... method of system operation and the ancillary equipment required such as instru- system elements is a highly involved process mentation. depot tooling...Installation and checkout. MiGI-Maintenance g-round equipment. IM-Item manager. NIP-Materiel improvement proipct. indenturo-A method of showing relationships

  19. The New Space Network: the Tracking and Data Relay Satellite System

    NASA Technical Reports Server (NTRS)

    Froehlich, W.

    1986-01-01

    When the Tracking and Data Relay Satellite System (TDRSS)is completed, the system, together with its various NASA support elements will be known simply as the Space Networks. It will substantially increase information exchanges between low-orbiting spacecraft and the ground. The structural design, functions, earth-based links, and present and future use are discussed.

  20. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues.From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions.The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile. Lateral no-flow boundaries were located on the basis of outcrop extent (northwestern), major streams (southwestern, northeastern), and downdip limit of freshwater (southeastern). The MODFLOW general-head boundary package was used to simulate recharge and discharge in the outcrops of the hydrogeologic units. Simulation of land-surface subsidence (actually, compaction of clays) and release of water from storage in the clays of the Chicot and Evangeline aquifers was accomplished using the Interbed-Storage Package designed for use with the MODFLOW model. The model was calibrated by trial-anderror adjustment of selected model input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) reasonably reproduced field measured (or estimated) aquifer responses.Model calibration comprised four elements: The first was qualitative comparison of simulated and measured heads in the aquifers for 1977 and 2000; and quantitative comparison by computation and areal distribution of the root-mean-square error between simulated and measured heads. The second calibration element was comparison of simulated and measured hydrographs from wells in the aquifers in a number of counties throughout the modeled area. The third calibration element was comparison of simulated water-budget componentsprimarily recharge and dischargeto estimates of physically reasonable ranges of actual water-budget components. The fourth calibration element was comparison of simulated land-surface subsidence from predevelopment to 2000 to measured land surface subsidence from 1906 through 1995.

  1. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  2. Massively parallel information processing systems for space applications

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1979-01-01

    NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.

  3. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  4. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  5. Space transportation system shuttle turnabout analysis report

    NASA Technical Reports Server (NTRS)

    Reedy, R. E.

    1979-01-01

    The progress made and the problems encountered by the various program elements of the shuttle program in achieving the 160 hour ground turnaround goal are presented and evaluated. Task assessment time is measured against the program allocation time.

  6. Damping in high-temperature superconducting levitation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less

  7. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  8. KSC-08pd0081

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd0084

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  10. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  11. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  12. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  13. Wireless system for monitoring Intra-abdominal pressure in patient with severe abdominal pathology

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, S. S.; Shtotskiy, Y. V.; Leljanov, A. D.

    2017-01-01

    The paper discusses an experimental design of the wireless system for monitoring intra-abdominal pressure (IAP) using Bluetooth Low Energy technology. The possibility of measuring IAP via the bladder using a wireless pressure sensor with a hydrophobic bacteria filter between the liquid transmitting medium and the sensor element is grounded.

  14. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  15. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  16. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  17. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2009-09-02

    Procedure (TOP) 1-2-511 Electromagnetic Environmental Effects System Testing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...airborne, sea, space, and ground systems , including associated ordnance, as stated in military standard (MIL-STD)-464A “Electromagnetic Environmental...Effects Requirement for Systems ”, as well as ADS-37A-PRF “Aeronautical Design Standard for the Electromagnetic Environmental Effects (E3) Performance and

  18. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1996-01-01

    A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.

  19. Approach to an Affordable and Productive Space Transportation System

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.

    2012-01-01

    This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.

  20. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  1. ECLSS and Thermal Systems Integration Challenges Across the Constellation Architecture

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn

    2010-01-01

    As the Constellation Program completes its initial capability Preliminary Design Review milestone for the Initial Capability phase, systems engineering of the Environmental Control and Life Support (ECLS) and Thermal Systems for the various architecture elements has progressed from the requirements to design phase. As designs have matured for the Ares, Orion, Ground Systems, and Extravehicular (EVA) System, a number of integration challenges have arisen requiring analyses and trades, resulting in changes to the design and/or requirements. This paper will address some of the key integration issues and results, including the Orion-to-Ares shared compartment venting and purging, Orion-to-EVA suit loop integration issues with the suit system, Orion-to-ISS and Orion-to-Altair intermodule ventilation, and Orion and Ground Systems impacts from post-landing environments.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D.W.; Baker, J.; Benzel, D.M.

    This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capablemore » of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.« less

  3. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    EPA Science Inventory

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  4. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  5. Impact of advanced onboard processing concepts on end-to-end data system

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1978-01-01

    An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.

  6. Selection of the Ground Segment for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Isaacs, John C., III; Olson, Leonard E.; Pfarr, Thomas R.; Steck, Jane A.

    2000-01-01

    The Next Generation Space Telescope (NGST) is a large aperture space telescope designated to succeed the Hubble Space Telescope (HST). NGST will continue the recent breakthroughs of HST in our understanding of the earliest origins of stars, galaxies and the elements that are the foundations of Life. It is expected that the costs of NGST should be kept within a fraction of those for HST. The ground segment has a goal of reducing the cost of NGST in comparison to HST by 50% to 75%. To mitigate risks for NGST a flight demonstrator called Nexus is planned for 2005. Nexus is a smaller scale telescope, which plans to test the deployment and optical stability of the telescope, the "Wave Front Control" process, and the thermal performance of the sunshield. The Nexus Ground System will be developed by GSFC and STSci, and the NGST Ground System will be developed by STSci. The authors of this paper are engaged in a study to evaluate and recommend selection of a Command and Telemetry system for each of these Ground Systems. This paper focuses on the process of selecting the real-time Command and Telemetry system for NGST. We would like to use the conference as a sounding board as we make a selection.

  7. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  8. Space station needs, attributes and architectural options. Volume 4, task 2 and 3: Mission implementation and cost

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.

  9. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    NASA Astrophysics Data System (ADS)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  10. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    PubMed

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  11. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  12. Electromagnetic scattering analysis of a three-dimensional-cavity-backed aperture in an infinite ground plane using a combined finite element method/method of moments approach

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Setyawan, W.; Kurtz, R. J.

    We report a computational discovery of novel grain boundary structures and multiple grain boundary phases in elemental bcc tungsten. While grain boundary structures created by the - surface method as a union of two perfect half crystals have been studied extensively, it is known that the method has limitations and does not always predict the correct ground states. Here, we use a newly developed computational tool, based on evolutionary algorithms, to perform a grand-canonical search of high-angle symmetric tilt boundary in tungsten, and we find new ground states and multiple phases that cannot be described using the conventional structural unitmore » model. We use MD simulations to demonstrate that the new structures can coexist at finite temperature in a closed system, confirming these are examples of different GB phases. The new ground state is confirmed by first-principles calculations.Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.« less

  14. Element distribution patterns in the ordovician Galena group, Southeastern Minnesota: Indicators of fluid flow and provenance of terrigenous material

    USGS Publications Warehouse

    Lively, R.S.; Morey, G.B.; Mossler, J.H.

    1997-01-01

    As part of a regional geochemical investigation of lower Paleozoic strata in the Hollandale embayment of southeastern Minnesota, elemental concentrations in acid-insoluble residues were determined for carbonate rock in the Middle Ordovician Galena Group. Elemental distribution patterns within the insoluble residues, particularly those of Ti, Al, and Zr, show that the Wisconsin dome and the Wisconsin arch, which contributed sediment to the embayment prior to Galena time, continued as weak sources of sediment during this period. In contrast, trace metals commonly associated with Mississippi Valley-type lead-zinc mineralization, including Pb, Zn, Cu, Ag, Ni, Co, As, and Mo, show dispersal patterns that are independent of those associated with primary depositional phenomena. These trace metals are concentrated in southern Minnesota in carbonate rocks near the interface between limestone- and dolostone-dominated strata. Dispersal patterns imply that the metals were carried by a north-flowing regional ground-water system. The results show that the geochemical attributes of insoluble residues can be used to distinguish provenance and transport directions of primary sediments within a depositional basin from effects of subsequent regional ground-water flow systems.

  15. A flexible CAMAC based data system for Space Shuttle scientific instruments

    NASA Technical Reports Server (NTRS)

    Ehrmann, C. H.; Baker, R. G.; Smith, R. L.; Kaminski, T. J.

    1979-01-01

    An effort has been made within NASA to produce a low-cost modular system for implementation of Shuttle payloads based on the CAMAC standards for packaging and data transfer. A key element of such a modular system is a means for controlling the data system, collecting and processing the data for transmission to the ground, and issuing commands to the instrument either from the ground or based on the data collected. A description is presented of such a means based on a network of digital processors and CAMAC crate controllers, which allows for the implementation of instruments ranging from those requiring only a single CAMAC crate of functional modules and no data processing to ones requiring multiple crates and multiple data processors.

  16. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  17. Space construction system analysis. Part 2: Cost and programmatics

    NASA Technical Reports Server (NTRS)

    Vonflue, F. W.; Cooper, W.

    1980-01-01

    Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.

  18. Latency features of SafetyNet ground systems architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)

    NASA Astrophysics Data System (ADS)

    Duda, James L.; Mulligan, Joseph; Valenti, James; Wenkel, Michael

    2005-01-01

    A key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) is the Northrop Grumman Space Technology patent-pending innovative data routing and retrieval architecture called SafetyNetTM. The SafetyNetTM ground system architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined with the Interface Data Processing Segment (IDPS), will together provide low data latency and high data availability to its customers. The NPOESS will cut the time between observation and delivery by a factor of four when compared with today's space-based weather systems, the Defense Meteorological Satellite Program (DMSP) and NOAA's Polar-orbiting Operational Environmental Satellites (POES). SafetyNetTM will be a key element of the NPOESS architecture, delivering near real-time data over commercial telecommunications networks. Scattered around the globe, the 15 unmanned ground receptors are linked by fiber-optic systems to four central data processing centers in the U. S. known as Weather Centrals. The National Environmental Satellite, Data and Information Service; Air Force Weather Agency; Fleet Numerical Meteorology and Oceanography Center, and the Naval Oceanographic Office operate the Centrals. In addition, this ground system architecture will have unused capacity attendant with an infrastructure that can accommodate additional users.

  19. Expeditionary Force 21. Forward and Ready: Now and in the Future

    DTIC Science & Technology

    2014-03-04

    single commander. Each MAGTF is composed of a command element (CE), a ground combat element ( GCE ), an aviation combat element (ACE), and logistics...headquarters group, a ground combat element ( GCE ) with one Marine Division, an aviation combat element (ACE) with one Marine Aircraft Wing, and a...remain the Marine Corps’ standard unit of deployment; however, company landing teams may take on a larger role in crisis response and may form the GCE

  20. A Scalable, Out-of-Band Diagnostics Architecture for International Space Station Systems Support

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Rick; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The computational infrastructure of the International Space Station (ISS) is a dynamic system that supports multiple vehicle subsystems such as Caution and Warning, Electrical Power Systems and Command and Data Handling (C&DH), as well as scientific payloads of varying size and complexity. The dynamic nature of the ISS configuration coupled with the increased demand for payload support places a significant burden on the inherently resource constrained computational infrastructure of the ISS. Onboard system diagnostics applications are hosted on computers that are elements of the avionics network while ground-based diagnostic applications receive only a subset of available telemetry, down-linked via S-band communications. In this paper we propose a scalable, out-of-band diagnostics architecture for ISS systems support that uses a read-only connection for C&DH data acquisition, which provides a lower cost of deployment and maintenance (versus a higher criticality readwrite connection). The diagnostics processing burden is off-loaded from the avionics network to elements of the on-board LAN that have a lower overall cost of operation and increased computational capacity. A superset of diagnostic data, richer in content than the configured telemetry, is made available to Advanced Diagnostic System (ADS) clients running on wireless handheld devices, affording the crew greater mobility for troubleshooting and providing improved insight into vehicle state. The superset of diagnostic data is made available to the ground in near real-time via an out-of band downlink, providing a high level of fidelity between vehicle state and test, training and operational facilities on the ground.

  1. Triaxiality in the odd-A nuclei 109-117I studied through a microscopic rotationparticle coupling

    NASA Astrophysics Data System (ADS)

    Modi, Swati

    2018-05-01

    A systematic study of ground state spectrum with the triaxial deformation γ for odd-A Iodine isotopes 109-117I is carried out with the nonadiabatic quasiparticle approach. The rotation-particle coupling is accomplished microscopically such that the matrix elements of a particle-plus-rotor system are written in terms of the rotor energies. The 5/2+ state is confirmed as ground state for odd-A 111-117I and also coming out as lowest in energy for 109I.

  2. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to either dissolve or newly precipitate when surface water or ground-water/surface-water mixtures are delivered through the Authority's current distribution system are carbonates (particularly aragonite and calcite). Other types of minerals having the potential to dissolve or newly precipitate under conditions present throughout most of the distribution system include a form of silica, an aluminum hyroxide (gibbsite or diaspore), or the Fe-containing mineral Fe3(OH)8. Dissolution of most of these minerals (except perhaps the Fe-containing minerals) is not likely to substantially affect trace-element concentrations or aesthetic characteristics of delivered water, except perhaps hardness. Precipitation of these minerals would probably be of concern only if the quantities of material involved were large enough to clog pipes or fixtures. The mineral Fe3(OH)8 was not found in the current distribution system. Some Fe-containing minerals that were identified in the distribution system were associated with relatively high contents of selected elements, including As, Cr, Cu, Mn, Pb, and Zn. However, these Fe-containing minerals were not identified as minerals likely to dissolve when the source of water was changed from ground water to surface water or a ground-water/surface-water mixture. Based on the modeled potential for calcite precipitation and additional calculations of corrosion indices ground water, surface water, and ground-water/surface-water mixtures are not likely to differ greatly in corrosion potential. In particular, surface water and ground-water/surface-water mixtures do not appear likely to dissolve large quantities of existing calcite and expose metal surfaces in the distribution system to substantially increased corrosion. Instead, modeling calculations indicate that somewhat larger masses of material would tend to precipitate from surface water or ground-water/surface-water mixtures compared to ground water alone.

  3. Plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico

    USGS Publications Warehouse

    McAda, D.P.

    1996-01-01

    The Albuquerque Basin in central New Mexico covers an area of about 3,060 square miles. Ground water from the Santa Fe Group aquifer system of the Albuquerque Basin is the principal source of water for municipal, domestic, commercial, and industrial uses in the Albuquerque area, an area of about 410 square miles. Ground- water withdrawal in the basin has increased from about 97,000 acre-feet in 1970 to about 171,000 acre-feet in 1994. About 92 percent of the 1994 total was withdrawn in the Albuquerque area. Management of ground water in the Albuquerque Basin is related to the surface water in the Rio Grande. Because the aquifer system is hydraulically connected to the Rio Grande and water in the river is fully appropriated, the ability to reliably estimate the effects of ground-water withdrawals on flow in the river is important. This report describes the components of the Rio Grande/Santa Fe Group aquifer system in the Albuquerque area and the data availability and data and interpretation needs relating to those components, and presents a plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system. The information needs related to the components of the river/aquifer system are prioritized. Information that is necessary to improve the understanding or quantification of a component in the river/aquifer system is prioritized as essential. Information that could add additional understanding of the system, but would not be necessary to improve the quantification of the system, is prioritized as useful. The study elements are prioritized in the same manner as the information needs; study elements designed to provide information considered necessary to improve the quantification of the system are prioritized as essential, and those designed to provide information that would add additional understanding of the system, but would not be necessary to improve the quantification of the system, are prioritized as useful.

  4. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  5. Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1991-01-01

    A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.

  6. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  7. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  8. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.

  9. Eight-Element Antenna Array for LTE 3.4-3.8 GHz Mobile Handset Applications

    NASA Astrophysics Data System (ADS)

    Yang, Lingsheng; Ji, Ming; Cheng, Biyu; Ni, Bo

    2017-05-01

    In this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured -10 dB impedance bandwidth is 3.2-3.9 GHz which can cover the LTE bands 42 and 43 (3.4-3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.

  10. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  11. Precipitation Measurements From Space: Workshop report. An element of the climate observing system study

    NASA Technical Reports Server (NTRS)

    Atlas, D. (Editor); Thiele, O. W. (Editor)

    1981-01-01

    Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.

  12. Overview of an Integrated Medical System for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Rubin, David

    2013-01-01

    The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.

  13. KSC-08pd0083

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians look at some of the elements to be tested in the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd0082

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, some of the internal elements seen here of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  15. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; hide

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  16. Altered figure-ground perception in monkeys with an extra-striate lesion.

    PubMed

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  17. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  18. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  19. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    DTIC Science & Technology

    2016-04-01

    performance and test adequacy of the BMDS, its four autonomous BMDS systems, and its sensor/command and control architecture. The four autonomous BMDS...Patriot. The Command and Control , Battle Management, and Communications (C2BMC) element anchors the sensor/command and control architecture. This...Warfare operations against a cruise missile surrogate. Ground-based Midcourse Defense (GMD). GMD has demonstrated capability against small

  20. A Ground Systems Template for Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  1. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: TDRS system operation and control and telecommunications service system, part 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Major study areas treated in this volume are: 1) operations and control and 2) the telecommunication service system. The TDRS orbit selection, orbital deployment, ground station visibility, sequence of events from launch to final orbit position, and TDRS control center functions required for stationkeeping, repositioning, attitude control, and antenna pointing are briefly treated as part of the operations and control section. The last topic of this section concerns the operations required for efficiently providing the TDRSS user telecommunication services. The discussion treats functions of the GSFC control and data processing facility, ground station, and TDRS control center. The second major portion of this volume deals with the Telecommunication Service System (TSS) which consists of the ground station, TDRS communication equipment and the user transceiver. A summary of the requirements and objectives for the telecommunication services and a brief summary of the TSS capabilities is followed by communication system analysis, signal design, and equipment design. Finally, descriptions of the three TSS elements are presented.

  2. [Spectroscopic methods applied to component determination and species identification for coffee].

    PubMed

    Chen, Hua-zhou; Xu, Li-li; Qin, Qiang

    2014-06-01

    Spectroscopic analysis was applied to the determination of the nutrient quality of ground, instant and chicory coffees. By using inductively coupled plasma atomic emission spectrometry (ICP-ES), nine mineral elements were determined in solid coffee samples. Caffeine was determined by ultraviolet (UV) spectrometry and organic matter was investigated by Fourier transform infrared (FTIR) spectroscopy. Oxidation-reduction titration was utilized for measuring the oxalate. The differences between ground coffee and instant coffee was identified on the basis of the contents of caffeine, oxalate and mineral elements. Experimental evidence showed that, caffeine in instant coffee was 2-3 times higher than in ground coffee. Oxalate in instant coffee was significantly higher in ground coffee. Mineral elements of Mg, P and Zn in ground coffee is lower than in instant coffee, while Cu is several times higher. The mineral content in chicory coffee is overall lower than the instant coffee. In addition, we determined the content of Ti for different types of coffees, and simultaneously detected the elements of Cu, Ti and Zn in chicory coffee. As a fast detection technique, FTIR spectroscopy has the potential of detecting the differences between ground coffee and instant coffee, and is able to verify the presence of caffeine and oxalate.

  3. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  4. Magnetic field generated by lightning protection system

    NASA Astrophysics Data System (ADS)

    Geri, A.; Veca, G. M.

    1988-04-01

    A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.

  5. Autotracking from space - The TDRSS approach

    NASA Astrophysics Data System (ADS)

    Spearing, R. E.; Harper, W. R.

    The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.

  6. Autotracking from space - The TDRSS approach

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.; Harper, W. R.

    1984-01-01

    The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.

  7. Modulating Retro-Reflectors: Technology, Link Budgets and Applications

    NASA Technical Reports Server (NTRS)

    Salas, Alberto Guillen; Stupl, Jan; Mason, James

    2012-01-01

    Satellite communications systems today -- usually radio frequency (RF) -- tend to have low data rates and use a lot of on-board power. For CubeSats, communications often dominate the power budget. We investigate the use of modulating retro-reflectors (MRRs), previously demonstrated on the ground, for high data-rate communication downlinks from small satellites. A laser ground station would illuminate a retro-reflector on-board the satellite while an element in the retro-reflector modulates the intensity of the reflected signal, thereby encoding a data stream on the returning beam. A detector on the ground receives the data, keeping the complex systems and the vast majority of power consumption on the ground. Reducing the power consumption while increasing data rates would relax constraints on power budgets for small satellites, leaving more power available for payloads. In the future, this could enable the use of constellations of nano-satellites for a variety of missions, possibly leading to a paradigm shift in small satellite applications.

  8. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  9. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  10. Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico

    USGS Publications Warehouse

    Plummer, Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    2004-01-01

    and sulfur hexafluoride from 288 wells and springs in parts of the Santa Fe Group aquifer system. The surface-water data collected as part of this study include monthly measurements of major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, chlorofluorocarbons, and tritium content at 14 locations throughout the basin. Additional data include stable isotope analyses of precipitation and of ground water from City of Albuquerque production wells collected and archived from the early 1980?s, and other data on the chemical and isotopic composition of air, unsaturated zone air, plants, and carbonate minerals from throughout the basin. The data were used to identify 12 sources of water to the basin, map spatial and vertical extents of ground-water flow, map water chemistry in relation to hydrogeologic, stratigraphic, and structural properties of the basin, determine radiocarbon ages of ground water, and reconstruct paleo-environmental conditions in the basin over the past 30,000 years. The data indicate that concentrations of most elements and isotopes generally parallel the predominant north to south direction of ground-water flow. The radiocarbon ages of dissolved inorganic carbon in ground water range from modern (post-1950) to more than 30,000 years before present, and appear to be particularly well defined in the predominantly siliciclastic aquifer system. Major sources of water to the basin include (1) recharge from mountains along the north, east and southwest margins (median age 5,000-9,000 years); (2) seepage from the Rio Grande and Rio Puerco (median age 4,000-8,000 years), and from Abo and Tijeras Arroyos (median age 3,000-9,000 years); (3) inflow of saline water along the southwestern basin margin (median age 20,000 years); and (4) inflow along the northern basin margin that probably represents recharge from the Jemez Mountains during the last glacial period (median age 20,000 years). Water recharged from the Jemez Mountains during the last glacial period occurs at the water table in the central part of the basin and beneath younger recharge along the Rio Grande and the northern mountain front. In some parts of the basin, boundaries between hydrochemical zones appear to be near major faults that may affect ground-water flow. However, in other parts of the basin, such as along the east side of Albuquerque near the Sandia Fault zone, ground-water flow appears to be unaffected by major faults. Upward leakage of saline water occurs along some faults and can be a source of salinity and elevated arsenic concentrations in some ground water. A trough in the modern and predevelopment water table west of Albuquerque is centered along a zone of predominantly late Pleistocene age water through the center of the basin and is flanked and overlain along the trough boundary by water that infiltrated from the Rio Puerco on the west and the Rio Grande to the east. It is suggested that the groundwater trough is a relatively recent transient feature of the Santa Fe Group aquifer system. At Albuquerque, a distinct north-south boundary in deuterium content of ground water marks the division between recharge from the eastern mountain front and that from the Rio G

  11. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  12. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  13. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  14. Transportation systems analyses. Volume 2: Technical/programmatics

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.

  15. In-Space Networking on NASA's SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.

    2016-01-01

    The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.

  16. Ground and Space Radar Volume Matching and Comparison Software

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  17. Feasibility of an Air Liaison Officer Career Field: Improving the Theater Air-Ground System

    DTIC Science & Technology

    2008-01-01

    for Plans and Operations ALO air liaison officer AMLO air mobility liaison officer ANG Air National Guard ASOC air support operations center ASOG air...liaison officers ( AMLOs ) to liaison elements at Army corps, division, and other jointly validated headquarters to provide air mobility liaison. 1

  18. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1992-93

    USGS Publications Warehouse

    Tadayon, Saeid

    1995-01-01

    Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.

  19. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Haley, G. M.

    1979-01-01

    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.

  20. A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data

    NASA Astrophysics Data System (ADS)

    Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos

    2018-05-01

    A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.

  1. LDCM Ground System. Network Lesson Learned

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan

    2010-01-01

    This slide presentation reviews the Landsat Data Continuity Mission (LDCM) and the lessons learned in implementing the network that was assembled to allow for the acquisition, archiving and distribution of the data from the Landsat mission. The objective of the LDCM is to continue the acquisition, archiving, and distribution of moderate-resolution multispectral imagery affording global, synoptic, and repetitive coverage of the earth's land surface at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. It includes a review of the ground network, including a block diagram of the ground network elements (GNE) and a review of the RF design and testing. Also included is a listing of the lessons learned.

  2. Veggie ISS Validation Test Results and Produce Consumption

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Hummerick, Mary; Spencer, LaShelle; Smith, Trent

    2015-01-01

    The Veggie vegetable production system flew to the International Space Station (ISS) in the spring of 2014. The first set of plants, Outredgeous red romaine lettuce, was grown, harvested, frozen, and returned to Earth in October. Ground control and flight plant tissue was sub-sectioned for microbial analysis, anthocyanin antioxidant phenolic analysis, and elemental analysis. Microbial analysis was also performed on samples swabbed on orbit from plants, Veggie bellows, and plant pillow surfaces, on water samples, and on samples of roots, media, and wick material from two returned plant pillows. Microbial levels of plants were comparable to ground controls, with some differences in community composition. The range in aerobic bacterial plate counts between individual plants was much greater in the ground controls than in flight plants. No pathogens were found. Anthocyanin concentrations were the same between ground and flight plants, while antioxidant and phenolic levels were slightly higher in flight plants. Elements varied, but key target elements for astronaut nutrition were similar between ground and flight plants. Aerobic plate counts of the flight plant pillow components were significantly higher than ground controls. Surface swab samples showed low microbial counts, with most below detection limits. Flight plant microbial levels were less than bacterial guidelines set for non-thermostabalized food and near or below those for fungi. These guidelines are not for fresh produce but are the closest approximate standards. Forward work includes the development of standards for space-grown produce. A produce consumption strategy for Veggie on ISS includes pre-flight assessments of all crops to down select candidates, wiping flight-grown plants with sanitizing food wipes, and regular Veggie hardware cleaning and microbial monitoring. Produce then could be consumed by astronauts, however some plant material would be reserved and returned for analysis. Implementation of this plan is a step toward developing pick-and-eat food production to supplement the packaged diet on ISS and for future exploration missions where plants could make up a larger portion of the diet. Supported by NASA Space Biology Program.

  3. Reliability Improvement of Ground Fault Protection System Using an S-Type Horn Attachment Gap in AC Feeding System

    NASA Astrophysics Data System (ADS)

    Ajiki, Kohji; Morimoto, Hiroaki; Shimokawa, Fumiyuki; Sakai, Shinya; Sasaki, Kazuomi; Sato, Ryogo

    Contact wires used in feeding system for electric railroad are insulated by insulators. However, insulation of an insulator sometimes breaks down by surface dirt of an insulator and contact with a bird. The insulator breakdown derives a ground fault in feeding system. Ground fault will cause a human electric shock and a destruction of low voltage electric equipment. In order to prevent the damage by ground fault, an S-type horn has been applicable as equipped on insulators of negative feeder and protective wire until present. However, a concrete pole breaks down at the time of the ground fault because a spark-over voltage of the S-type horn is higher than a breakdown voltage of a concrete pole. Farther, the S-type horn installed in the steel tube pole does not discharge a case, because the earth resistance of a steel tube pole is very small. We assumed that we could solve these troubles by changing the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. Accordingly, we developed an attachment gap that should be used to change the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. The attachment gap consists of a gas gap arrester and a zinc oxide element. By the dynamic current test and the artificial ground fault test, we confirmed that the attachment gap in the S-type horn could prevent a trouble at the time of the ground fault.

  4. Mobility and Molecular Ions of Dimethyl Methyl Phosphonate, Methyl Salicylate, and Acetone.

    DTIC Science & Technology

    1983-06-01

    MICRCOP REOUIO.ET1HR NICOCOPY BRESOUIO EST CHAR T AD .-..., CHEMICOL f.. SYSTEMS US Army Armament 11..: LABORATORY Research and Development Command _NTR...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK Commnde, Cemicl Sstes LaoraoryAREA & WORK U NIT’NUMBERS CommNder DARCemia Systems Laborato...Chemical Systems Laboratory, ATTN: DRDAR-CLJ-IR, Aberdeen Proving Ground, Maryland 21010. However, the Defense Technical Information Center and National

  5. (Re)Inscribing Meaning: An Examination of the Effective Approaches, Adaptations and Improvisational Elements in Closing the Excellence Gap for Black Students

    ERIC Educational Resources Information Center

    Yeboah, Amy Oppong

    2013-01-01

    From great African nations like the Ancient Kemites, Akan and Gikuyu, the world witnessed the development of the most powerful social structures, governance systems, ground breaking innovations in science and technology, and systems of thought that still exist today. Hence, in looking at the low performance levels of Black students today, the…

  6. Annual Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 2: Summary of Information Developed in the Panel's Fact-Finding Activities

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The panel focused its attention on those areas that are considered most significant for flight success and safety. Elements required for the Approach and Landing Test Program, the Orbital Flight Test Program, and those management systems and their implementation which directly affect safety, reliability, and quality control, were investigated. Ground facilities and the training programs for the ground and flight crews were studied. Of special interest was the orbiter thermal protection subsystems.

  7. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  8. ML Construction Progress

    NASA Image and Video Library

    2014-12-17

    Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Scaffolding, or work platforms, have been installed around the base of the tower on the ML to continue upgrades and modifications to the structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. The ML is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  9. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  10. The Regional Patterns of Chemical Composition in the Otolith Core of Larval Fish

    NASA Astrophysics Data System (ADS)

    Chang, M. Y.; Geffen, A. J.; Nash, R. D. M.; Clemmesen, C.

    2012-04-01

    The elemental composition of fish otoliths can record the environmental information because once a trace element is deposited in the otolith; it presents a permanent record of the environmental conditions experienced by the fish at a particular time. The elemental signature of the otolith nucleus, the area lying within the first annual growth ring, is likely to be characteristic of the nursery areas of the species, and could be used as biological tracer for tracking origin and dispersal. However, ocean acidification may alter otolith growth and element incorporation, and it is important to establish baseline information about the sources of variation - both biotic and abiotic. The objectives of this study, as part of the wider CalMarO network, is to examine the regional differences in the otolith cores of selected fish species, contrast these differences with those measured between these same species in areas where their larvae co-exist and to find out the maternal effect to the chemical composition during the first forming of otoliths. The laboratory and field experiments were included to produce otolith material reflecting the maternal and regional patterns. Otolith composition was measured using laser-ablation ICPMS. For clarifying the regional patterns, juveniles from six locations and seven spawning groups along the west of the British Isles and larvae from the North Sea were sampled to distinguish the origin of spawning herring. There are three main nursery-ground groups, the Irish Sea, Scottish sea lochs and the Minch, contributing to the spawning herring in the west of the British Isles according to the otolith elemental composition data. However, the spawning origin of the North Sea herring larvae was still unclear. The otolith concentrations of Li, Na, Mg, Mn, Cu, Ru and Sr were significantly different among nursery-ground populations. Together with length-at-age data, at least two nursery-ground groups contributed to each spawning population. The juveniles from western Irish Sea and the Stanton Bank contributed most to the spawning populations. The otolith signature (without length-at-age information) indicated that the North Sea larvae contributed mostly to the spawning herring from the Dingle and the Cape Wrath. The results suggested that there might be different current systems, which drove the larval dispersal both northward and southward from the spawning ground to the North Sea. Although there might be mixtures and interconnections among the west coast herrings, which resulted in the similar otolith chemical signals, the otolith chemical composition still provided useful information of regional differences for tracing back the origin of spawning populations. The detailed current system may be needed to provide more inference for the larval dispersal and the linkage between nursery-ground and spawning populations. * present address: Biodiversity Research Center, Academia Sinica, Taiwan, R.O.C.

  11. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  12. KSC-2014-2887

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lowered by crane to the ground near the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  13. KSC-2014-2886

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lowered by crane to the ground near the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  14. KSC-2014-2888

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lowered by crane to the ground near the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  15. Writing analytic element programs in Python.

    PubMed

    Bakker, Mark; Kelson, Victor A

    2009-01-01

    The analytic element method is a mesh-free approach for modeling ground water flow at both the local and the regional scale. With the advent of the Python object-oriented programming language, it has become relatively easy to write analytic element programs. In this article, an introduction is given of the basic principles of the analytic element method and of the Python programming language. A simple, yet flexible, object-oriented design is presented for analytic element codes using multiple inheritance. New types of analytic elements may be added without the need for any changes in the existing part of the code. The presented code may be used to model flow to wells (with either a specified discharge or drawdown) and streams (with a specified head). The code may be extended by any hydrogeologist with a healthy appetite for writing computer code to solve more complicated ground water flow problems. Copyright © 2009 The Author(s). Journal Compilation © 2009 National Ground Water Association.

  16. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  17. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results.

  18. MAVEN Information Security Governance, Risk Management, and Compliance (GRC): Lessons Learned

    NASA Technical Reports Server (NTRS)

    Takamura, Eduardo; Gomez-Rosa, Carlos A.; Mangum, Kevin; Wasiak, Fran

    2014-01-01

    As the first interplanetary mission managed by the NASA Goddard Space Flight Center, the Mars Atmosphere and Volatile EvolutioN (MAVEN) had three IT security goals for its ground system: COMPLIANCE, (IT) RISK REDUCTION, and COST REDUCTION. In a multiorganizational environment in which government, industry and academia work together in support of the ground system and mission operations, information security governance, risk management, and compliance (GRC) becomes a challenge as each component of the ground system has and follows its own set of IT security requirements. These requirements are not necessarily the same or even similar to each other's, making the auditing of the ground system security a challenging feat. A combination of standards-based information security management based on the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF), due diligence by the Mission's leadership, and effective collaboration among all elements of the ground system enabled MAVEN to successfully meet NASA's requirements for IT security, and therefore meet Federal Information Security Management Act (FISMA) mandate on the Agency. Throughout the implementation of GRC on MAVEN during the early stages of the mission development, the Project faced many challenges some of which have been identified in this paper. The purpose of this paper is to document these challenges, and provide a brief analysis of the lessons MAVEN learned. The historical information documented herein, derived from an internal pre-launch lessons learned analysis, can be used by current and future missions and organizations implementing and auditing GRC.

  19. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    NASA Astrophysics Data System (ADS)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  20. Grounding of space structures

    NASA Astrophysics Data System (ADS)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.

    1992-09-01

    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.

  1. Water quality data for selected wells in the Coastal Plain of New Jersey, 1996-98

    USGS Publications Warehouse

    Hibbs, Kathleen L.; Stackelberg, Paul E.; Kauffman, Leon J.; Ayers, Mark A.

    2001-01-01

    Water-quality data were collected during 1996-98 for 217 wells in New Jersey and 3 wells in New York as part of the U. S. Geological Survey's National Water Quality Assessment Program. Samples were collected for five ground-water surveys that were designed to assess water quality in major aquifer systems, with an emphasis on recently recharged (shallow) ground water associated with present and recent human activities. This report (1) summarizes the hydrogeologic framework in the areas of data collection; (2) describes the objectives and procedures for designing each ground-water survey; (3) summarizes the procedures and protocols for data collec-tion, analysis, and quality control; and (4) lists the concentrations of inorganic constituents, volatile organic compounds, pesticides, nutrients, and trace elements present in the ground-water samples.

  2. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    USGS Publications Warehouse

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute transport. The first three problems considered in model verification were compared to either analytical or numerical solutions, whereas the coupled problem was compared to measured laboratory results for which no known analytic solutions or numerical models are available. The test results indicate the model is accurate and applicable for a wide range of conditions, including when water (liquid and vapor), heat (sensible and latent), and solute are coupled in ground-water systems. The cumulative residual errors for the coupled problem tested was less than 10-8 cubic centimeter per cubic centimeter, 10-5 moles per kilogram, and 102 calories per cubic meter for liquid water content, solute concentration and heat content, respectively. This model should be useful to hydrologists, engineers, and researchers interested in studying coupled processes associated with variably saturated transport in ground-water systems.

  3. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering. [cost and programmatics

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  4. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  5. ANALYTIC ELEMENT GROUND WATER MODELING AS A RESEARCH PROGRAM (1980-2006)

    EPA Science Inventory

    Scientists and engineers who use the analytic element method (AEM) for solving problems of regional ground water flow may be considered a community, and this community can be studied from the perspective of history and philosophy of science. Applying the methods of the Hungarian...

  6. Fate of redox-sensitive elements in two different East-African wetland systems

    NASA Astrophysics Data System (ADS)

    Glasner, Björn; Fiedler, Sabine

    2017-04-01

    We expect that an intensified cropping alters soil pH and Eh, and negatively affects the production potential of wetlands. Therefore, we investigated the redox-conditions in combination with the fate of different redox-sensitive elements in two prototypical wetland systems that show a high potential for food production in East-Africa. While the floodplains (observed near Ifakara, Kilombero District/Tanzania) serve as major crop producing areas in the region, the Inland Valleys (observed in Namulonge, Central District/Uganda) show a high potential for future production. Both systems have been divided into three positions; the fringe near to the slope, the center near to the river and the middle in between these two positions. In order to get a better understanding of the two systems we installed continuously measuring redox-electrodes in three different positions within both systems. Additionally, the fate of mineral elements was measured using ion-exchange resins with an installation period of 3-4 months. At the Tanzanian field sites the Eh-potential shows one major dry period with moderately reducing to well drained conditions in all sampling depths (10, 30, and 50 cm below ground) in all three positions during the measuring period from March 2015 to Dec 2016. Starting with the rains the Eh-potential drops from 700 mV (in 10 and 30 cm depth) to reducing conditions at all three sites - with intermediate brakes in the middle and fringe positions, showing that there has been no rain during these periods. At the Ugandan field sites the Eh-potential shows more fluctuations during the measuring period, especially in the center position in 2015 ( 750 to -200 mV in 30 and 50 cm depth). Having just the Eh-potential from the first 30 cm below ground it is not really possible to differentiate between dry- and rainy-seasons at the sites. The fate of redox-sensitive elements (Fe, Mn, and P) does not always correlate with the overall Eh-conditions (median) of the installation period. Short time events may play a crucial role in the fate of these elements.

  7. Agent Orange

    DTIC Science & Technology

    2007-05-24

    TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e...and X-Ray devices to detect radioactivity . All these systems would provide much needed air support and detection systems that would previously be...dangerous for manned aircraft to provide or would prove too difficult for ground vehicles to get to. These sampling techniques could also be used for

  8. The Voroshilov Lectures. Materials from the Soviet General Staff Academy. Volume 1. Issues of Soviet Military Strategy,

    DTIC Science & Technology

    1989-06-01

    army defensive operation, this was the companion course to the material presented in the third semester on front offensive operations. In addition, a...center and supporting elements. Glossary 359 KOSMICHESKAIA SISTEMA Space system: A grouping of space and ground-based forces and means assigned to

  9. Finite-element simulation of ground-water flow in the vicinity of Yucca Mountain, Nevada-California

    USGS Publications Warehouse

    Czarnecki, J.B.; Waddell, R.K.

    1984-01-01

    A finite-element model of the groundwater flow system in the vicinity of Yucca Mountain at the Nevada Test Site was developed using parameter estimation techniques. The model simulated steady-state ground-water flow occurring in tuffaceous, volcanic , and carbonate rocks, and alluvial aquifers. Hydraulic gradients in the modeled area range from 0.00001 for carbonate aquifers to 0.19 for barriers in tuffaceous rocks. Three model parameters were used in estimating transmissivity in six zones. Simulated hydraulic-head values range from about 1,200 m near Timber Mountain to about 300 m near Furnace Creek Ranch. Model residuals for simulated versus measured hydraulic heads range from -28.6 to 21.4 m; most are less than +/-7 m, indicating an acceptable representation of the hydrologic system by the model. Sensitivity analyses of the model 's flux boundary condition variables were performed to assess the effect of varying boundary fluxes on the calculation of estimated model transmissivities. Varying the flux variables representing discharge at Franklin Lake and Furnace Creek Ranch has greater effect than varying other flux variables. (Author 's abstract)

  10. Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.

    2014-01-01

    CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.

  11. Integrated Systems Health Management for Space Exploration

    NASA Technical Reports Server (NTRS)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  12. Reclosing operation characteristics of the flux-coupling type SFCL in a single-line-to ground fault

    NASA Astrophysics Data System (ADS)

    Jung, B. I.; Cho, Y. S.; Choi, H. S.; Ha, K. H.; Choi, S. G.; Chul, D. C.; Sung, T. H.

    2011-11-01

    The recloser that is used in distribution systems is a relay system that behaves sequentially to protect power systems from transient and continuous faults. This reclosing operation of the recloser can improve the reliability and stability of the power supply. For cooperation with this recloser, the superconducting fault current limiter (SFCL) must properly perform the reclosing operation. This paper analyzed the reclosing operation characteristics of the three-phase flux-coupling type SFCL in the event of a ground fault. The fault current limiting characteristics according to the changing number of turns of the primary and secondary coils were examined. As the number of turns of the first coil increased, the first maximum fault current decreased. Furthermore, the voltage of the quenched superconducting element also decreased. This means that the power burden of the superconducting element decreases based on the increasing number of turns of the primary coil. The fault current limiting characteristic of the SFCL according to the reclosing time limited the fault current within a 0.5 cycles (8 ms), which is shorter than the closing time of the recloser. In other words, the superconducting element returned to the superconducting state before the second fault and normally performed the fault current limiting operation. If the SFCL did not recover before the recloser reclosing time, the normal current that was flowing in the transmission line after the recovery of the SFCL from the fault would have been limited and would have caused losses. Therefore, the fast recovery time of a SFCL is critical to its cooperation with the protection system.

  13. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    NASA Technical Reports Server (NTRS)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  14. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  15. Close-range photogrammetry in underground mining ground control

    NASA Astrophysics Data System (ADS)

    Benton, Donovan J.; Chambers, Amy J.; Raffaldi, Michael J.; Finley, Seth A.; Powers, Mark J.

    2016-09-01

    Monitoring underground mine deformation and support conditions has traditionally involved visual inspection and geotechnical instrumentation. Monitoring displacements with conventional instrumentation can be expensive and time-consuming, and the number of locations that can be effectively monitored is generally limited. Moreover, conventional methods typically produce vector rather than tensor descriptions of geometry changes. Tensor descriptions can provide greater insight into hazardous ground movements, particularly in recently excavated openings and in older workings that have been negatively impacted by high stress concentrations, time-dependent deformation, or corrosion of ground support elements. To address these issues, researchers with the National Institute for Occupational Safety and Health, Spokane Mining Research Division are developing and evaluating photogrammetric systems for ground control monitoring applications in underground mines. This research has demonstrated that photogrammetric systems can produce millimeter-level measurements that are comparable to conventional displacement-measuring instruments. This paper provides an overview of the beneficial use of close-range photogrammetry for the following three ground control applications in underground mines: monitoring the deformation of surface support, monitoring rock mass movement, and monitoring the corrosion of surface support. Preliminary field analyses, case studies, limitations, and best practices for these applications are also discussed.

  16. Quantum and isotope effects in lithium metal

    NASA Astrophysics Data System (ADS)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  17. Deployment/retraction ground testing of a large flexible solar array

    NASA Technical Reports Server (NTRS)

    Chung, D. T.

    1982-01-01

    The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.

  18. Two-dimensional photon-counting detector arrays based on microchannel array plates

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1975-01-01

    The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.

  19. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.

  20. System control of an autonomous planetary mobile spacecraft

    NASA Technical Reports Server (NTRS)

    Dias, William C.; Zimmerman, Barbara A.

    1990-01-01

    The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.

  1. Development and characterization of a 3D high-resolution terrain database

    NASA Astrophysics Data System (ADS)

    Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve

    2000-07-01

    A top-level description of methods used to generate elements of a high resolution 3D characterization database is presented. The database elements are defined as ground plane elevation map, vegetation height elevation map, material classification map, discrete man-made object map, and temperature radiance map. The paper will cover data collection by means of aerial photography, techniques of soft photogrammetry used to derive the elevation data, and the methodology followed to generate the material classification map. The discussion will feature the development of the database elements covering Fort Greely, Alaska. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems.

  2. Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim

    2007-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.

  3. ML Construction Progress

    NASA Image and Video Library

    2014-12-17

    Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is being used to move scaffolding, or work platforms, around the base of the tower on the ML to continue upgrades and modifications to the structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. The ML is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  4. KA-102 Film/EO Standoff System

    NASA Astrophysics Data System (ADS)

    Turpin, Richard T.

    1984-12-01

    The KA-102 is an in-flight selectable film or electro-optic (EU) visible reconnaissance camera with a real-time data link. The lens is a 66-in., f/4 refractor with a 4° field-of-view. The focal plane is a continuous line array of 10,240 COD elements that opera tes in the pushbroom mode. In the film mode, the camera use standard 5-in.-wide 3414 or 3412 film. The E0 imagery is transmitted up to 500 n.mi. to the ground station over a 75-Mbit/sec )(- band data link via a relay aircraft (see Figure 1). The camera may be controlled from the ground station via an uplink or from the cockpit control panel. The 8-ft-diameter ground tracking antenna is located on high ground and linked to the ground station via a 1-mile-long, two-way fiber optic system. In the ground station the imagery is calibrated and displayed in real time on three crt's. Selected imagery may be stored on disk and enhanced, analyzed, and annotated in near-real-time. The imagery may be enhanced and magnified in real time. Hardcopy frames may be made on 8 x 10-in. Polaroid, 35-1m film, or dry silver paper. All the received image and engineering data is recorded on a high-density tape recorder. The aircraft track is recorded on a map plotter. Ground support equipment (GSE), manuals, spares, and training are included in the system. Falcon 20 aircraft were modified on a subcontract to Dynelectron--Ft. Worth.

  5. Climate observing system studies: An element of the NASA Climate Research Program: Workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Plans for NASA's efforts in climatology were discussed. Targets for a comprehensive observing system for the early 1990's were considered. A program to provide useful data in the near and mid-term, and a program to provide for a feasibility assessment of instruments and methods for the development of a long-term system were discussed. Climate parameters that cannot be measured from space were identified. Long-term calibration, intercomparison, standards, and ground truth were discussed.

  6. Design of a 12 channel fm microwave receiver. [for satellite ground stations

    NASA Technical Reports Server (NTRS)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  7. Weather Information Communications (WINCOMM) Overview and Status

    NASA Technical Reports Server (NTRS)

    Martzaklis, K.

    2003-01-01

    The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.

  8. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    NASA Astrophysics Data System (ADS)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  9. Background and system description of the Mod 1 wind turbine generator

    NASA Technical Reports Server (NTRS)

    Ernst, E. H.

    1978-01-01

    The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.

  10. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  11. Measuring weather for aviation safety in the 1980's

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  12. Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation.

    PubMed

    Ghosh, Anirban; Sinha Ray, Suvonil; Chaudhuri, Rajat K; Chattopadhyay, Sudip

    2017-02-23

    The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag 2 , Cu 2 , Au 2 , and I 2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.

  13. Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 2: Ground Operations evaluation

    NASA Technical Reports Server (NTRS)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    The Ground Operations Evaluation describes the breath and depth of the various study elements selected as a result of an operational analysis conducted during the early part of the study. Analysis techniques used for the evaluation are described in detail. Elements selected for further evaluation are identified; the results of the analysis documented; and a follow-on course of action recommended. The background and rationale for developing recommendations for the current Shuttle or for future programs is presented.

  14. Traveling around Cape Horn: Otolith chemistry reveals a mixed stock of Patagonian hoki with separate Atlantic and Pacific spawning grounds

    USGS Publications Warehouse

    Schuchert, P.C.; Arkhipkin, A.I.; Koenig, A.E.

    2010-01-01

    Trace element fingerprints of edge and core regions in otoliths from 260 specimens of Patagonian hoki, Macruronus magellanicus L??nnberg, 1907, were analyzed by LA-ICPMS to reveal whether this species forms one or more population units (stocks) in the Southern Oceans. Fish were caught on their spawning grounds in Chile and feeding grounds in Chile and the Falkland Islands. Univariate and multivariate analyses of trace element concentrations in the otolith edges, which relate to the adult life of fish, could not distinguish between Atlantic (Falkland) and Pacific (Chile) hoki. Cluster analyses of element concentrations in the otolith edges produced three different clusters in all sample areas indicating high mixture of the stocks. Cluster analysis of trace element concentrations in the otolith cores, relating to juvenile and larval life stages, produced two separate clusters mainly distinguished by 137Ba concentrations. The results suggest that Patagonian hoki is a highly mixed fish stock with at least two spawning grounds around South America. ?? 2009 Elsevier B.V.

  15. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  16. Using task analysis to understand the Data System Operations Team

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.

    1994-01-01

    The Data Systems Operations Team (DSOT) currently monitors the Multimission Ground Data System (MGDS) at JPL. The MGDS currently supports five spacecraft and within the next five years, it will support ten spacecraft simultaneously. The ground processing element of the MGDS consists of a distributed UNIX-based system of over 40 nodes and 100 processes. The MGDS system provides operators with little or no information about the system's end-to-end processing status or end-to-end configuration. The lack of system visibility has become a critical issue in the daily operation of the MGDS. A task analysis was conducted to determine what kinds of tools were needed to provide DSOT with useful status information and to prioritize the tool development. The analysis provided the formality and structure needed to get the right information exchange between development and operations. How even a small task analysis can improve developer-operator communications is described, and the challenges associated with conducting a task analysis in a real-time mission operations environment are examined.

  17. Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951-80

    USGS Publications Warehouse

    Dugan, Jack T.; Zelt, Ronald B.

    2000-01-01

    Ground-water recharge and consumptive-irrigation requirements in the Great Plains and adjacent areas largely depend upon an environment extrinsic to the ground-water system. This extrinsic environment, which includes climate, soils, and vegetation, determines the water demands of evapotranspiration, the availability of soil water to meet these demands, and the quantity of soil water remaining for potential ground-water recharge after these demands are met. The geographic extent of the Great Plains contributes to large regional differences among all elements composing the extrinsic environment, particularly the climatic factors. A soil-water simulation program, SWASP, which synthesizes selected climatic, soil, and vegetation factors, was used to simulate the regional soil-water conditions during 1951-80. The output from SWASP consists of several soil-water characteristics, including surface runoff, infiltration, consumptive water requirements, actual evapotranspiration, potential recharge or deep percolation under various conditions, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions. Simulation results indicate that regional patterns of potential recharge, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions are largely determined by evapotranspiration and precipitation. The local effects of soils and vegetation on potential recharge cause potential recharge to vary by more than 50 percent in some areas having similar climatic conditions.

  18. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  19. Results of space environment measurement carried out by the Roscosmos monitoring system elements and their correlation with different space weather characteristics

    NASA Astrophysics Data System (ADS)

    Protopopov, Grigory; Anashin, Vasily; Elushov, Ilya; Kozyukova, Olga

    The Monitoring System of space radiation exposure on electronic components is developed by the Institute of Space Device Engineering by order Roscosmos. The key targets of the Monitoring System are space environment measurements, space model correction, space weather characteristics forecast, improvement of radiation hardness technical requirements and etc. The Monitoring System includes two parts: the ground-based and the space-born segments. The ground-based segment includes the forecast station, the analytic complex and the data output system. The space-born segment base elements are TID sensors operating by MNOSFET dosimetry principle. Sensor temperature stabilization is achieved by choosing of operational point according to the minimal change of sensor current-voltage curve. The set of 38 TID sensors is placed on 19 spacecrafts currently. The spacecrafts operate in Medium Earth Orbit (MEO) (approximately 20 000 km with inclination of 65(°) ). The flight data obtained perfectly correlate with total dose flight data registered using MOSFET placed on Van Allen Probe spacecraft functioning in high elliptical orbit (apogee is 37 000 km, perigee is 650 km, inclination is 10(°) ). Also coincidence with the dose data from GIOVE-B spacecraft (circular orbit 23200 km, inclination of 56(°) ) of Galileo system is observed. We have observed several abrupt dose rate increases from April, 2010. The flight data are compared with other monitoring system data and ground measurements. The comparison results show that high energy electrons (> 1 MeV) give general contribution in accumulated dose and anomalous dose rate increases. These results are in agreement with shielding stopping power calculation results. The high electron fluxes rise significantly in MEO as a result of Van Allen belts shifting during geomagnetic storms. The flight data were compared with calculation results obtained using different space models. The comparison shows that for some long-term interval the distinction between experimental and calculated results can be 7 times less or more.

  20. Design, Development, Testing, and Evaluation: Human Factors Engineering

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia

    2006-01-01

    While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.

  1. Novel Approaches for Mutual Coupling Reduction among Vertical and Planar Monopole Elements

    NASA Astrophysics Data System (ADS)

    Isaac, Ayman A.

    Modern wireless systems such as 4G LTE-A, RFID, Wi-Fi, WiMAX, and GPS utilize miniaturized antenna array elements to improve performance and reliability through diversity and increase throughput using spatial multiplexing schemes of MIMO systems. One original contribution in this thesis is to significantly reduce the complexity of traditional design approaches targeting mutual coupling reductions such as metamaterials, defected ground plane structures, soft electromagnetic surfaces using novel design alternatives. A decoupling network is proposed, which consists of a rectangular metallic ring along with two tuning strips printed on a dielectric substrate, surrounding a two-element monopole antenna array fed by a coplanar waveguide or microstrip structure. The array design offers a reduction in mutual coupling level by around 20 dB at 2.4 GHz as compared to the same array in which the two monopoles share the same ground plane but without the decoupling network. The array achieves a -10 dB S11 bandwidth of 0.63 GHz, (2.12 GHz - 2.75 GHz), a 0.24 GHz (2.33 GHz - 2.57 GHz) bandwidth in which S21 is less than -20 dB, respectively. A total realized gain of 1.6 to 1.69 dB in the frequency range over which S11 and S21 is less than -10 dB and -20 dB respectively. The boresight of the radiation patterns of two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm are shown to be orthogonal and inclined by 45° with respect to the horizon while maintaining the shape of the isolated single antenna element. Hence, we denote this design as the descattered and decoupled orthogonal MIMO antenna array, which is reported for the first time in this dissertation, providing the ideal far-field radiation characteristics as theoretically deemed for handheld MIMO devices. Moreover, two new approaches for the reduction of mutual coupling between two rectangular planar monopole antennas printed on a dielectric substrate with a partial ground plane are presented in this thesis. In the first design, two thin strips are attached to the adjacent corners of the radiating elements and extend to a certain distance above the partial ground plane. Results reveal a mutual coupling less than -20 dB over the frequency range from 2.16 GHz up to 2.74 GHz. while maintaining the -10 dB reflection coefficient bandwidth. Three implementations are presented which demonstrate an envelope correlation coefficient below 0.06 when the antenna elements are separated by 0.04lambda o, 0.048lambdao, 0.064lambdao, and 0.085lambda o with lambdao calculated at 1.5 GHz, 1.8 GHz, 2.4 GHz, and 3.2 GHz, respectively. The second design employs a decoupling structure consisting of planar or meander strip extending along the partial ground, the space between the two antenna elements, and beyond by a certain extent. The antennas provide a realized gain of 4.39 dB and 4.66 dB at 2.4 GHz using strip and meander lines, respectively, and bandwidth of (1.65 GHz- 4 GHz) and (1.43 GHz - 3.7 GHz), respectively. The two antenna arrays consisting of planar and meander strip achieve an envelope correlation coefficient of 0.05 and 0.06, respectively.

  2. Assessment of concentrations of trace elements in ground water and soil at the Small-Arms Firing Range, Shaw Air Force Base, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.

  3. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  4. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  5. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    NASA Astrophysics Data System (ADS)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  6. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.

  7. Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS.

    PubMed

    Carr, Ramona; Zhang, Chaosheng; Moles, Norman; Harder, Marie

    2008-02-01

    Heavy metals in urban soils continue to attract attention because of their potential long-term effects on human health. During a previous investigation of urban soils in Galway City, Ireland, a pollution hotspot of Pb, Cu, Zn and As was identified in the sports ground of South Park in the Claddagh. The sports ground was formerly a rubbish dumping site for both municipal and industrial wastes. In the present study, a portable X-ray fluorescence (PXRF) analyser was used to obtain rapid in-situ elemental analyses of the topsoil (depth: about 5-10 cm) at 200 locations on a 20 x 20-m grid in South Park. Extremely high values of the pollutants were found, with maximum values of Pb, Zn, Cu and As of 10,297, 24,716, 2224 and 744 mg/kg soil, respectively. High values occur particularly where the topsoil cover is thin, whereas lower values were found in areas where imported topsoil covers the polluted substrate. Geographic Information Systems (GIS) techniques were applied to the dataset to create elemental spatial distribution maps, three-dimensional images and interpretive hazard maps of the pollutants in the study area. Immediate action to remediate the contaminated topsoil is recommended to safeguard the health of children who play at the sports ground.

  8. Advanced Data Acquisition Systems with Self-Healing Circuitry

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  9. Exploration Medical Capability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; McGuire, K.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.

  10. Exploration Medical Cap Ability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.

  11. DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E., E-mail: iur@obs.carnegiescience.edu, E-mail: jelawler@wisc.edu

    2012-05-01

    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundancesmore » or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.« less

  12. 36 CFR Appendix D to Part 1191 - Technical

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inch (13 mm) high shall be ramped, and shall comply with 405 or 406. 304Turning Space 304.1General... ground space allows a parallel approach to an element and the side reach is unobstructed, the high side....2Obstructed High Reach. Where a clear floor or ground space allows a parallel approach to an element and the...

  13. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    PubMed

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A brief description of the simple biosphere model (SiB)

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.

    1986-01-01

    A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).

  15. Autonomous Navigation for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    2012-01-01

    Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.

  16. Charter for Systems Engineer Working Group

    NASA Technical Reports Server (NTRS)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  17. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site.

    PubMed

    Ben Salem, Zohra; Laffray, Xavier; Al-Ashoor, Ahmed; Ayadi, Habib; Aleya, Lotfi

    2017-04-01

    The uptake of metals in roots and their transfer to rhizomes and above-ground plant parts (stems, leaves) of cattails (Typha latifolia L.) were studied in leachates from a domestic landfill site (Etueffont, France) and treated in a natural lagooning system. Plant parts and corresponding water and sediment samples were taken at the inflow and outflow points of the four ponds at the beginning and at the end of the growing season. Concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni and Zn in the different compartments were estimated and their removal efficiency assessed, reaching more than 90% for Fe, Mn and Ni in spring and fall as well in the water compartment. The above- and below-ground cattail biomass varied from 0.21 to 0.85, and 0.34 to 1.24kgdryweight/m 2 , respectively, the highest values being recorded in the fourth pond in spring 2011. The root system was the first site of accumulation before the rhizome, stem and leaves. The highest metal concentration was observed in roots from cattails growing at the inflow of the system's first pond. The trend in the average trace element concentrations in the cattail plant organs can generally be expressed as: Fe>Mn>As > Zn>Cr>Cu>Ni>Cd for both spring and fall. While T. latifolia removes trace elements efficiently from landfill leachates, attention should also be paid to the negative effects of these elements on plant growth. Copyright © 2016. Published by Elsevier B.V.

  18. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  19. Report to Congress on the Strategic Defense System Architecture

    DTIC Science & Technology

    1988-01-01

    1 25 B. Architecture Analysis - Phase I 25 C. Architecture Work - Follow-on 25 ANNEX A Figures 26 0, LIST OF ACRONYMS ABM Antiballistic Missile ALS...vehicles greater mass and complexity. 5. EXOATMOSPHERIC REENTRY VEHICLE INTERCEPTOR SYTEM V A ground-based, multistage missile that would use hit-to-kill...velocity change to heavy decoys. The GBL’s greatest potential as an antiballistic missile ( ABM ) system element is in a synergistic mix of SBI and GBL

  20. A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity

    PubMed Central

    Skierucha, Wojciech; Wilczek, Andrzej; Szypłowska, Agnieszka; Sławiński, Cezary; Lamorski, Krzysztof

    2012-01-01

    Elements of design and a field application of a TDR-based soil moisture and electrical conductivity monitoring system are described with detailed presentation of the time delay units with a resolution of 10 ps. Other issues discussed include the temperature correction of the applied time delay units, battery supply characteristics and the measurement results from one of the installed ground measurement stations in the Polesie National Park in Poland. PMID:23202009

  1. Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Guffin, O. T.

    1994-01-01

    Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

  2. The phytoremediation potential of native plants on New Zealand dairy farms.

    PubMed

    Hahner, Jason L; Robinson, Brett H; Hong-Tao, Zhong; Dickinson, Nicholas M

    2014-01-01

    Ecological restoration of marginal land and riparian zones in agricultural landscapes in New Zealand enhances the provision of above-ground ecosystem services. We investigated whether native endemic plant assemblages have remediation potential, through modifying soil nutrient and trace element mobility. Analysis of native plant foliage in situ indicated that selective uptake of a range of commonly deficient trace elements including Zn, B, Cu, Mn and Co could provide a browse crop to avoid deficiencies of these elements in livestock, although some native plants may enhance the risk of Mo and Cd toxicity. Native plant rhizospheres were found to modify soil physico-chemistry and are likely to influence lateral and vertical fluxes of chemical elements in drainage waters. Native plants on marginal land in agricultural landscapes could add value to dairy production systems whilst helping to resolve topical environmental issues.

  3. On-Site Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Good, James E.

    2008-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. So what do we do when we get to the moon for sustainable exploration. On-site fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The on-site fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR element has worked closely with the ISRU element in the past year to assess the ability of using lunar regolith as a viable feedstock for fabrication material. Preliminary work has shown promise and the ISFR Element will continue to concentrate on this activity. Fabrication capabilities have been furthered with the process certification effort that, when completed, will allow for space-qualified hardware to be manufactured. Materials being investigated include titanium and aluminum alloys as well as lunar regolith simulants with binders. This paper addresses the latest advancements made in the fabrication of infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; infrastructures that allow sustained, affordable and highly effective operations on the Moon and beyond.

  4. Measurement of the first ionization potential of lawrencium, element 103.

    PubMed

    Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-04-09

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  5. General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.

    1990-01-01

    The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.

  6. Damage and Loss Estimation for Natural Gas Networks: The Case of Istanbul

    NASA Astrophysics Data System (ADS)

    Çaktı, Eser; Hancılar, Ufuk; Şeşetyan, Karin; Bıyıkoǧlu, Hikmet; Şafak, Erdal

    2017-04-01

    Natural gas networks are one of the major lifeline systems to support human, urban and industrial activities. The continuity of gas supply is critical for almost all functions of modern life. Under natural phenomena such as earthquakes and landslides the damages to the system elements may lead to explosions and fires compromising human life and damaging physical environment. Furthermore, the disruption in the gas supply puts human activities at risk and also results in economical losses. This study is concerned with the performance of one of the largest natural gas distribution systems in the world. Physical damages to Istanbul's natural gas network are estimated under the most recent probabilistic earthquake hazard models available, as well as under simulated ground motions from physics based models. Several vulnerability functions are used in modelling damages to system elements. A first-order assessment of monetary losses to Istanbul's natural gas distribution network is also attempted.

  7. Land mobile satellite communication system. Volume 2: Traffic analysis and market demand for the land mobile communications system in the European scenario

    NASA Astrophysics Data System (ADS)

    Carnebianca, C.; Pavesi, B.; Tuozzi, A.; Capone, R.

    1986-06-01

    The socioeconomic desirability in terms of market demand, technical economic feasibility, and price-performance for a Land Mobile Communication system ground based and/or satellite aided, able to satisfy the request of the traffic demand, foreseable in the 1995-2005 time frame, for the Western European countries was assessed. The criterion of economic value of the mobile system is considered as the driving element. The presence of gaps in the terrestrial system and reasonable traffic extrapolations suggest a very attractive role for a land mobile satellite communications mission.

  8. Dynamics and controls in maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1992-09-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are tomore » be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed. Particular emphasis is placed on modeling vehicle/guideway interactions and response characteristics of maglev systems for a multicar, multiload vehicle traveling on a single- or doublespan flexible guideway, including coupling effects of vehicle/guideway, comparison of concentrated and distributed loads, and ride comfort. Different control-law designs are introduced into vehicle suspensions when a simple two-degree-of-freedom vehicle model is applied. Active and semiactive control designs for primary and secondary suspensions do improve the response of vehicle and provide acceptable ride comfort. Finally, future research associated with dynamics and controls of vehicle/guideway systems is identified.« less

  9. Determination of toxic inorganic elements pollution in ground waters of Kahuta Industrial Triangle Islamabad, Pakistan using inductively coupled plasma mass spectrometry.

    PubMed

    Kausar, Rubina; Ahmad, Zulfiqar

    2009-10-01

    The present study deals with the ground water quality assessment in Kahuta Industrial Triangle Islamabad, Pakistan. The objective of the study was to assess ground water quality against the drinking water standards for various toxic inorganic elements. Representative groundwater samples were collected and analyzed in the Water Quality Laboratory of Pakistan Council of Research in Water Resources (PCRWR) at Islamabad, Pakistan. The samples were run on ICP-MS (Inductively coupled plasma mass spectrometry), which has the capability to separate and quantify 70 elements at a time. One of the finding of study is that ICP-MS is a very good tool to analyze broad range of toxic inorganic elements to the level of parts per billion (ppb). World Health Organization drinking water standards shows that these toxic inorganic elements such as heavy metals even at this concentration level (ppb) are injurious to human health. This analysis indicated pollution of various toxic elements including Selenium. Vertical leachate through industrial waste septic tanks is identified as major cause of groundwater pollution in the Industrial Triangle. Monitoring of the septic tanks and groundwater quality in study area is suggested along with remedial measures.

  10. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  11. Size does Matter

    NASA Astrophysics Data System (ADS)

    Vespignani, Alessandro

    From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...

  12. 2008 Year in Review

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge Fernando

    2008-01-01

    In February of 2008; NASA Stennis Space Center (SSC), NASA Kennedy Space Center (KSC), and The Applied Research Laboratory at Penn State University demonstrated a pilot implementation of an Integrated System Health Management (ISHM) capability at the Launch Complex 20 of KSC. The following significant accomplishments are associated with this development: (1) implementation of an architecture for ground operations ISHM, based on networked intelligent elements; (2) Use of standards for management of data, information, and knowledge (DIaK) leading to modular ISHM implementation with interoperable elements communicating according to standards (three standards were used: IEEE 1451 family of standards for smart sensors and actuators, Open Systems Architecture for Condition Based Maintenance (OSA-CBM) standard for communicating DIaK describing the condition of elements of a system, and the OPC standard for communicating data); (3) ISHM implementation using interoperable modules addressing health management of subsystems; and (4) use of a physical intelligent sensor node (smart network element or SNE capable of providing data and health) along with classic sensors originally installed in the facility. An operational demonstration included detection of anomalies (sensor failures, leaks, etc.), determination of causes and effects, communication among health nodes, and user interfaces.

  13. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  14. Towards an integral computer environment supporting system operations analysis and conceptual design

    NASA Technical Reports Server (NTRS)

    Barro, E.; Delbufalo, A.; Rossi, F.

    1994-01-01

    VITROCISET has in house developed a prototype tool named System Dynamic Analysis Environment (SDAE) to support system engineering activities in the initial definition phase of a complex space system. The SDAE goal is to provide powerful means for the definition, analysis, and trade-off of operations and design concepts for the space and ground elements involved in a mission. For this purpose SDAE implements a dedicated modeling methodology based on the integration of different modern (static and dynamic) analysis and simulation techniques. The resulting 'system model' is capable of representing all the operational, functional, and behavioral aspects of the system elements which are part of a mission. The execution of customized model simulations enables: the validation of selected concepts with respect to mission requirements; the in-depth investigation of mission specific operational and/or architectural aspects; and the early assessment of performances required by the system elements to cope with mission constraints and objectives. Due to its characteristics, SDAE is particularly tailored for nonconventional or highly complex systems, which require a great analysis effort in their early definition stages. SDAE runs under PC-Windows and is currently used by VITROCISET system engineering group. This paper describes the SDAE main features, showing some tool output examples.

  15. A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.

    Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.

  16. A review of candidate multilayer insulation systems for potential use on wet-launched LH2 tankage for the Space Exploration Initiative lunar missions

    NASA Technical Reports Server (NTRS)

    Knoll, Richard H.; Stochl, Robert J.; Sanabria, Rafael

    1991-01-01

    The storage of cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) for the future Space Exploration Initiative (SEI) will require lightweight, high performance thermal protection systems (TPSs). For the near-term lunar missions, the major weight element for most of the TPSs will be multilayer insulation (MLI) and/or the special structures/systems required to accommodate the MLI. Methods of applying MLI to LH2 tankage to avoid condensation or freezing of condensible gases such as nitrogen or oxygen while in the atmosphere are discussed. Because relatively thick layers of MLI will be required for storage times of a month or more, the transient performance from ground-hold to space-hold of the systems will become important in optimizing the TPSs for many of the missions. The ground-hold performance of several candidate systems are given as well as a qualitative assessment of the transient performance effects.

  17. X-33/RLV System Health Management/ Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Garbos, Raymond J.; Mouyos, William

    1998-01-01

    To reduce operations cost, the RLV must include the following elements: highly reliable, robust subsystems designed for simple repair access with a simplified servicing infrastructure and incorporating expedited decision making about faults and anomalies. A key component for the Single Stage to Orbit (SSTO) RLV System used to meet these objectives is System Health Management (SHM). SHM deals with the vehicle component- Vehicle Health Management (VHM), the ground processing associated with the fleet (GVHM) and the Ground Infrastructure Health Management (GIHM). The objective is to provide an automated collection and paperless health decision, maintenance and logistics system. Many critical technologies are necessary to make the SHM (and more specifically VHM) practical, reliable and cost effective. Sanders is leading the design, development and integration of the SHM system for RLV and X-33 SHM (a sub-scale, sub-orbit Advanced Technology Demonstrator). This paper will present the X-33 SHM design which forms the baseline for RLV SHM. This paper will also discuss other applications of these technologies.

  18. A review of candidate multilayer insulation systems for potential use on wet-launched LH2 tankage for the space exploration initiative lunar missions

    NASA Technical Reports Server (NTRS)

    Knoll, Richard H.; Stochl, Robert J.; Sanabria, Rafael

    1991-01-01

    The storage of cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) for the future Space Exploration Initiative (SEI) will require lightweight, high performance thermal protection systems (TPS's). For the near-term lunar missions, the major weight element for most of the TPS's will be multilayer insulation (MLI) and/or the special structures/systems required to accommodate the MLI. Methods of applying MLI to LH2 tankage to avoid condensation or freezing of condensible gases such as nitrogen or oxygen while in the atmosphere are discussed. Because relatively thick layers of MLI will be required for storage times of a month or more, the transient performance from ground-hold to space-hold of the systems will become important in optimizing the TPS's for many of the missions. The ground-hold performance of several candidate systems are given as well as a qualitative assessment of the transient performance effects.

  19. Albany 1/sup 0/ x 2/sup 0/ NTMS area Connecticut, Massachusetts, New Hampshire, New York, and Vermont: data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koller, G.R.

    1979-08-01

    Stream sediment and stream water samples were collected from small streams at 1328 sites. Ground water samples were collected at 664 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water and surface water.

  20. Conjugate Ground-Spacecraft Observations of VLF Chorus Elements

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Manninen, J.; Santolík, O.; Titova, E. E.

    2017-12-01

    We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of -12.4∘ close to the plasmapause and inside a localized density inhomogeneity with about 30% density increase and a transverse size of about 600 km. The time delay between the waves detected on the ground and on the spacecraft is about 1.3 s, with ground-based detection leading spacecraft detection. The measured time delay is consistent with the wave travel time of quasi-parallel whistler-mode waves for a realistic profile of the plasma density distribution along the field line. The results suggest that chorus discrete elements can preserve their spectral shape during a hop from the generation region to the ground followed by reflection from the ionosphere and return to the near-equatorial region.

  1. Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick

    NASA Astrophysics Data System (ADS)

    Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed

    2018-05-01

    The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.

  2. Frustration and thermalization in an artificial magnetic quasicrystal

    NASA Astrophysics Data System (ADS)

    Shi, Dong; Budrikis, Zoe; Stein, Aaron; Morley, Sophie A.; Olmsted, Peter D.; Burnell, Gavin; Marrows, Christopher H.

    2018-03-01

    Artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional `skeleton' that spans the entire pattern and is capable of long-range order, surrounding `flippable' clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.

  3. Frustration and thermalization in an artificial magnetic quasicrystal

    DOE PAGES

    Shi, Dong; Budrikis, Zoe; Stein, Aaron; ...

    2017-12-11

    Here, artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional ‘skeleton’ that spans the entire pattern and is capablemore » of long-range order, surrounding ‘flippable’ clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.« less

  4. Frustration and thermalization in an artificial magnetic quasicrystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dong; Budrikis, Zoe; Stein, Aaron

    Here, artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional ‘skeleton’ that spans the entire pattern and is capablemore » of long-range order, surrounding ‘flippable’ clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.« less

  5. Workers Welding on ML

    NASA Image and Video Library

    2014-02-24

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker prepares a metal beam that will be attached to the ML. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2014-2018

    NASA Image and Video Library

    2014-04-04

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker uses a measuring device on the surface of the ML. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Cory Huston

  7. Active vibration control activities at the LaRC - Present and future

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.

    1990-01-01

    The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.

  8. JPL control/structure interaction test bed real-time control computer architecture

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1989-01-01

    The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.

  9. Preliminary result of the solar multi-conjugate adaptive optics for 1m new vacuum solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Lanqiang; Kong, Lin; Bao, Hua; Zhu, Lei; Rao, Xuejun; Rao, Changhui

    2016-07-01

    Solar observation with high resolution in large field of view (FoV) is required for some solar active regions with the typical sizes of 1' to 3'. Conventional adaptive optics (AO) could not satisfy this demand because of the atmospheric anisoplanatism. Through compensating the turbulence in different heights, multi-conjugate adaptive optics (MCAO) has been proved to obtain a larger corrected FoV. A MCAO experimental system including a conventional 151-element AO system and a 37-element MCAO part is being developed. The MCAO part contains a 37-element deformable mirror conjugated into the 2km to 5km height and a multi-direction Shack-Hartmann wavefront sensor (MD-SHWFS) with 7×7 subaperture array and 60 arcsec FoV, the frame rate of the MD-SHWFS is up to 840Hz. Three-dimensional (3-D) wavefront sensing utilizing atmospheric tomography had been validated by solar observation. Based on these results, a ground layer adaptive optics (GLAO) experimental system including a 151-element deformable mirror and the MD-SHWFS has been built at the 1m New Vacuum Solar Telescope (NVST). In this paper, the MCAO experimental system will be introduced. The preliminary experimental results of three-dimensional wavefront sensing and GLAO on the NVST of Full-shine Lake Solar Observatory are presented.

  10. Land mobile satellite communication system. Volume 3: Annexes to volume 2: Particular aspects of market analyses

    NASA Astrophysics Data System (ADS)

    Carnebianca, C.; Pavesi, B.; Tuozzi, A.; Capone, R.

    1986-06-01

    The socioeconomic desirability in terms of market demand, technical economic feasibility, and price-performance for a Land Mobile Communication system ground based and/or satellite aided, able to satisfy the request of the traffic demand, foreseeable in the 1995 to 2005 time frame, for the Western European countries was assessed. The criterion of economic value of the mobile system is considered as the driving element. Data on traffic; socioeconomic factors; economic factors; and radiotelephony, paging, and dispatch subscription and value for money trends are presented.

  11. Proceedings of the Meeting of the Special Interest Group on Control Theory (1st) Held at Aberdeen Proving Ground, Maryland on 22 May 80,

    DTIC Science & Technology

    1980-05-01

    elements that will form the candi- existing targets are given In References 2 and S. date GIC systems; The effectiveness of any missile system Is con- a...authority is specified as that a sensor using some form of pattern recogni- tion may be required. The problem is to find or ot , .- I K (2, begin...have the requirements imposed by an advanced G&C system. been derived so that the resulting formulation is deliberately cast in a form particularly

  12. Generic Health Management: A System Engineering Process Handbook Overview and Process

    NASA Technical Reports Server (NTRS)

    Wilson, Moses Lee; Spruill, Jim; Hong, Yin Paw

    1995-01-01

    Health Management, a System Engineering Process, is one of those processes-techniques-and-technologies used to define, design, analyze, build, verify, and operate a system from the viewpoint of preventing, or minimizing, the effects of failure or degradation. It supports all ground and flight elements during manufacturing, refurbishment, integration, and operation through combined use of hardware, software, and personnel. This document will integrate Health Management Processes (six phases) into five phases in such a manner that it is never a stand alone task/effort which separately defines independent work functions.

  13. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  14. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  15. Water-quality characteristics and ground water quantity of the Fraser River Watershed, Grand County, Colorado, 1998-2001

    USGS Publications Warehouse

    Bauch, Nancy J.; Bails, Jeffrey B.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Grand County Board of County Commissioners, conducted a 4-year study to assess ground- and surface-water-quality conditions and ground-water quantity in the 302-square-mile Fraser River watershed in north-central Colorado. The Fraser River flows north about 28 miles from the headwaters near the Continental Divide, through the towns of Winter Park, Fraser, Tabernash, and Granby, and is one of the major tributaries to the Upper Colorado River. Increasing urban development, as well as the seasonal influx of tourists, is placing more demands on the water resources in the Fraser River watershed. A ground-water sampling network of 11 wells was established to represent different aquifer systems (alluvial, Troublesome Formation, Precambrian granite), land uses (urban, nonurban), and areas with or without individual septic disposal system use. The well network was sampled for ground-water quality on a semiannual basis from August 1998 through September 2001. The sampling included field properties and the collection of water samples for analysis of major ions, trace elements, nutrients, dissolved organic carbon, bacteria, methylene blue active substances, and radon-222. One surface-water site, on the Fraser River just downstream from the town of Tabernash, Colorado, was sampled bimonthly from August 1998 through September 2001 to assess the cumulative effects of natural and human processes on water quality in the upper part of the Fraser River watershed. Surface-water-quality sampling included field properties and the collection of water-quality samples for analysis of major ions, trace elements, nutrients, organic carbon, and bacteria. Ground water was a calcium-bicarbonate type water and is suitable as a drinking-water, domestic, municipal, industrial, and irrigation source. In general, no widespread ground-water-quality problems were indicated. All pH values and concentrations of dissolved solids, chloride, fluoride, sulfate, nitrite, and nitrate in the ground-water samples met or were substantially less than U.S. Environmental Protection Agency drinking-water standards and health advisories or State of Colorado water-quality standards. Federal standards for turbidity and concentrations of iron, manganese, methylene blue active substances, and radon-222 were not met in water samples from at least one well. The only ground-water-quality concern assessed by this study is radon-222, which was detected in all radon- analyzed samples from 10 wells at levels exceeding the proposed U.S. Environmental Protection Agency drinking-water standard of 300 picocuries per liter. Concentrations of chloride, magnesium, and sulfate were statistically different (higher) in ground-water samples from wells completed in the alluvial aquifer, urbanized areas, and areas with individual septic disposal system use than those from wells completed in the Troublesome Formation, nonurban areas, and areas without individual septic disposal system use. Dissolved organic carbon concentrations were statistically higher in ground-water samples from wells completed in the alluvial aquifer and areas without individual septic disposal system use than those from wells completed in the Troublesome Formation and areas with individual septic disposal system use. Differences in dissolved organic-carbon concentrations between the latter category and areas without septic systems likely had no environmental significance. Surface water at the site Fraser River below Crooked Creek at Tabernash was a calcium-bicarbonate type water and is suitable as a drinking-water, residential, commercial, and irrigation resource. All pH values and concentrations of dissolved oxygen were within the State of Colorado instream water-quality standards, and all concentrations of chloride, sulfate, iron, manganese, un-ionized ammonia, nitrite, nitrate, and fecal coliform bacteria met State standards. Seasonal changes in the values or conc

  16. Initial versus ongoing education: Perspectives of people with type 1 diabetes in 13 countries.

    PubMed

    Beran, David; Golay, Alain

    2017-05-01

    To understand the perspectives of people with type 1 diabetes with regards to the diabetes education they receive within the health system. Grounded Theory was used for the collection and analysis of data from interviews with 101 people with type 1 diabetes from 13 countries. There are two aspects to education, namely initial education received when diagnosed and the ongoing education people continue to receive. Within these two categories content and process of diabetes education are important as are factors linked to the healthcare worker and setting. Tangible elements are the "what" that is delivered and are the different skills and information needed for people to manage their diabetes. Process elements are the "how" this is delivered. Finally intangible elements are those, which were found to be specific to certain contexts and health professionals. These could be the hardest to replicate, but possibly the most important. Health systems can provide the tangible elements and organize themselves to have processes in place to deliver education. The challenge is how can the intangible elements be seen as important and developed and delivered to improve management, but also meet the needs of people with diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A distributed transmit beamforming synchronization strategy for multi-element radar systems

    NASA Astrophysics Data System (ADS)

    Xiao, Manlin; Li, Xingwen; Xu, Jikang

    2017-02-01

    The distributed transmit beamforming has recently been discussed as an energy-effective technique in wireless communication systems. A common ground of various techniques is that the destination node transmits a beacon signal or feedback to assist source nodes to synchronize signals. However, this approach is not appropriate for a radar system since the destination is a non-cooperative target of an unknown location. In our paper, we propose a novel synchronization strategy for a distributed multiple-element beamfoming radar system. Source nodes estimate parameters of beacon signals transmitted from others to get their local synchronization information. The channel information of the phase propagation delay is transmitted to nodes via the reflected beacon signals as well. Next, each node generates appropriate parameters to form a beamforming signal at the target. Transmit beamforming signals of all nodes will combine coherently at the target compensating for different propagation delay. We analyse the influence of the local oscillation accuracy and the parameter estimation errors on the performance of the proposed synchronization scheme. The results of numerical simulations illustrate that this synchronization scheme is effective to enable the transmit beamforming in a distributed multi-element radar system.

  18. SPCC- Software Elements for Security Partition Communication Controller

    NASA Astrophysics Data System (ADS)

    Herpel, H. J.; Willig, G.; Montano, G.; Tverdyshev, S.; Eckstein, K.; Schoen, M.

    2016-08-01

    Future satellite missions like Earth Observation, Telecommunication or any other kind are likely to be exposed to various threats aiming at exploiting vulnerabilities of the involved systems and communications. Moreover, the growing complexity of systems coupled with more ambitious types of operational scenarios imply increased security vulnerabilities in the future. In the paper we will describe an architecture and software elements to ensure high level of security on-board a spacecraft. First the threats to the Security Partition Communication Controller (SPCC) will be addressed including the identification of specific vulnerabilities to the SPCC. Furthermore, appropriate security objectives and security requirements are identified to be counter the identified threats. The security evaluation of the SPCC will be done in accordance to the Common Criteria (CC). The Software Elements for SPCC has been implemented on flight representative hardware which consists of two major elements: the I/O board and the SPCC board. The SPCC board provides the interfaces with ground while the I/O board interfaces with typical spacecraft equipment busses. Both boards are physically interconnected by a high speed spacewire (SpW) link.

  19. Salton Sea 1/sup 0/ x 2/sup 0/ NTMS area California and Arizona: data report (abbreviated)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffner, J.D.

    1980-09-01

    Surface sediment samples were collected at 997 sites. Ground water samples were collected at 76 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) (2) physical measurements (water temperature, well description where applicable, and scintillometer reading) and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na and V). Data from sediment sites include (1) stream watermore » chemistry measurements from sites where water was available and (2) elemental analyses (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors are given. Areal distribution maps, histograms, and cumulative frequency plots for the elements listed above; U/Th and U/Hf ratios; and scintillometer readings at sediment sample sites are included. Analyses of the sediment fraction finer than 149..mu..m show high uranium values clustered in the Eagle and Chuckwalla Mountains. High uranium values in the 420 ..mu..m to 1000 ..mu..m fraction are clustered in the McCoy Mountains. Both fractions show groups of high values in the Chocolate Mountains at the Southeastern edge of the Chocolate Mountains Aerial Gunnery Range. Aerial distribution of analytical values shows that high values of many elements in both size fractions are grouped around the Eagle Mountains and the Chuckwalla Mountains. Fe, Mn, Ti, V, Sc, Hf, and the rare earth elements, all of which typically occur in high-density minerals, have higher average (log mean) concentrations in the finer fraction than in the coarser fraction.« less

  20. STS payloads mission control study continuation phase A-1. Volume 2-B: Task 2. Evaluation and refinement of implementation guidelines for the selected STS payload operator concept

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The functions of Payload Operations Control Centers (POCC) at JSC, GSFC, JPL, and non-NASA locations are analyzed to establish guidelines for standardization, and facilitate the development of a fully integrated NASA-wide system of ground facilities for all classes of payloads. Operational interfaces between the space transportation system operator and the payload operator elements are defined. The advantages and disadvantages of standardization are discussed.

  1. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    NASA Technical Reports Server (NTRS)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  2. Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2015-01-01

    A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.

  3. High mobility vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H. (Inventor); Nasif, Annette K. (Inventor)

    2001-01-01

    A vehicle, for driving over a ground surface, has a body with a left side, a right side, a front and a back. The vehicle includes left and right drive mechanisms. Each mechanism includes first and second traction elements for engaging the ground surface and transmitting a driving force between the vehicle and ground surface. Each mechanism includes first and second arms coupled to the first and second traction elements for relative rotation about first and second axis respectively. Each mechanism includes a rotor having a third axis, the rotor coupled to the body for rotation about the third axis and coupled to the first and second arms for relative rotation about the third axis. The mechanism includes first and second drive motors for driving the first and second traction elements and first and second transmissions, driven by the first and second motors and engaging the rotor. Driving the first and second traction elements simultaneously rotates the rotor relative to the first and second arms, respectively.

  4. Transportation systems analyses: Volume 1: Executive Summary

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This executive summary of the transportation systems analyses (TSM) semi-annual report addresses the SSF logistics resupply. Our analysis parallels the ongoing NASA SSF redesign effort. Therefore, there could be no SSF design to drive our logistics analysis. Consequently, the analysis attempted to bound the reasonable SSF design possibilities (and the subsequent transportation implications). No other strategy really exists until after a final decision is rendered on the SSF configuration.

  5. GSFC Systems Test and Operation Language (STOL) functional requirements and language description

    NASA Technical Reports Server (NTRS)

    Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.

    1978-01-01

    The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.

  6. High resolution analysis of soil elements with laser-induced breakdown

    DOEpatents

    Ebinger, Michael H [Santa Fe, NM; Harris, Ronny D [Los Alamos, NM

    2010-04-06

    The invention is a system and method of detecting a concentration of an element in a soil sample wherein an opening or slot is formed in a container that supports a soil sample that was extracted from the ground whereupon at least a length of the soil sample is exposed via the opening. At each of a plurality of points along the exposed length thereof, the soil sample is ablated whereupon a plasma is formed that emits light characteristic of the elemental composition of the ablated soil sample. Each instance of emitted light is separated according to its wavelength and for at least one of the wavelengths a corresponding data value related to the intensity of the light is determined. As a function of each data value a concentration of an element at the corresponding point along the length of the soil core sample is determined.

  7. Rapid visual grouping and figure-ground processing using temporally structured displays.

    PubMed

    Cheadle, Samuel; Usher, Marius; Müller, Hermann J

    2010-08-23

    We examine the time course of visual grouping and figure-ground processing. Figure (contour) and ground (random-texture) elements were flickered with different phases (i.e., contour and background are alternated), requiring the observer to group information within a pre-specified time window. It was found this grouping has a high temporal resolution: less than 20ms for smooth contours, and less than 50ms for line conjunctions with sharp angles. Furthermore, the grouping process takes place without an explicit knowledge of the phase of the elements, and it requires a cumulative build-up of information. The results are discussed in relation to the neural mechanism for visual grouping and figure-ground segregation. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. The Growing Role of Trade as A Development Assistance Mechanism.

    DTIC Science & Technology

    1981-08-11

    emphasizing that these elements should accompany foreign 1/Approved crops include cashew nuts , cocoa, coconut, coffee, durian, mangosteen, manila hemp, palm...products; essen- tial oils; spices; forest products (e.g., rattan and resins); tobacco; tea; nuts . --Industrial products: plywood and processed wood...Gabon and Ivory Coast (timber), Ethiopia (coffee), Benin (cotton), Tanzania (sisal), Niger and Senegal (ground nuts ), Mauritania (iron ore). SYSTEM FOR

  9. Integrating intrinsic mobility into unmanned ground vehicle systems

    NASA Astrophysics Data System (ADS)

    Brosinsky, Chris A.; Penzes, Steven G.; Buehler, Martin G.; Steeves, Carl

    2001-09-01

    The ability of an Unmanned Ground Vehicle (UGV) to successfully move about in its environment is enabled by the synergistic combination of perception, control and platform (mobility and utility). Vast effort is being expended on the former technologies but little demonstrable evidence has been produced to indicate that the latter (mobility/utility) has been considered as an integral part of the UGV systems level capability; a concept commonly referred to as intrinsic mobility. While past work described the rationale for hybrid locomotion, this paper aims to demonstrate that integrating intrinsic mobility into a UGV systems mobility element or 'vehicle' will be a key contributor to the magnitude of autonomy that the system can achieve. This paper serves to provide compelling evidence that 1) intrinsic mobility improvements provided by hybrid locomotion configurations offer the best generic mobility, that 2) strict attention must be placed on the optimization of both utility (inherent vehicle capabilities) and mobility and that 3) the establishment of measures of performance for unmanned vehicle mobility is an unmet and latent need.

  10. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running.

    PubMed

    Ly, Quoc Hung; Alaoui, Amina; Erlicher, Silvano; Baly, Laurent

    2010-01-19

    Several spring-damper-mass models of the human body have been developed in order to reproduce the measured ground vertical reaction forces during human running (McMahon and Cheng, 1990; Ferris et al., 1999; Liu and Nigg, 2000). In particular, Liu and Nigg introduced at the lower level of their model, i.e. at the interface between the human body and the ground, a nonlinear element representing simultaneously the shoe midsoles and the ground flexibility. The ground reaction force is modelled as the force supported by this nonlinear element, whose parameters are identified from several sets of experimental data. This approach proved to be robust and quite accurate. However, it does not explicitly take into account the shoe and the ground properties. It turns out to be impossible to study the influence of shoe materials on the impact force, for instance for footwear design purposes. In this paper, a modification of the Liu and Nigg's model is suggested, where the original nonlinear element is replaced with a bi-layered spring-damper-mass model: the first layer represents the shoe midsole and the second layer is associated with the ground. Ground is modelled as an infinite elastic half-space. We have assumed a viscoelastic behaviour of the shoe material, so the damping of shoe material is taken into account. A methodology for the shoe-soles characterization is proposed and used together with the proposed model. A parametric study is then conducted and the influence of the shoe properties on the impact force is quantified. Moreover, it is shown that impact forces are strongly affected by the ground stiffness, which should therefore be considered as an essential parameter in the footwear design. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  12. Ground vibration test of the XV-15 Tiltrotor Research Aircraft and pretest predictions

    NASA Technical Reports Server (NTRS)

    Studebaker, Karen; Abrego, Anita

    1994-01-01

    The first comprehensive ground vibration survey was performed on the XV-15 Tiltrotor Research Aircraft to measure the vibration modes of the airframe and to provide data critical for determining whirl flutter stability margins. The aircraft was suspended by the wings with bungee cords and cables. A NASTRAN finite element model was used in the design of the suspension system to minimize its interference with the wing modes. The primary objective of the test was to measure the dynamic characteristics of the wings and pylons for aeroelastic stability analysis. In addition, over 130 accelerometers were placed on the airframe to characterize the fuselage, wing, and tail vibration. Pretest predictions were made with the NASTRAN model as well as correlations with the test data. The results showed that the suspension system provided the isolation necessary for modal measurements.

  13. KSC-2014-3379

    NASA Image and Video Library

    2014-08-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2014-2702

    NASA Image and Video Library

    2014-05-28

    CAPE CANAVERAL, Fla. -- Construction workers on lifts continue modifications underneath the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Sections of the ML are being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  15. KSC-2014-3378

    NASA Image and Video Library

    2014-08-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  16. Numerical Analysis of a Radiant Heat Flux Calibration System

    NASA Technical Reports Server (NTRS)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  17. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  18. S-band omnidirectional antenna for the SERT-C satellite

    NASA Technical Reports Server (NTRS)

    Bassett, H. L.; Cofer, J. W., Jr.; Sheppard, R. R.; Sinclair, M. J.

    1975-01-01

    The program to design an S-band omnidirectional antenna system for the SERT-C spacecraft is discussed. The program involved the tasks of antenna analyses by computer techniques, scale model radiation pattern measurements of a number of antenna systems, full-scale RF measurements, and the recommended design, including detailed drawings. A number of antenna elements were considered: the cavity-backed spiral, quadrifilar helix, and crossed-dipoles were chosen for in-depth studies. The final design consisted of a two-element array of cavity-backed spirals mounted on opposite sides of spacecraft and fed in-phase through a hybrid junction. This antenna system meets the coverage requirement of having a gain of at least minus 10 dBi over 50 percent of a 4 pi steradian sphere with the solar panels in operation. This coverage level is increased if the ground station has the capability to change polarization.

  19. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.

  20. An investigation of ground-water recharge by injection in the Palo Alto Baylands, California : hydraulic and chemical interactions; final report

    USGS Publications Warehouse

    Hamlin, S.N.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Santa Clara Valley Water District, has completed a study of ground-water recharge by injection in the Palo Alto baylands along San Francisco Bay, California. Selected wells within the Water District 's injection-extraction network were monitored to determine hydraulic and chemical interactions affecting well-field operation. The well field was installed to prevent and eliminate saline contamination in the local shallow aquifer system. The primary focus of this study is on factors that affect injection efficiency, specifically well and aquifer clogging. Mixing and break-through curves for major chemical constituents indicate ion exchange, adsorption, and dissolution reactions. Freshwater breakthrough was detected in water-level data, which reflected fluid-density change as well as head buildup. Dissolution of calcium carbonate caused by dilution of saline ground water probably accounts for an apparent increase in specific capacity possibly related to improved aquifer permeability. Adsorption evidently removed trace elements during passage of injected water through the aquifer. In terms of hydraulic and chemical compatibility, the well field is a viable system for ground-water recharge. Aquifer heterogeneity and operational constraints reduce the efficiency of the system. Efficiency may be maximized by careful attention to extraction distribution and quantity and to injection distribution, quantity, and water quality. (USGS)

  1. Compact wideband filter element-based on complementary split-ring resonators

    NASA Astrophysics Data System (ADS)

    Horestani, Ali K.; Shaterian, Zahra; Withayachumnankul, Withawat; Fumeaux, Christophe; Al-Sarawi, Said; Abbott, Derek

    2011-12-01

    A double resonance defected ground structure is proposed as a filter element. The structure involves a transmission line loaded with complementary split ring resonators embedded in a dumbbell shape defected ground structure. By using a parametric study, it is demonstrated that the two resonance frequencies can be independently tuned. Therefore the structure can be used for different applications such as dual bandstop filters and wide bandstop filters.

  2. Simulation of ground-water flow, surface-water flow, and a deep sewer tunnel system in the Menomonee Valley, Milwaukee, Wisconsin

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.; Hunt, R.J.; Krohelski, J.T.

    2004-01-01

    Numerical models were constructed for simulation of ground-water flow in the Menomonee Valley Brownfield, in Milwaukee, Wisconsin. An understanding of ground-water flow is necessary to develop an efficient program to sample ground water for contaminants. Models were constructed in a stepwise fashion, beginning with a regional, single-layer, analytic-element model (GFLOW code) that provided boundary conditions for a local, eight layer, finite-difference model (MODFLOW code) centered on the Menomonee Valley Brownfield. The primary source of ground water to the models is recharge over the model domains; primary sinks for ground water within the models are surface-water features and the Milwaukee Metropolitan Sewerage District Inline Storage System (ISS). Calibration targets were hydraulic heads, surface-water fluxes, vertical gradients, and ground-water infiltration to the ISS. Simulation of ground-water flow by use of the MODFLOW model indicates that about 73 percent of recharge within the MODFLOW domain circulates to the ISS and 27 percent discharges to gaining surface-water bodies. In addition, infiltration to the ISS comes from the following sources: 36 percent from recharge within the model domain, 45 percent from lateral flow into the domain, 15 percent from Lake Michigan, and 4 percent from other surface-water bodies. Particle tracking reveals that the median traveltime from the recharge point to surface-water features is 8 years; the median time to the ISS is 255 years. The traveltimes to the ISS are least over the northern part of the valley, where dolomite is near the land surface. The distribution of traveltimes in the MODFLOW simulation is greatly influenced by the effective porosity values assigned to the various lithologies.

  3. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  4. Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.

    PubMed

    Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P

    2017-02-01

    The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.

  5. The Value of SysML Modeling During System Operations: A Case Study

    NASA Technical Reports Server (NTRS)

    Dutenhoffer, Chelsea; Tirona, Joseph

    2013-01-01

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  6. The value of SysML modeling during system operations: A case study

    NASA Astrophysics Data System (ADS)

    Dutenhoffer, C.; Tirona, J.

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  7. Landsat Data Continuity Mission (LDCM) Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Good, Susan M.; Nicholson, Ann M.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.

  8. Aerial Measuring System Sensor Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimatingmore » detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup 241}Am) as this is the ''marker'' isotope utilized by the system for Pu detection. The helicopter sensor array consists of 2 six-element NaI detector pods, and the NaI pod detector response was simulated for a distributed surface source of {sup 241}Am as a function of altitude.« less

  9. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.

    PubMed

    Schilling, Malte; Cruse, Holk

    2017-01-01

    It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences.

  10. KSC-2014-2017

    NASA Image and Video Library

    2014-04-04

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A large crane is situated next to the ML for lifting of heavy metal beams and other construction materials. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Cory Huston

  11. KSC-2014-2273

    NASA Image and Video Library

    2014-04-22

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Two large cranes are situated next to the ML for lifting of heavy metal beams and other construction materials. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Daniel Casper

  12. Architectures Toward Reusable Science Data Systems

    NASA Astrophysics Data System (ADS)

    Moses, J. F.

    2014-12-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building ground systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research, NOAA's weather satellites and USGS's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience the goal is to recognize architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  13. Programmable Ultra-Lightweight System Adaptable Radio

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The programmable ultra-lightweight system adaptable radio (PULSAR) is a NASA Marshall Space Flight Center transceiver designed for the CubeSat market, but has the potential for other markets. The PULSAR project aims to reduce size, weight, and power while increasing telemetry data rate. The current version of the PULSAR has a mass of 2.2 kg and a footprint of 10.8 cm2. The height depends on the specific configuration. The PULSAR S-Band Communications Subsystem is an S- and X-band transponder system comprised of a receiver/detector (receiver) element, a transmitter element(s), and related power distribution, command, control, and telemetry element for operation and information interfaces. It is capable of receiving commands, encoding and transmitting telemetry, as well as providing tracking data in a manner compatible with Earthbased ground stations, near Earth network, and deep space network station resources. The software-defined radio's (SDR's) data format characteristics can be defined and reconfigured during spaceflight or prior to launch. The PULSAR team continues to evolve the SDR to improve the performance and form factor to meet the requirements that the CubeSat market space requires. One of the unique features is that the actual radio design can change (somewhat), but not require any hardware modifications due to the use of field programmable gate arrays.

  14. The evolution of automation and robotics in manned spaceflight

    NASA Technical Reports Server (NTRS)

    Moser, T. L.; Erickson, J. D.

    1986-01-01

    The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.

  15. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  16. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  17. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  18. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  19. 49 CFR 236.527 - Roadway element insulation resistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  20. 49 CFR 236.527 - Roadway element insulation resistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  1. 49 CFR 236.527 - Roadway element insulation resistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  2. Agent-based Modeling Methodology for Analyzing Weapons Systems

    DTIC Science & Technology

    2015-03-26

    like programming language that allows access to AFSIM library objects. Figure 10 depicts the various objects that make up a platform within...AFSIM and can be accessed through the scripting language (Zeh & Birkmire, 2014). 29 Figure 10: AFSIM Platform Components (AFSIM Overview, 2014...defined, accessible , and has all the elements of both air-to-air and air-to-ground combat that allow sufficient exploration of the main factors of

  3. Korean Affairs Report.

    DTIC Science & Technology

    1997-01-07

    gathering on the grounds that it could be exploited by leftist elements, causing great social unrest. Kim Yong-sam who actually leads the opposition party...that stores, restaurants, and coffee and barber shops in the Kwanghwamun area remain closed today. Police are certain to fire large amounts of tear gas...trillion won will be spent every year out of the government budget. Whether or not our economy is capable of handling all of these welfare systems

  4. Quantum noise and the threshold of hearing

    NASA Technical Reports Server (NTRS)

    Bialek, W.; Schweitzer, A.

    1985-01-01

    It is argued that the sensitivity of the ear reaches a limit imposed by the uncertainty principle. This is possible only if the receptor cell holds the detector elements in a special nonequilibrium state which has the same noise characteristics as a ground (T = 0 K) state. To accomplish this 'active cooling' the molecular dynamics of the system must maintain quantum mechanical coherence over the time scale of the measurement.

  5. Beneath the Surface: Intelligence Preparation of the Battlespace for Counterterrorism

    DTIC Science & Technology

    2004-11-01

    consisting of those sub-systems existing below ground to include subways , sewers, utility structures and others.161 Although 155 Three reasons adapted...activities that provide for governance and basic human needs. Roads, subways , waterways, railroads and sea and airports are a few of the elements of the...recruiting, financing, and service (medicine, food , education) delivery oper- ations. Finally, the con- cept of avenues has parallels in cyberspace and

  6. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat

  7. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less

  8. Hubble Space Telescope-The Support Systems Module

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  9. Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference

    NASA Technical Reports Server (NTRS)

    Ohkubo, K.; Han, C. C.; Albernaz, J.; Janky, J. M.; Lusignan, B. B.

    1972-01-01

    The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year.

  10. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  11. 14 CFR Appendix H to Part 141 - Ground Instructor Certification Course

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Ground training must include the following aeronautical knowledge areas: (1) Learning process; (2) Elements of effective teaching; (3) Student evaluation and testing; (4) Course development; (5) Lesson...

  12. 14 CFR Appendix H to Part 141 - Ground Instructor Certification Course

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Ground training must include the following aeronautical knowledge areas: (1) Learning process; (2) Elements of effective teaching; (3) Student evaluation and testing; (4) Course development; (5) Lesson...

  13. 14 CFR Appendix H to Part 141 - Ground Instructor Certification Course

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Ground training must include the following aeronautical knowledge areas: (1) Learning process; (2) Elements of effective teaching; (3) Student evaluation and testing; (4) Course development; (5) Lesson...

  14. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  15. The Role of Advanced Information System Technology in Remote Sensing for NASA's Earth Science Enterprise in the 21st Century

    NASA Technical Reports Server (NTRS)

    Prescott, Glenn; Komar, George (Technical Monitor)

    2001-01-01

    Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.

  16. Spectropolarimeter of ground support of space experiments

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Morozhenko, O. V.; Siniavsky, I. I.; Nevodovskyi, P. V.; Nevodovskyi, P. V.; Sosonkim, M. G.

    2017-08-01

    At various space experiments it is necessary to plan carrying out parallel terrestrial observations. For this purpose spectropolarimeter of support of Space experiments in spectral range of 350-900 nm was developed and manufactured at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. As a dispersing system of SPS it was proposed to use a complex prism system, whose elements can be located in different parts of the optical system and work with different angular increase. In the spectral range of 370-870 nm, the variance was almost uniform. Spectropolarimeter SPS of SE support, has been used for observation of stars with exoplanets and of Solar System bodies.

  17. Orbital design strategy for domestic communication satellite systems.

    NASA Technical Reports Server (NTRS)

    Ramji, S.; Sawitz, P.

    1973-01-01

    Review of some of the considerations pertinent to efficient orbit utilization in the design of domestic communications satellite systems. A strategy is developed to efficiently locate a heterogeneous system of satellites within the available arc and provide room for future growth. A practical design is illustrated, using a computer simulation model, for the placement of 25 satellites within 73% of the available arc employing frequency and polarization coordination techniques. A number of widely variable factors that influence satellite spacing are examined. These factors include such critical system elements as telephony and television interference noise limits, frequency plan coordination, polarization plan coordination, ground antenna diameter, signal protection ratio, and satellite station keeping.

  18. End-to-End Information System design at the NASA Jet Propulsion Laboratory. [data transmission between user and space-based sensor

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    In recognition of a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote-space-based sensor, an end-to-end approach to the design of information systems has been adopted at the JPL. This paper reviews End-to-End Information System (EEIS) activity at the JPL, with attention given to the scope of the EEIS transfer function, and functional and physical elements of the EEIS. The relationship between the EEIS and the NASA End-to-End Data System program is discussed.

  19. High-bandwidth acoustic detection system (HBADS) for stripmap synthetic aperture acoustic imaging of canonical ground targets using airborne sound and a 16 element receiving array

    NASA Astrophysics Data System (ADS)

    Bishop, Steven S.; Moore, Timothy R.; Gugino, Peter; Smith, Brett; Kirkwood, Kathryn P.; Korman, Murray S.

    2018-04-01

    High Bandwidth Acoustic Detection System (HBADS) is an emerging active acoustic sensor technology undergoing study by the US Army's Night Vision and Electronic Sensors Directorate. Mounted on a commercial all-terrain type vehicle, it uses a single source pulse chirp while moving and a new array (two rows each containing eight microphones) mounted horizontally and oriented in a side scan mode. Experiments are performed with this synthetic aperture air acoustic (SAA) array to image canonical ground targets in clutter or foliage. A commercial audio speaker transmits a linear FM chirp having an effective frequency range of 2 kHz to 15 kHz. The system includes an inertial navigation system using two differential GPS antennas, an inertial measurement unit and a wheel coder. A web camera is mounted midway between the two horizontal microphone arrays and a meteorological unit acquires ambient, temperature, pressure and humidity information. A data acquisition system is central to the system's operation, which is controlled by a laptop computer. Recent experiments include imaging canonical targets located on the ground in a grassy field and similar targets camouflaged by natural vegetation along the side of a road. A recent modification involves implementing SAA stripmap mode interferometry for computing the reflectance of targets placed along the ground. Typical strip map SAA parameters are chirp pulse = 10 or 40 ms, slant range resolution c/(2*BW) = 0.013 m, microphone diameter D = 0.022 m, azimuthal resolution (D/2) = 0.01, air sound speed c ≍ 340 m/s and maximum vehicle speed ≍ 2 m/s.

  20. Utility-interactive photovoltaic power conditioners - Effects of transformerless design and dc injection

    NASA Astrophysics Data System (ADS)

    Das, R.; Krauthamer, S.; Klein, J.

    It is shown that the use of isolation transformers to eliminate dc injection into the utility in utility-interactive photovoltaic (PV) systems can reduce the overall efficiency of the system. In order to improve PV efficiency, a transformerless power conditioning subsystem (PCS) is proposed for a grounded PV array having two and three connections to a utility. An additional transformerless PCS configuration is proposed for an ungrounded PV array. A detailed schematic drawing of the interconnections between the elements of a transformerless PCS is provided.

  1. Development of an integrated aeroservoelastic analysis program and correlation with test data

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Brenner, M. J.; Voelker, L. S.

    1991-01-01

    The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.

  2. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix A: EOS program WBS dictionary. Appendix B: EOS mission functional analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.

  3. Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.

    2008-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of autonomously tasking the other. Sensor-web data acquisition and dissemination will be accomplished through the use of the Open Geospatial Consortium Sensorweb Enablement protocols. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform. ??2008 IEEE.

  4. Nature Elements and Fundamental Motor Skill Development Opportunities at Five Elementary School Districts in British Columbia

    PubMed Central

    Lim, Christopher; Donovan, Andrew M.; Naylor, Patti-Jean

    2017-01-01

    The majority of Canadian children are not physically active enough for healthy development. School playgrounds are a primary location to promote physical activity and motor skill practice. The benefits of children’s play in nature have also been highlighted, but few studies have evaluated children’s access and exposure to nature for play on school grounds. This study examined children’s access to nature on school grounds and the opportunities afforded by those natural elements for motor skill practice. Results: Extensive naturescapes (multiple nature elements in one setting) were not common, and natural elements were limited, ranging from 1.97 to 5.71 elements/school. The most common element was a forested area (26.5% of all natural elements identified). In comparison to built structures, the number of natural elements was low. Some elements differed between school districts and appeared to be related to local geography and terrain (hilly, rocky terrain, tidal flats, etc.). Our assessment showed that naturescape elements afforded opportunities for the development of some key fundamental motor skills (FMS), specifically, locomotor and stability skills, but opportunities to develop manipulative skills were limited. To maximize potential FMS development, physical literacy, and psycho-social benefits, additional elements or more comprehensive multi-element naturescapes and facilitation (social or environmental) are recommended. PMID:29064430

  5. Nature Elements and Fundamental Motor Skill Development Opportunities at Five Elementary School Districts in British Columbia.

    PubMed

    Lim, Christopher; Donovan, Andrew M; Harper, Nevin J; Naylor, Patti-Jean

    2017-10-24

    The majority of Canadian children are not physically active enough for healthy development. School playgrounds are a primary location to promote physical activity and motor skill practice. The benefits of children's play in nature have also been highlighted, but few studies have evaluated children's access and exposure to nature for play on school grounds. This study examined children's access to nature on school grounds and the opportunities afforded by those natural elements for motor skill practice. Extensive naturescapes (multiple nature elements in one setting) were not common, and natural elements were limited, ranging from 1.97 to 5.71 elements/school. The most common element was a forested area (26.5% of all natural elements identified). In comparison to built structures, the number of natural elements was low. Some elements differed between school districts and appeared to be related to local geography and terrain (hilly, rocky terrain, tidal flats, etc.). Our assessment showed that naturescape elements afforded opportunities for the development of some key fundamental motor skills (FMS), specifically, locomotor and stability skills, but opportunities to develop manipulative skills were limited. To maximize potential FMS development, physical literacy, and psycho-social benefits, additional elements or more comprehensive multi-element naturescapes and facilitation (social or environmental) are recommended.

  6. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    NASA Astrophysics Data System (ADS)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  7. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  8. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System

    NASA Astrophysics Data System (ADS)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-01

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  9. Recommended techniques for effective maintainability. A continuous improvement initiative of the NASA Reliability and Maintainability Steering Committee

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This manual presents a series of recommended techniques that can increase overall operational effectiveness of both flight and ground based NASA systems. It provides a set of tools that minimizes risk associated with: (1) restoring failed functions (both ground and flight based); (2) conducting complex and highly visible maintenance operations; and (3) sustaining a technical capability to support the NASA mission using aging equipment or facilities. It considers (1) program management - key elements of an effective maintainability effort; (2) design and development - techniques that have benefited previous programs; (3) analysis and test - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design techniques that address NASA field experience. This document is a valuable resource for continuous improvement ideas in executing the systems development process in accordance with the NASA 'better, faster, smaller, and cheaper' goal without compromising safety.

  10. ML Construction Progress

    NASA Image and Video Library

    2014-11-17

    Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  11. ML Construction Progress

    NASA Image and Video Library

    2014-11-17

    A water moccasin snake travels across the gravel surface near the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Nearby, the haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  12. KSC-2014-3672

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  13. KSC-2014-2410

    NASA Image and Video Library

    2014-05-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker trims a section of a steel beam. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  14. KSC-2014-2885

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lifted away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  15. KSC-2014-3669

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A new steel beam has arrived for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  16. KSC-2014-3670

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A new steel beam has arrived for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  17. KSC-2014-4067

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – In the early morning at NASA's Kennedy Space Center in Florida, preparations are underway to lift the final large steel beam for installation on the base of the Mobile Launcher, or ML, at the Mobile Launcher Park Site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  18. KSC-2014-4066

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – In the early morning at NASA's Kennedy Space Center in Florida, preparations are underway to lift the final large steel beam for installation on the base of the Mobile Launcher, or ML, at the Mobile Launcher Park Site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  19. KSC-2014-2700

    NASA Image and Video Library

    2014-05-28

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers have welded sections of the steel walls. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  20. KSC-2014-3671

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is in place to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  1. KSC-2014-4070

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – A crane is used to lift the final large steel beam for installation on the base of the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  2. KSC-2014-2882

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a section of the metal structure away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  3. KSC-2014-4068

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – Construction workers watch as a crane is used to lift the final large steel beam for installation on the base of the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  4. KSC-2014-2881

    NASA Image and Video Library

    2014-05-28

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers on lifts continue to cut through a steel beam to prepare it for removal. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2014-2884

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a section of the metal structure away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  6. KSC-2014-4501

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  7. KSC-2014-2411

    NASA Image and Video Library

    2014-05-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker welds a section of a steel beam. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  8. KSC-2014-2409

    NASA Image and Video Library

    2014-05-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers on lifts are welding sections of the steel walls. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  9. KSC-2014-2891

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. In view from the top of the ML is the crawlerway that leads to Launch Pads 39A and 39B. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  10. KSC-2014-2701

    NASA Image and Video Library

    2014-05-28

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker trims a section of a steel wall. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  11. KSC-2014-2883

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a section of the metal structure away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  12. KSC-2014-2408

    NASA Image and Video Library

    2014-05-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers on lifts are welding sections of the steel walls. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  13. KSC-2014-4503

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  14. KSC-2014-2879

    NASA Image and Video Library

    2014-05-28

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers on lifts cut through sections of the steel beams to prepare them for removal. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2014-4505

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  16. KSC-2014-3674

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is in place to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  17. KSC-2014-4502

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-2412

    NASA Image and Video Library

    2014-05-06

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers on lifts are welding sections of the steel walls. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  19. KSC-2014-3673

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is in place to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  20. KSC-2014-4504

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  1. KSC-2014-4071

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to bring the final large steel beam close for installation on the base of the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  2. KSC-2014-2699

    NASA Image and Video Library

    2014-05-28

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Construction workers have welded sections of the steel walls. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  3. KSC-2014-4069

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – A crane is used to lift the final large steel beam for installation on the base of the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  4. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    NASA Technical Reports Server (NTRS)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  5. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, M. E., E-mail: mgriswold@trialphaenergy.com; Korepanov, S.; Thompson, M. C.

    An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor ofmore » 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.« less

  7. KSC-08pd0089

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd0092

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd0087

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd0090

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd0088

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd0085

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd0091

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  14. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions

    USGS Publications Warehouse

    Cooley, Richard L.

    1992-01-01

    MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.

  15. Efficacy of an ankle brace with a subtalar locking system in inversion control in dynamic movements.

    PubMed

    Zhang, Songning; Wortley, Michael; Chen, Qingjian; Freedman, Julia

    2009-12-01

    Controlled laboratory study. To examine effectiveness of an ankle brace with a subtalar locking system in restricting ankle inversion during passive and dynamic movements. Semirigid ankle braces are considered more effective in restricting ankle inversion than other types of brace, but a semirigid brace with a subtalar locking system may be even more effective. Nineteen healthy subjects with no history of major lower extremity injuries were included in the study. Participants performed 5 trials of an ankle inversion drop test and a lateral-cutting movement without wearing a brace and while wearing either the Element (with the subtalar locking system), a Functional ankle brace, or an ASO ankle brace. A 2-way repeated-measures analysis of variance (ANOVA) was used to assess brace differences (P?.05). All 3 braces significantly reduced total passive ankle frontal plane range of motion (ROM), with the Element ankle brace being the most effective. For the inversion drop the results showed significant reductions in peak ankle inversion angle and inversion ROM for all 3 braces compared to the no brace condition; and the peak inversion velocity was also reduced for the Element brace and the Functional brace. In the lateral-cutting movement, a small but significant reduction of the peak inversion angle in early foot contact and the peak eversion velocity at push-off were seen when wearing the Element and the Functional ankle braces compared to the no brace condition. Peak vertical ground reaction force was reduced for the Element brace compared to the ASO brace and the no brace conditions. These results suggest that the tested ankle braces, especially the Element brace, provided effective restriction of ankle inversion during both passive and dynamic movements.

  16. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.

    2005-01-01

    This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.

  17. Finite-element time evolution operator for the anharmonic oscillator

    NASA Technical Reports Server (NTRS)

    Milton, Kimball A.

    1995-01-01

    The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crozat, G.; Domergue, J.L.; Bogui, V.

    Atmospheric aerosols were sampled on filters to the air near ground level over the Ivory Coast and the Gulf of Guinea. Several elements were measured of filters by neutron activation and gamma spectrometry. Correlation thats applied to these elements allow them to be classified in groups of common origin. Study of the sampling collected over the Ivory Coast, along a''North- South'' axis, showed an increase of the concentrations of the terrestrial elements, as one passes from the coast to the north of the country. However, no particular increase of the concentrations was observed, to ground level air, when passing frommore » one side of the intertropical front to the other. In the air above the land, concentrations of marine aerosols decrease from the coast forth, especially near it. Daily variations may be noticed for all the elements The experiments performed in marthe atmosphere, over the Guif of Guinea, show that a high number of the elements measured are of terrestrial origin. (UK)« less

  19. Geologic, hydrologic, and geochemical interpretations of mineral deposits as analogs for understanding transport of environmental contaminants

    USGS Publications Warehouse

    Wanty, R.B.; Berger, B.R.

    2006-01-01

    Base- and precious-metal mineral deposits comprise anomalous concentrations of metals and associated elements, which may be useful subjects for study as analogs for migration of environmental contaminants. In the geologic past, hydrothermal mineral deposits formed at the intersection of favorable geologic, hydrologic and geochemical gradients. In the present, weathering of these sulfide-rich deposits occurs as a result of the interplay between rates of oxygen supply versus rates of ground or surface-water flow. Transport and spatial dispersion of elements from a mineral deposit occurs as a function of competing rates of water flow versus rates of attenuation mechanisms such as adsorption, dilution, or (co)precipitation. In this paper we present several case studies from mineralized and altered sedimentary and crystalline aquifers in the western United States to illustrate the geologic control of ground-water flow and solute transport, and to demonstrate how this combined approach leads to a more complete understanding of the systems under study as well as facilitating some capability to predict major flow directions in aquifers.

  20. Computational Design of Flat-Band Material.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2018-02-26

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  1. Computational Design of Flat-Band Material

    NASA Astrophysics Data System (ADS)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  2. An examination of the earthquake behaviour of a retaining wall considering soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Köktan, Utku; Demir, Gökhan; Kerem Ertek, M.

    2017-04-01

    The earthquake behavior of retaining walls is commonly calculated with pseudo static approaches based on Mononobe-Okabe method. The seismic ground pressure acting on the retaining wall by the Mononobe-Okabe method does not give a definite idea of the distribution of the seismic ground pressure because it is obtained by balancing the forces acting on the active wedge behind the wall. With this method, wave propagation effects and soil-structure interaction are neglected. The purpose of this study is to examine the earthquake behavior of a retaining wall taking into account the soil-structure interaction. For this purpose, time history seismic analysis of the soil-structure interaction system using finite element method has been carried out considering 3 different soil conditions. Seismic analysis of the soil-structure model was performed according to the earthquake record of "1971, San Fernando Pacoima Dam, 196 degree" existing in the library of MIDAS GTS NX software. The results obtained from the analyses show that the soil-structure interaction is very important for the seismic design of a retaining wall. Keywords: Soil-structure interaction, Finite element model, Retaining wall

  3. Analysis of Operational Pace Versus Logistical Support Rate in the Ground Combat Element of a Marine Expeditionary Brigade

    DTIC Science & Technology

    2006-09-01

    logistical resources necessary to sustain its movement toward assigned objectives while being supported by a CSSE in an expanding maneuver warfare...thesis defines a logistics process and develops a simulation where the GCE consumes logistical resources necessary to sustain its movement toward...the MAGTF is responsible for responding to the logistics needs of the MAGTF Ground Combat Element (GCE) in order to sustain its movement. Yet

  4. Plans for a new rio-imager experiment in Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Hagfors, T.

    1997-05-01

    To observe the spatial variations and dynamics of charged particle precipitation in the high latitude ionosphere, a riometer experiment is planned, which from the ground will image the precipitation regions over an area of 300 × 300 km with a spatial resolution of 6 km in the zenith, increasing to 12 km at 60° zenith angle. The time resolution is one second. The spatial resolution represents a considerable improvement over existing imaging systems. The experiment employs a Mill's Cross technique not used before in riometer work: two 32 element rows of antennas form the antenna array, two 32 element Butler Matrices achieve directionality, and cross-correlation yield the directional intensities.

  5. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  6. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  7. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  8. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    PubMed

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  9. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    USGS Publications Warehouse

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.

  10. Modularity of a leaf moth-wing pattern and a versatile characteristic of the wing-pattern ground plan

    PubMed Central

    2013-01-01

    Background One of the most intriguing questions in evolutionary developmental biology is how an insect acquires a mimicry pattern within its body parts. A striking example of pattern mimicry is found in the pattern diversity of moth and butterfly wings, which is thought to evolve from preexisting elements illustrated by the nymphalid ground plan (NGP). Previous studies demonstrated that individuality of the NGP facilitates the decoupling of associated common elements, leading to divergence. In contrast, recent studies on the concept of modularity have argued the importance of a combination of coupling and decoupling of the constituent elements. Here, we examine the modularity of a mimicry wing pattern in a moth and explore an evolvable characteristic of the NGP. Results This study examined the wings of the noctuid moth Oraesia excavata, which closely resemble leaves with a leaf venation pattern. Based on a comparative morphological procedure, we found that this leaf pattern was formed by the NGP common elements. Using geometric morphometrics combined with network analysis, we found that each of the modules in the leaf pattern integrates the constituent components of the leaf venation pattern (i.e., the main and lateral veins). Moreover, the detected modules were established by coupling different common elements and decoupling even a single element into different modules. The modules of the O. excavata wing pattern were associated with leaf mimicry, not with the individuality of the NGP common elements. For comparison, we also investigated the modularity of a nonmimetic pattern in the noctuid moth Thyas juno. Quantitative analysis demonstrated that the modules of the T. juno wing pattern regularly corresponded to the individuality of the NGP common elements, unlike those in the O. excavata wing pattern. Conclusions This study provides the first evidence for modularity in a leaf mimicry pattern. The results suggest that the evolution of this pattern involves coupling and decoupling processes to originate these modules, free from the individuality of the NGP system. We propose that this evolution has been facilitated by a versatile characteristic of the NGP, allowing the association of freely modifiable subordinate common elements to make modules. PMID:23890367

  11. End-to-End Information System design at the NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    Recognizing a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote space-based sensor, an end-to-end approach to the design of information systems has been adopted at the Jet Propulsion Laboratory. The objectives of this effort are to ensure that all flight projects adequately cope with information flow problems at an early stage of system design, and that cost-effective, multi-mission capabilities are developed when capital investments are made in supporting elements. The paper reviews the End-to-End Information System (EEIS) activity at the Laboratory, and notes the ties to the NASA End-to-End Data System program.

  12. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  13. Changes in sample collection and analytical techniques and effects on retrospective comparability of low-level concentrations of trace elements in ground water

    USGS Publications Warehouse

    Ivahnenko, T.; Szabo, Z.; Gibs, J.

    2001-01-01

    Ground-water sampling techniques were modified to reduce random low-level contamination during collection of filtered water samples for determination of trace-element concentrations. The modified sampling techniques were first used in New Jersey by the US Geological Survey in 1994 along with inductively coupled plasma-mass spectrometry (ICP-MS) analysis to determine the concentrations of 18 trace elements at the one microgram-per-liter (μg/L) level in the oxic water of the unconfined sand and gravel Kirkwood-Cohansey aquifer system. The revised technique tested included a combination of the following: collection of samples (1) with flow rates of about 2L per minute, (2) through acid-washed single-use disposable tubing and (3) a single-use disposable 0.45-μm pore size capsule filter, (4) contained within portable glove boxes, (5) in a dedicated clean sampling van, (6) only after turbidity stabilized at values less than 2 nephelometric turbidity units (NTU), when possible. Quality-assurance data, obtained from equipment blanks and split samples, indicated that trace element concentrations, with the exception of iron, chromium, aluminum, and zinc, measured in the samples collected in 1994 were not subject to random contamination at 1μg/L.Results from samples collected in 1994 were compared to those from samples collected in 1991 from the same 12 PVC-cased observation wells using the available sampling and analytical techniques at that time. Concentrations of copper, lead, manganese and zinc were statistically significantly lower in samples collected in 1994 than in 1991. Sampling techniques used in 1994 likely provided trace-element data that represented concentrations in the aquifer with less bias than data from 1991 when samples were collected without the same degree of attention to sample handling.

  14. Effect of train vibration on settlement of soil: A numerical analysis

    NASA Astrophysics Data System (ADS)

    Tiong, Kah-Yong; Ling, Felix Ngee-Leh; Talib, Zaihasra Abu

    2017-10-01

    The drastic development of transit system caused the influence of ground-borne vibrations induced by train on ground settlement became concern problem nowadays. The purpose of this study is to investigate soil settlement caused by train vibration. To facilitate this study, computer simulation of soil dynamic response using commercial finite element package - PLAXIS 2D was performed to simulate track-subgrade system together with dynamic train load under three different conditions. The results of simulation analysis established the facts that the soil deformation increased with raising in water level. This phenomenon happens because the increasing water level not only induced greater excess pore water pressure but also reduced stiffness of soil. Furthermore, the simulation analysis also deduced that the soil settlement was reduced by placing material with high stiffness between the subgrade and the ballast layer since material with high stiffness was able to dissipate energy efficiently due to its high bearing capacity, thus protecting the subgrade from deteriorating. The simulation analysis result also showed that the soil dynamic response increased with the increase in the speed of train and a noticeable amplification in soil deformation occurred as the train speed approaches the Rayleigh wave velocity of the track subgrade system. This is due to the fact that dynamic train load depend on both the self-weight of the train and the dynamic component due to inertial effects associated with the train speed. Thus, controlling the train speeds under critical velocity of track-subgrade system is able to ensure the safety of train operation as it prevents track-ground resonance and dramatic ground.

  15. Effect of the Ionosphere on Space and Terrestrial Systems

    DTIC Science & Technology

    1978-01-01

    adequately shielded and filtered, Voyager spacecraft was modified to include arc that the grounding of all conductive elements discharge sources...dependence. Reasons for such a a set of the associated "cutoff orbits ". We choice include the following: A realistic see from Fig. 8 that the included angle...which had been modified to produce an approxima- chronous- orbit spacecraft [De Forest, 1972; tely uniform flood beam up to 10cm in diameter

  16. A Z-axis recumbent rotating device for use in parabolic flight

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Miller, E. F., II

    1976-01-01

    A prototype apparatus for exposing persons to rotation about their Z-axis in parabolic flight is described. Although it resembles earth-horizontal axis devices, added features are its strength and portability, and the fiber glass 'couch' with adjustable elements providing support and restraint. Even under ground-based conditions, this device provides unique opportunities for investigations involving not only canalicular and macular mechanoreceptors, but also touch, pressure, and kinesthetic receptor systems.

  17. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  18. Lightweight Combat Vehicle S&T Initiatives

    DTIC Science & Technology

    2015-08-01

    1 U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Lightweight Combat Vehicle S &T Initiatives Dr. Richard Gerth Ground Systems...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Lightweight Combat Vehicle S &T Initiatives Global Automotive Lightweight Materials 2015 - August...18-20 2015 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Richard Gerth 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  19. Single Pricing for Major Items in FMS (Foreign Military Sales).

    DTIC Science & Technology

    1984-01-01

    PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Director, US Army Materiel Systems Analysis AREA& WORK UNIT NUMBERS Activity...study it was found that, though price estimates were believed to be low and imprecise, no work had been done by any of the organizations involved in FMS...other support equipment, ground forces support materiel C medical - dental materiel H aircraft - air materiel K tactical and support vehicles -combat and

  20. Spacelab shaping space operations planning

    NASA Technical Reports Server (NTRS)

    Steven, F. R.; Reinhold, C.

    1976-01-01

    An up-to-date picture is presented of the organizational structure, the key management personnel, and management relationships of the Spacelab program. Attention is also given to Spacelab's development status and plans for its operations. A number of charts are provided to illustrate the organizational relations. It is pointed out that the parties involved in Spacelab activities must yet resolve questions about ownership of transportation-system elements, payloads, ground support facilities, and data obtained from space missions.

  1. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 2: Program plans

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.

  2. Enhancing Ground Based Telescope Performance with Image Processing

    DTIC Science & Technology

    2013-11-13

    driven by the need to detect small faint objects with relatively short integration times to avoid streaking of the satellite image across multiple...the time right before the eclipse. The orbital elements of the satellite were entered into the SST’s tracking system, so that the SST could be...short integration times , thereby avoiding streaking of the satellite image across multiple CCD pixels so that the objects are suitably modeled as point

  3. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  4. Fracture control of ground water flow and water chemistry in a rock aquitard

    USGS Publications Warehouse

    Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.

  5. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yost, Shane R.; Kowalczyk, Tim; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2013-11-07

    In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Møller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as N{sub occ}{sup 2}N{sub virt}{sup 3}. Unlike most active space methods, ΔSCF(2) treats the ground and excited statemore » determinants even-handedly. We apply ΔSCF(2) to the H{sub 2}, hydrogen fluoride, and H{sub 4} systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states.« less

  6. Optimized autonomous space in-situ sensor web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  7. Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States

    USGS Publications Warehouse

    Kuiper, L.K.

    1994-01-01

    A multiple-regression methodology was used to help answer questions concerning model reliability, and to calibrate a time-dependent variable-density ground-water flow model of the gulf coast aquifer systems in the south-central United States. More than 40 regression models with 2 to 31 regressions parameters are used and detailed results are presented for 12 of the models. More than 3,000 values for grid-element volume-averaged head and hydraulic conductivity are used for the regression model observations. Calculated prediction interval half widths, though perhaps inaccurate due to a lack of normality of the residuals, are the smallest for models with only four regression parameters. In addition, the root-mean weighted residual decreases very little with an increase in the number of regression parameters. The various models showed considerable overlap between the prediction inter- vals for shallow head and hydraulic conductivity. Approximate 95-percent prediction interval half widths for volume-averaged freshwater head exceed 108 feet; for volume-averaged base 10 logarithm hydraulic conductivity, they exceed 0.89. All of the models are unreliable for the prediction of head and ground-water flow in the deeper parts of the aquifer systems, including the amount of flow coming from the underlying geopressured zone. Truncating the domain of solution of one model to exclude that part of the system having a ground-water density greater than 1.005 grams per cubic centimeter or to exclude that part of the systems below a depth of 3,000 feet, and setting the density to that of freshwater does not appreciably change the results for head and ground-water flow, except for locations close to the truncation surface.

  8. Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.

    2007-01-01

    The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-10-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  10. Contamination of shallow ground water in the area of building 95, Picatinny Arsenal, New Jersey, 1985-90

    USGS Publications Warehouse

    Sargent, B.P.; Storck, D.A.

    1994-01-01

    A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.

  11. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  12. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  13. Elemental concentrations in tropospheric and lower stratospheric air in a Northeastern region of Poland

    NASA Astrophysics Data System (ADS)

    Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej

    Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.

  14. Reliability program requirements for aeronautical and space system contractors

    NASA Technical Reports Server (NTRS)

    1987-01-01

    General reliability program requirements for NASA contracts involving the design, development, fabrication, test, and/or use of aeronautical and space systems including critical ground support equipment are prescribed. The reliability program requirements require (1) thorough planning and effective management of the reliability effort; (2) definition of the major reliability tasks and their place as an integral part of the design and development process; (3) planning and evaluating the reliability of the system and its elements (including effects of software interfaces) through a program of analysis, review, and test; and (4) timely status indication by formal documentation and other reporting to facilitate control of the reliability program.

  15. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual

    USGS Publications Warehouse

    Torak, L.J.

    1993-01-01

    A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or bead-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration. The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.

  16. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems; Part 1, Model description and user's manual

    USGS Publications Warehouse

    Torak, Lynn J.

    1992-01-01

    A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration.The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.

  17. Static Buckling Model Tests and Elasto-plastic Finite Element Analysis of a Pile in Layers with Various Thicknesses

    NASA Astrophysics Data System (ADS)

    Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki

    Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.

  18. Exploration Medical Capability System Engineering Introduction and Vision

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Reilly, J.

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.

  19. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems

    PubMed Central

    Schilling, Malte; Cruse, Holk

    2017-01-01

    It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences. PMID:28194106

  20. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  1. New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys

    NASA Astrophysics Data System (ADS)

    Dickel, Doyl E.; Baskes, Michael I.; Aslam, Imran; Barrett, Christopher D.

    2018-06-01

    Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg–Al–Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg–Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.

  2. NASTRAN internal improvements for 1992 release

    NASA Technical Reports Server (NTRS)

    Chan, Gordon C.

    1992-01-01

    The 1992 NASTRAN release incorporates a number of improvements transparent to users. The NASTRAN executable was made smaller by 70 pct. for the RISC base Unix machines by linking NASTRAN into a single program, freeing some 33 megabytes of system disc space that can be used by NASTRAN for solving larger problems. Some basic matrix operations, such as forward-backward substitution (FBS), multiply-add (MPYAD), matrix transpose, and fast eigensolution extraction routine (FEER), have been made more efficient by including new methods, new logic, new I/O techniques, and, in some cases, new subroutines. Some of the improvements provide ground work ready for system vectorization. These are finite element basic operations, and are used repeatedly in a finite element program such as NASTRAN. Any improvements on these basic operations can be translated into substantial cost and cpu time savings. NASTRAN is also discussed in various computer platforms.

  3. A systems approach to solder joint fatigue in spacecraft electronic packaging

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1991-01-01

    Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.

  4. Government conceptual estimating for contracting and management

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1986-01-01

    The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.

  5. Finite element analysis for the evaluation of protective functions of helmets against ballistic impact.

    PubMed

    Lee, H P; Gong, S W

    2010-10-01

    The ballistic impact of a human head model protected by a Personnel Armor System Ground Troops Kevlar® helmet is analysed using the finite element method. The emphasis is to examine the effect of the interior cushioning system as a shock absorber in mitigating ballistic impact to the head. The simulations of the frontal and side impacts of the full metal jacket (FMJ) and fragment-simulating projectile (FSP) were carried out using LS-DYNA. It was found that the Kevlar® helmet with its interior nylon and leather strap was able to defeat both the FMJ and FSP without the projectiles penetrating the helmet. However, the head injuries caused by the FMJ impact can be fatal due to the high stiffness of the interior strap. The bulge section at the side of the Kevlar® helmet had more room for deformation that resulted in less serious head injuries.

  6. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how high latitude ground based observations can address these challenges.

  7. Variable-camber systems integration and operational performance of the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Lock, Wilton P.; Payne, Gordon A.

    1992-01-01

    The advanced fighter technology integration, the AFTI/F-111 aircraft, is a preproduction F-111A testbed research airplane that was fitted with a smooth variable-camber mission adaptive wing. The camber was positioned and controlled by flexing the upper skins through rotary actuators and linkages driven by power drive units. The wing camber and control system are described. The measured servoactuator frequency responses are presented along with analytical predictions derived from the integrated characteristics of the control elements. A mission adaptive wing system chronology is used to illustrate and assess the reliability and dependability of the servoactuator system during 1524 hours of ground tests and 145 hours of flight testing.

  8. The Ultimate Strength of Double Hull Oil Tanker Due to Grounding and Collision

    NASA Astrophysics Data System (ADS)

    Izaak Latumahina, Samuel; Zubair Muis Alie, Muhammad; Sitepu, Ganding

    2018-02-01

    The damaged tanker by grounding and collision may totally collapse if loss its buoyancy, stability and suffer structural failure. The objective of the present study is to investigate the ultimate strength of double hull oil tanker under vertical bending moments due to grounding and collision. The damages are modelled by removing the elements consist of stiffened and unstiffened plates from the damages part. One-frame space of the double hull oil tanker is taken to be analysed. Two damages cases are considered in the analyses those are grounding and collision. The transversal damage extent for grounding are 10%, 25%, 40% and 55%. The groundings are placed at symmetric position on the outer bottom part. For the case of collision, the vertical damage extent are taken as 10%, 20%, 40% and 60%. The transversal damages extent is taken to be B/16 and it is constant for all collision damages. The investigation of the ultimate strength is performed by the Non-Linear Finite Element Analysis method under moment control. The boundary condition is applied with fully constrained on all nodes at the aft-end, while the rigid linked on all nodes is attached at the fore-end with respect to the reference point on the neutral axis. The initial imperfection, welding residual stress and crack are not considered in the analyses. The results obtained by Non-Linear Finite Element Analyses for the ultimate strength are compared with the in-house program using Smith’s method implemented in HULLST. The stress distribution and deformation for every case of damages including intact are also discussed in the present study.

  9. XML: James Webb Space Telescope Database Issues, Lessons, and Status

    NASA Technical Reports Server (NTRS)

    Detter, Ryan; Mooney, Michael; Fatig, Curtis

    2003-01-01

    This paper will present the current concept using extensible Markup Language (XML) as the underlying structure for the James Webb Space Telescope (JWST) database. The purpose of using XML is to provide a JWST database, independent of any portion of the ground system, yet still compatible with the various systems using a variety of different structures. The testing of the JWST Flight Software (FSW) started in 2002, yet the launch is scheduled for 2011 with a planned 5-year mission and a 5-year follow on option. The initial database and ground system elements, including the commands, telemetry, and ground system tools will be used for 19 years, plus post mission activities. During the Integration and Test (I&T) phases of the JWST development, 24 distinct laboratories, each geographically dispersed, will have local database tools with an XML database. Each of these laboratories database tools will be used for the exporting and importing of data both locally and to a central database system, inputting data to the database certification process, and providing various reports. A centralized certified database repository will be maintained by the Space Telescope Science Institute (STScI), in Baltimore, Maryland, USA. One of the challenges for the database is to be flexible enough to allow for the upgrade, addition or changing of individual items without effecting the entire ground system. Also, using XML should allow for the altering of the import and export formats needed by the various elements, tracking the verification/validation of each database item, allow many organizations to provide database inputs, and the merging of the many existing database processes into one central database structure throughout the JWST program. Many National Aeronautics and Space Administration (NASA) projects have attempted to take advantage of open source and commercial technology. Often this causes a greater reliance on the use of Commercial-Off-The-Shelf (COTS), which is often limiting. In our review of the database requirements and the COTS software available, only very expensive COTS software will meet 90% of requirements. Even with the high projected initial cost of COTS, the development and support for custom code over the 19-year mission period was forecasted to be higher than the total licensing costs. A group did look at reusing existing database tools and formats. If the JWST database was already in a mature state, the reuse made sense, but with the database still needing to handing the addition of different types of command and telemetry structures, defining new spacecraft systems, accept input and export to systems which has not been defined yet, XML provided the flexibility desired. It remains to be determined whether the XML database will reduce the over all cost for the JWST mission.

  10. Strategies for Ground Testing of Manned Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Beyer, Jeff; Gill, Tracy; Peacock, Mike

    2009-01-01

    One of the primary objectives of NASA's Vision for Space Exploration is the creation of a permanently manned lunar outpost. Facing the challenge of establishing a human presence on the moon will require new innovations and technologies that will be critical to expanding this exploration to Mars and beyond. However, accomplishing this task presents an unprecedented set of obstacles, one of the more significant of which is the development of new strategies for ground test and verification. Present concepts for the Lunar Surface System (LSS) architecture call for the construction of a series of independent yet tightly coupled modules and elements to be launched and assembled in incremental stages. Many of these will be fabricated at distributed locations and delivered shortly before launch, precluding any opportunity for testing in an actual integrated configuration. Furthermore, these components must operate flawlessly once delivered to the lunar surface since there is no possibility for returning a malfunctioning module to Earth for repair or modification. Although undergoing continual refinement, this paper will present the current state of the plans and models that have been devised for meeting the challenge of ground based testing for Constellation Program LSS as well as the rationale behind their selection.

  11. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.

  12. Learning Organizations: Their Importance to Systems Acquisition in DoD

    DTIC Science & Technology

    2014-04-30

    cultures. Effective LOs ground these key elements by instituting resilient and sustainable learning practices that encourage and condition their...marshmallows, and toothpicks. To them, the competition ended up reinforcing the importance of product resiliency and a resilient workforce. ^Åèìáëáíáçå=oÉëÉ...junior personnel understood that performance would evolve them as “hot runners .” Another leader specified that teaching the next generation at his

  13. Architecture Governance: The Importance of Architecture Governance for Achieving Operationally Responsive Ground Systems

    NASA Technical Reports Server (NTRS)

    Kolar, Mike; Estefan, Jeff; Giovannoni, Brian; Barkley, Erik

    2011-01-01

    Topics covered (1) Why Governance and Why Now? (2) Characteristics of Architecture Governance (3) Strategic Elements (3a) Architectural Principles (3b) Architecture Board (3c) Architecture Compliance (4) Architecture Governance Infusion Process. Governance is concerned with decision making (i.e., setting directions, establishing standards and principles, and prioritizing investments). Architecture governance is the practice and orientation by which enterprise architectures and other architectures are managed and controlled at an enterprise-wide level

  14. The deep space network, volume 6

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Progress on Deep Space Network (DSN) supporting research and technology is presented, together with advanced development and engineering, implementation, and DSN operations of flight projects. The DSN is described. Interplanetary and planetary flight projects and radio science experiments are discussed. Tracking and navigational accuracy analysis, communications systems and elements research, and supporting research are considered. Development of the ground communications and deep space instrumentation facilities is also presented. Network allocation schedules and angle tracking and test development are included.

  15. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  16. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    USGS Publications Warehouse

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the characteristics of the clusters. The result of the Maximum Likelihood Classification is a map showing five hydrochemical regions of the glacial aquifer system. Statistical analysis of ion concentrations (calcium, chloride, fluoride, magnesium, sodium, potassium, sulfate, and bicarbonate) in samples collected from wells completed in the glacial aquifer system illustrates that variations in water quality can be explained, in part, by related environmental characteristics that control the movement of ground water through the aquifer system. A comparison of median concentrations of chemical constituents in ground water among the five hydrochemical regions indicates that ground water in the Midwestern Agricultural Region, the Urban-Influenced Region, and the Western Agriculture and Grassland Region has the highest concentrations of major and minor ions, whereas ground water in the Northern and Great Lakes Forested Region and the Mountain and Coastal Forested Region has the lowest concentrations of these ions. Median concentrations of barium, arsenic, lithium, boron, strontium, and nitrite plus nitrate as nitrogen also are significantly different among the hydrochemical regions.

  17. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  18. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  19. Thermal analysis of underground power cable system

    NASA Astrophysics Data System (ADS)

    Rerak, Monika; Ocłoń, Paweł

    2017-10-01

    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  20. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 2: Cryo/aerobrake vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  1. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  2. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  3. Systems Integration Processes for NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Reuter, James L.; Sexton, Jeffrey D.

    2006-01-01

    NASA's Exploration Initiative will require development of many new elements to constitute a robust system of systems. New launch vehicles are needed to place cargo and crew in stable Low Earth Orbit (LEO). This paper examines the systems integration processes NASA is utilizing to ensure integration and control of propulsion and nonpropulsion elements within NASA's Crew Launch Vehicle (CLV), now known as the Ares I. The objective of the Ares I is to provide the transportation capabilities to meet the Constellation Program requirements for delivering a Crew Exploration Vehicle (CEV) or other payload to LEO in support of the lunar and Mars missions. The Ares I must successfully provide this capability within cost and schedule, and with an acceptable risk approach. This paper will describe the systems engineering management processes that will be applied to assure Ares I Project success through complete and efficient technical integration. Discussion of technical review and management processes for requirements development and verification, integrated design and analysis, integrated simulation and testing, and the integration of reliability, maintainability and supportability (RMS) into the design will also be included. The Ares I Project is logically divided into elements by the major hardware groupings, and associated management, system engineering, and integration functions. The processes to be described herein are designed to integrate within these Ares I elements and among the other Constellation projects. Also discussed is launch vehicle stack integration (Ares I to CEV, and Ground and Flight Operations integration) throughout the life cycle, including integrated vehicle performance through orbital insertion, recovery of the first stage, and reentry of the upper stage. The processes for decomposing requirements to the elements and ensuring that requirements have been correctly validated, decomposed, and allocated, and that the verification requirements are properly defined to ensure that the system design meets requirements, will be discussed.

  4. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  5. The Model Experiments and Finite Element Analysis on Deformation and Failure by Excavation of Grounds in Foregoing-roof Method

    NASA Astrophysics Data System (ADS)

    Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu

    We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.

  6. Cleanup Verification Package for the 118-F-1 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  7. Exploration Medical System Technical Development

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Middour, C.; Cerro, J.; Burba, T.; Hanson, A.; Reilly, J.; Mindock, J.

    2017-01-01

    The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.

  8. Theoretical Prediction of Vibrational Circular Dichroism Spectra

    DTIC Science & Technology

    1990-01-01

    Chabalowski U.S. ARMY BALLISTIC RESEARCH LABORATORY January 1990 DTIC ELECTESMAR 6U99 CHEMICAL COMMAN4D Aberden Proving Ground . MeMand 21010-5423 IDWPM...TASK [WORK UNIT ELEMENT NO. NO.11 46 2 6 2 2 NO. A5531 ACCESSION NO. Aberdeen Proving Ground , MD 21010-5423 IC4648061 D020 1 11. TITLE (Include...Engineering Center ATITN: SDCCR-RSP-C Aberdeen Proving Ground , MD 21010-5423 U.S. Army Ballistic Research Laboratory Aberdeen Proving Ground , MD

  9. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  10. Agile: From Software to Mission System

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves

    2016-01-01

    The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.

  11. A high-rate PCI-based telemetry processor system

    NASA Astrophysics Data System (ADS)

    Turri, R.

    2002-07-01

    The high performances reached by the Satellite on-board telemetry generation and transmission, as consequently, will impose the design of ground facilities with higher processing capabilities at low cost to allow a good diffusion of these ground station. The equipment normally used are based on complex, proprietary bus and computing architectures that prevent the systems from exploiting the continuous and rapid increasing in computing power available on market. The PCI bus systems now allow processing of high-rate data streams in a standard PC-system. At the same time the Windows NT operating system supports multitasking and symmetric multiprocessing, giving the capability to process high data rate signals. In addition, high-speed networking, 64 bit PCI-bus technologies and the increase in processor power and software, allow creating a system based on COTS products (which in future may be easily and inexpensively upgraded). In the frame of EUCLID RTP 9.8 project, a specific work element was dedicated to develop the architecture of a system able to acquire telemetry data of up to 600 Mbps. Laben S.p.A - a Finmeccanica Company -, entrusted of this work, has designed a PCI-based telemetry system making possible the communication between a satellite down-link and a wide area network at the required rate.

  12. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. Numerical Simulations for Distribution Characteristics of Internal Forces on Segments of Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Li, Shouju; Shangguan, Zichang; Cao, Lijuan

    A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.

  14. INTEGRITY - Integrated Human Exploration Mission Simulation Facility

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2002-01-01

    It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the best management techniques will have been developed, implemented, and validated. A trained cadre of managers experienced with a large, complex program would then be available.

  15. The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Stoker, Carol R.; Glass, Brian J.; Dave, Arwen I.; Davila, Alfonso F.; Heldmann, Jennifer L.; Marinova, Margarita M.; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A.; hide

    2012-01-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, 5 Myr ago. Carbon dioxide and nitrogen is present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground-ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: 1. Search for specific biomolecules that would be conclusive evidence of life. 2. A general search for organic molecules in the ground ice. 3. Determine the processes of ground ice formation and the role of liquid water. 4. Understand the mechanical properties of the Mars polar ice-cemented soil. 5. Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. And 6. Compare the elemental composition of the northern plains with mid-latitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at mid-latitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers interest in returning them to Earth would be high.

  16. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

    PubMed

    McKay, Christopher P; Stoker, Carol R; Glass, Brian J; Davé, Arwen I; Davila, Alfonso F; Heldmann, Jennifer L; Marinova, Margarita M; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A; Paulsen, Gale; Smith, Peter H; Parro, Victor; Andersen, Dale T; Hecht, Michael H; Lacelle, Denis; Pollard, Wayne H

    2013-04-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers, interest in returning them to Earth would be high.

  17. Generating Safety-Critical PLC Code From a High-Level Application Software Specification

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is shown.

  18. Geology of photo linear elements, Great Divide Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  19. An adaptive array antenna for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Milne, Robert

    1988-01-01

    The adaptive array is linearly polarized and consists essentially of a driven lambda/4 monopole surrounded by an array of parasitic elements all mounted on a ground plane of finite size. The parasitic elements are all connected to ground via pin diodes. By applying suitable bias voltages, the desired parasitic elements can be activated and made highly reflective. The directivity and pointing of the antenna beam can be controlled in both the azimuth and elevation planes using high speed digital switching techniques. The antenna RF losses are neglible and the maximum gain is close to the theoretical value determined by the effective aperture size. The antenna is compact, has a low profile, is inexpensive to manufacture and can handle high transmitter power.

  20. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

Top