2010-09-01
application of existing assessment tools that may be applicable to Marine Air Ground Task Force (MAGTF) Command, Control, Communications and...of existing assessment tools that may be applicable to Marine Air Ground Task Force (MAGTF) Command, Control, Communications and Computers (C4...assessment tools and analysis concepts that may be extended to the Marine Corps’ C4 System of Systems assessment methodology as a means to obtain a
The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks
2011-01-01
The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Establishment To Support Large-Scale Marine Air Ground Task Force Live- Fire and Maneuver Training at the Marine...), announces its decision to establish a large-scale Marine Air Ground Task Force (MAGTF) training facility at... through the Federal Aviation Administration the establishment and modification of military Special Use...
Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.
Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San
2010-01-01
This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.
Jonsson, Erika; Henriksson, Marketta; Hirschfeld, Helga
2007-10-01
Weight transfer designed to change the area of the supportive base during the performance of three different motor tasks (one-leg stance, tandem stance and gait initiation) was examined both in healthy, physically active elderly people and younger adults. The former two tasks are balance tests used clinically. Our hypothesis was that the elderly subjects would demonstrate age-related changes in their postural adjustments that could be detected by analysis of the ground reaction forces. While 24 healthy elderly adults (65-77 years of age) and 26 younger adults (24-40 years of age) performed these three tasks, the ground reaction forces were recorded from two force plates. Prior to the onset of all three tasks, the elderly placed significantly more weight on the leg that was to provide support (the stance leg), than did the younger individuals. The analyses revealed two distinct phases of weight transfer, i.e., an initial thrust and a subsequent unloading phase. The elderly individuals exhibited a significantly longer unloading phase, as well as a higher frequency of peaks of vertical and lateral forces during this phase. Moreover, the maximal force rate during this phase was achieved at an earlier time point by the elderly. However, both groups generated forces of similar magnitudes and force rates. In conclusion, our findings indicate the presence of age-related differences in the temporal phasing of the ground reaction forces in all three of these tasks involving weight transfer, whereas the magnitude and rates of change of these forces are independent of age.
Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu
2017-11-18
Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force were estimated from motion capture data and synchronized force data from the force plate. One-way repeated measures analysis of variance and the post hoc Bonferroni test were conducted to compare the peak time of the vertical ground reaction force, quadriceps force and anterior tibial force during the single-leg landing. In addition, we examined the contribution of vertical and posterior ground reaction force, knee flexion angle and moment to peak quadriceps force using multiple linear regression. The peak times of the estimated quadriceps force (96.0 ± 23.0 ms) and anterior tibial force (111.9 ± 18.9 ms) were significantly later than that of the vertical ground reaction force (63.5 ± 6.8 ms) during the single-leg landing. The peak quadriceps force was positively correlated with the peak anterior tibial force (R = 0.953, P < 0.001). Multiple linear regression analysis showed that the peak knee flexion moment contributed significantly to the peak quadriceps force (R 2 = 0.778, P < 0.001). The peak times of the quadriceps force and the anterior tibial force were obviously later than that of the vertical ground reaction force for the female athletes during successful single-leg landings. Studies have reported that the peak time of the vertical ground reaction force was close to the time of anterior cruciate ligament (ACL) disruption in ACL injury cases. It is possible that early contraction of the quadriceps during landing might induce ACL disruption as a result of excessive anterior tibial force in unanticipated situations in ACL injury cases.
A Prototype JFACC: General George C. Kenney
1994-06-01
Corps, as well as air forces from Australia and New Zealand . Many accounts of the Battles for Leyte and Luzon center around ground and naval forces...St Clair Streett USA Royal New Zealand Air Force (RNZAF) Royal Australian Air Force (RAAF) Air Command Organization SWPA June 15, 1944 Figure 5...Ground Task Force OPCON Operational Command POA Pacific Ocean Areas RAAF Royal Australian Air Force RNZAF Royal New Zealand Air Force SAP
The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.
West, T; Ng, L; Campbell, A
2014-12-01
The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
1993-04-01
This report prepared in April 1993 describes the operations witnessed and the relevant information obtained by nine members of the FRA/Volpe Center High Speed Guided Ground Transportation Safety Task Force during 9 weeks of observation of maglev deve...
Force Reconnaissance: A Key Enabler in the Marine Air Ground Task Force and Beyond
2012-03-13
round Task Force Advance Force Operations, Deep Reconnaissance, Military Free Fall (MFF), Marine Combatar t Diver ( MCD ), Joint Terminal Attack...Marine Division. These early years focused on developing the doctrine and insertion skills became legendary in the crucible of South East Asia , and...potential for regional powers to threaten critical U.S. interests. Areas of particular concern in the QDR are the Middle East and Asia .41 The United
Caplan, N; Stewart, S; Kashyap, S; Banaszkiewicz, P; St Clair Gibson, A; Kader, D; Ewen, A
2014-12-01
The aim of this study was to determine the influence of total hip arthroplasty and hip resurfacing arthroplasty on limb loading symmetry before, and after, hip reconstruction surgery during a sit-to-stand task. Fourteen patients were recruited that were about to receive either a total hip prosthesis (n=7) or a hip resurfacing prosthesis (n=7), as well as matched controls. Patients performed a sit-to-stand movement before, 3 months after, and 12 months after surgery. Peak vertical ground reaction force and impulse were measured for each leg, from which ground reaction force and impulse symmetry ratios were calculated. Before surgery, hip resurfacing patients showed a small asymmetry which was not different to normal for ground reaction force (0.88(0.28) vs. 1.00(0.11); p=0.311) or impulse (0.87(0.29) vs. 0.99(0.09); p=0.324) symmetry ratios. Total hip patients offloaded their affected hip by 30% in terms of impulse symmetry ratio (0.71(0.36) vs. 0.99(0.23); p=0.018). At 3 months following surgery asymmetries were seen that were different to normal in both hip resurfacing patients for ground reaction force (0.77(0.16); p=0.007), and total hip patients for ground reaction force (0.70(0.15); p=0.018) and impulse (0.72(0.16); p=0.011) symmetry ratios. By 12 months after surgery total hip patients regained a symmetrical loading pattern for both ground reaction force (0.95(0.06); p=0.676) and impulse (1.00(0.06); p=0.702) symmetry ratios. Hip resurfacing patients, however, performed the task by overloading their operated hip, with impulse symmetry ratio being larger than normal (1.16(0.16); p=0.035). Physiotherapists should appreciate the need for early recovery of limb loading symmetry as well as subsequent differences in the responses observed with different prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhancement of force patterns classification based on Gaussian distributions.
Ertelt, Thomas; Solomonovs, Ilja; Gronwald, Thomas
2018-01-23
Description of the patterns of ground reaction force is a standard method in areas such as medicine, biomechanics and robotics. The fundamental parameter is the time course of the force, which is classified visually in particular in the field of clinical diagnostics. Here, the knowledge and experience of the diagnostician is relevant for its assessment. For an objective and valid discrimination of the ground reaction force pattern, a generic method, especially in the medical field, is absolutely necessary to describe the qualities of the time-course. The aim of the presented method was to combine the approaches of two existing procedures from the fields of machine learning and the Gauss approximation in order to take advantages of both methods for the classification of ground reaction force patterns. The current limitations of both methods could be eliminated by an overarching method. Twenty-nine male athletes from different sports were examined. Each participant was given the task of performing a one-legged stopping maneuver on a force plate from the maximum possible starting speed. The individual time course of the ground reaction force of each subject was registered and approximated on the basis of eight Gaussian distributions. The descriptive coefficients were then classified using Bayesian regulated neural networks. The different sports served as the distinguishing feature. Although the athletes were all given the same task, all sports referred to a different quality in the time course of ground reaction force. Meanwhile within each sport, the athletes were homogeneous. With an overall prediction (R = 0.938) all subjects/sports were classified correctly with 94.29% accuracy. The combination of the two methods: the mathematical description of the time course of ground reaction forces on the basis of Gaussian distributions and their classification by means of Bayesian regulated neural networks, seems an adequate and promising method to discriminate the ground reaction forces without any loss of information. Copyright © 2017 Elsevier Ltd. All rights reserved.
Not All Is Lost: Old Adults Retain Flexibility in Motor Behaviour during Sit-to-Stand
Greve, Christian; Zijlstra, Wiebren; Hortobágyi, Tibor; Bongers, Raoul M.
2013-01-01
Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits. PMID:24204952
Ankle-Dorsiflexion Range of Motion and Landing Biomechanics
Fong, Chun-Man; Blackburn, J. Troy; Norcross, Marc F.; McGrath, Melanie; Padua, Darin A.
2011-01-01
Abstract Context: A smaller amount of ankle-dorsiflexion displacement during landing is associated with less knee-flexion displacement and greater ground reaction forces, and greater ground reaction forces are associated with greater knee-valgus displacement. Additionally, restricted dorsiflexion range of motion (ROM) is associated with greater knee-valgus displacement during landing and squatting tasks. Because large ground reaction forces and valgus displacement and limited knee-flexion displacement during landing are anterior cruciate ligament (ACL) injury risk factors, dorsiflexion ROM restrictions may be associated with a greater risk of ACL injury. However, it is unclear whether clinical measures of dorsiflexion ROM are associated with landing biomechanics. Objective: To evaluate relationships between dorsiflexion ROM and landing biomechanics. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty-five healthy, physically active volunteers. Intervention(s): Passive dorsiflexion ROM was assessed under extended-knee and flexed-knee conditions. Landing biomechanics were assessed via an optical motion-capture system interfaced with a force plate. Main Outcome Measure(s): Dorsiflexion ROM was measured in degrees using goniometry. Knee-flexion and knee-valgus displacements and vertical and posterior ground reaction forces were calculated during the landing task. Simple correlations were used to evaluate relationships between dorsiflexion ROM and each biomechanical variable. Results: Significant correlations were noted between extended-knee dorsiflexion ROM and knee-flexion displacement (r = 0.464, P = .029) and vertical (r = −0.411, P = .014) and posterior (r = −0.412, P = .014) ground reaction forces. All correlations for flexed-knee dorsiflexion ROM and knee-valgus displacement were nonsignificant. Conclusions: Greater dorsiflexion ROM was associated with greater knee-flexion displacement and smaller ground reaction forces during landing, thus inducing a landing posture consistent with reduced ACL injury risk and limiting the forces the lower extremity must absorb. These findings suggest that clinical techniques to increase plantar-flexor extensibility and dorsiflexion ROM may be important additions to ACL injury-prevention programs. PMID:21214345
Kuntze, Gregor; Sellers, William I.; Mansfield, Neil
2009-01-01
Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of overuse injuryThe leading and trailing limbs perform distinct roles, acting as a generator of vertical force and shock absorber respectively.This distinct contribution may contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. PMID:24150549
ERIC Educational Resources Information Center
Hughes, Gerwyn; Watkins, James; Owen, Nick
2010-01-01
The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis…
Space station operations task force. Panel 4 report: Management integration
NASA Technical Reports Server (NTRS)
1987-01-01
The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.
Identification of ground targets from airborne platforms
NASA Astrophysics Data System (ADS)
Doe, Josh; Boettcher, Evelyn; Miller, Brian
2009-05-01
The US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) sensor performance models predict the ability of soldiers to perform a specified military discrimination task using an EO/IR sensor system. Increasingly EO/IR systems are being used on manned and un-manned aircraft for surveillance and target acquisition tasks. In response to this emerging requirement, the NVESD Modeling and Simulation division has been tasked to compare target identification performance between ground-to-ground and air-to-ground platforms for both IR and visible spectra for a set of wheeled utility vehicles. To measure performance, several forced choice experiments were designed and administered and the results analyzed. This paper describes these experiments and reports the results as well as the NVTherm model calibration factors derived for the infrared imagery.
Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.
Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A
2017-04-01
Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.
Ericksen, Hayley M.; Gribble, Phillip A.; Pfile, Kate R.; Pietrosimone, Brian G.
2013-01-01
Context: Excessive ground reaction force when landing from a jump may result in lower extremity injuries. It is important to better understand how feedback can influence ground reaction force (GRF) and potentially reduce injury risk. Objective: To determine the effect of expert-provided (EP), self-analysis (SA), and combination EP and SA (combo) feedback on reducing peak vertical GRF during a jump-landing task. Data Sources: We searched the Web of Science database on July 1, 2011; using the search terms ground reaction force, landing biomechanics, and feedback elicited 731 initial hits. Study Selection: Of the 731 initial hits, our final analysis included 7 studies that incorporated 32 separate data comparisons. Data Extraction: Standardized effect sizes and 95% confidence intervals (CIs) were calculated between pretest and posttest scores for each feedback condition. Data Synthesis: We found a homogeneous beneficial effect for combo feedback, indicating a reduction in GRF with no CIs crossing zero. We also found a homogeneous beneficial effect for EP feedback, but the CIs from 4 of the 10 data comparisons crossed zero. The SA feedback showed strong, definitive effects when the intervention included a videotape SA, with no CIs crossing zero. Conclusions: Of the 7 studies reviewed, combo feedback seemed to produce the greatest decrease in peak vertical GRF during a jump-landing task. PMID:24067153
2013-09-01
control GCE ground combat element LCE logistics combat element MAGTF Marine Air Ground Task Force MWCS Marine Wing Communications Squadron NPS Naval...elements: command element (CE), ground combat el- ement ( GCE ), aviation combat element (ACE), and logistics combat element (LCE). Each ele- ment...This layer provides unimpeded high-speed connectivity between remote sites and the Internet. Limited security policies are applied at this level to
Kim, Hyun-Kyung; Zhang, Yanxin
2017-04-01
Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.
2015-03-02
balloons , large UAVs, and satellite communications are all employed to mitigate LOS and OTH communication on the battlefield. The Marine Corps’ fleets...Phang, N. S. (2006). Tethered operation of autonomous aerial vehicles to provide extended fields of view for autonomous ground vehicles (Master’s
Ground Radio Operator Career Ladder AFSC 293X3.
1981-07-01
formal resident training, OJT, and ,her Air Force management decisions . The structure of jobs within the Ground ! odio Operatoi career ladder was...33 ADJUST ANTENNA TUNING UNITS 33 TYPE RECORDS, REPORTS, OR FORMS :33 OPERATE AUXILLARY GENERATORS 33 A8 ’iT’ TASKS PERFORMED BY SUPERVISORS AND
Bilateral neuromuscular and force differences during a plyometric task.
Ball, Nick B; Scurr, Joanna C
2009-08-01
The purpose of this article is to compare the bilateral neuromuscular and force contribution during a plyometric bounce drop jump task and to assess the affects of nonsimultaneous foot placement. Sixteen male participants performed bounce drop jumps from a height of 0.4 m. Mean peak electromyography activity of the soleus, medial, and lateral gastrocnemius of both legs was recorded from each phase of the drop jump and normalized to a reference dynamic muscle action. Resultant ground reaction force, ground contact time, and duration of the drop jumps were recorded from each leg. Multivariate analysis of variance was used to compare bilateral electromyographic activity, resultant peak ground reaction force, and contact duration. Pearson's correlations (r) ascertained relationships between normalized electromyographic activity and contact time. Significant differences were shown between left and right triceps surae normalized electromyography during precontact and contact40ms (p < 0.01). No significant differences were present in the contactpost40ms phase (p > 0.01). Significant differences were found between normalized soleus electromyography and both gastrocnemii for both legs during precontact (p < 0.01). No significant differences were found for within-leg normalized electromyography for the contact40ms phases and contactpost40ms phase (p > 0.01). Weak relationships were found between normalized electromyographic activity and nonsimultaneous foot contact (r < 0.2). This study showed differences between left and right triceps surae in neuromuscular strategies engaged in the early stages of a drop jump task. Differences in contact time initiation were present; however, they are not significant enough to cause neuromuscular differences in the plantar flexor muscles.
The DISAM Journal of International Security Assistance Management. Volume 29, Number 3, July 2007
2007-07-01
with Canada and Mexico, with relatively very few permanently assigned forces . You can read about a number of issues addressed by contributing authors...26 Commander Curtis Jenkins, USNR, Lockheed Martin “Taking the Communication High Ground The Case for a Joint Inter-Agency Task Force ...permanently assigned forces . The command is assigned forces whenever necessary to execute missions, as ordered by the president and secretary of
A comparison of cleat types during two football-specific tasks on FieldTurf.
Queen, R M; Charnock, B L; Garrett, W E; Hardaker, W M; Sims, E L; Moorman, C T
2008-04-01
To examine the effect of different cleat plate configurations on plantar pressure during two tasks. Thirty-six athletes ran an agility course 5 times while wearing 4 different types of Nike Vitoria cleats: (1) bladed, (2) elliptical firm ground, (3) hard ground and (4) turf. Plantar pressure data were recorded during a side cut and a cross cut using Pedar-X insoles. Controlled laboratory study No history of lower extremity injury in the past 6 months, no previous foot or ankle surgery, not currently wearing foot orthotics and play a cleated sport at least twice a week. Total foot contact time, contact area, maximum force, peak pressure and the force-time integral (FTI) in the medial, middle and lateral regions of the forefoot were collected. A 1x4 ANOVA (alpha = 0.05) was performed on each dependent variable. A Bonferroni adjustment was conducted (alpha = 0.008). In the cross cut task, statistical differences between cleats were observed in three variables: total foot peak pressure, lateral forefoot FTI, and lateral forefoot normalised maximum force. In the side cut task, statistical differences between cleats were observed in 4 variables: total foot peak pressure, the medial and middle forefoot FTI, and the medial and middle forefoot normalised maximum force. Significant differences in forefoot loading patterns existed between cleat types. Based on the results of this study, it might be beneficial to increase the forefoot cushioning in cleats in an attempt to decrease loading in these regions of the foot.
Measurement of Productive Capacity: A Methodology for Air Force Enlisted Specialties
1992-06-01
measurement across a wide variety of duties (11 for Aircrew Life Support (122X0), 8 for Personnel (732X0), 26 for Aerospace Ground Equipment ( 454X1 ), and 16...50 Tasks 454X1 - 55 Tasks 455X2 - 41 Tasks 732X0 - 38 Tasks The tasks in three of the four AFSs tended to represent certain duty areas more than...others, probably because these duty areas contained the functions most frequently performed by first-term airmen. For AFS 454X1 the tasks represented
Cowley, Hanni R; Ford, Kevin R; Myer, Gregory D; Kernozek, Thomas W; Hewett, Timothy E
2006-01-01
Context: High school female athletes are most likely to sustain a serious knee injury during soccer or basketball, 2 sports that often involve a rapid deceleration before a change of direction or while landing from a jump. Objective: To determine if female high school basketball and soccer players show neuromuscular differences during landing and cutting tasks and to examine neuromuscular differences between tasks and between dominant and nondominant sides. Design: A 3-way mixed factorial design investigating the effects of sport (basketball, soccer), task (jumping, cutting), and side (dominant, nondominant). Setting: Laboratory. Patients or Other Participants: Thirty high school female athletes who listed either basketball or soccer as their only sport of participation (basketball: n = 15, age = 15.1 ± 1.7 years, experience = 6.9 ± 2.2 years, height = 165.3 ± 7.9 cm, mass = 61.8 ± 9.3 kg; soccer: n = 15, age = 14.8 ± 0.8 years, experience = 8.8 ± 2.5 years, height = 161.8 ± 4.1 cm, mass = 54.6 ± 7.6 kg). Main Outcome Measure(s): Ground reaction forces, stance time, valgus angles, and valgus moments were assessed during (1) a drop vertical jump with an immediate maximal vertical jump and (2) an immediate side-step cut at a 45° angle. Results: Basketball athletes had greater ground reaction forces (P < .001) and decreased stance time (P < .001) during the drop vertical jump, whereas soccer players had greater ground reaction forces (P <.001) and decreased stance time (P < .001) during the cut. Subjects in both sports had greater valgus angles (initial contact and maximum, P = .02 and P = .012, respectively) during cutting than during the drop vertical jump. Greater valgus moments (P = .006) were noted on the dominant side during cutting. Conclusions: Our subjects demonstrated differences in ground reaction forces and stance times during 2 movements associated with noncontact anterior cruciate ligament injuries. Knee valgus moment and angle were significantly influenced by the type of movement performed. Sport-specific neuromuscular training may be warranted, with basketball players focusing on jumping and landing and soccer players focusing on unanticipated cutting maneuvers. PMID:16619097
The effect of a secondary cognitive task on landing mechanics and jump performance.
Dai, Boyi; Cook, Ross F; Meyer, Elizabeth A; Sciascia, Yvonne; Hinshaw, Taylour J; Wang, Chaoyi; Zhu, Qin
2018-06-01
Anterior cruciate ligament (ACL) injuries commonly occur during jump-landing tasks when individuals' attention is simultaneously allocated to other objects and tasks. The purpose of the current study was to investigate the effect of allocation of attention imposed by a secondary cognitive task on landing mechanics and jump performance. Thirty-eight recreational athletes performed a jump-landing task in three conditions: no counting, counting backward by 1 s from a randomly given number, and counting backward by 7 s from a randomly given number. Three-dimensional kinematics and ground reaction forces were collected and analysed. Participants demonstrated decreased knee flexion angles at initial contact (p = 0.001) for the counting by 1 s condition compared with the no counting condition. Participants also showed increased peak posterior and vertical ground reaction forces during the first 100 ms of landing (p ≤ 0.023) and decreased jump height (p < 0.001) for the counting by 1 s and counting by 7 s conditions compared with the no counting condition. Imposition of a simultaneous cognitive challenge resulted in landing mechanics associated with increased ACL loading and decreased jump performance. ACL injury risk screening protocols and injury prevention programmes may incorporate cognitive tasks into jump-landing tasks to better simulate sports environments.
Ferris, Abbie E; Christiansen, Cory L; Heise, Gary D; Hahn, David; Smith, Jeremy D
2017-05-01
People with transtibial amputation stand ~50times/day. There are two general approaches to transtibial amputation: 1) distal tibia and fibula union using a "bone-bridge" (Ertl), 2) non-union of the tibia and fibula (Non-Ertl). The Ertl technique may improve functional outcomes by increasing the end-bearing ability of the residual limb. We hypothesized individuals with an Ertl would perform a five-time sit-to-stand task faster through greater involvement/end-bearing of the affected limb. Ertl (n=11) and Non-Ertl (n=7) participants sat on a chair with each foot on separate force plates and performed the five-time sit-to-stand task. A symmetry index (intact vs affected limbs) was calculated using peak ground reaction forces. The Ertl group performed the task significantly faster (9.33s (2.66) vs 13.27 (2.83)s). Symmetry index (23.33 (23.83)% Ertl, 36.53 (13.51)% Non-Ertl) indicated the intact limb for both groups produced more force than the affected limb. Ertl affected limb peak ground reaction forces were significantly larger than the Non-Ertl affected limb. Peak knee power and net work of the affected limb were smaller than their respective intact limb for both groups. The Ertl intact limb produced significantly greater peak knee power and net work than the Non-Ertl intact knee. Although loading asymmetries existed between the intact and affected limb of both groups, the Ertl group performed the task ~30% faster. This was driven by greater power and work production of the Ertl intact limb knee. Our results suggest that functional differences exist between the procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lindenberg, Kelly M; Carcia, Christopher R
2013-02-01
To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.004), but not between the 0 and 12 mm conditions (p=.927). Jump-landing task- No significant differences were found in peak vGRF (p=.192) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.
Force-reflection and shared compliant control in operating telemanipulators with time delay
NASA Technical Reports Server (NTRS)
Kim, Won S.; Hannaford, Blake; Bejczy, Antal K.
1992-01-01
The performance of an advanced telemanipulation system in the presence of a wide range of time delays between a master control station and a slave robot is quantified. The contemplated applications include multiple satellite links to LEO, geosynchronous operation, spacecraft local area networks, and general-purpose computer-based short-distance designs. The results of high-precision peg-in-hole tasks performed by six test operators indicate that task performance decreased linearly with introduced time delays for both kinesthetic force feedback (KFF) and shared compliant control (SCC). The rate of this decrease was substantially improved with SCC compared to KFF. Task performance at delays above 1 s was not possible using KFF. SCC enabled task performance for such delays, which are realistic values for ground-controlled remote manipulation of telerobots in space.
Gender differences in plantar loading during three soccer-specific tasks.
Sims, E L; Hardaker, W M; Queen, R M
2008-04-01
Examine the effect of gender on plantar loading during three football-specific tasks. Thirty-four athletes (17 men, 17 women) ran an agility course five times while wearing the Nike Vitoria hard ground cleat. Plantar loading data were recorded during a side cut, a cross-over cut and a forward acceleration task using Pedar-X insoles. Controlled laboratory study. No history of lower extremity injury in the past 6 months, no previous foot or ankle surgery, not currently wearing foot orthotics and play a cleated sport at least two times per week. Contact area, maximum force and the force-time integral (FTI) in the medial and lateral midfoot, medial, middle and lateral forefoot as well as the hallux. A univariate ANCOVA (alpha = 0.05) was performed on each dependent variable (covariate was course speed). Significant gender differences existed in the force and force-time integral beneath the lateral midfoot and forefoot during the cross-over cut task as well as in the middle forefoot during the side cut task with the men demonstrating an increased force. No significant differences existed in the loading on the medial side of the foot during any tasks. The results of this study indicate that the increase in plantar loading on the lateral portion of the midfoot and forefoot in men could be one possible explanation for the increased incidence of fifth metatarsal stress fractures in men. Gender differences in loading patterns need to be considered when comparing different movements as well as different footwear conditions.
ERIC Educational Resources Information Center
Jacoby, Pat; Vasinda, Sheri
2014-01-01
In the Winter 2013 edition of the "Texas Journal of Literacy Education," we announced that a special task force from the TALE board would be sharing the common ground among the Texas Essential Knowledge and Skills (TEKS), Common Core State Standards (CCSS), and the College and Career Readiness Standards (CCRS). In that first edition, we…
1996-10-01
systems currently headed for deployment ( BIDS is highlighted in the chart) to widely dispersed microsensors on micro, autonomous platforms. Small room... Small , Rapidly Deployable Forces" Joe Polito, Dan Rondeau, Sandia National Laboratory V.2. "Robotic Concepts for Small Rapidly Deployable Forces" V-7...Robert Palmquist, Jill Fahrenholtz, Richard Wheeler, Sandia National Laboratory V.3. "Potential for Distributed Ground Sensors in Support of Small Unit V
Lower limb ice application alters ground reaction force during gait initiation.
Muniz, Thiago B; Moraes, Renato; Guirro, Rinaldo R J
2015-01-01
Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task--gait initiation--was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.
Almonroeder, Thomas Gus; Kernozek, Thomas; Cobb, Stephen; Slavens, Brooke; Wang, Jinsung; Huddleston, Wendy
2018-05-01
Study Design Cross-sectional study. Background The drop vertical jump task is commonly used to screen for anterior cruciate ligament injury risk; however, its predictive validity is limited. The limited predictive validity of the drop vertical jump task may be due to not imposing the cognitive demands that reflect sports participation. Objectives To investigate the influence of additional cognitive demands on lower extremity mechanics during execution of the drop vertical jump task. Methods Twenty uninjured women (age range, 18-25 years) were required to perform the standard drop vertical jump task, as well as drop vertical jumps that included additional cognitive demands. The additional cognitive demands were related to attending to an overhead goal (ball suspended overhead) and/or temporal constraints on movement selection (decision making). Three-dimensional ground reaction forces and lower extremity mechanics were compared between conditions. Results The inclusion of the overhead goal resulted in higher peak vertical ground reaction forces and lower peak knee flexion angles in comparison to the standard drop vertical jump task. In addition, participants demonstrated greater peak knee abduction angles when trials incorporated temporal constraints on decision making and/or required participants to attend to an overhead goal, in comparison to the standard drop vertical jump task. Conclusion Imposing additional cognitive demands during execution of the drop vertical jump task influenced lower extremity mechanics in a manner that suggested increased loading of the anterior cruciate ligament. Tasks utilized in anterior cruciate ligament injury risk screening may benefit from more closely reflecting the cognitive demands of the sports environment. J Orthop Sports Phys Ther 2018;48(5):381-387. Epub 10 Jan 2018. doi:10.2519/jospt.2018.7739.
DEVELOPMENT AND VALIDATION OF A MECHANISTIC GROUND SPRAYER MODEL
In the last ten years the Spray Drift Task Force (SDTF), U.S. Environmental Protection Agency (EPA), USDA Agricultural Research Service, and USDA Forest Service cooperated in the refinement and evaluation of a mechanistically-based aerial spray model (contained within AGDISP and ...
Dai, Boyi; Garrett, William E; Gross, Michael T; Padua, Darin A; Queen, Robin M; Yu, Bing
2015-02-01
Anterior cruciate ligament injuries (ACL) commonly occur during jump landing and cutting tasks. Attempts to land softly and land with greater knee flexion are associated with decreased ACL loading. However, their effects on performance are unclear. Attempts to land softly will decrease peak posterior ground-reaction force (PPGRF) and knee extension moment at PPGRF compared with a natural landing during stop-jump and side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact will increase knee flexion at PPGRF compared with a natural landing during both tasks. In addition, both landing techniques will increase stance time and lower extremity mechanical work as well as decrease jump height and movement speed compared with a natural landing during both tasks. Controlled laboratory study. A total of 18 male and 18 female recreational athletes participated in the study. Three-dimensional kinematic and kinetic data were collected during stop-jump and side-cutting tasks under 3 conditions: natural landing, soft landing, and landing with greater knee flexion at initial ground contact. Attempts to land softly decreased PPGRF and knee extension moment at PPGRF compared with a natural landing during stop-jump tasks. Attempts to land softly decreased PPGRF compared with a natural landing during side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact increased knee flexion angle at PPGRF compared with a natural landing during both stop-jump and side-cutting tasks. Attempts to land softly and land with greater knee flexion at initial ground contact increased stance time and lower extremity mechanical work, as well as decreased jump height and movement speed during both stop-jump and side-cutting tasks. Although landing softly and landing with greater knee flexion at initial ground contact may reduce ACL loading during stop-jump and side-cutting tasks, the performance of these tasks decreased, as indicated by increased stance time and mechanical work as well as decreased jump height and movement speed. Training effects tested in laboratory environments with the focus on reducing ACL loading may be reduced in actual competition environments when the focus is on athlete performance. The effects of training programs for ACL injury prevention on lower extremity biomechanics in athletic tasks may need to be evaluated in laboratories as well as in actual competitions. © 2014 The Author(s).
Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph
2015-01-01
Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC =0.83–0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. PMID:25715680
Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph
2015-02-01
Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC=0.83-0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.
Podraza, Jeffery T; White, Scott C
2010-08-01
Investigating landing kinetics and neuromuscular control strategies during rapid deceleration movements is a prerequisite to understanding the non-contact mechanism of ACL injury. The purpose of this study was to quantify the effect of knee flexion angle on ground reaction forces, net knee joint moments, muscle co-contraction and lower extremity muscles during an impact-like, deceleration task. Ground reaction forces and knee joint moments were determined from video and force plate records of 10 healthy male subjects performing rapid deceleration single leg landings from a 10.5 cm height with different degrees of knee flexion at landing. Muscle co-contraction was based on muscle moments calculated from an EMG-to-moment processing model. Ground reaction forces and co-contraction indices decreased while knee extensor moments increased significantly with increased degrees of knee flexion at landing (all p<0.005). Higher ground reaction forces when landing in an extended knee position suggests they are a contributing factor in non-contact ACL injuries. Increased knee extensor moments and less co-contraction with flexed knee landings suggest that quadriceps overload may not be the primary cause of non-contact ACL injuries. The results bring into question the counterbalancing role of the hamstrings during dynamic movements. The soleus may be a valuable synergist stabilizing the tibia against anterior translation at landing. Movement strategies that lessen the propagation of reaction forces up the kinetic chain may help prevent non-contact ACL injuries. The relative interaction of all involved thigh and lower leg muscles, not just the quadriceps and hamstrings should be considered when interpreting non-contact ACL injury mechanisms. Copyright 2010 Elsevier B.V. All rights reserved.
Third Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
In May 1994, the Task Force on the Shuttle-Mir Rendezvous and Docking Missions was established by the NASA Advisory Council. Its purpose is to review Phase 1 (Shuttle-Mir) planning, training, operations, rendezvous and docking, and management and to provide interim reports containing specific recommendations to the Advisory Council. Phase 1 represents the building block to create the experience and technical expertise for an International Space Station. The Phase 1 program brings together the United States and Russia in a major cooperative and contractual program that takes advantage of both countries' capabilities. The content of the Phase 1 program consists of the following elements as defined by the Phase 1 Program Management Plan, dated October 6, 1994: Shuttle-Mir rendezvous and docking missions; astronaut long duration presence on Mir Requirements for Mir support of Phase 1 when astronauts are not on board; outfitting Spektr and Priroda modules with NASA science, research, and risk mitigation equipment Related ground support requirements of NASA and the Russian Space Agency (RSA) to support Phase 1 Integrated NASA and RSA launch schedules and manifests The first meeting of the Task Force was held at the Johnson Space Center (JSC) on May 24 and 25, 1994 with a preliminary report submitted to the NASA Advisory Council on June 6, 1994. The second meeting of the Task Force was held at JSC on July 12 and 13, 1994 and a detailed report containing a series of specific recommendations was submitted on July 29, 1994. This report reflects the results of the third Task Force meeting which was held at JSC on 11 and 12 October, 1994. The briefings presented at that meeting reviewed NASA's response to the Task Force recommendations made to date and provided background data and current status on several critical areas which the Task Force had not addressed in its previous reports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Articles include: Arizona Apache tribe set to break ground on new solar project; Native leaders give tribes a voice on White House Climate Task Force; Chaninik Wind Group Pursues Innovative Solutions to native Alaska energy challenges; and sections, Message from the Director, Tracey Lebeau; On the Horizon, Sharing Knowledge, and Building Bridges.
Foot kinematics and loading of professional athletes in American football-specific tasks.
Riley, Patrick O; Kent, Richard W; Dierks, Tracy A; Lievers, W Brent; Frimenko, Rebecca E; Crandall, Jeff R
2013-09-01
The purpose of this study was to describe stance foot and ankle kinematics and the associated ground reaction forces at the upper end of human performance in professional football players during commonly performed football-specific tasks. Nine participants were recruited from the spring training squad of a professional football team. In a motion analysis laboratory setting, participants performed three activities used at the NFL Scouting Combine to assess player speed and agility: the 3-cone drill, the shuttle run, and the standing high jump. The talocrural and first metatarsophalangial joint dorsiflexion, subtalar joint inversion, and the ground reaction forces were determined for the load bearing portions of each activity. We documented load-bearing foot and ankle kinematics of elite football players performing competition-simulating activities, and confirmed our hypothesis that the talocrural, subtalar, and metatarsophalangeal joint ranges of motion for the activities studied approached or exceeded reported physiological limits. Copyright © 2012 Elsevier B.V. All rights reserved.
Brown, Jeremy D; O Brien, Conor E; Leung, Sarah C; Dumon, Kristoffel R; Lee, David I; Kuchenbecker, Katherine J
2017-09-01
Most trainees begin learning robotic minimally invasive surgery by performing inanimate practice tasks with clinical robots such as the Intuitive Surgical da Vinci. Expert surgeons are commonly asked to evaluate these performances using standardized five-point rating scales, but doing such ratings is time consuming, tedious, and somewhat subjective. This paper presents an automatic skill evaluation system that analyzes only the contact force with the task materials, the broad-bandwidth accelerations of the robotic instruments and camera, and the task completion time. We recruited N = 38 participants of varying skill in robotic surgery to perform three trials of peg transfer with a da Vinci Standard robot instrumented with our Smart Task Board. After calibration, three individuals rated these trials on five domains of the Global Evaluative Assessment of Robotic Skill (GEARS) structured assessment tool, providing ground-truth labels for regression and classification machine learning algorithms that predict GEARS scores based on the recorded force, acceleration, and time signals. Both machine learning approaches produced scores on the reserved testing sets that were in good to excellent agreement with the human raters, even when the force information was not considered. Furthermore, regression predicted GEARS scores more accurately and efficiently than classification. A surgeon's skill at robotic peg transfer can be reliably rated via regression using features gathered from force, acceleration, and time sensors external to the robot. We expect improved trainee learning as a result of providing these automatic skill ratings during inanimate task practice on a surgical robot.
Dehbandi, Behdad; Barachant, Alexandre; Smeragliuolo, Anna H; Long, John Davis; Bumanlag, Silverio Joseph; He, Victor; Lampe, Anna; Putrino, David
2017-01-01
The objective of this study was to determine whether kinematic data collected by the Microsoft Kinect 2 (MK2) could be used to quantify postural stability in healthy subjects. Twelve subjects were recruited for the project, and were instructed to perform a sequence of simple postural stability tasks. The movement sequence was performed as subjects were seated on top of a force platform, and the MK2 was positioned in front of them. This sequence of tasks was performed by each subject under three different postural conditions: "both feet on the ground" (1), "One foot off the ground" (2), and "both feet off the ground" (3). We compared force platform and MK2 data to quantify the degree to which the MK2 was returning reliable data across subjects. We then applied a novel machine-learning paradigm to the MK2 data in order to determine the extent to which data from the MK2 could be used to reliably classify different postural conditions. Our initial comparison of force plate and MK2 data showed a strong agreement between the two devices, with strong Pearson correlations between the trunk centroids "Spine_Mid" (0.85 ± 0.06), "Neck" (0.86 ± 0.07) and "Head" (0.87 ± 0.07), and the center of pressure centroid inferred by the force platform. Mean accuracy for the machine learning classifier from MK2 was 97.0%, with a specific classification accuracy breakdown of 90.9%, 100%, and 100% for conditions 1 through 3, respectively. Mean accuracy for the machine learning classifier derived from the force platform data was lower at 84.4%. We conclude that data from the MK2 has sufficient information content to allow us to classify sequences of tasks being performed under different levels of postural stability. Future studies will focus on validating this protocol on large populations of individuals with actual balance impairments in order to create a toolkit that is clinically validated and available to the medical community.
2017-03-01
Communications SMC Space and Missile Systems Center SEV Space Enterprise Vision SHF Super High Frequency SINCGARS Single Channel Ground-Air Radio...Appendix D:Acronyms A2/AD Anti-Access/Area Denial ADNS Automated Digital Network System AEHF Advanced Extremely High Frequency AFSPC Air Force Space ...medium-rate modes of defense extremely high frequency (EHF) SATCOM. This reality should be considered a crisis to be dealt with immediately. In
Predictors of proximal tibia anterior shear force during a vertical stop-jump.
Sell, Timothy C; Ferris, Cheryl M; Abt, John P; Tsai, Yung-Shen; Myers, Joseph B; Fu, Freddie H; Lephart, Scott M
2007-12-01
Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the biomechanical predictors of proximal tibia anterior shear force during a stop-jump task. A biomechanical and electromyographic (EMG) analysis of the knee was conducted while subjects performed a vertical stop-jump task. The task was chosen to simulate an athletic maneuver that included a landing with a sharp deceleration and a change in direction. The final regression model indicated that posterior ground reaction force, external knee flexion moment, knee flexion angle, integrated EMG activity of the vastus lateralis, and sex (female) would significantly predict proximal tibia anterior shear force (p < 0.0001, R2 = 0.8609). Knee flexion moment had the greatest influence on proximal tibia anterior shear force. The mathematical relationships elucidated in the current study support previous clinical and basic science research examining noncontact ACL injuries. This data provides important evidence for clinicians who are examining the risk factors for these injuries and developing/validating training programs to reduce the incidence of injury. Copyright 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
2009-06-12
and 2004 National Military Strategy (NMS) continue to germinate . Discussions surrounding the spread of effective democracies and alternate...additional civil-military operation capabilities such as enhanced engineering, additional medical and dental support, and transportation tailored for
Dai, B; Butler, R J; Garrett, W E; Queen, R M
2014-12-01
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An Overview of the Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Merceret, Francis; Bauman, William; Lambert, Winifred; Short, David; Barrett, Joe; Watson, Leela
2007-01-01
The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency agreement by NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.
Lower limb ice application alters ground reaction force during gait initiation
Muniz, Thiago B.; Moraes, Renato; Guirro, Rinaldo R. J.
2015-01-01
BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities. PMID:25993625
OPERATION IVY. Report of Commander, Task Group 132.1. Pacific Proving Grounds. Joint Task Force 132
1984-10-31
3.4.1 Device Planning One of the major purposes of Operation Greenhouse was to answer key questions relating to the possibility of developing...thermonuclear explosions. The Greenhouse George and Item Shots were Important steps in the investigation of basic problems in the development of a...January 1952, staff studies were made which were based on Greenhouse experience and on the best available estimates of the requirements pe- culiar to
FRA/Volpe Center Task Force Observation of Operations at TVE Transrapid Test Facility, Addendum
DOT National Transportation Integrated Search
1993-12-01
This report is an addendum to a report (No. DOT-VNTSC-RR393-PM-93-1) prepared in April : 1993 describing the operations witnessed and the relevant information obtained by nine members : of the FRA/Volpe Center High Speed Guided Ground Transportation ...
Gill, Simone V; Hung, Ya-Ching
2014-01-01
Little is known about how obesity relates to motor planning and skills during functional tasks. We collected 3-D kinematics and kinetics as normal weight (n=10) and overweight/obese (n=12) children walked on flat ground and as they crossed low, medium, and high obstacles. We investigated if motor planning and motor skill impairments were evident during obstacle crossing. Baseline conditions showed no group differences (all ps>.05). Increased toe clearance was found on low obstacles (p=.01) for the overweight/obese group and on high obstacles (p=.01) for the normal weight group. With the crossing leg, the overweight/obese group had larger hip abduction angles (p=.01) and medial ground reaction forces (p=.006) on high obstacles and high anterior ground reaction forces on low obstacles (p=.001). With the trailing leg, overweight/obese children had higher vertical ground reaction forces on high obstacles (p=.005) and higher knee angles (p=.01) and anterior acceleration in the center of mass (p=.01) on low obstacles. These findings suggest that differences in motor planning and skills in overweight/obese children may be more apparent during functional activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Defensive Information Operations in Support of the Marine Air Ground Task Force
2002-05-31
Templeton, M.S.Sc. Accepted this 31st day of May 2002 by: , Director, Graduate Degree Programs Philip J . Brookes, Ph.D. The...ACKNOWLEDGMENTS I would like to thank my wife, Marcella and my children, Christopher, Stehpanie, Benjamin, and Cecilia for their support and encouragement...future. The protection of these C2 centers must be included in the overall force protection plan. As stated by Secretary of Defense William J . Perry in
Bates, Nathaniel A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E
2013-04-26
The drop vertical jump (DVJ) task is commonly used to assess biomechanical performance measures that are associated with ACL injury risk in athletes. Previous investigations have solely assessed the first landing phase. We examined the first and second landings of a DVJ for differences in the magnitude of vertical ground reaction force (vGRF) and position of center of mass (CoM). A cohort of 239 adolescent female basketball athletes completed a series of DVJ tasks from an initial box height of 31 cm. Dual force platforms and a three dimensional motion capture system recorded force and positional data for each trial. There was no difference in peak vGRF between landings (p=0.445), but side-to-side differences increased from the first to second landing (p=0.007). Participants demonstrated a lower minimum CoM during stance in the first landing than the second landing (p<0.001). The results have important implications for the future assessment of ACL injury risk behaviors in adolescent female athletes. Greater side-to-side asymmetry in vGRF and higher CoM during impact indicate the second landing of a DVJ may exhibit greater perturbation and better represent in-game mechanics associated with ACL injury risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Parallel Implementation of Algorithms for Finding the Reflection Symmetry of the Binary Images
NASA Astrophysics Data System (ADS)
Fedotova, S.; Seredin, O.; Kushnir, O.
2017-05-01
In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on "Butterflies" and "Flavia" datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.
Space station operations task force. Panel 2 report: Ground operations and support systems
NASA Technical Reports Server (NTRS)
1987-01-01
The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.
Mengarelli, Alessandro; Verdini, Federica; Cardarelli, Stefano; Di Nardo, Francesco; Burattini, Laura; Fioretti, Sandro
2018-04-11
Testing balance through squatting exercise is a central part of many rehabilitation programs and sports and plays also an important role in clinical evaluation of residual motor ability. The assessment of center of pressure (CoP) displacement and its parametrization is commonly used to describe and analyze squat movement and the laboratory-grade force plates (FP) are the gold standard for measuring balance performances from a dynamic view-point. However, the Nintendo Wii Balance Board (NWBB) has been recently proposed as an inexpensive and easily available device for measuring ground reaction force and CoP displacement in standing balance tasks. Thus, this study aimed to compare the NWBB-CoP data with those obtained from a laboratory FP during a dynamic motor task, such as the squat task. CoP data of forty-eight subjects were acquired simultaneously from a NWBB and a FP and the analyses were performed over the descending squatting phase. Outcomes showed a very high correlation (r) and limited root-mean-square differences between CoP trajectories in anterior-posterior (r > 0.99, 1.63 ± 1.27 mm) and medial-lateral (r > 0.98, 1.01 ± 0.75 mm) direction. Spatial parameters computed from CoP displacement and ground reaction force peak presented fixed biases between NWBB and FP. Errors showed a high consistency (standard deviation < 2.4% of the FP outcomes) and a random spread distribution around the mean difference. Mean velocity is the only parameter which exhibited a tendency towards proportional values. Findings of this study suggested the NWBB as a valid device for the assessment and parametrization of CoP displacement during squatting movement. Copyright © 2018 Elsevier Ltd. All rights reserved.
The efficacy of elastic therapeutic tape variations on measures of ankle function and performance.
Brogden, Christopher Michael; Marrin, Kelly; Page, Richard Michael; Greig, Matt
2018-04-23
To investigate the effects of different variations of elastic therapeutic taping (ETT) on tests used to screen for ankle injury risk and function. Randomized crossover. Laboratory. Twelve professional male soccer players completed three experimental trials: No tape (NT), RockTape™ (RT), and Kinesio™ Tape (KT) applied to the ankle complex. Clinical and functional ankle screening tests were used to assess the effects of ETT on measures of joint position sense, postural stability and ground reaction forces. KT (P = 0.04) and RT (P = 0.01) demonstrated significant improvements in end range joint position sense. When compared to NT, RT significantly (P = 0.02) improved mid-range joint position sense at 15°, and time to complete a drop landing task. No significant differences were observed for measures of postural stability (P ≥ 0.12) nor ground reaction force variables (P ≥ 0.33). Results advocate the use of ETT for proprioceptive and functional tasks when applied to the ankles of healthy male soccer players. However, a greater number of practical and significant differences were observed when RT only was applied, indicating that practitioners may potentially advocate the use of RT for tasks requiring proprioception and functional performance. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Allied Forces, Mediterranean Theater, Western Task Force Operation Plan Number 4-44, Volume 1
1944-07-24
results, subject to limitations im posed to ensure safety of ships. (11) Be prepared to cope with enemy use of gas . Provide impregnated clothing for...crews of small craft beaching and all naval personnel landing on hostile shores. (12) Unless specifically ordered, poison gas will not be em ployed...South, to Southeast ,. The bottom, of mud covered with weed, is ^ood holding ground, provided the ves sel does not anchor in too - :;r--jat depths
2009-09-24
flexion angle, decreased vertical ground-reaction force , and increased hip internal rotation angle during the jump -landing task. Additionally, decreased...was to determine the biomechanical risk factors for PFPS. The specific factors examined were lower extremity kinematics and kinetics during a jump ...ACL Injury [ JUMP -ACL] study) in which baseline data are collected for participants at all 3 service academies (USNA, United States Air Force Academy
The First World War Mesopotamian Campaigns: Military Lessons on Iraqi Ground Warfare
2005-06-01
during the monarchy of King Faisal II, and then General Abdel-Karim Kassem and finally strongman Colonel Abdel-Rahman Arif. The quality of such... Political Officer. The task was to embolden the population to make it as uncomfortable as possible for British forces on their way to Baghdad. Another
Kazantzis, Nikolaos; Cronin, Timothy J; Norton, Peter J; Lai, Jerry; Hofmann, Stefan G
2015-05-01
We offer a critical and constructive appraisal of the conclusions provided by the Interdivisional (American Psychological Association [APA] Divisions 12 & 29) Task Force on Evidence-Based Therapy Relationships. We highlight problems in overlapping terminology and definitions, as well as problems in the conduct of its meta-analyses (i.e., duplication of studies between reviews, inappropriate study inclusion, and use of measures of specific constructs for the calculation of effects for multiple relationship elements). On this basis, we express reservation about the conclusions offered by the APA Task Force. This special issue explores whether there are other therapeutic relationship elements that warrant consideration and further study. We were particularly interested in those elements that showed promise based on empirical or theoretical grounds, and in each article, we asked for an account of how the case formulation would guide the methods of adaptation for each individual client, and how the element would contribute to clinically relevant changes. © 2015 Wiley Periodicals, Inc.
Hemispheric Transport of Air Pollutants: Issues, Progress, and Implications
NASA Astrophysics Data System (ADS)
Keating, T.
2007-12-01
Once thought of as only a local or regional issue, air quality is now understood to be influenced by local, regional, hemispheric, and global phenomena. There is well-documented evidence from ground-, aircraft-, and satellite- based observations for the intercontinental transport of ozone, aerosols, mercury, and some persistent organic pollutants. Global and regional models have provided a range of estimates of the influence of emissions on one continent on concentrations and deposition levels on another continent. These estimates have been difficult to compare and the significance of this intercontinental influence for the design of air pollution control policies is not well understood. The Task Force on Hemispheric Transport of Air Pollutants organized under the Convention on Long-Range Transboundary Air Pollution is developing the first systematic assessment of intercontinental transport and hemispheric pollution in the Northern Hemisphere. This presentation by one of the co-chairs of the Task Force will explore the motivations behind the creation of the Task Force, review its progress, and discuss the implications of its work for the development of domestic and international air quality management policies.
Billings, Stephen A.; Pavic, Aleksandar; Guo, Ling-Zhong
2017-01-01
Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications. PMID:28937593
GeoVision Exploration Task Force Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Christine; Dobson, Patrick F.; Wall, Anna
The GeoVision study effort included ground-breaking, detailed research on current and future market conditions and geothermal technologies in order to forecast and quantify the electric and non-electric deployment potentials under a range of scenarios, in addition to their impacts on the Nation’s jobs, economy and environment. Coordinated by the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO), the GeoVision study development relied on the collection, modeling, and analysis of robust datasets through seven national laboratory partners, which were organized into eight technical Task Force groups. The purpose of this report is to provide a central repository for the researchmore » conducted by the Exploration Task Force. The Exploration Task Force consists of four individuals representing three national laboratories: Patrick Dobson (task lead) and Christine Doughty of Lawrence Berkeley National Laboratory, Anna Wall of National Renewable Energy Laboratory, Travis McLing of Idaho National Laboratory, and Chester Weiss of Sandia National Laboratories. As part of the GeoVision analysis, our team conducted extensive scientific and financial analyses on a number of topics related to current and future geothermal exploration methods. The GeoVision Exploration Task Force complements the drilling and resource technology investigations conducted as part of the Reservoir Maintenance and Development Task Force. The Exploration Task Force however has focused primarily on early stage R&D technologies in exploration and confirmation drilling, along with an evaluation of geothermal financing challenges and assumptions, and innovative “blue-sky” technologies. This research was used to develop geothermal resource supply curves (through the use of GETEM) for use in the ReEDS capacity expansion modeling that determines geothermal technology deployment potential. It also catalogues and explores the large array of early-stage R&D technologies with the potential to dramatically reduce exploration and geothermal development costs, forming the basis of the GeoVision Technology Improvement (TI) scenario. These modeling topics are covered in detail in Potential to Penetration task force report. Most of the research contained herein has been published in peer-reviewed papers or conference proceedings and are cited and referenced accordingly. The sections that follow provide a central repository for all of the research findings of the Exploration and Confirmation Task Force. In summary, it provides a comprehensive discussion of Engineered Geothermal Systems (EGS) and associated technology challenges, the risks and costs of conducting geothermal exploration, a review of existing government efforts to date in advancing early-stage R&D in both exploration and EGS technologies, as well as a discussion of promising and innovative technologies and implementation of blue-sky concepts that could significantly reduce costs, lower risks, and shorten the time needed to explore and develop geothermal resources of all types.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... Aircraft Carrier Berthing, and Army Air and Missile Defense Task Force'' dated July 2010. Pursuant to 40... day care), some site-specific training, and open space (e.g., parade grounds, open training areas, and open green space in communities). The proposed action also includes the utilities and infrastructure...
2015-12-01
simulation M777A2 howitzer MAGTF Marine Air-Ground Task Force MANA Map Aware Non-Uniform Automata MCWL Marine Corps Warfighting Lab MEB Marine...met. The project developed a Map Aware Non-Uniform Automata (MANA) model for each SPMAGTF size. The MANA models simulated the maneuver and direct
2010-04-26
Estes, Marines Under Armor : The Marine Corps and the Armored Fighting Vehicle, 1916- 2000. Naval Institute Press, Annapolis MD, 2000. Prior to WWIT...Marines Under Armor : The Marine Corps and the Armored Fighting Vehicle, 1916-2000. Naval Institute Press, Annapolis, MA: 2000 Gilbert, Oscar E
Altered visual focus on sensorimotor control in people with chronic ankle instability.
Terada, Masafumi; Ball, Lindsay M; Pietrosimone, Brian G; Gribble, Phillip A
2016-01-01
The purpose of this investigation was to examine the effects of the combination of chronic ankle instability (CAI) and altered visual focus on strategies for dynamic stability during a drop-jump task. Nineteen participants with self-reported CAI and 19 healthy participants performed a drop-jump task in looking-up and looking-down conditions. For the looking-up condition, participants looked up and read a random number that flashed on a computer monitor. For the looking-down condition, participants focused their vision on the force plate. Sagittal- and frontal-plane kinematics in the hip, knee and ankle were calculated at the time points of 100 ms pre-initial foot contact to ground and at IC. The resultant vector time to stabilisation was calculated with ground reaction force data. The CAI group demonstrated less hip flexion at the point of 100 ms pre-initial contact (P < 0.01), and less hip flexion (P = 0.03) and knee flexion at initial contact (P = 0.047) compared to controls. No differences in kinematics or dynamic stability were observed in either looking-up or looking-down conditions (P > 0.05). Altered visual focus did not influence movement patterns during the drop-jump task, but the presence of CAI did. The current data suggests that centrally mediated changes associated with CAI may lead to global alterations in the sensorimotor control.
Biodynamic feedback training to assure learning partial load bearing on forearm crutches.
Krause, Daniel; Wünnemann, Martin; Erlmann, Andre; Hölzchen, Timo; Mull, Melanie; Olivier, Norbert; Jöllenbeck, Thomas
2007-07-01
To examine how biodynamic feedback training affects the learning of prescribed partial load bearing (200N). Three pre-post experiments. Biomechanics laboratory in a German university. A volunteer sample of 98 uninjured subjects who had not used crutches recently. There were 24 subjects in experiment 1 (mean age, 23.2y); 64 in experiment 2 (mean age, 43.6y); and 10 in experiment 3 (mean age, 40.3y), parallelized by arm force. Video instruction and feedback training: In experiment 1, 2 varied instruction videos and reduced feedback frequency; in experiment 2, varied frequencies of changing tasks (contextual interference); and in experiment 3, feedback training (walking) and transfer (stair tasks). Vertical ground reaction force. Absolute error of practiced tasks was significantly reduced for all samples (P<.050). Varied contextual interference conditions did not significantly affect retention (P=.798) or transfer (P=.897). Positive transfer between tasks was significant in experiment 2 (P<.001) and was contrary to findings in experiment 3 (P=.071). Biodynamic feedback training is applicable for learning prescribed partial load bearing. The frequency of changing tasks is irrelevant. Despite some support for transfer effects, additional practice in climbing and descending stairs might be beneficial.
Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit
2010-12-01
If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution of a fast step when balance is lost, thus increasing the likelihood of falls in stroke survivors. Copyright © 2010 Elsevier Ltd. All rights reserved.
Granata, K P; Padua, D A; Wilson, S E
2002-04-01
Leg stiffness was compared between age-matched males and females during hopping at preferred and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical center of mass (COM) displacement and ground-reaction forces recorded from a force plate during the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical displacement of the COM during ground contact in relation to the square of hopping frequency. This supports the accuracy of the spring-mass oscillator as a representative model of hopping. It also maintained peak vertical ground-reaction load at approximately three times body weight. Leg stiffness values in males (33.9+/-8.7 kN/m) were significantly (p<0.01) greater than in females (26.3+/-6.5 kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the spring-mass oscillator model leg stiffness and body mass are related to the frequency of motion. Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the same frequency as the lighter female subjects during the controlled frequency trials. However, in the preferred hopping condition the stiffness was not constrained by the task because frequency was self-selected. Nonetheless, both male and female subjects hopped at statistically similar preferred frequencies (2.34+/-0.22 Hz), therefore, the females continued to demonstrate less leg stiffness. Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness, these results may provide insight into the gender bias in risk of musculoskeletal knee injury.
Lee, Jae Hong; Min, Dong Ki; Choe, Han Seong; Lee, Jin Hwan; Shin, So Hong
2018-01-01
[Purpose] The purpose of this study was to evaluate the influence of arm and leg posture elements on symmetrical weight bearing during Sit to Stand tasks in chronic stroke patients. [Subjects and Methods] The subjects were diagnosed with stroke and 22 patients (15 males and 7 females) participated in this study. All participants performed Sit to Stand tasks on three foot postures and two arm postures. Two force plates were used to measure peak of vertical ground reaction force and symmetrical ratio to peak Fz. The data were analyzed using independent t-test and two-way repeated ANOVA. [Results] The results of this study are as follows: 1) Peak Fz placed more weight in non-paretic leg during Sit to Stand. 2) A symmetrical ratio to Peak Fz indicated significant difference between foot and arm posture, and had non-paretic limb supported on a step and paretic at ground level (STP) and grasped arm posture that lock fingers together with shoulder flexion by 90°(GA) (0.79 ± 0.09). [Conclusion] These results suggest that STP posture of the legs and GA posture of the arms should be able to increase the use of the paretic side during Sit to Stand behavior and induce normal Sit to Stand mechanism through the anterior tilt of the hip in clinical practices, by which loads onto the knee joint and the ankle joint can be reduced, and the trunk righting response can be promoted by making the back fully stretched. The outcome of this study is expected to be a reference for exercise or prognosis of Sit to Stand in stroke patients. PMID:29545686
BigBOSS: The Ground-Based Stage IV BAO Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, David; Bebek, Chris; Heetderks, Henry
2009-04-01
The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that ofmore » a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.« less
Design and Evaluation of a new mechatronic platform for assessment and prevention of fall risks
2012-01-01
Background Studying the responses in human behaviour to external perturbations during daily motor tasks is of key importance for understanding mechanisms of balance control and for investigating the functional response of targeted subjects. Experimental platforms as far developed entail a low number of perturbations and, only in few cases, have been designed to measure variables used at run time to trigger events during a certain motor task. Methods This work introduces a new mechatronic device, named SENLY, that provides balance perturbations while subjects carry out daily motor tasks (e.g., walking, upright stance). SENLY mainly consists of two independently-controlled treadmills that destabilize balance by suddenly perturbing belts movements in the horizontal plane. It is also provided with force sensors, which can be used at run time to estimate the ground reaction forces and identify events along the gait cycle in order to trigger the platform perturbation. The paper also describes the customized procedures adopted to calibrate the platform and the first testing trials aimed at evaluating its performance. Results SENLY allows to measure both vertical ground reaction forces and their related location more precisely and more accurately than other platforms of the same size. Moreover, the platform kinematic and kinetic performance meets all required specifications, with a negligible influence of the instrumental noise. Conclusion A new perturbing platform able to reproduce different slipping paradigms while measuring GRFs at run time in order to enable the asynchronous triggering during the gait cycle was designed and developed. Calibration procedures and pilot tests show that SENLY allows to suitably estimate dynamical features of the load and to standardize experimental sessions, improving the efficacy of functional analysis. PMID:22838638
Zhou, Jie; Ning, Xiaopeng; Nimbarte, Ashish D; Dai, Fei
2015-01-01
As a major risk factor of low back injury, sudden loading often occurs when performing manual material-handling tasks on uneven ground surfaces. Therefore, the purpose of the current study was to investigate the effects of a laterally slanted ground on trunk biomechanical responses during sudden loading events. Thirteen male subjects were subjected to suddenly released loads of 3.4 and 6.8 kg, while standing on a laterally slanted ground of 0°, 15° and 30°. The results showed that 8.3% and 5.6% larger peak L5/S1 joint compression forces were generated in the 30° condition compared with the 0° and 15° conditions, respectively. The increase of L5/S1 joint moment in the 30° condition was 8.5% and 5.0% greater than the 0° and 15° conditions, respectively. Findings of this study suggest that standing on a laterally slanted ground could increase mechanical loading on the spine when experiencing sudden loading. Practitioner Summary: Sudden loading is closely related to occupational low back injuries. The results of this study showed that the increase of slanted ground angle and magnitude of load significantly increase the mechanical loading on the spine during sudden loading. Therefore, both of these two components should be controlled in task design.
Marine Air Ground Task Force Distribution In The Battlespace
2016-09-01
benefit of this research is a proposed systemic structure with an associated web application that provides the MAGTF commander with critical...associated web application that provides the MAGTF commander with critical information for supporting operations. vi THIS PAGE INTENTIONALLY LEFT BLANK... web analytics in order to support the decision making process. The potential benefit of this research is a methodology with associated application
Air Support Control Officer Individual Position Training Simulation
2017-06-01
Analysis design development implementation evaluation ASCO Air support control officer ASLT Air support liaison team ASNO Air support net operator...Instructional system design LSTM Long-short term memory MACCS Marine Air Command and Control System MAGTF Marine Air Ground Task Force MASS Marine Air...information to designated MACCS agencies. ASCOs play an important part in facilitating the safe and successful conduct of air operations in DASC- controlled
2008-01-01
8217 relationships and alliances and/or deter potenrlal advetsaries. • PlltlSE 1: Deter the Enem ~’, This phase focuses on deterring specific opponents by...destruction of the enem ~’ in ol’der to break the opponent’s will for organized resistance. StabIllty operations WIll also be conducted as needed to
Arcury-Quandt, Alice E.; Gentry, Amanda L.; Marín, Antonio J.
2011-01-01
Background The golf course industry has a growing Latino work force. Little occupational health research has addressed this work force. This paper examines golf course superintendents’ and Latino grounds maintenance workers’ pesticide knowledge, beliefs, and safety training. In particular, it focuses on knowledge of and adherence to OSHA Right-to-Know regulations. Methods In person, in-depth interviews were conducted with ten golf course superintendents in five states and with sixteen Latino grounds maintenance workers in four states. Results Few superintendents were in compliance with Right-to-Know regulations or did pesticide safety training with all of their workers. Few workers had any pesticide safety knowledge. Most safety training on golf courses was rudimentary and focused on machine safety, and was usually conducted in the off-season or on rainy days, not before workers were assigned tasks. Conclusions More Right-to-Know training is necessary for superintendents and grounds maintenance workers. Culturally and linguistically appropriate Spanish language materials need to be developed or made more widely available to train workers. Better enforcement of safety and training regulations is necessary. PMID:21360723
Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M
2017-12-01
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.
Hopper, Amanda J.; Haff, Erin E.; Joyce, Christopher; Lloyd, Rhodri S.; Haff, G. Gregory
2017-01-01
The purpose of this study was to examine the effects of a neuromuscular training (NMT) program on lower-extremity biomechanics in youth female netball athletes. The hypothesis was that significant improvements would be found in landing biomechanics of the lower-extremities, commonly associated with anterior cruciate ligament (ACL) injury, following NMT. Twenty-three athletes (age = 12.2 ± 0.9 years; height = 1.63 ± 0.08 m; mass = 51.8 ± 8.5 kg) completed two testing sessions separated by 7-weeks and were randomly assigned to either a experimental or control group. Thirteen athletes underwent 6-weeks of NMT, while the remaining 10 served as controls and continued their regular netball training. Three-dimensional lower-extremity kinematics and vertical ground reaction force (VGRF) were measured during two landing tasks, a drop vertical jump and a double leg broad jump with a single leg landing. The experimental group significantly increased bilateral knee marker distance during the bilateral landing task at maximum knee-flexion range of motion. Knee internal rotation angle during the unilateral landing task at maximum knee flexion-extension range of motion was significantly reduced (p ≤ 0.05, g > 1.00). The experimental group showed large, significant decreases in peak vertical ground reaction force in both landing tasks (p ≤ 0.05, g > −1.30). Control participants did not demonstrate any significant pre-to-post-test changes in response to the 6-week study period. Results of the study affirm the hypothesis that a 6-week NMT program can enhance landing biomechanics associated with ACL injury in 11–13 year old female netball athletes. PMID:29163219
Labor of love. A model for planning human resource needs.
Brady, F J
1989-01-01
Typically, the annual budgeting process is the hospital's only attempt to forecast human resource requirements. In times of rapid change, this traditional ad hoc approach is incapable of satisfying either the Catholic hospital's ethical obligations as an employer or its responsibilities to provide healthcare to the poor and suffering. Assumptions about future activity, including volume projections on admissions, patient days, and other services, influence the budgeting process to a large degree. Because the amount of work to be done and the number of employees required to do it are related, changes in demand for service immediately and directly affect staffing requirements. A hospital cannot achieve ethical human resource management or provide high-quality healthcare if inadequate planning forces management into a cycle of crisis-coping--reacting to this year's nursing shortage with a major recruiting effort and next year's financial crunch with a traumatic reduction in force. The human resource planning approach outlined here helps the hospital meet legitimate business needs while satisfying its ethical obligations. The model has four phases and covers a charge to the planning committee; committee appointments; announcements; the establishment of ground rules, focus, and task forces; and the work of each task force.
Impact of Advanced Avionics Technology on Ground Attack Weapon Systems.
1982-02-01
as the relevant feature. 3.0 Problem The task is to perform the automatic cueing of moving objects in a natural environment . Additional problems...views on this subject to the American Defense Preparedness Association (ADPA) on 11 February 1981 in Orlando, Florida. ENVIRONMENTAL CONDITIONS OUR...the operating window or the environmental conditions of combat that our forces may encounter worldwide. The three areas selected were Europe, the
Battle Staff Training and Synchronization in Light Infantry Battalions and Task Forces
1991-12-01
Institute for the Behavioral and Social Sciences Fort Benning Field Unit (ARI-Benning) joined the Training Research Laboratory’s Determinants of Effective ...and unforgiving. The effective management and manipulation of stressors in a continuous operations environment, along with an efficient and consistent...an organizational effectiveness model grounded in the General Systems Theory model. An extensive body of work was reviewed, but two authors stand out
Unified Medical Command and Control in the Department of Defense
2012-03-22
This is the Joint Task Force – Capital Medical (JTF CAPMED ) model, in which organizations, resources, and personnel are aligned under a single...This was demonstrated in the formation of the JTF- CAPMED , designed as a 3-star level command controlling military medical activities in the National...used ground vehicles, helicopters and fixed wing aircraft for strategic casualty evacuation (CASEVAC). Enroute care is standard and critical in
Training Analyses Supporting the Land Warrior and Ground Soldier Systems
2009-07-01
unit with LW and MW expressed in terms of unit force effectiveness, impacts to the DOTMLPF domains, life cycle cost, and ability to mitigate Joint...other individual tasks, Soldier and/or leader, be added to NET; should any be eliminated? What methods of instruction/resources should remain the...presentation of the training observation results from the nine-day NET. Terminal Learning Objectives The NET POI ( Omega Training Group, 2006
Cho, Chiung-Yu; Gilchrist, Louise; White, Scott
2008-01-01
The incidence of falls among older adults is high and the risk factors are often complex in nature. Considerable research has been done in the area of age-related changes of balance in an attempt to better understand the increased risk of falls. Studies of cognitive changes, however, suggest that the elderly are less able to divide their attention between two or more activities. This inability to divide attention could explain the increased risks of falls in the elderly. To investigate the effects of divided attention, age and prior knowledge of movement path, on kinetic measures and the position of the sacral marker relative to the center of pressure (COP) when individuals perform a rapid sidestep during walking. 32 young and 32 old adults participated in this study. Subjects walked and took a sidestep without interrupting forward progression. An arithmetic task was performed during half of the walking trials with the sidestep direction preplanned or unknown. Peak lateral ground reaction force, mean distance between COP and sacrum, walking velocity, performance speed and accuracy of the cognitive task were measured. Both groups significantly decreased their mediolateral distance between the sacral marker and the COP in the dual-task trials (p = 0.04). Both groups significantly decreased their walking speed in the dual-task trials (p < 0.0001). Prior knowledge of the sidestep direction significantly affected the peak lateral ground reaction force and the sacral marker to COP distance but the differences were age-dependent. Young adults had a larger value in the unknown condition than in the preplanned condition (p < 0.0001). For the cognitive task, both groups decreased their performance speed (p < 0.0001) but maintained their performance accuracy as compared to the baseline data (p > 0.05). Our results revealed that old adults tended to be conservative, when facing the dual-task trials or unknown test condition. The fact that the older adults in the current study did not perform similarly to the younger adults suggests that they might have a fear of fall when facing a challenging balance task. (c) 2008 S. Karger AG, Basel.
Ground controlled robotic assembly operations for Space Station Freedom
NASA Technical Reports Server (NTRS)
Parrish, Joseph C.
1991-01-01
A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
2001-04-01
Information Dominance , Sustainment and Support, and Training. The study concludes: 1) the FCS concept is sound, but senior level attention is required to ensure technologies are ready for 2006 FCS EMD; and 2) Key technologies will significantly improve force projection and combat power. The Information Dominance Panel was tasked to: 1) Assess required sensors at National and Theater level; 2) Assess the technological opportunity to provide necessary bandwidth for data, voice and video requirements; 3) Ascertain the requirements to deny the threat
Capobianco, Robyn A; Feeney, Daniel F; Jeffers, Jana R; Nelson-Wong, Erika; Morreale, Joseph; Grabowski, Alena M; Enoka, Roger M
2018-04-03
The ability to rise from a chair is a basic functional task that is frequently compromised in individuals diagnosed with orthopedic disorders in the low back and hip. There is no published literature that describes how this task is altered by sacroiliac joint dysfunction (SIJD). The objective of this study was to compare lower extremity biomechanics and the onset of muscle activity when rising from a chair in subjects with SIJD and in healthy persons. Six women with unilateral SIJD and six age-matched healthy controls performed a sit-to-stand task while we measured kinematics, kinetics, and muscle activity. Subjects stood up at a preferred speed from a seated position on an armless and backless adjustable stool. We measured kinematics with a 10-camera motion capture system, ground reaction forces for each leg with force plates, and muscle activity with surface electromyography. Joint angles and torques were calculated using inverse dynamics. Leg-loading rate was quantified as the average slope of vertical ground reaction (VGRF) force during the 500-millisecond interval preceding maximal knee extension. Between-leg differences in loading rates and peak VGRFs were significantly greater for the SIJD group than for the control group. Maximal hip angles were significantly less for the SIJD group (p=.001). Peak hip moment in the SIJD group was significantly greater in the unaffected leg (0.75±0.22 N⋅m/kg) than in the affected leg (0.47±0.29 N⋅m/kg, p=.005). There were no between-leg or between-group differences for peak knee or ankle moments. The onset of activity in the latissimus dorsi muscle on the affected side was delayed and the erector spinae muscles were activated earlier in the SIJD group than in the control group. Subjects with SIJD have a greater VGRF on the unaffected leg, generate a greater peak hip moment in the unaffected leg, use a smaller range of motion at the hip joint of the affected leg, and delay the onset of a key muscle on the affected side when rising from a seated position. Copyright © 2018 Elsevier Inc. All rights reserved.
Ferris, Lauren A; Denney, Linda M; Maletsky, Lorin P
2013-02-01
Functional activities in daily life can require squatting and shifting body weight during transverse plane rotations. Stability of the knee can be challenging for people with a total knee replacement (TKR) due to reduced proprioception, nonconforming articular geometry, muscle strength, and soft tissue weakness. The objective of this study was to identify strategies utilized by individuals with TKR in double-stance transferring load during rotation and flexion. Twenty-three subjects were recruited for this study: 11 TKR subjects (age: 65 ± 6 years; BMI 27.4 ± 4.1) and 12 healthy subjects (age: 63 ± 7; BMI 24.6 ± 3.8). Each subject completed a novel crossover button push task where rotation, flexion, and extension of the knee were utilized. Each subject performed two crossover reaching tasks where the subject used the opposite hand to cross over their body and press a button next to either their shoulder (high) or knee (low), then switched hands and rotated to press the opposite button, either low or high. The two tasks related to the order they pressed the buttons while crossing over, either low-to-high (L2H) or high-to-low (H2L). Force platforms measured ground reaction forces under each foot, which were then converted to lead force ratios (LFRs) based on the total force. Knee flexion angles were also measured. No statistical differences were found in the LFRs during the H2L and L2H tasks for the different groups, although differences in the variation of the loading within subjects were noted. A significant difference was found between healthy and unaffected knee angles and a strong trend between healthy and affected subject's knee angles in both H2L and L2H tasks. Large variations in the LFR at mid-task in the TKR subjects suggested possible difficulties in maintaining positional stability during these tasks. The TKR subjects maintained more of an extended knee, which is a consistent quadriceps avoidance strategy seen by other researchers in different tasks. These outcomes suggest that individuals with a TKR utilize strategies, such as keeping an extended knee, to achieve rotary tasks during knee flexion and extension. Repeated compensatory movements could result in forces that may cause difficulty over time in the hip joints or low back. Early identification of these strategies could improve TKR success and the return to activities of daily living that involve flexion and rotation.
The Scintillation Prediction Observations Research Task (SPORT) Mission
NASA Technical Reports Server (NTRS)
Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Denardin, Clezio;
2017-01-01
SPORT is a science mission using a 6U CubeSat and integrated ground network that will (1) advance understanding and (2) enable improved predictions of scintillation occurrence that impact GPS signals and radio communications. This is the science of Space Weather. SPORT is an international partnership with NASA, U.S. institutions, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).
Single Pricing for Major Items in FMS (Foreign Military Sales).
1984-01-01
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Director, US Army Materiel Systems Analysis AREA& WORK UNIT NUMBERS Activity...study it was found that, though price estimates were believed to be low and imprecise, no work had been done by any of the organizations involved in FMS...other support equipment, ground forces support materiel C medical - dental materiel H aircraft - air materiel K tactical and support vehicles -combat and
1993-03-01
Study of the Productive Capacity Project 40 4. 454X1 Job Duty Areas ....... ........................ ......... 41 5. Bases Visited in the Initial Study of...101 21. Correlttion Matrix of the Other Job Performance Measures ................. 102 22 454X1 Tasks...mentioned, the goal of the thesis is to develop an experimental mathematical model for predicting the job performance of enlisted personnel in AFS 454X1
Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players.
Dubose, Dominique F; Herman, Daniel C; Jones, Deborah L; Tillman, Susan M; Clugston, James R; Pass, Anthony; Hernandez, Jorge A; Vasilopoulos, Terrie; Horodyski, Marybeth; Chmielewski, Terese L
2017-01-01
Recent research indicates that a concussion increases the risk of musculoskeletal injury. Neuromuscular changes after concussion might contribute to the increased risk of injury. Many studies have examined gait postconcussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Division I football players (13 CONC and 26 UNINJ) were tested pre- and postseason. A motion capture system recorded subjects jumping on one limb from a 25.4-cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus the joint angle plots. Leg stiffness was (peak vertical ground reaction force [PVGRF]/lower extremity vertical displacement) from initial contact to peak vertical ground reaction force. All stiffness values were normalized to body weight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and postseason stiffness values. Average time from concussion to postseason testing was 49.9 d. The CONC group showed an increase in hip stiffness (P = 0.03), a decrease in knee (P = 0.03) and leg stiffness (P = 0.03), but no change in ankle stiffness (P = 0.65) from pre- to postseason. Lower extremity stiffness is altered after concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion.
Postural adjustment errors during lateral step initiation in older and younger adults
Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.
2016-01-01
The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25595953
Postural adjustment errors during lateral step initiation in older and younger adults
Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.
2014-01-01
The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25183162
Wearable computer technology for dismounted applications
NASA Astrophysics Data System (ADS)
Daniels, Reginald
2010-04-01
Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.
Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves
2008-04-01
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.
Khalid, Abdul Jabbar; Harris, Sujae Ian; Michael, Loke; Joseph, Hamill; Qu, Xingda
2015-01-01
This study investigated whether neuromuscular fatigue affects the neuromuscular control of an athlete within a sports context setting and whether these effects were more pronounced in the females. Lower limb joint kinetics of 6 male and 6 female inter-varsity soccer players performing side-stepping tasks in non-fatigue versus fatigue and anticipated versus unanticipated conditions were quantified using 10 Motion Analysis Corporation cameras and a Kistler(™) force platform. The Yo-Yo intermittent recovery Level 1 fatigue protocol was employed. Stance foot initial contact and peak forces, and peak joint knee moments of the lower limb were submitted to a 3-way mixed-model repeated measure ANOVA. The results suggested that males tend to elicit significantly higher knee joint loadings when fatigued. In addition, males elicited significantly higher peak proximal tibia anterior/posterior shear force, vertical ground reaction force at initial contact and peak internal rotational moments than females. These findings suggested that males were at greater overall injury risk than females, especially in the sagittal plane. Neuromuscular control-based training programmes/interventions that are designed to reduce the risk of the non-contact ACL injury need to be customised for the different genders.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... COUNCIL ON ENVIRONMENTAL QUALITY Interagency Ocean Policy Task Force--Final Recommendations of the Interagency Ocean Policy Task Force AGENCY: Council on Environmental Quality. ACTION: Notice of Availability, Interagency Ocean Policy Task Force's [[Page 45607
Modelling of Rail Vehicles and Track for Calculation of Ground-Vibration Transmission Into Buildings
NASA Astrophysics Data System (ADS)
Hunt, H. E. M.
1996-05-01
A methodology for the calculation of vibration transmission from railways into buildings is presented. The method permits existing models of railway vehicles and track to be incorporated and it has application to any model of vibration transmission through the ground. Special attention is paid to the relative phasing between adjacent axle-force inputs to the rail, so that vibration transmission may be calculated as a random process. The vehicle-track model is used in conjunction with a building model of infinite length. The tracking and building are infinite and parallel to each other and forces applied are statistically stationary in space so that vibration levels at any two points along the building are the same. The methodology is two-dimensional for the purpose of application of random process theory, but fully three-dimensional for calculation of vibration transmission from the track and through the ground into the foundations of the building. The computational efficiency of the method will interest engineers faced with the task of reducing vibration levels in buildings. It is possible to assess the relative merits of using rail pads, under-sleeper pads, ballast mats, floating-slab track or base isolation for particular applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, L.W.; Hunt, S.T.; Savage, S.F.
1992-04-01
The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less
MAGTF (Marine Air Ground Task Force) Data Transfer Alternatives (1986-1996).
1986-04-01
Devices currently on the market offer circuit conditioning and access control as well as the required dial-up connectivity. A program to provide dial... UGC -74A(V)3 Communication Terminal (Teletype Writer (TTY) CV-3591 Advanced Narrowband Digital Voice Terminal (ANDVT) AN/TGC-46 TTY Central (part of AN...interface directly with both AN/ UGC -74 TTY and ADPE-FMF/EUC equipment over serial circuits. 5.5.2.2 Switching Equipment. Switching equipments perform the
Web-Based 3D Technology for Scenario Authoring and Visualization: The Savage Project
2001-01-01
T. M., & Sadhu, P. (2001). XML How to Program . Upper Saddle River, New Jersey: Prentice Hall. Foley, J. D., van Dam, A., Feiner, S. K., & Hughes...Following graduation from NPS in September 2001, Major Nicklaus will be assigned to the Marine Air-Ground Task Force (MAGTF) Staff Training Program ...goal is to accelerate the worldwide demand for products based on these standards through the sponsorship of market and user education programs . The
Monopoly of Force: The Nexus of DDR and SSR
2011-01-01
PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...subsectors form a matrix of the security sector, as seen in the accompanying table. Building subsector capacity and professionalizing actors can span...restriction of 18–28 naturally dis- qualified many. In building a new army from the ground up, the United States sought to construct a new culture for the
C3 in Maneuver Warfare: The Expanding Role of the Communications Officer
1991-04-01
command, control, and communications (C3 ) process employed within the Marine Air Ground Task Force (MAGTF). Over the past two decades, the rapid...information to the right people at the right time. This paper presents a philosophical understanding of maneuver C3 and the communication officer’s...necessary to support maneuver warfare. Figure 1 depicts; thi:; dual role of C3 and serves as an outline for our paper . Maneuver C3 Architecture
Guidance for Development of a Flight Simulator Specification
2007-05-01
the simulated line of sight to the moon is less than one degree, and that the moon appears to move smoothly across the visual scene. The phase of the...Agencies have adopted the definition used by Optics Companies (this definition has also been adopted in this revision of the Air Force Guide...simulators that require tracking the target as it slues across the displayed scene, such as with air -to-ground or air -to- air combat tasks. Visual systems
Microgravity effects on fine motor skills: tying surgical knots during parabolic flight.
Rafiq, Azhar; Hummel, Russ; Lavrentyev, Vladimir; Derry, William; Williams, David; Merrell, Ronald C
2006-08-01
The health provider on a space exploration mission cannot evacuate a patient to Earth. Contingency plans for medical intervention must be designed for autonomy. This study measured the effect of microgravity on performance of fine motor skills such as basic surgical tasks. Eight subjects, six with medical and two with non-medical backgrounds, were evaluated during parabolic microgravity flights aboard NASA's KC-135. We evaluated their skill in tying surgical knots on simulated skin made of silicone using standard techniques for minimally invasive surgery. LabView software was developed to archive forces applied to the laparoscopic tool handles during knot-tying. Studies were controlled for medication (ScopeDex) and the aircraft environment. All participants completed the tests successfully. The data indicated that increased force was applied to the instruments and knot quality decreased during flight compared with ground control sessions. Specific metrics of surgical task performance are essential in developing education modules for providers of medical care during exploration-class missions.
Gooyers, Chad E; Beach, Tyson A C; Frost, David M; Howarth, Samuel J; Callaghan, Jack P
2018-02-01
This investigation examined interactions between the magnitude of external load, movement speed and (a)symmetry of load placement on estimates of in vivo joint loading in the lumbar spine during simulated occupational lifting. Thirty-two participants with manual materials handling experience were included in the study. Three-dimensional motion data, ground reaction forces, and activation of six bilateral trunk muscle groups were captured while participants performed lifts with two loads at two movement speeds and using two load locations. L4-L5 joint compression and shear force-time histories were estimated using an EMG-assisted musculoskeletal model of the lumbar spine. Results from this investigation provide strong evidence that known mechanical low back injury risk factors should not be viewed in isolation. Rather, injury prevention efforts need to consider the complex interactions that exist between external task demands and their combined influence on internal joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
TRISTAR 1: Evaluation methods for testing head-up display (HUD) flight symbology
NASA Technical Reports Server (NTRS)
Newman, R. L.; Haworth, L. A.; Kessler, G. K.; Eksuzian, D. J.; Ercoline, W. R.; Evans, R. H.; Hughes, T. C.; Weinstein, L. F.
1995-01-01
The first in a series of piloted head-up display (HUD) flight symbology studies (TRISTAR) measuring pilot task performance was conducted at the NASA Ames Research Center by the Tri-Service Flight Symbology Working Group (FSWG). Sponsored by the U.S. Army Aeroflightdynamics Directorate, this study served as a focal point for the FSWG to examine HUD test methodology and flight symbology presentations. HUD climb-dive marker dynamics and climb-dive ladder presentations were examined as pilots performed air-to-air (A/A), air-to-ground (A/G), instrument landing system (ILS), and unusual attitude (UA) recover tasks. Symbolic presentations resembled pitch ladder variations used by the U.S. Air Force (USAF), U.S. Navy (USN), and Royal Air Force (RAF). The study was initiated by the FSWG to address HUD flight symbology deficiencies, standardization, issue identification, and test methodologies. It provided the mechanism by which the USAF, USN, RAF, and USA could integrate organizational ideas and reduce differences for comparisons. Specifically it examined flight symbology issues collectively identified by each organization and the use of objective and subjective text methodology and flight tasking proposed by the FSWG.
Evaluation of Ground Vibrations Induced by Military Noise Sources
2006-08-01
1 Task 2—Determine the acoustic -to-seismic coupling coefficients C1 and C2 ...................... 1 Task 3—Computational modeling ...Determine the acoustic -to-seismic coupling coefficients C1 and C2 ....................45 Task 3—Computational modeling of acoustically induced ground...ground conditions. Task 3—Computational modeling of acoustically induced ground motion The simple model of blast sound interaction with the
76 FR 60863 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
...] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: This notice announces a meeting of the Aquatic Nuisance Species Task Force (ANS Task Force). The ANS Task Force's purpose is to develop and implement a program for U.S. waters to prevent...
78 FR 29378 - Aquatic Nuisance Species Task Force; Public Teleconference/Webinar
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
...-FF09F14000-134] Aquatic Nuisance Species Task Force; Public Teleconference/ Webinar AGENCY: Fish and Wildlife... teleconference/webinar of the Aquatic Nuisance Species Task Force (ANS Task Force). The ANS Task Force's purpose... aquatic nuisance species; to monitor, control, and study such species; and to disseminate related...
ERIC Educational Resources Information Center
Prichard Committee for Academic Excellence, Lexington, KY.
This report contains the findings of two task forces established during 1994 by the Prichard Committee for Academic Excellence: (1) the Task Force on Improving Kentucky Schools; and (2) the Task Force on Restructuring Time and Learning. The task forces, comprised of parents and business members of the Prichard Committee, examined key elements of…
Partitioning the metabolic cost of human running: a task-by-task approach.
Arellano, Christopher J; Kram, Rodger
2014-12-01
Compared with other species, humans can be very tractable and thus an ideal "model system" for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the "cost of generating force" hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be "individually" partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward propulsion. In our recent experiments, we have continued to refine this task-by-task approach, demonstrating that maintaining lateral balance comprises only 2% of the net metabolic cost of running. In contrast, arm-swing reduces the cost by ∼3%, indicating a net metabolic benefit. Thus, by considering the synergistic nature of body weight support and forward propulsion, as well as the tasks of leg-swing and lateral balance, we can account for 89% of the net metabolic cost of human running. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
The role of impact forces and foot pronation: a new paradigm.
Nigg, B M
2001-01-01
This article discusses the possible association between impact forces and foot pronation and the development of running-related injuries, and proposes a new paradigm for impact forces and foot pronation. The article is based on a critical analysis of the literature on heel-toe running addressing kinematics, kinetics, resultant joint movements and forces, muscle activity, subject and material characteristics, epidemiology, and biologic reactions. However, this paper is not a review of the literature but rather an attempt to replace the established concepts of impact forces and movement control with a new paradigm that would allow explaining some of the current contradictions in this topic of research. The analysis included all papers published on this topic over the last 25 years. For the last few years, it concentrated on papers expressing critical concerns on the established concepts of impact and movement control. An attempt was made to find indications in the various publications to support or reject the current concept of impact forces and movement control. Furthermore, the results of the available studies were searched for indications expanding the current understanding of impact forces and movement control in running. Data were synthesized revealing contradictions in the experimental results and the established concepts. Based on the contradictions in the existing research publications, a new paradigm was proposed. Theoretical, experimental, and epidemiological evidence on impact forces showed that one cannot conclude that impact forces are important factors in the development of chronic and/or acute running-related injuries. A new paradigm for impact forces during running proposes that impact forces are input signals that produce muscle tuning shortly before the next contact with the ground to minimize soft tissue vibration and/or reduce joint and tendon loading. Muscle tuning might affect fatigue, comfort, work, and performance. Experimental evidence suggests that the concept of "aligning the skeleton" with shoes, inserts, and orthotics should be reconsidered. They produce only small, not systematic. and subject-specific changes of foot and leg movement. A new paradigm for movement control for the lower extremities proposes that forces acting on the foot during the stance phase act as an input signal producing a muscle reaction. The cost function used in this adaptation process is to maintain a preferred joint movement path for a given movement task. If an intervention counteracts the preferred movement path, muscle activity must be increased. An optimal shoe, insert, or orthotic reduces muscle activity. Thus, shoes, inserts, and orthotics affect general muscle activity and, therefore, fatigue, comfort, work, and performance. The two proposed paradigms suggest that the locomotor system use a similar strategy for "impact" and "movement control." In both cases the locomotor system keeps the general kinematic and kinetic situations similar for a given task. The proposed muscle tuning reaction to impact loading affects the muscle activation before ground contact. The proposed muscle adaptation to provide a constant joint movement pattern affects the muscle activation during ground contact. However, further experimental and theoretical studies are needed to support or reject the proposed paradigms.
Grip force and force sharing in two different manipulation tasks with bottles.
Cepriá-Bernal, Javier; Pérez-González, Antonio; Mora, Marta C; Sancho-Bru, Joaquín L
2017-07-01
Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.
This Notice announces two industry-wide Task Forces being formed in response to generic exposure data requirements. It contains EPA's policy on a registrant's options for, and responsibilities when joining Task Force as a way to satisfy data requirements.
78 FR 60306 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
...-FF09F14000-134] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior... the Aquatic Nuisance Species (ANS) Task Force. The ANS Task Force's purpose is to develop and... Task Force will meet from 8 a.m. to 4:30 p.m. on Wednesday, November 6, through Thursday, November 7...
Code of Federal Regulations, 2011 CFR
2011-07-01
... adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The restricted area... regulations in this section shall be enforced by the Commander, Air Force Proving Ground Command, Eglin Air...
Oñate, James A; Guskiewicz, Kevin M; Marshall, Stephen W; Giuliani, Carol; Yu, Bing; Garrett, William E
2005-06-01
Anterior cruciate ligament injury prevention programs have used videotapes of jump-landing technique as a key instructional component to improve landing performance. All videotape feedback model groups will increase knee flexion angles at initial contact and overall knee flexion motion and decrease peak vertical ground reaction forces and peak proximal anterior tibial shear forces to a greater extent than will a nonfeedback group. The secondary hypothesis is that the videotape feedback using the combination of the expert and self models will create the greatest change in each variable. Controlled laboratory study. Knee kinematics and kinetics of college-aged recreational athletes randomly placed in 3 different videotape feedback model groups (expert only, self only, combination of expert and self) and a nonfeedback group were collected while participants performed a basketball jump-landing task on 3 testing occasions. All feedback groups significantly increased knee angular displacement flexion angles [F(6,70) = 8.03, P = .001] and decreased peak vertical ground reaction forces [F(6,78) = 2.68, P = .021] during performance and retention tests. The self and combination groups significantly increased knee angular displacement flexion angles more than the control group did; the expert model group did not change significantly more than the control group did. All feedback groups and the nonfeedback group significantly reduced peak vertical forces across performance and retention tests. There were no statistically significant changes in knee flexion angle at initial ground contact (P = .111) and peak proximal anterior tibial shear forces (P = .509) for both testing sessions for each group. The use of self or combination videotape feedback is most useful for increasing knee angular displacement flexion angles and reducing peak vertical forces during landing. The use of self or combination modeling is more effective than is expert-only modeling for the implementation of instructional programs aimed at reducing the risk of jump-landing anterior cruciate ligament injuries.
Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.
Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N
2016-12-08
The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.
2003-01-01
contemporary problems. Merely supplying the basic need for food is a struggle as Oliver Argenti , an urban food specialist with the United Nation’s Food and...An_Urbanizing_World.htm#intro>, accessed 4 January 2003. 17 Brockerhoff, np. 18 Olivio Argenti , “Feeding an Increasingly Urban World,” Food and...2003. 19 Argenti , np. 10 “squatters” reside in urban slums with no potable water supply and no adequate sewage, spreading disease amongst them
Common Aviation Command and Control System Increment 1 (CAC2S Inc 1)
2016-03-01
Command and Control System Increment 1 ( CAC2S Inc 1) DoD Component Navy United States Marine Corps Responsible Office Program Manager References MAIS ...facilities for planning and execution of Marine Aviation missions within the Marine Air Ground Task Force (MAGTF). CAC2S Increment I will eliminate...approved by ASN (RDA), the MDA, in a Program Decision Memorandum (PDM), “ CAC2S Increment I,” May 05, 2009. As the result of the PDM, the independent
2013-03-01
5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...meet conditions on the ground, according to U.S. officials. For example , the Department of State (State) delayed committing Foreign Military...agencies measure program performance. For example , GAO found in 2011 that the IMET program evaluation efforts had few of the elements commonly
2016-06-01
Reserve Affairs MAGTF Marine Air Ground Task Force MC Mechanical Comprehension MCMAP Marine Corps Martial Arts Program MCO Marine Corps Order MCRC... Martial Arts Program (MCMAP) belt level. Setting the MCMCAP belt level to “NOT TRAINED” is required to maintain the MCMAP records for future analysis...BELT MARTIAL ARTS INSTRUCTOR 60 MMG BROWN BELT MARTIAL ARTS INSTRUCTOR 70 MMJ BLACK BELT, 1ST DEGREE MARTIAL ARTS INSTRUCTOR 80 MMK BLACK BELT, 1ST
History of the Army Ground Forces. Study Number 18. History of the Fourth Army
1946-01-01
officers and nearly 8,000 enlisted men concentrated southeast of Wiggins, with Camp Shelby as the supply base. Blue was represented by the 30th...in the entire area he’d always be within 20 miles of ga )lLne supply for tanks. You cannot imagine the tasks involved... hird Army along had 48,000...Headquarters. The XVIII Corps condtkcted flag exercises for the Uth Airborne Division and the 92d Infantry Division. The four exercises for an.Armored division
Muscles do more positive than negative work in human locomotion
DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor
2008-01-01
Summary Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was −34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs −71 J m−1, P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs −75 J step−1, P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy. PMID:17872990
Muscles do more positive than negative work in human locomotion.
DeVita, Paul; Helseth, Joseph; Hortobagyi, Tibor
2007-10-01
Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was -34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs -71 J m(-1), P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs -75 J step(-1), P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy.
77 FR 61019 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
..., Cost Center: FF09F14000, Fund: 134] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and... Aquatic Nuisance Species (ANS) Task Force. The ANS Task Force's purpose is to develop and implement a.... DATES: The ANS Task Force will meet from 8:30 a.m. to 5:00 p.m. Wednesday November 14, and from 8:30 a.m...
Task specific grip force control in writer's cramp.
Schneider, A S; Fürholzer, W; Marquardt, C; Hermsdörfer, J
2014-04-01
Writer's cramp is defined as a task specific focal dystonia generating hypertonic muscle co-contractions during handwriting resulting in impaired writing performance and exaggerated finger force. However, little is known about the generalisation of grip force across tasks others than writing. The aim of the study was to directly compare regulation of grip forces during handwriting with force regulation in other fine-motor tasks in patients and control subjects. Handwriting, lifting and cyclic movements of a grasped object were investigated in 21 patients and 14 controls. The applied forces were registered in all three tasks and compared between groups and tasks. In addition, task-specific measures of fine-motor skill were assessed. As expected, patients generated exaggerated forces during handwriting compared to control subjects. However there were no statistically significant group differences during lifting and cyclic movements. The control group revealed a generalisation of grip forces across manual tasks whereas in patients there was no such correlation. We conclude that increased finger forces during handwriting are a task-specific phenomenon that does not necessarily generalise to other fine-motor tasks. Force control of patients with writer's cramp in handwriting and other fine-motor tasks is characterised by individualised control strategies. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
76 FR 22685 - Interagency Management Task Force Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... Force Public Meeting AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy (DOE... meetings of the Interagency Energy Management Task Force (Task Force) in 2011. FEMP intends to hold recurring public meetings of the Task Force. Interested parties can check http://www.femp.energy.gov/news...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... (DHB); Department of Defense Task Force on the Prevention of Suicide by Members of the Armed Forces... announces a meeting of the Department of Defense Task Force on the Prevention of Suicide by Members of the... Secretary, Department of Defense Task Force on the Prevention of Suicide by Members of the Armed Forces, One...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
...-6128. SUPPLEMENTARY INFORMATION: The Task Force is a non-discretionary Federal advisory committee and... Committee; Missouri River (North Dakota) Task Force AGENCY: Department of Defense (DoD). ACTION: Renewal of... Missouri River (North Dakota) Task Force (hereafter referred to as the Task Force). FOR FURTHER INFORMATION...
Force fluctuations while pressing and moving against high- and low-friction touch screen surfaces.
Joshi, Mukta N; Keenan, Kevin G
2016-07-01
The purpose of this study was to identify the influence of a high- and low-friction surface on the ability to maintain a steady downward force during an index finger pressing and moving task. Fifteen right-handed subjects (24-48 years) performed a static force pressing task and a hybrid pressing and moving task on the surface of an iPad mini while holding a steady 2-N force on high- and low-friction surfaces. Variability of force was quantified as the standard deviation (SD) of normal force (F z) and shear force (F xy) across friction conditions and tasks. The SD of F z was 227 % greater during the hybrid task as compared to the static task (p < .001) and was 19 % greater for the high- versus low-friction condition (p = .033). There were positive correlations between SD of F z and F xy during the hybrid force/motion tasks on the high- and low-friction conditions (r (2) = 0.5 and 0.86, respectively), suggesting significant associations between normal and shear forces for this hybrid task. The correlation between the SD of F z for static and hybrid tasks was r (2) = 0.44, indicating that the common practice of examining the control of static tasks may not sufficiently explain performance during hybrid tasks, at least for the young subjects tested in the current study. As activities of daily living frequently require hybrid force/motion tasks (e.g., writing, doing the dishes, and cleaning counters), the results of this study emphasize the need to study motor performance during hybrid tasks in addition to static force tasks.
U.S. Northern Command > Newsroom > Fact Sheets
Operations Command, North U.S. Marine Forces Northern Command U.S. Fleet Forces Command Air Forces Northern U.S. Army North Joint Task Force North Joint Task Force Civil Support Joint Task Force Alaska Joint
Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability
NASA Technical Reports Server (NTRS)
Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan
2014-01-01
Robonaut 2 (R2) has completed its fixed base activities on-board the ISS and is scheduled to receive its climbing legs in early 2014. In its continuing line of firsts, the R2 torso finished up its on-orbit activities on its stanchion with the manipulation of space blanket materials and performed multiple tasks under teleoperation control by IVA astronauts. The successful completion of these two IVA experiments is a key step in Robonaut's progression towards an EVA capability. Integration with the legs and climbing inside the ISS will provide another important part of the experience that R2 will need prior to performing tasks on the outside of ISS. In support of these on-orbit activities, R2 has been traversing across handrails in simulated zero-g environments and working with EVA tools and equipment on the ground to determine manipulation strategies for an EVA Robonaut. R2 made significant advances in robotic manipulation of deformable materials in space while working with its softgoods task panel. This panel features quarter turn latches that secure a space blanket to the task panel structure. The space blanket covers two cloth cubes that are attached with Velcro to the structure. R2 was able to open and close the latches, pull back the blanket, and remove the cube underneath. R2 simulated cleaning up an EVA worksite as well, by replacing the cube and reattaching the blanket. In order to interact with the softgoods panel, R2 has both autonomously and with a human in the loop identified and localized these deformable objects. Using stereo color cameras, R2 identified characteristic elements on the softgoods panel then extracted the location and orientation of the object in its field of view using stereo disparity and kinematic transforms. R2 used both vision processing and supervisory control to successfully accomplish this important task. Teleoperation is a key capability for Robonaut's effectiveness as an EVA system. To build proficiency, crewmembers have attempted increasingly difficult tasks using R2 inside the Station. After donning motion capture equipment and a virtual reality visor, Expedition 34/35 flight engineer Tom Marshburn began operations with simple hand movements. Having gained confidence, Marshburn guided R2's arms in a leader-follower exercise with crewmate Chris Cassidy. He was also able to use the hand to grab a tumbling roll of tape, a task only demonstrable in microgravity. Later efforts saw Cassidy handle softgoods through shared control with ground operators, mimicking an activity previously achieved using only autonomy. Robotic climbing through the ISS on handrails requires both precision motion and compliant grasps in order to both position grippers on handrails/seat track and prevent large internal forces. R2 climbs using actively controlled compliance and torque limiting to meet both the precision and softness requirements. During a step, the attached leg is controlled to be strong and stiff in order to maintain precision trajectory tracking. The swing leg is controlled to be stiff but weak to minimize unintentional impact forces while maintaining precision. During a simulated dual limb grasp (as shown in Figure 1), the R2 controller maintains one limb rigid and one limb soft to prevent large internal forces from building up. R2's grippers also use a form of force control to limit grip force while not fully closed on either a handrail or seat track thus limiting unintentional forces on cables/objects that may be present in R2's translational path. The on-board torso R2 safety system relies on a single end-effector velocity limit to prevent potential impact forces from exceeding Station maximum load requirements. R2's mobile configuration required modifications to the velocity limiting safety function due to its large, dynamic inertia. R2's legs maneuver the robot's mass creating configuration dependent, joint-relative inertias. A single all-encompassing velocity limit to cover worst case inertia is prohibitively low. The upgraded R2 control and safety systems solve this problem using momentum limiting, momentum control, and kinetic energy minimization. Momentum and kinetic energy take the robot mass into account relieving low velocity restrictions on low inertia end-effectors while ensuring that the overall mass of R2 is limited from hazardous velocities. The momentum of R2's five safety nodes (each of the four end-effectors and the body) is monitored and compared to a single momentum limit. If any of the five nodes exceeds the safety limit, the motor power is removed and the robot comes to a stop. Momentum control/limiting also provides a simple, reliable method to integrate hand held tools into the safety system by providing the tool mass to the control system thus automatically reducing the allowable velocity of the end-effector with the tool. Work on the ground continues to build the skill set for an EVA Robonaut. Recent experiments (Figure 2) demonstrate how a teleoperator can use R2 to manipulate a tether hook, an important safety precaution on spacewalks. Another task displayed Robonaut's ability to pull back a protective jacket over a hose and search for damage, as well as inspect a quick-disconnect fitting for debris. Demonstrations such as these are indicative of EVA work done on ISS, specifically seen during a series of spacewalks over 2012 and 2013 where astronauts searched for an ammonia leak in one of the external cooling loops. Through experiments both on ISS and on the ground, R2 is evolving and providing the information needed to plan out the upgrades that will make an EVA Robonaut an effective tool. With the addition of legs, R2 will start climbing inside the space station and supply invaluable information on how the climbing strategies and task stabilization techniques must be refined. Ground R2 systems will continue to work with additional EVA tools and equipment in preparation for onboard IVA testing and future EVA applications.
Hardin, E C; Su, A; van den Bogert, A J
2004-12-01
The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.
Proximal arm kinematics affect grip force-load force coordination
Vermillion, Billy C.; Lum, Peter S.
2015-01-01
During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460
78 FR 23970 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force Meeting. SUMMARY: This document corrects the SBA's Interagency Task Force on Veterans Small Business Developments...
NASA Technical Reports Server (NTRS)
Cosentino, Gary B.
2008-01-01
The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.
32 CFR 700.1053 - Commander of a task force.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any eligible...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... DEPARTMENT OF DEFENSE Office of the Secretary Meeting of the Department of Defense Task Force on... Forces (Subsequently Referred to as the Task Force) AGENCY: Department of Defense. ACTION: Notice... forthcoming meeting of the Department of Defense Task Force on the Care, Management, and Transition of...
Effects of stick dynamics on helicopter flying qualities
NASA Technical Reports Server (NTRS)
Watson, Douglas C.; Schroeder, Jeffery A.
1990-01-01
An experiment that investigated the influence of typical helicopter force-feel system dynamics on roll-axis handling qualities was conducted in concurrent ground and inflight simulations. Variations in lateral control natural frequency and damping ratio, effected by changes in inertia and damping, were evaluated in a disturbance-rejection task. Pilot ratings indicated a preference for low-inertia feel systems, although measured performance was relatively constant over the range of stick characteristics. Force-sensing was compared with position sensing as the input to the control system. Force-sensing improved performance but did not improve pilot ratings. Overall, the results indicated that control-stick dynamics, at least within a reasonable range, did not have a significant effect on pilot-vehicle performance. However, the physical effort required to maintain a desired pilot/manipulator bandwidth became objectionable as the stick inertia increased beyond 5-7 lbm, which was reflected in the pilot ratings and comments.
75 FR 62611 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be...
75 FR 76744 - National Disaster Housing Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
...] National Disaster Housing Task Force AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice of Meeting. SUMMARY: The National Disaster Housing Task Force (NDHTF) will meet by teleconference on December...: Mitchell Wyllins, National Disaster Housing Task Force, 500 C Street, SW., (Room 428), Washington, DC 20472...
77 FR 41472 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be...
76 FR 8393 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be...
75 FR 62438 - Interagency Task Force on Veterans Small Business Development Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development Meeting AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force... first public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting...
NASA Astrophysics Data System (ADS)
Tyczka, Dale R.; Wright, Robert; Janiszewski, Brian; Chatten, Martha Jane; Bowen, Thomas A.; Skibba, Brian
2012-06-01
Nearly all explosive ordnance disposal robots in use today employ monoscopic standard-definition video cameras to relay live imagery from the robot to the operator. With this approach, operators must rely on shadows and other monoscopic depth cues in order to judge distances and object depths. Alternatively, they can contact an object with the robot's manipulator to determine its position, but that approach carries with it the risk of detonation from unintentionally disturbing the target or nearby objects. We recently completed a study in which high-definition (HD) and stereoscopic video cameras were used in addition to conventional standard-definition (SD) cameras in order to determine if higher resolutions and/or stereoscopic depth cues improve operators' overall performance of various unmanned ground vehicle (UGV) tasks. We also studied the effect that the different vision modes had on operator comfort. A total of six different head-aimed vision modes were used including normal-separation HD stereo, SD stereo, "micro" (reduced separation) SD stereo, HD mono, and SD mono (two types). In general, the study results support the expectation that higher resolution and stereoscopic vision aid UGV teleoperation, but the degree of improvement was found to depend on the specific task being performed; certain tasks derived notably more benefit from improved depth perception than others. This effort was sponsored by the Joint Ground Robotics Enterprise under Robotics Technology Consortium Agreement #69-200902 T01. Technical management was provided by the U.S. Air Force Research Laboratory's Robotics Research and Development Group at Tyndall AFB, Florida.
Prasad, Raghu; Muniyandi, Manivannan; Manoharan, Govindan; Chandramohan, Servarayan M
2018-05-01
The purpose of this study was to examine the face and construct validity of a custom-developed bimanual laparoscopic force-skills trainer with haptics feedback. The study also examined the effect of handedness on fundamental and complex tasks. Residents (n = 25) and surgeons (n = 25) performed virtual reality-based bimanual fundamental and complex tasks. Tool-tissue reaction forces were summed, recorded, and analysed. Seven different force-based measures and a 1-time measure were used as metrics. Subsequently, participants filled out face validity and demographic questionnaires. Residents and surgeons were positive on the design, workspace, and usefulness of the simulator. Construct validity results showed significant differences between residents and experts during the execution of fundamental and complex tasks. In both tasks, residents applied large forces with higher coefficient of variation and force jerks (P < .001). Experts, with their dominant hand, applied lower forces in complex tasks and higher forces in fundamental tasks (P < .001). The coefficients of force variation (CoV) of residents and experts were higher in complex tasks (P < .001). Strong correlations were observed between CoV and task time for fundamental (r = 0.70) and complex tasks (r = 0.85). Range of smoothness of force was higher for the non-dominant hand in both fundamental and complex tasks. The simulator was able to differentiate the force-skills of residents and surgeons, and objectively evaluate the effects of handedness on laparoscopic force-skills. Competency-based laparoscopic skills assessment curriculum should be updated to meet the requirements of bimanual force-based training.
Childhood Obesity Task Forces Established by State Legislatures, 2001-2010
Kim, Sonia A.; Sherry, Bettylou; Blanck, Heidi M.
2013-01-01
Introduction States and communities are considering policy and environmental strategies, including enacting legislation, to reduce and prevent childhood obesity. One legislative approach has been to create task forces to understand key issues and develop a course of action. The goal of this study was to describe state-level, childhood obesity task forces in the United States created by legislation from 2001 through 2010. Methods We used the Center for Disease Control and Prevention’s Division of Nutrition, Physical Activity, and Obesity database to identify state-level childhood obesity task forces created through legislation from 2001 through 2010. Results We identified 21 states that had enacted legislation creating childhood obesity task forces of which 6 had created more than one task force. Most task forces were charged with both gathering and reviewing information and making recommendations for obesity-prevention actions in the state. Most legislation required that task forces include representation from the state legislature, state agencies, community organizations, and community members. Conclusion Evaluation of the effectiveness of obesity-prevention task forces and the primary components that contribute to their success may help to determine the advantages of the use of such strategies in obesity prevention. PMID:23987250
Qiao, Mu; Jindrich, Devin L
2012-01-01
The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.
Shoulder torques resulting from luggage handling tasks in non-inertial frames.
Shippen, James; May, Barbara
2018-05-18
This paper reports on the torques developed in the shoulder joint experienced by occupants of moving vehicles during manual handling tasks. Handling heavy weights can cause musculoskeletal injuries, especially if handling is done with arms extended or at high levels. The aim of the study was to measure the longitudinal and lateral accelerations in a variety of passenger vehicles together with the postures of subjects lifting luggage onto storage shelves. This data enabled the application of inverse dynamics methods in a non-inertial reference frame to calculate the shoulder joint torques. The subjects lifted 3 pieces of luggage of masses of 5 kg, 10 kg and 14 kg onto shelving which were at heights of 1.2 m, 1.6 m and 1.8 m. The movement of subjects was measured using a 12 camera, 3-dimensional optical tracking system. The subjects stood on force plates to measure the ground reaction forces. Sixty-three trials were completed, although 9 trials were aborted because subjects felt unable to complete the task. It was found that the shoulder torques exceeded the levels recommend by the UK Health and Safety Executive for manual handling. A lift assistance device is suggested to reduce the shoulder torques required for luggage handling.
2015 International PV Quality Assurance Task Force (PVQAT) Workshop |
Photovoltaic Research | NREL International PV Quality Assurance Task Force (PVQAT) Workshop 2015 International PV Quality Assurance Task Force (PVQAT) Workshop Wednesday, February 25, 2015 Chairs : Tony Sample and Masaaki Yamamichi The 2015 International PV Quality Assurance Task Force (PVQAT
78 FR 27969 - Meeting of the Community Preventive Services Task Force (Task Force)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... discussed: Matters to be discussed: cancer prevention and control, cardiovascular disease prevention and... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the Community Preventive Services Task Force (Task Force) AGENCY: Centers for Disease Control and Prevention...
77 FR 56845 - Meeting of the Community Preventive Services Task Force (Task Force)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-14
...: Matters to be discussed: Tobacco, oral health and cardiovascular disease. Meeting Accessibility: This... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the Community Preventive Services Task Force (Task Force) AGENCY: Centers for Disease Control and Prevention...
78 FR 59939 - Meeting of the Community Preventive Services Task Force (Task Force)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
.... Matters to be discussed: Cancer prevention and control, cardiovascular disease prevention and control... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the Community Preventive Services Task Force (Task Force) AGENCY: Centers for Disease Control and Prevention...
78 FR 7849 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force Meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
76 FR 54258 - Request for Comments-Fiscal Oversight Task Force Report and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... LEGAL SERVICES CORPORATION Request for Comments--Fiscal Oversight Task Force Report and... Fiscal Oversight Task Force, which reviewed and made recommendations regarding how LSC conducts fiscal... territories. By Resolution adopted on July 21, 2010, the Board established the Fiscal Oversight Task Force...
78 FR 70087 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
78 FR 45996 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
78 FR 21492 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force Meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
77 FR 41165 - Notice of Meeting of the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service, USDA. ACTION: Notice of meeting. SUMMARY: The Department of Agriculture (USDA), Agricultural Air Quality Task Force (AAQTF) will.../Concerns Discussion Continued discussion of goals for Task Force Anaerobic Digester Technologies Odor...
Community hoarding task forces: a comparative case study of five task forces in the United States.
Bratiotis, Christiana
2013-05-01
During the past decade, many community task forces have formed to address hoarding problems that come to public attention. Such task forces provide a societal-level intervention to assist people with the most severe cases of hoarding, who do not voluntarily seek or want help for their hoarding behaviour. This qualitative study of five U.S. hoarding task forces included sites selected for their diversity of purpose, approaches to hoarding intervention and community geography, composition and resources. Data were collected during the period of September 2007-March 2008. The case study methodology used multiple forms of data, including semi-structured interviews, analysis of documents, small group interviews and investigator observation. This study captured the perspectives of public and private sector service providers such as mental health, housing, social service, public health agencies and community enforcement organisations (fire, police, legal, animal control) to examine how task forces organise and operate and the emerging practice and policy changes. Study findings suggest that structural factors (e.g. leadership, purpose, funding and membership) impact hoarding task force viability, that participation on a task force influences practice and policy decisions about hoarding, and that social work can expand its role in task force leadership. Task forces may be a mechanism for improving community policies about hoarding and mechanisms for addressing other social problems across multiple sectors. © 2012 Blackwell Publishing Ltd.
75 FR 32186 - Task Force on Community Preventive Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
... by space available. Purpose: The mission of the Task Force is to develop and publish the Guide to... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Task Force on Community Preventive Services Name: Task Force on Community Preventive Services meeting. Times and Dates: 8...
78 FR 2996 - Meeting of the Community Preventive Services Task Force (Task Force)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the Community Preventive Services Task Force (Task Force) AGENCY: Centers for Disease Control and Prevention... for Disease Control and Prevention (CDC) announces the next meeting of the Community Preventive...
77 FR 16256 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
...] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: This notice announces a meeting of the Aquatic Nuisance Species (ANS) Task Force. The ANS Task Force's purpose is to develop and implement a program for U.S. waters to prevent introduction...
75 FR 57987 - Evaluation of the Groundwater Task Force Report: Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0302] Evaluation of the Groundwater Task Force Report... Task Force (GTF) in March 2010 to determine whether past, current, and planned actions should be... recommendations made in the Liquid Radioactive Release Lessons Learned Task Force Final Report dated September 1...
75 FR 70764 - Small Business Information Security Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... SMALL BUSINESS ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small... publish meeting minutes for the Small Business Information Security Task Force Meeting. DATES: 1 p.m... Task Force. Chairman, Rusty Pickens, called the meeting to order on October 13, 2010 at 1 p.m. Roll...
7 CFR 1900.6 - Chair, Loan Resolution Task Force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Chair, Loan Resolution Task Force. 1900.6 Section... AGRICULTURE PROGRAM REGULATIONS GENERAL Delegations of Authority § 1900.6 Chair, Loan Resolution Task Force. The Chair, Loan Resolution Task Force is delegated the following authorities, to be exercised until...
76 FR 5232 - Small Business Information Security Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... SMALL BUSINESS ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small... publish meeting minutes for the Small Business Information Security Task Force Meeting. DATES: 1 p.m... Task Force. Chairman, Rusty Pickens, called the meeting to order on December 8, 2010 at 1 p.m. Roll...
76 FR 11307 - Small Business Information Security Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... SMALL BUSINESS ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small... publish meeting minutes for the Small Business Information Security Task Force Meeting. DATES: 1 p.m... Task Force. Chairman, Mr. Rusty Pickens, called the meeting to order on January 12, 2011 at 1 p.m. Roll...
Gulf Coast Ecosystem Restoration Task Force Meeting and Public Listening
Data Media & News Publications Press Releases Story Archive Home Gulf Coast Ecosystem Restoration Task Force Meeting and Public Listening Session Gulf Coast Ecosystem Restoration Task Force Meeting and Title: Gulf Coast Ecosystem Restoration Task Force Meeting and Public Listening SessionDescription: The
Task Force II: Energy and Its Socioeconomic Impacts
ERIC Educational Resources Information Center
Appalachia, 1977
1977-01-01
Summarizing the Task Force Issues Paper presented at the Appalachian Conference on Balanced Growth and Economic Development (1977), this article presents selected comments by Task Force participants, and Task Force recommendations re: a national severence tax on extraction of nonrenewable energy resources; socioeconomic costs of nuclear energy; a…
Perl Tools for Automating Satellite Ground Systems
NASA Technical Reports Server (NTRS)
McLean, David; Haar, Therese; McDonald, James
2000-01-01
The freeware scripting language Pert offers many opportunities for automating satellite ground systems for new satellites as well as older, in situ systems. This paper describes a toolkit that has evolved from of the experiences gained by using Pert to automate the ground system for the Compton Gamma Ray Observatory (CGRO) and for automating some of the elements in the Earth Observing System Data and Operations System (EDOS) ground system at Goddard Space Flight Center (GSFC). CGRO is an older ground system that was forced to automate because of fund cuts. Three 8 hour shifts were cut back to one 8 hour shift, 7 days per week. EDOS supports a new mission called Terra, launched December 1999 that requires distribution and tracking of mission-critical reports throughout the world. Both of these ground systems use Pert scripts to process data and display it on the Internet as well as scripts to coordinate many of the other systems that make these ground systems work as a coherent whole. Another task called Automated Multimodal Trend Analysis System (AMTAS) is looking at technology for isolation and recovery of spacecraft problems. This effort has led to prototypes that seek to evaluate various tools and technology that meet at least some of the AMTAS goals. The tools, experiences, and lessons learned by implementing these systems are described here.
A biomechanical analysis of common lunge tasks in badminton.
Kuntze, Gregor; Mansfield, Neil; Sellers, William
2010-01-01
The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, approximately 15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.
Pelvic kinematic method for determining vertical jump height.
Chiu, Loren Z F; Salem, George J
2010-11-01
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.
Bates, Nathaniel A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E
2013-04-01
Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee. A cohort of 239 adolescent female basketball athletes (age=13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial. The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-values<0.028). The second landing demonstrated smaller flexion angles and moments at the hip and knee than the first landing (P-values<0.035). The second landing also demonstrated greater side-to-side asymmetry in hip and knee kinematics and kinetics for both the frontal and sagittal planes (P-values<0.044). The results have important implications for the future use of the drop vertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bates, Nathaniel A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.
2013-01-01
Background Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee. Methods Acohort of 239 adolescent female basketball athletes (age = 13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial. Findings The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-values < 0.028). The second landing demonstrated smaller flexion angles and moments at the hip and knee than the first landing (P-values < 0.035). The second landing also demonstrated greater side-to-side asymmetry in hip and knee kinematics and kinetics for both the frontal and sagittal planes (P-values < 0.044). Interpretation The results have important implications for the future use of the drop vertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors. PMID:23562293
Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L
2017-05-14
The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.
2017-01-01
The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070
Influence of sports flooring and shoes on impact forces and performance during jump tasks.
Malisoux, Laurent; Gette, Paul; Urhausen, Axel; Bomfim, Joao; Theisen, Daniel
2017-01-01
We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.
Influence of sports flooring and shoes on impact forces and performance during jump tasks
Urhausen, Axel; Bomfim, Joao
2017-01-01
We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected. PMID:29020108
77 FR 4584 - Sunshine Act Meetings; National Science Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... of a National Academy of Sciences/National Research Council study CPP Task Force on Unsolicited Mid... and December 13 meeting minutes Discussion of the MS Task Force draft report CSB Task Force on Data... Task Force Closing Remarks From the Chairman Committee on Audit and Oversight (A&O) Open Session: 4-4...
Academic Standards Task Force Report.
ERIC Educational Resources Information Center
Burnham, Peter F.
The product of a year-long research process undertaken by a Task Force on Academic Standards at Tompkins Cortland Community College (TCCC) in 1980-81, this report provides background to the deliberations of the Task Force and a presentation of their position on academic standards at TCCC. The report establishes the Task Force's commitments to…
75 FR 61175 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
...] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: This notice announces a meeting of the Aquatic Nuisance Species (ANS) Task Force. The.... DATES: The ANS Task Force will meet from 8 a.m. to 5 p.m. on Wednesday, November 3 through Thursday...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Task forces. 701.58... Headquarters Organization § 701.58 Task forces. The Director with Council concurrence or the Council may establish task forces from time to time to aid in the preparation of issues for presentation to the Council...
3 CFR - White House Task Force on Middle-Class Working Families
Code of Federal Regulations, 2010 CFR
2010-01-01
... 3 The President 1 2010-01-01 2010-01-01 false White House Task Force on Middle-Class Working... Task Force on Middle-Class Working Families Memorandum for the Heads of Executive Departments and... times. To these ends, I hereby direct the following: Section 1. White House Task Force on Middle-Class...
77 FR 441 - Measurement and Control of Combustible Gas Generation and Dispersal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... Task Force Review of Insights from the Fukushima Dai-ichi Accident'' (Fukushima Task Force Report... Fukushima Task Force Report: ``[t]he task force recommends, as part of the longer term review, that the NRC... additional information is revealed through further study of the Fukushima Dai-ichi accident.'' The Commission...
76 FR 58165 - Petitions for Rulemaking Submitted by the Natural Resources Defense Council, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
...-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident'' (Fukushima Task Force Report... the Fukushima Task Force Report for the purpose of providing the Commission with fully-informed... recommendations from the Fukushima Task Force Report, and is not providing a separate opportunity for public...
76 FR 76189 - Notice of Public Hearing-Fiscal Oversight Task Force Report & Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... period; and (3) reactions to those comments submitted by Task Force members. DATES: Monday, December 12... Report, the public comments previously submitted, and reactions to those comments from several Task Force members. The public comments and a summary of Task Force members' reactions may be viewed online at http...
Solar Energy Task Force Report: Technical Training Guidelines.
ERIC Educational Resources Information Center
O'Connor, Kevin
This task force report offers guidelines and information for the development of vocational education programs oriented to the commercial application of solar energy in water and space heating. After Section I introduces the Solar Energy Task Force and its activities, Section II outlines the task force's objectives and raises several issues and…
The effect of bracing availability on one-hand isometric force exertion capability.
Jones, Monica L H; Reed, Matthew P; Chaffin, Don B
2013-01-01
Environmental obstructions that workers encounter can kinematically limit the postures that they can achieve. However, such obstructions can also provide an opportunity for additional support by bracing with the hand, thigh or other body part. The reaction forces on bracing surfaces, which are in addition to those acting at the feet and task hand, are hypothesised to improve force exertion capability, and become required inputs to biomechanical analysis of tasks with bracing. The effects of kinematic constraints and associated bracing opportunities on isometric hand force were quantified in a laboratory study of 22 men and women. Analyses of one-hand maximal push, pull and lift tasks demonstrated that bracing surfaces available at the thighs and non-task hand enabled participants to exert an average of 43% more force at the task hand. Task hand force direction deviated significantly from the nominal direction for exertions performed with bracing at both medium and low task hand locations. This study quantifies the effect of bracing on kinematically constrained force exertions. Knowledge that appropriate bracing surfaces can substantially increase hand force is critical to the evaluation of task-oriented strength capability. Force estimates may also involve large off-axis components, which have clear implications for ergonomic analyses of manual tasks.
Butler, Robert J; Dai, Boyi; Huffman, Nikki; Garrett, William E; Queen, Robin M
2016-09-01
To examine how landing mechanics change in patients after anterior cruciate ligament reconstruction (ACL-R) between 6 months and 12 months after surgery. Case-series. Laboratory. Fifteen adolescent patients after ACL-R participated. Lower extremity three-dimensional motion analysis was conducted during a bilateral stop jump task in patients at 6 and 12 months after ACL-R. Joint kinematic and kinetic data, in addition to ground reaction forces, were collected at each time point. During the stop jump landing, the peak joint moments and the initial and peak joint motion at the ankle, knee, and hip were examined. The peak vertical ground reaction force was also examined. Interactions were observed for both the peak knee (P = 0.03) and hip extension moment (P = 0.07). However, only the hip extension moment was symmetrical level at 12 months. Statistically significant (P < 0.05) side-to-side differences existed for the ankle angle at initial contact, peak plantarflexion moment, peak hip flexion angle, and peak impact vertical ground reaction force independent of time. The findings of this study suggest that sagittal plane moments at the knee and hip demonstrate an increase in symmetry between 6 months and 1 year after ACL-R surgery, however, symmetry of the knee extension moment is not established by 12 months after surgery. The lack of change in the variables across time was unexpected. As a result, it is inappropriate to expect a change in landing mechanics solely as a result of time alone after discharge from rehabilitation.
Performance drifts in two-finger cyclical force production tasks performed by one and two actors.
Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L
2018-03-01
We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.
Harry, John R; Freedman Silvernail, Julia; Mercer, John A; Dufek, Janet S
2017-12-01
Although impact phase differences between vertical jump landings (VJL) and step-off landings (STL) may be related to task-specific pre-contact strategies, pre-contact mechanics are rarely examined. Thus, pre-contact kinematics and vertical ground reaction force (vGRF) impulse were examined between VJL and STL. Ten health adults (20.9 ± 1.6 yrs; 167.8 ± 4.2 cm; 68.5 ± 7.15 kg) performed 15 VJL and 15 STL from equal heights. Limb (lead; trail) by task (VJL; STL) ANOVAs (α = 0.05) compared hip, knee, and ankle joint angles 150 ms pre-contact, 100 ms pre-contact, 50 ms pre-contact, and at ground contact. Joint angular displacement was also evaluated between 150 ms pre-contact and ground contact. vGRF impulse was compared during the loading (ground contact to peak vGRF) and attenuation (peak vGRF to end of impact) phases. Greater hip flexion angles occurred during STL versus VJL at each event except 150 ms pre-contact (p ≤ .004). Trail limb knee flexion angles were greater at each event when compared to the lead limb during STL (p ≤ .019). Greater trail limb knee flexion angles occurred during STL versus VJL at all four events (p ≤ .018), while greater plantarflexion angles occurred at all four events during VJL versus STL (p ≤ .034). During STL, greater trail limb plantarflexion angles were detected at each event versus the lead limb (p < .001). Lesser hip, lead and trail limb knee displacement occurred during STL versus VJL (p < .05). Greater vGRF impulse was detected during the loading phase of VJL (<.001), while greater vGRF impulse occurred during the attenuation phase of STL (p = .025). These tasks are characterized by distinct pre-contact kinematic strategies and post-contact kinetics. The task utilized in practice should reflect the requirements of the population of interest. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of modified short-leg walkers on ground reaction force characteristics.
Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning
2008-11-01
Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2010-01-01
The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.
NASA Astrophysics Data System (ADS)
Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo
2016-07-01
Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.
Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle
Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa
2015-01-01
Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293
76 FR 52318 - U.S. Coral Reef Task Force Public Meeting and Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration U.S. Coral Reef Task Force... of the U.S. Coral Reef Task Force. The meeting will be held in Ft. Lauderdale, Florida. This meeting, the 26th bi-annual meeting of the U.S. Coral Reef Task Force, provides a forum for coordinated...
76 FR 7579 - U.S. Coral Reef Task Force Public Meeting and Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
.... Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and Wildlife Service, Interior... Service (Service), announce a public business meeting of the U.S. Coral Reef Task Force (USCRTF) [email protected] ); or Liza Johnson, U.S. Coral Reef Task Force Department of the Interior Liaison, U.S...
76 FR 15334 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
...] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: This notice announces a meeting of the Aquatic Nuisance Species (ANS) Task Force. The.... DATES: The ANS Task Force will meet from 8 a.m. to 5 p.m. on Wednesday, May 4; and Thursday May 5; and...
Force Control Characteristics for Generation and Relaxation in the Lower Limb.
Ohtaka, Chiaki; Fujiwara, Motoko
2018-05-29
We investigated the characteristics for force generation and relaxation using graded isometric contractions of the knee extensors. Participants performed the following tasks as quickly and accurately as possible. For the force generation task, force was increased from 0% to 20%, 40% and 60% of the maximal voluntary force (MVF). For the force relaxation task, force was decreased from 60% to 40%, 20% and 0%. The following parameters of the recorded force were calculated: error, time, and rate of force development. The error was consistently greater for force relaxation than generation. Reaction and adjustment times were independent of the tasks. The control strategy was markedly different for force relaxation and generation, this tendency was particularly evident for the lower limb compared to the upper limb.
Dynamic Parameters Variability: Time Interval Interference on Ground Reaction Force During Running.
Pennone, Juliana; Mezêncio, Bruno; Amadio, Alberto C; Serrão, Júlio C
2016-04-01
The aim of this study was to determine the effect of the time between measures on ground reaction force running variability; 15 healthy men (age = 23.8 ± 3.7 years; weight = 72.8 ± 7.7 kg; height 174.3 ± 8.4 cm) performed two trials of running 45 minutes at 9 km/hr at intervals of seven days. The ground reaction forces were recorded every 5 minutes. The coefficients of variation of indicative parameters of the ground reaction forces for each condition were compared. The coefficients of variations of the ground reaction forces curve analyzed between intervals and sessions were 21.9% and 21.48%, respectively. There was no significant difference for the ground reaction forces parameters Fy1, tFy1, TC1, Imp50, Fy2, and tFy2 between intervals and sessions. Although the ground reaction forces variables present a natural variability, this variability in intervals and in sessions remained consistent, ensuring a high reliability in repeated measures designs. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Draper, John V.; Herndon, Joseph N.; Moore, Wendy E.
1987-01-01
Previous research on teleoperator force feedback is reviewed and results of a testing program which assessed the impact of force reflection on teleoperator task performance are reported. Force relection is a type of force feedback in which the forces acting on the remote portion of the teleoperator are displayed to the operator by back-driving the master controller. The testing program compared three force reflection levels: 4 to 1 (four units of force on the slave produce one unit of force at the master controller), 1 to 1, and infinity to 1 (no force reflection). Time required to complete tasks, rate of occurrence of errors, the maximum force applied to tasks components, and variability in forces applied to components during completion of representative remote handling tasks were used as dependent variables. Operators exhibited lower error rates, lower peak forces, and more consistent application of forces using force relection than they did without it. These data support the hypothesis that force reflection provides useful information for teleoperator users. The earlier literature and the results of the experiment are discussed in terms of their implications for space based teleoperator systems. The discussion described the impact of force reflection on task completion performance and task strategies, as suggested by the literature. It is important to understand the trade-offs involved in using telerobotic systems with and without force reflection.
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
Lencioni, Tiziana; Piscosquito, Giuseppe; Rabuffetti, Marco; Sipio, Enrica Di; Diverio, Manuela; Moroni, Isabella; Padua, Luca; Pagliano, Emanuela; Schenone, Angelo; Pareyson, Davide; Ferrarin, Maurizio
2018-05-01
Charcot-Marie-Tooth (CMT) is a slowly progressive disease characterized by muscular weakness and wasting with a length-dependent pattern. Mildly affected CMT subjects showed slight alteration of walking compared to healthy subjects (HS). To investigate the biomechanics of step negotiation, a task that requires greater muscle strength and balance control compared to level walking, in CMT subjects without primary locomotor deficits (foot drop and push off deficit) during walking. We collected data (kinematic, kinetic, and surface electromyographic) during walking on level ground and step negotiation, from 98 CMT subjects with mild-to-moderate impairment. Twenty-one CMT subjects (CMT-NLW, normal-like-walkers) were selected for analysis, as they showed values of normalized ROM during swing and produced work at push-off at ankle joint comparable to those of 31 HS. Step negotiation tasks consisted in climbing and descending a two-step stair. Only the first step provided the ground reaction force data. To assess muscle activity, each EMG profile was integrated over 100% of task duration and the activation percentage was computed in four phases that constitute the step negotiation tasks. In both tasks, CMT-NLW showed distal muscle hypoactivation. In addition, during step-ascending CMT-NLW subjects had relevant lower activities of vastus medialis and rectus femoris than HS in weight-acceptance, and, on the opposite, a greater activation as compared to HS in forward-continuance. During step-descending, CMT-NLW showed a reduced activity of tibialis anterior during controlled-lowering phase. Step negotiation revealed adaptive motor strategies related to muscle weakness due to disease in CMT subjects without any clinically apparent locomotor deficit during level walking. In addition, this study provided results useful for tailored rehabilitation of CMT patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Vieluf, Solveig; Sleimen-Malkoun, Rita; Voelcker-Rehage, Claudia; Jirsa, Viktor; Reuter, Eva-Maria; Godde, Ben; Temprado, Jean-Jacques; Huys, Raoul
2017-07-01
From the conceptual and methodological framework of the dynamical systems approach, force control results from complex interactions of various subsystems yielding observable behavioral fluctuations, which comprise both deterministic (predictable) and stochastic (noise-like) dynamical components. Here, we investigated these components contributing to the observed variability in force control in groups of participants differing in age and expertise level. To this aim, young (18-25 yr) as well as late middle-aged (55-65 yr) novices and experts (precision mechanics) performed a force maintenance and a force modulation task. Results showed that whereas the amplitude of force variability did not differ across groups in the maintenance tasks, in the modulation task it was higher for late middle-aged novices than for experts and higher for both these groups than for young participants. Within both tasks and for all groups, stochastic fluctuations were lowest where the deterministic influence was smallest. However, although all groups showed similar dynamics underlying force control in the maintenance task, a group effect was found for deterministic and stochastic fluctuations in the modulation task. The latter findings imply that both components were involved in the observed group differences in the variability of force fluctuations in the modulation task. These findings suggest that between groups the general characteristics of the dynamics do not differ in either task and that force control is more affected by age than by expertise. However, expertise seems to counteract some of the age effects. NEW & NOTEWORTHY Stochastic and deterministic dynamical components contribute to force production. Dynamical signatures differ between force maintenance and cyclic force modulation tasks but hardly between age and expertise groups. Differences in both stochastic and deterministic components are associated with group differences in behavioral variability, and observed behavioral variability is more strongly task dependent than person dependent. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Wisconsin Department of Public Instruction, 2009
2009-01-01
The Next Generation Assessment Task Force was convened to formulate Wisconsin's path forward. Task force members listened to leaders from business and technology sectors as well as leaders from PK-12 and higher education. This summary shares the process, definitions, assumptions, and recommendations of the task force. This paper aims to use these…
75 FR 47624 - U.S. Coral Reef Task Force Public Meeting and Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service U.S. Coral Reef Task Force Public Meeting and... (Service), announce a public meeting of the U.S. Coral Reef Task Force (USCRTF) and a request for written.... Coral Reef Task Force Department of the Interior Liaison, U.S. Department of the Interior, MS-3530-MIB...
75 FR 15457 - Aquatic Nuisance Species Task Force Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
...] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: This notice announces a meeting of the Aquatic Nuisance Species (ANS) Task Force. The.... DATES: The ANS Task Force will meet from 8 a.m. to 5 p.m. on Wednesday, May 5, and from 8 a.m. to 5 p.m...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... CONTACT: Mail Delivery service through Recovering Warrior Task Force, Hoffman Building II, 200 Stovall St... Review of Non- Medical Case Management. 9:30-9:45 a.m. Break. 9:45-10:45 a.m. Task Force Recommendation... Task Force through the contact information in FOR FURTHER INFORMATION CONTACT, and this individual will...
Forest biomass as an energy source
P.E. Laks; R.W. Hemingway; A. Conner
1979-01-01
The Task Force on Forest Biomass as an Energy Source was chartered by the Society of American Foresters on September 26, 1977, and took its present form following an amendment to the charter on October 5, 1977. It built upon the findings of two previous task forces, the Task Force on Energy and Forest Resources and the Task Force for Evaluation of the CORRIM Report (...
Mahaki, M; Mi'mar, R; Mahaki, B
2015-10-01
Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air..., Headquarters Air Proving Ground Command, Eglin Air Force Base, Florida, and such agencies as he may designate...
The role of spatial organization in preference for color pairs.
Schloss, Karen B; Palmer, Stephen E
2011-01-01
We investigated how spatial organization influences color-pair preference asymmetries: differential preference for one color pair over another when the pairs contain the same colors in opposite spatial configurations. Schloss and Palmer (2011, Attention, Perception, & Psychophysics 73 55-571) found weak figure ground preference asymmetries for small squares centered on large squares in aesthetic ratings. Here, we found robust preference asymmetries using a more sensitive forced-choice task: participants strongly prefer pairs with yellower, lighter figures on bluer, darker grounds (experiment 1). We also investigated which spatial factors influence these preference asymmetries. Relative area of the two component regions is clearly important, and perceived 3-D area of the 2-D displays (ie after the ground is amodally completed behind the figure) is more influential than 2-D area (experiment 2). Surroundedness is not required, because yellowness blueness effects were comparable for pairs in which the figure was surrounded by the ground, and for mosaic arrangements in which the regions were adjacent and separated by a gap (experiment 3). Lightness darkness effects, however, were opposite for figure ground versus mosaic organizations: people prefer figure-ground organizations in which smaller regions are lighter, but prefer mosaic organizations in which smaller regions are darker. Physiological, phenomenological, and ecological explanations of the reported results are discussed.
Partitioning the Metabolic Cost of Human Running: A Task-by-Task Approach
Arellano, Christopher J.; Kram, Rodger
2014-01-01
Compared with other species, humans can be very tractable and thus an ideal “model system” for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the “cost of generating force” hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be “individually” partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward propulsion. In our recent experiments, we have continued to refine this task-by-task approach, demonstrating that maintaining lateral balance comprises only 2% of the net metabolic cost of running. In contrast, arm-swing reduces the cost by ∼3%, indicating a net metabolic benefit. Thus, by considering the synergistic nature of body weight support and forward propulsion, as well as the tasks of leg-swing and lateral balance, we can account for 89% of the net metabolic cost of human running. PMID:24838747
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Operations Data Files, driving force behind International Space Station operations
NASA Astrophysics Data System (ADS)
Hoppenbrouwers, Tom; Ferra, Lionel; Markus, Michael; Wolff, Mikael
2017-09-01
Almost all tasks performed by the astronauts on-board the International Space Station (ISS) and by ground controllers in Mission Control Centre, from operation and maintenance of station systems to the execution of scientific experiments or high risk visiting vehicles docking manoeuvres, would not be possible without Operations Data Files (ODF). ODFs are the User Manuals of the Space Station and have multiple faces, going from traditional step-by-step procedures, scripts, cue cards, over displays, to software which guides the crew through the execution of certain tasks. Those key operational documents are standardized as they are used on-board the Space Station by an international crew constantly changing every 3 months. Furthermore this harmonization effort is paramount for consistency as the crew moves from one element to another in a matter of seconds, and from one activity to another. On ground, a significant large group of experts from all International Partners drafts, prepares reviews and approves on a daily basis all Operations Data Files, ensuring their timely availability on-board the ISS for all activities. Unavailability of these operational documents will halt the conduct of experiments or cancel milestone events. This paper will give an insight in the ground preparation work for the ODFs (with a focus on ESA ODF processes) and will present an overview on ODF formats and their usage within the ISS environment today and show how vital they are. Furthermore the focus will be on the recently implemented ODF features, which significantly ease the use of this documentation and improve the efficiency of the astronauts performing the tasks. Examples are short video demonstrations, interactive 3D animations, Execute Tailored Procedures (XTP-versions), tablet products, etc.
Gooyers, Chad E; Frost, David M; McGill, Stuart M; Callaghan, Jack P
2013-04-01
In this case report an incumbent firefighter partially ruptured his right Achilles tendon during a study of the physical demands of firefighting. Kinematics and kinetics of the lower limbs and trunk were collected while the firefighter performed two simulated fire ground tasks. From this unexpected event, two insights were obtained that should be considered in all future injury prevention and reporting efforts. (i) Consider the full anatomical linkage--the right ankle and knee kinematics leading up to the onset of injury trial were comparable to all preceding repetitions. However, there was a notable difference in the left knee starting position before the initiation of movement of the 37th hose-advance trial. (ii) Consider the cumulative load--the task in question comprised forward and backward phases. A marked difference was observed in the frontal-plane ankle moment during the return phase of the trial preceding the injury. Additionally, the magnitude of the left side vertical ground reaction force was comparable across all trials, suggesting that loads experienced by the right limb were also similar. This would indicate that the tolerance of the Achilles tendon and not the magnitude of the loading was altered. The unfortunate injury captured in this work provides insight into the complexity of characterizing the pathways of injury. It is recommended that future injury prevention and reporting efforts consider individuals' physical demands (at work and in life) and document the nature of loading (i.e., frequency, duration, magnitude, type) when considering the mechanism for injury. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Multisensor Equipped Uav/ugv for Automated Exploration
NASA Astrophysics Data System (ADS)
Batzdorfer, S.; Bobbe, M.; Becker, M.; Harms, H.; Bestmann, U.
2017-08-01
The usage of unmanned systems for exploring disaster scenarios has become more and more important in recent times as a supporting system for action forces. These systems have to offer a well-balanced relationship between the quality of support and additional workload. Therefore within the joint research project ANKommEn - german acronym for Automated Navigation and Communication for Exploration - a system for exploration of disaster scenarios is build-up using multiple UAV und UGV controlled via a central ground station. The ground station serves as user interface for defining missions and tasks conducted by the unmanned systems, equipped with different environmental sensors like cameras - RGB as well as IR - or LiDAR. Depending on the exploration task results, in form of pictures, 2D stitched orthophoto or LiDAR point clouds will be transmitted via datalinks and displayed online at the ground station or will be processed in short-term after a mission, e.g. 3D photogrammetry. For mission planning and its execution, UAV/UGV monitoring and georeferencing of environmental sensor data, reliable positioning and attitude information is required. This is gathered using an integrated GNSS/IMU positioning system. In order to increase availability of positioning information in GNSS challenging scenarios, a GNSS-Multiconstellation based approach is used, amongst others. The present paper focuses on the overall system design including the ground station and sensor setups on the UAVs and UGVs, the underlying positioning techniques as well as 2D and 3D exploration based on a RGB camera mounted on board the UAV and its evaluation based on real world field tests.
Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading
Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.
2013-01-01
Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.
Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas
2016-06-01
Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level 3.
Interagency Task Forces: The Right Tools for the Job
2011-01-01
shortcomings. This analysis discusses four organizational reform models and recommends the interagency task force ( IATF ) as the preferred structure...model.64 Still others recommend creating and deploying ad hoc IATFs for crisis operations. These interagency task forces would be task- organized to...forces assigned for planning, exercises, and mission execution.65 A 2005 article in Policy Review recommended developing IATFs as needed for specific
ERIC Educational Resources Information Center
Vocational Evaluation and Work Adjustment Association, Washington, DC.
Part 2 of the three-part Vocational Evaluation Project final report contains brief summaries of the seven task force report which comprise the final report and two such task force reports. The report of task force 5, Standards for Vocational Evaluation, describes the task force's effort to study the standards for accreditation presently used by…
ERIC Educational Resources Information Center
Butler, Fonda P.
In March 1989, the Kentucky Department of Education assembled a task force to make recommendations regarding the issue of teaching values and character in public schools in Kentucky. The 23-member task force represented educators, parents, the legislature, state and local school boards, law enforcement agencies, higher education, Catholic…
2017-03-21
March 2017 Task Force on Defense Strategies for Ensuring the Resilience of National Space Capabilities OFFICE OF THE UNDER SECRETARY OF...the Department of Defense. The DSB Task Force on Defense Strategies for Ensuring the Resilience of National Space Capabilities completed its formal...Ensuring the Resilience of National Space Capabilities | i DSB Task Force on Defense Strategies for Ensuring the
ERIC Educational Resources Information Center
Howard Community Coll., Columbia, MD.
This is a report from a task force formed by Howard Community College (Maryland) to examine existing and future markets. The task force also explored ways to use marketing strategies to attract potential customers to the college. The task force recommends that the college use its strengths to attract customers, such as its commitment to open…
Report of the Defense Science Board Task Force on Quality of Life.
1995-10-15
The Quality of Life Task Force is deeply grateful to those distinguished Americans who served as Counselors to the Task Force. Although they did not... Quality of Life issues to the readiness and well being of our Armed Forces. Their willingness to offer suggestions and advice on topics within their...respective expertise was most helpful The recommendations of the Report are those of the Quality of Life Task Force; and Counselors may, or may not, concur in whole or in part with them.
Screening for Hepatitis C Infections in Adults
Understanding Task Force Recommendations Screening for Hepatitis C Virus Infection in Adults The U.S. Preventive Services Task Force (Task Force) has issued a final recommendation statement on Screening for Hepatitis C ...
A new cue to figure-ground coding: top-bottom polarity.
Hulleman, Johan; Humphreys, Glyn W
2004-11-01
We present evidence for a new figure-ground cue: top-bottom polarity. In an explicit reporting task, participants were more likely to interpret stimuli with a wide base and a narrow top as a figure. A similar advantage for wide-based stimuli also occurred in a visual short-term memory task, where the stimuli had ambiguous figure-ground relations. Further support comes from a figural search task. Figural search is a discrimination task in which participants are set to search for a symmetric target in a display with ambiguous figure-ground organization. We show that figural search was easier when stimuli with a top-bottom polarity were placed in an orientation where they had a wide base and a narrow top, relative to when this orientation was inverted. This polarity effect was present when participants were set to use color to parse figure from ground, and it was magnified when the participants did not have any foreknowledge of the color of the symmetric target. Taken together the results suggest that top-bottom polarity influences figure-ground assignment, with wide base stimuli being preferred as a figure. In addition, the figural search task can serve as a useful procedure to examine figure-ground assignment.
U.S. Preventive Services Task Force
... USPSTF Our Members Conflict of Interest Disclosures Task Force Resources Our Partners Reports to Congress Contact Us ... effort to make the U.S. Preventive Services Task Force (USPSTF) recommendations clearer and its processes more transparent, ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, R.P.; Kincaid, R.H.; Short, S.A.
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics onmore » structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5.« less
Qiao, Mu; Jindrich, Devin L.
2012-01-01
The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion. PMID:23284804
78 FR 10127 - Request for Nominations to the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Conservation Service Request for Nominations to the Agricultural Air Quality Task Force AGENCY: Natural... Nominations to the Agricultural Air Quality Task Force. SUMMARY: The Secretary of Agriculture invites... Force (AAQTF) which was established by the Federal Agriculture Improvement and Reform Act of 1996 to...
The human power amplifier technology at the University of California, Berkeley.
Kazerooni, H
1996-01-01
A human's ability to perform physical tasks is limited by physical strength, not by intelligence. We define "extenders" as a class of robot manipulators worn by humans to augment human mechanical strength, while the wearer's intellect remains the central control system for manipulating the extender. Our research objective is to determine the ground rules for the design and control of robotic systems worn by humans through the design, construction, and control of several prototype experimental direct-drive/non-direct-drive multi-degree-of-freedom hydraulic/electric extenders. The design of extenders is different from the design of conventional robots because the extender interfaces with the human on a physical level. Two sets of force sensors measure the forces imposed on the extender by the human and by the environment (i.e., the load). The extender's compliances in response to such contact forces were designed by selecting appropriate force compensators. This paper gives a summary of some of the selected research efforts related to Extender Technology, carried out during 1980s. The references, at the end of this article, give detailed description of the research efforts.
Science and Sandy: Lessons Learned
NASA Astrophysics Data System (ADS)
Werner, K.
2013-12-01
Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.
The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Hagan, R. Donald; Cromwell, Ronita L.
2007-01-01
The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies.
Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R
2017-10-01
We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.
Ground-Handling Forces on a 1/40-scale Model of the U. S. Airship "Akron."
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Gulick, B G
1937-01-01
This report presents the results of full-scale wind tunnel tests conducted to determine the ground-handling forces on a 1/40-scale model of the U. S. Airship "Akron." Ground-handling conditions were simulated by establishing a velocity gradient above a special ground board in the tunnel comparable with that encountered over a landing field. The tests were conducted at Reynolds numbers ranging from 5,000,000 to 19,000,000 at each of six angles of yaw between 0 degree and 180 degrees and at four heights of the model above the ground board. The ground-handling forces vary greatly with the angle of yaw and reach large values at appreciable angles of yaw. Small changes in height, pitch, or roll did not critically affect the forces on the model. In the range of Reynolds numbers tested, no significant variation of the forces with the scale was disclosed.
Does foot pitch at ground contact affect parachute landing technique?
Whitting, John W; Steele, Julie R; Jaffrey, Mark; Munro, Bridget J
2009-08-01
The Australian Defence Force Parachute Training School instructs trainees to make initial ground contact using a flat foot whereas United States paratroopers are taught to contact the ground with the ball of the foot first. This study aimed to determine whether differences in foot pitch affected parachute landing technique. Kinematic, ground reaction force and electromyographic data were analyzed for 28 parachutists who performed parachute landings (vertical descent velocity = 3.4 m x s(-1)) from a monorail apparatus. Independent t-tests were used to determine significant (p < 0.05) differences between variables characterizing foot pitch. Subjects who landed flat-footed displayed less knee and ankle flexion, sustained higher peak ground reaction forces, and took less time to reach peak force than those who landed on the balls of their feet. Although forefoot landings lowered ground reaction forces compared to landing flat-footed, further research is required to confirm whether this is a safer parachute landing strategy.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... DEPARTMENT OF DEFENSE Office of the Secretary Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Members of the Armed Forces AGENCY: Office... Defense announces the following Federal Advisory Committee meeting of the Department of Defense Task Force...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... DEPARTMENT OF DEFENSE Office of the Secretary Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Members of the Armed Forces; Federal... Committee meeting of the Department of Defense Task Force on the Care, Management, and Transition of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
.... SUPPLEMENTARY INFORMATION: The Task Force is a non-discretionary Federal advisory committee established to (a... for wounded, ill, and injured members of the Armed Forces; ii. Medical case management; iii. Non... Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Member of...
Data Supporting Mobile Application Development for Use within the Marine Air-Ground Task Force
2015-09-01
Landing Zone (LZ) Brief Maneuver Control Measures Medical Evacuation (MEDEVAC) Request Mission Card Information Obstacle Report Rules of Engagement...2 2 4 3 4 28 Landing%Zone%(LZ)%Brief% 2 3 1 3 4 2 2 3 3 4 27 Mission% Card %Information 3 2 2 3 3 2 2 3 3 3 26 5%Paragraph%Order 3 2 2 2 2 3 4 3 1 2 24...SALUTE, and Mission Card . These constitute what could be identified as a type of reporting application. Within one application, a number of different
The ’In Lieu Of’ Myth. Airmen in Joint Ground Operations (Walker Paper, Number 13)
2009-01-01
Romano, Dains , and Watts, “Air Force Breaks New Ground,” 14. 25. Air Force Print News, “Dangerous Road to Progress,” 42; and Air Force Print News...92 Romano, Lt Col Joseph L., III; Capt William M. Dains ; and Capt David T. Watts, “Air Force Breaks New Ground at Camp Bucca, Iraq.” Military
EEG measures reveal dual-task interference in postural performance in young adults
Woollacott, Marjorie
2014-01-01
The study used a dual-task (DT) postural paradigm (two tasks performed at once) that included electroencephalography (EEG) to examine cortical interference when a visual working memory (VWM) task was paired with a postural task. The change detection task was used, as it requires storage of information without updating or manipulation and predicts VWM capacity. Ground reaction forces (GRFs) (horizontal and vertical), EMG, and EEG elements, time locked to support surface perturbations, were used to infer the active neural processes underlying the automatic control of balance in 14 young adults. A significant reduction was seen between single task (ST) and DT conditions in VWM capacity (F(1,13) = 6.175, p < 0.05, r = 0.6) and event-related potential (ERP) N1 component amplitude over the L motor (p < 0.001) and R sensory (p < 0.05) cortical areas. In addition, a significant increase in the COP trajectory peak (pkcopx) was seen in the DT versus ST condition. Modulation of VWM capacity as well as ERP amplitude and pkcopx in DT conditions provided evidence of an interference pattern, suggesting that the two modalities shared a similar set of attentional resources. The results provide direct evidence of the competition for central processing attentional resources between the two modalities, through the reduction in amplitude of the ERP evoked by the postural perturbation. PMID:25273924
Studies of Radiation and Microphysics in Cirrus and Marine Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
1999-01-01
Two tasks were completed during this period. In the first, we examined the polarization of millimeter-wavelength radar beams scattered by ice crystals. Because of their non-spherical shape and size, ice crystals depolarize the incident polarized radar beam. In principle, this depolarization can be used to identify ice from liquid water, as well as provide some information on size. However, the amount of de-polarization is small, producing only a weak signal at the receiver. Our task was to determine the magnitude of such a signal and decide if our radar would be capable of measuring it under typical cirrus conditions. The theoretical study was carried out by Henrietta Lemke, a visiting graduate student from Germany. She had prior experience using a discrete dipole code to compute scattering depolarization. Dr. Kultegin Aydin of the Penn State Electrical Engineering Department, who is also expert in this area, consulted with us on this project at no cost to the project. Our conclusion was that the depolarization signal is too weak to be usefully measured by our system. Therefore we proceeded no further in this study. The second task involved the study of the effect of stratus microphysics on surface cloud forcing. Manajit Sengupta, a graduate student, and the project PI jointly carried out this task. The study used data culled from over a year of continuous radar and radiometer observations at the Atmospheric Radiation Measurement (ARM) site in Oklahoma. The study compared solar radiation calculations made using constant microphysics with calculations made using a retrieved mean particle size. The results showed that on average the constant microphysics produced the correct forcing when compared with the observed forcing. We conclude, therefore, that there is little impetus on radiation grounds alone to include explicit microphysics in climate models. The question of pollutant particle emission impacts on microphysics remains to be resolved. A manuscript is in preparation and will be submitted this year.
Effects of fatigue on kinetic and kinematic variables during a 60-second repeated jumps test.
McNeal, Jeni R; Sands, William A; Stone, Michael H
2010-06-01
The aim of this study was to investigate the effects of a maximal repeated-jumps task on force production, muscle activation and kinematics, and to determine if changes in performance were dependent on gender. Eleven male and nine female athletes performed continuous countermovement jumps for 60 s on a force platform while muscle activation was assessed using surface electromyography. Performances were videotaped and digitized (60 Hz). Data were averaged across three jumps in 10-s intervals from the initial jump to the final 10 s of the test. No interaction between time and gender was evident for any variable; therefore, all results represent data collapsed across gender. Preactivation magnitude decreased across time periods for anterior tibialis (AT, P < .001), gastrocnemius (GAS, P < .001) and biceps femoris (BF, P = .03), but not for vastus lateralis (VL, P = .16). Muscle activation during ground contact did not change across time for BF; however, VL, G, and AT showed significant reductions (all P < .001). Peak force was reduced at 40 s compared with the initial jumps, and continued to be reduced at 50 and 60 s (all P < .05). The time from peak force to takeoff was greater at 50 and 60 s compared with the initial jumps (P < .05). Both knee flexion and ankle dorsiflexion were reduced across time (both P < .001), whereas no change in relative hip angle was evident (P = .10). Absolute angle of the trunk increased with time (P < .001), whereas the absolute angle of the shank decreased (P < .001). In response to the fatiguing task, subjects reduced muscle activation and force production and altered jumping technique; however, these changes were not dependent on gender.
PRN 2009-1: Establishment of Antimicrobial Exposure Assessment Task Force II
This PR notice announces the establishment of the Antimicrobial Exposure Assessment Task Force II, an industry-wide task force to develop mixer, loader, applicator and post-application exposure data for antimicrobial pesticides used in various settings.
Care of the poor: a story worth telling. A system speaks up and says what it means.
Kelly, C J
1989-09-01
Traditionally, those in Catholic healthcare have considered it bad taste to "toot your own horn" for anything done on behalf of the poor. Such reticence was admirable and reasonable in a stable environment, but a turbulent environment requires more assertiveness. Today, healthcare is a whole new game, with new ground rules. It behooves all players to be more critical of all they do, even when "doing good." The Sisters of Charity Health Care Systems (SCHCS), Inc., Cincinnati, established its Task Force for the Poor to explore and initiate new ways to address the needs of the poor, to find strategies for new forms of service, and to develop mechanisms to evaluate those new services and report the results. But with 22 acute care institutions serving different markets in six states, SCHCS had to establish some uniformity to plan, budget, audit, and report the entire spectrum of its charitable activities. The task force proposed developing uniform measures (definitions) of the charity care provided in traditional inpatient and outpatient settings, as well as that provided through services on behalf of the poor but not captured by standard accounting measures.
Practice and Age-Related Loss of Adaptability in Sensorimotor Performance
Sosnoff, Jacob J.; Voudrie, Stefani J.
2009-01-01
The purpose of the present investigation was to examine whether the ability to adapt to task constraints is influenced by short-term practice in older adults. Young (18–29 years old) and old (65–75 years old) adults produced force output to a constant force target and a 1-Hz sinusoidal force target by way of the index finger flexion. Participants completed each task 5 times per session for 5 concurrent sessions. The amount and structure of force variability was calculated using linear and nonlinear analyses. As expected, there was a decrease in the magnitude of variability (coefficient of variation) in both tasks and task-related change in the structure of force variability (approximate entropy) with training across groups. The authors found older adults to have a greater amount of variability than their younger counterparts in both tasks. Older adults also demonstrated an increase in the structure of force output in the constant task but a decrease in structure in the sinusoidal task. Age differences in the adaptability to task constraints persisted throughout practice. The authors propose that older adults' ability to adapt sensorimotor output to task demands is not a result of lack of familiarity with the task but that it is, instead, characteristic of the aging process. PMID:19201684
Tibiofemoral contact forces during walking, running and sidestepping.
Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G
2016-09-01
We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20
The effect of the earth's rotation on ground water motion.
Loáiciga, Hugo A
2007-01-01
The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).
Klem, Nardia-Rose; Wild, Catherine Y; Williams, Sian A; Ng, Leo
2017-03-01
Despite the high prevalence of lower extremity injuries in female basketball players as well as a high proportion of athletes who wear ankle braces, there is a paucity of research pertaining to the effects of ankle bracing on ankle and knee biomechanics during basketball-specific tasks. To compare the effects of a lace-up brace (ASO), a hinged brace (Active T2), and no ankle bracing (control) on ankle and knee joint kinematics and joint reaction forces in female basketball athletes during a cutting maneuver. Controlled laboratory study. Twenty healthy, semi-elite female basketball players performed a cutting task under both ankle brace conditions (lace-up ankle brace and hinged ankle brace) and a no-brace condition. The 3-dimensional kinematics of the ankle and knee during the cutting maneuver were measured with an 18-camera motion analysis system (250 Hz), and ground-reaction force data were collected by use of a multichannel force plate (2000 Hz) to quantify ankle and knee joint reaction forces. Conditions were randomized using a block randomization method. Compared with the control condition, the hinged ankle brace significantly restricted peak ankle inversion (mean difference, 1.7°; P = .023). No significant difference was found between the lace-up brace and the control condition ( P = .865). Compared with the lace-up brace, the hinged brace significantly reduced ankle and knee joint compressive forces at the time of peak ankle dorsiflexion (mean difference, 1.5 N/kg [ P = .018] and 1.4 N/kg [ P = .013], respectively). Additionally, the hinged ankle brace significantly reduced knee anterior shear forces compared with the lace-up brace both during the deceleration phase and at peak ankle dorsiflexion (mean difference, 0.8 N/kg [ P = .018] and 0.9 N/kg [ P = .011], respectively). The hinged ankle brace significantly reduced ankle inversion compared with the no-brace condition and reduced ankle and knee joint forces compared with the lace-up brace in a female basketball population during a cutting task. Compared with the lace-up brace, the hinged brace may be a better choice of prophylactic ankle support for female basketball players from a biomechanical perspective. However, both braces increased knee internal rotation and knee abduction angles, which may be problematic for a population that already has a high prevalence of knee injuries.
Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.
Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D
2018-01-01
Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts' law for explicit targets with vision ( r 2 = 0.96) and implicit targets ( r 2 = 0.89), but not as well-described for explicit targets without vision ( r 2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts' law to quantify the relative speed-accuracy relationship of any given grasper.
Green, Larry A.; Graham, Robert; Bagley, Bruce; Kilo, Charles M.; Spann, Stephen J.; Bogdewic, Stephen P.; Swanson, John
2004-01-01
BACKGROUND To lay the groundwork for the development of a comprehensive strategy to transform and renew the specialty of family medicine, this Future of Family Medicine task force was charged with identifying the core values of family medicine, developing proposals to reform family medicine to meet consumer expectations, and determining systems of care to be delivered by family medicine in the future. METHODS A diverse, multidisciplinary task force representing a broad spectrum of perspectives and expertise analyzed and discussed published literature; findings from surveys, interviews, and focus groups compiled by research firms contracted to the Future of Family Medicine project; and analyses from The Robert Graham Center, professional societies in the United States and abroad, and others. Through meetings, conference calls, and writing, and revision of a series of subcommittee reports, the entire task force reached consensus on its conclusions and recommendations. These were reviewed by an external panel of experts and revisions were made accordingly. MAJOR FINDINGS After delivering on its promise to reverse the decline of general practice in the United States, family medicine and the nation face additional challenges to assure all people receive care that is safe, effective, patient-centered, timely, efficient, and equitable. Challenges the discipline needs to address to improve family physicians’ ability to make important further contributions include developing a broader, more accurate understanding of the specialty among the public and other health professionals, addressing the wide scope and variance in practice types within family medicine, winning respect for the specialty in academic circles, making family medicine a more attractive career option, and dealing with the perception that family medicine is not solidly grounded in science and technology. The task force set forth a proposed identity statement for family medicine, a basket of services that should be reliably provided in family medicine practices, and an itemization of key attributes and core values that define the specialty. It also proposed and described a New Model of family medicine for people of all ages and both genders that emphasizes patient-centered, evidence-based, whole-person care provided through a multidisciplinary team approach in settings that reduce barriers to access and use advanced information systems and other new technologies. The task force recommended a time of active experimentation to redesign the work and workplace of family physicians; the development of revised financial models for family medicine, and a national resource to provide assistance to individual practices moving to New Model practice; and cooperation with others pursuing the transformation of frontline medicine to better serve the public. CONCLUSIONS Unless there are changes in the broader health care system and within the specialty, the position of family medicine in the United States will be untenable in a 10- to 20-year time frame. Even within the constraints of today’s flawed health care system, there are major opportunities for family physicians to realize improved results for patients and economic success. A period of aggressive experimentation and redevelopment of family medicine is needed now. The future success of the discipline and its impact on public well-being depends in large measure on family medicine’s ability to rearticulate its vision and competencies in a fashion that has greater resonance with the public while substantially revising the organization and processes by which care is delivered. When accomplished, family physicians will achieve more fully the aspirations articulated by the specialty’s core values and contribute to the solution of the nation’s serious health care problems.
A guide for statewide impaired-driving task forces.
DOT National Transportation Integrated Search
2009-09-01
The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...
PRN 2007-3: The Agricultural Handlers Exposure Task Force, L.L.C
This PR Notice discusses the Agricultural Handlers Exposure Task Force, an industry-wide task force formed to develop mixer, loader, and applicator exposure data for pesticides used in agricultural settings. It includes contacts for more information.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... DEPARTMENT OF DEFENSE Office of the Secretary Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Members of the Armed Forces; Notice of... Committee meeting of the Department of Defense Task Force on the Care, Management, and Transition of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... DEPARTMENT OF DEFENSE Office of the Secretary Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Members of the Armed Forces; Notice of... Federal Advisory Committee meeting of the Department of Defense Task Force on the Care, Management, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... DEPARTMENT OF DEFENSE Office of the Secretary Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Members of the Armed Forces; Notice of... Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... DEPARTMENT OF DEFENSE Office of the Secretary Meeting of the Department of Defense Task Force on... Forces AGENCY: Department of Defense. ACTION: Meeting notice. SUMMARY: Under the provisions of the... that the following Federal Advisory Committee meeting of the Department of Defense Task Force on the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... DEPARTMENT OF DEFENSE Office of the Secretary Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded, Ill, and Injured Members of the Armed Forces; Notice of... of the Department of Defense Task Force on the Care, Management, and Transition of Recovering Wounded...
Biomechanical Analyses of Stair-climbing while Dual-tasking
Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas
2015-01-01
Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590
Load type influences motor unit recruitment in biceps brachii during a sustained contraction.
Baudry, Stéphane; Rudroff, Thorsten; Pierpoint, Lauren A; Enoka, Roger M
2009-09-01
Twenty subjects participated in four experiments designed to compare time to task failure and motor-unit recruitment threshold during contractions sustained at 15% of maximum as the elbow flexor muscles either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). Subcutaneous branched bipolar electrodes were used to record single motor unit activity from the biceps brachii muscle during ramp contractions performed before and at 50 and 90% of the time to failure for the position task during both fatiguing contractions. The time to task failure was briefer for the position task than for the force task (P=0.0002). Thirty and 29 motor units were isolated during the force and position tasks, respectively. The recruitment threshold declined by 48 and 30% (P=0.0001) during the position task for motor units with an initial recruitment threshold below and above the target force, respectively, whereas no significant change in recruitment threshold was observed during the force task. Changes in recruitment threshold were associated with a decrease in the mean discharge rate (-16%), an increase in discharge rate variability (+40%), and a prolongation of the first two interspike intervals (+29 and +13%). These data indicate that there were faster changes in motor unit recruitment and rate coding during the position task than the force task despite a similar net muscle torque during both tasks. Moreover, the results suggest that the differential synaptic input observed during the position task influences most of the motor unit pool.
Liang, Jennifer J; Tsou, Ching-Huei; Devarakonda, Murthy V
2017-01-01
Natural language processing (NLP) holds the promise of effectively analyzing patient record data to reduce cognitive load on physicians and clinicians in patient care, clinical research, and hospital operations management. A critical need in developing such methods is the "ground truth" dataset needed for training and testing the algorithms. Beyond localizable, relatively simple tasks, ground truth creation is a significant challenge because medical experts, just as physicians in patient care, have to assimilate vast amounts of data in EHR systems. To mitigate potential inaccuracies of the cognitive challenges, we present an iterative vetting approach for creating the ground truth for complex NLP tasks. In this paper, we present the methodology, and report on its use for an automated problem list generation task, its effect on the ground truth quality and system accuracy, and lessons learned from the effort.
Park, Yang Sun; Lim, Young Tae; Koh, Kyung; Kim, Jong Moon; Kwon, Hyun Joon; Yang, Ji Seung; Shim, Jae Kun
2016-07-01
Adolescent idiopathic scoliosis is a prevalent orthopedic problem in children ages 10 to 16years. Although genetic, physiological and biomechanical factors are considered to contribute to the onset and progression of adolescent idiopathic scoliosis, the underlying mechanisms are not yet clear. The purpose of this study was to investigate the association between spinal deformity and inter-leg ground reaction force asymmetry during walking in adolescent idiopathic scoliosis patients. Fourteen patients (3 males and 11 females) participated in this study. Maximum Cobb's angle, adjusted Cobb's angle, and pelvic tilt were calculated from X-ray images. Asymmetry indices between legs were also calculated from ground reaction force magnitude and time variables from their preferred speed walking. Pearson coefficients of correlation were used to investigate associations of asymmetry indices with angle variables. Asymmetry indices of ground reaction force magnitudes positively correlated with adjusted Cobb's angle and maximum Cobb's angle mainly during the peak of braking phase, average of braking phase, while asymmetry indices of ground reaction force time variables showed no significant correlation with adjusted or maximum Cobb's angle. In contrast, asymmetry indices of ground reaction force time variables positively correlated with pelvic tilt during stance phase. We concluded that the spinal deformity of adolescent idiopathic scoliosis patients estimated using the maximum and adjusted Cobb's angles is generally associated with greater asymmetry of ground reaction force magnitudes in walking, while the pelvic tilt is associated with the greater asymmetry of ground reaction force time variables. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maerz, Adam H.; Gould, Jeffrey R.; Enoka, Roger M.
2011-01-01
Presynaptic modulation of Ia afferents converging onto the motor neuron pool of the extensor carpi radialis (ECR) was compared during contractions (20% of maximal force) sustained to failure as subjects controlled either the angular position of the wrist while supporting an inertial load (position task) or exerted an equivalent force against a rigid restraint (force task). Test Hoffmann (H) reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. Conditioned H reflexes were obtained by stimulating either the median nerve above the elbow or at the wrist (palmar branch) to assess presynaptic inhibition of homonymous (D1 inhibition) and heteronymous Ia afferents (heteronymous Ia facilitation), respectively. The position task was briefer than the force task (P = 0.001), although the maximal voluntary force and electromyograph for ECR declined similarly at failure for both tasks. Changes in the amplitude of the conditioned H reflex were positively correlated between the two conditioning methods (P = 0.02) and differed between the two tasks (P < 0.05). The amplitude of the conditioned H reflex during the position task first increased (129 ± 20.5% of the initial value, P < 0.001) before returning to its initial value (P = 0.22), whereas it increased progressively during the force task to reach 122 ± 17.4% of the initial value at failure (P < 0.001). Moreover, changes in conditioned H reflexes were associated with the time to task failure and force fluctuations. The results suggest a task- and time-dependent modulation of presynaptic inhibition of Ia afferents during fatiguing contractions. PMID:21543747
77 FR 6786 - U.S. Coral Reef Task Force Public Meeting and Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration U.S. Coral Reef Task Force... of the U.S. Coral Reef Task Force. The meeting will be held in Washington, DC This meeting, the 27th [[Page 6787
First Responder Refresher: National Standard Curriculum (Instructor Course Guide)
DOT National Transportation Integrated Search
1997-07-08
This white paper provides a brief overview of the report titled "ITS Focus Task Force on System Architecture Report", dated May 1997. The report was prepared by a special task force of the United Kingdoms ITS Focus organization. This task force wa...
ERIC Educational Resources Information Center
Austin, Bobby William, Ed.
This report of the National Task Force on African-American Men and Boys is the beginning of an approach to repair society's breaches and restore the streets to safety. The Task Force, headed by Andrew J. Young and established in 1994, conceived its mission as one of reclamation. The Task Force made 61 specific recommendations, and three general…
Bidirectional transfer between joint and individual actions in a task of discrete force production.
Masumoto, Junya; Inui, Nobuyuki
2017-07-01
The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.
NASA Technical Reports Server (NTRS)
Grantham, William D.
1989-01-01
The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).
77 FR 55218 - Homeland Security Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... childhood arrivals program. The HSAC will also receive a report from the Sustainability and Efficiency Task Force, review and discuss the task forces' report, and formulate recommendations for the Department. The.... HSAC conference call details and the Sustainability and Efficiency Task Force report will be provided...
Task force on deterrence of air piracy : final report.
DOT National Transportation Integrated Search
1978-11-01
In February 1969, as the frequency of hijacking of U.S. air carrier aircraft was rising to an all-time high, the Federal Aviation Administration established a multi-disciplinary Task Force on Deterrence of Air Piracy. The work of the Task Force in de...
75 FR 16577 - Gulf War Veterans' Illnesses Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... DEPARTMENT OF VETERANS AFFAIRS Gulf War Veterans' Illnesses Task Force AGENCY: Department of Veterans Affairs (VA). ACTION: Notice with request for comments. SUMMARY: The Secretary Department of Veterans Affairs (VA) established the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to...
77 FR 18307 - Gulf War Veterans' Illnesses Task Force Report
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... DEPARTMENT OF VETERANS AFFAIRS Gulf War Veterans' Illnesses Task Force Report AGENCY: Department of Veterans Affairs. ACTION: Notice. SUMMARY: The Secretary Department of Veterans Affairs (VA) established the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to conduct a comprehensive...
78 FR 28292 - Gulf War Veterans' Illnesses Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... DEPARTMENT OF VETERANS AFFAIRS Gulf War Veterans' Illnesses Task Force AGENCY: Department of Veterans Affairs (VA). ACTION: Notice with request for comments. SUMMARY: The Secretary, Department of Veterans Affairs (VA) established the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to...
76 FR 65321 - Gulf War Veterans' Illnesses Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... DEPARTMENT OF VETERANS AFFAIRS Gulf War Veterans' Illnesses Task Force AGENCY: Department of Veterans Affairs (VA). ACTION: Notice with request for comments. SUMMARY: The Secretary, Department of Veterans Affairs (VA) established the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to...
78 FR 63208 - UPDATE-Meeting of the Community Preventive Services Task Force (Task Force)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
..., and issues recommendations. These recommendations provide evidence-based options from which decision makers in communities, companies, health departments, health plans and healthcare systems, non..., available resources, and constraints of their constituents. The Task Force's recommendations, along with the...
An introductory handbook for state task forces to combat drunk driving.
DOT National Transportation Integrated Search
1983-01-01
In June 1982 Governor Robb created a task force to identify and assess efforts under way in Virginia to address the problem of drunken driving and to make recommendations. This booklet was prepared to assist the task force in its deliberations.
Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke.
Linder, Susan M; Rosenfeldt, Anson B; Dey, Tanujit; Alberts, Jay L
To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice-only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Ankle and Midfoot Power During Walking and Stair Ascent in Healthy Adults.
DiLiberto, Frank E; Nawoczenski, Deborah A; Houck, Jeff
2018-02-27
Ankle power dominates forward propulsion of gait, but midfoot power generation is also important for successful push off. However, it is unclear if midfoot power generation increases or stays the same in response to propulsive activities that induce larger external loads and require greater ankle power. The purpose of this study was to examine ankle and midfoot power in healthy adults during progressively more demanding functional tasks. Multi-segment foot motion (tibia, calcaneus, forefoot) and ground reaction forces were recorded as participants (N=12) walked, ascended a standard step, and ascended a high step. Ankle and midfoot positive peak power and total power, and the proportion of midfoot to ankle total power were calculated. One-way repeated measures ANOVAs were conducted to evaluate differences across tasks. Main effects were found for ankle and midfoot peak and total powers (all p < .001), but not for the proportion of midfoot to ankle total power (p = .331). Ankle and midfoot power significantly increased across each task. Midfoot power increased in proportion to ankle power and in congruence to the external load of a task. Study findings may serve to inform multi-segment foot modeling applications and internal mechanistic theories of normal and pathological foot function.
Distinct cut task strategy in Australian football players with a history of groin pain.
Edwards, Suzi; Brooke, Hiram C; Cook, Jill L
2017-01-01
This study aimed to explore the differences in the magnitude of movement variability and strategies utilized during an unanticipated cut task between players with and without a history of groin pain. Cross-sectional design. Biomechanics laboratory. Male Australian football players with (HISTORY; n = 7) or without (CONTROL; n = 10) a history of groin pain. Three-dimensional ground reaction forces (GRF) and kinematics were recorded during 10 successful trials of an unanticipated cut task, and isokinetic hip adduction and abduction strength. Between-group differences were determined using independent-samples t-tests and the coefficient of variation (CV). Key substantial between-group differences identified were that the HISTORY group displayed decreased knee flexion and hip internal rotation, increased knee internal rotation and T12-L1 right rotation, and higher GRFs during the cut task. They also utilized three invariant systems (ankle, knee and T12-L1 joints), while being connected by a segment (hip and L5-S1 joints) that displayed increased lumbopelvic movement during the cut task, and decreased adductor muscle strength. This identifies the need for clinical management of the lower limb and thoracic segment to improve functional movement patterns in athletes with a history of a groin injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of the Delay-Tolerant Networking Bundle Protocol from Space
NASA Technical Reports Server (NTRS)
Wood, Lloyd; Ivancic, William D.; Eddy, Wesley M.; Stewart, Dave; Northam, James; Jackson, Chris; daSilvaCuriel, Alex
2009-01-01
The Disaster Monitoring Constellation (DMC), constructed by Survey Satellite Technology Ltd (SSTL), is a multisatellite Earth-imaging low-Earth-orbit sensor network where captured image swaths are stored onboard each satellite and later downloaded from the satellite payloads to a ground station. Store-and-forward of images with capture and later download gives each satellite the characteristics of a node in a Delay/Disruption Tolerant Network (DTN). Originally developed for the Interplanetary Internet, DTNs are now under investigation in an Internet Research Task Force (IRTF) DTN research group (RG), which has developed a bundle architecture and protocol. The DMC is currently unique in its adoption of the Internet Protocol (IP) for its imaging payloads and for satellite command and control, based around reuse of commercial networking and link protocols. These satellites use of IP has enabled earlier experiments with the Cisco router in Low Earth Orbit (CLEO) onboard the constellation's UK-DMC satellite. Earth images are downloaded from the satellites using a custom IPbased high-speed transfer protocol developed by SSTL, Saratoga, which tolerates unusual link environments. Saratoga has been documented in the Internet Engineering Task Force (IETF) for wider adoption. We experiment with use of DTNRG bundle concepts onboard the UKDMC satellite, by examining how Saratoga can be used as a DTN convergence layer to carry the DTNRG Bundle Protocol, so that sensor images can be delivered to ground stations and beyond as bundles. This is the first successful use of the DTNRG Bundle Protocol in a space environment. We use our practical experience to examine the strengths and weaknesses of the Bundle Protocol for DTN use, paying attention to fragmentation, custody transfer, and reliability issues.
Response to Vogelstein: How the 2012 AAP Task Force on circumcision went wrong.
Van Howe, Robert S
2018-01-01
Vogelstein cautions medical organizations against jumping into the fray of controversial issues, yet proffers the 2012 American Academy of Pediatrics' Task Force policy position on infant male circumcision as 'an appropriate use of position-statements.' Only a scratch below the surface of this policy statement uncovers the Task Force's failure to consider Vogelstein's many caveats. The Task Force supported the cultural practice by putting undeserved emphasis on questionable scientific data, while ignoring or underplaying the importance of valid contrary scientific data. Without any effort to quantitatively assess the risk/benefit balance, the Task Force concluded the benefits of circumcision outweighed the risks, while acknowledging that the incidence of risks was unknown. This Task Force differed from other Academy policy-forming panels by ignoring the Academy's standard quality measures and by not appointing members with extensive research experience, extensive publications, or recognized expertise directly related to this topic. Despite nearly 100 publications available at the time addressing the substantial ethical issues associated with infant male circumcision, the Task Force chose to ignore the ethical controversy. They merely stated, with minimal justification, the opinion of one of the Task Force members that the practice of infant male circumcision is morally permissible. The release of the report has fostered an explosion of academic discussion on the ethics of infant male circumcision with a number of national medical organizations now decrying the practice as a human rights violation. © 2017 John Wiley & Sons Ltd.
Task analysis of Air Force pharmacy practice.
Bartholomew, A; Sawyer, W T; Coats, L
1995-01-15
The frequency with which United States Air Force pharmacists perform specific professional tasks and the pharmacists' views as to the importance of those tasks were studied. A questionnaire was prepared that asked recipients to rate each of 36 tasks selected as representing the spectrum of practice activities. There were four categories of tasks: managerial tasks, dispensing tasks, drug information tasks, and patient care tasks. Recipients rated the tasks with respect to frequency of performance and importance on separate 6-point scales. The questionnaire was mailed in May 1991 to the 225 pharmacists then serving in the Air Force worldwide. Of the 225 questionnaires, 150 usable questionnaires were returned (response rate, 67%). All the tasks in the survey were performed by at least one Air Force pharmacy officer, although the frequency of task performance varied. In particular, the frequency of many patient care tasks was low. All the tasks were perceived to have some importance, but drug information tasks were rated as being significantly more important than tasks in the other categories; patient care tasks were rated lowest in importance. The results varied with the respondents' demographic characteristics. Pharmacy officers with more years of service, more senior positions, higher rank, or an advanced degree in a field other than pharmacy tended to give responses that diverged from those of the population. A 1991 survey showed an awareness among Air Force pharmacists of the need to orient practice around patient care; however, they were not spending substantial time on patient care and tended to view it as less important than more traditional pharmacy tasks.
Grip force control in individuals with multiple sclerosis.
Iyengar, Veena; Santos, Marcio J; Ko, Michael; Aruin, Alexander S
2009-10-01
Appropriate regulation of grip force is essential in performance of various activities of daily living such as drinking, eating, buttoning a shirt, and so on. The extent to which individuals with multiple sclerosis (MS) are able to regulate grip forces while performing elements of the activities of daily living is largely unknown. . To investigate how individuals with MS control grip force during performance of functional tasks. . This study evaluated the grip force control in selected individuals with MS (n = 9) and healthy control subjects (n = 9) while they performed the task of lifting and placing an instrumented object on a shelf and the task of lifting the object and bringing it close to the mouth to mimic drinking. The grip forces, object acceleration, force ratio, and time lag were recorded and analyzed. . The individuals with MS used significantly larger peak grip force and force ratio than control subjects while performing both tasks and for both hands. In addition, the time lag between the peaks of grip and load forces was significantly longer in individuals with MS. . The application of excessive grip force could predispose individuals with MS to additional fatigue and musculoskeletal overuse trauma. Rehabilitation protocols for the MS population may need to account for increased levels of grip force applied during the performance of functional tasks.
76 FR 52932 - Notice of Meeting of the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Notice of Meeting of the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service (NRCS). ACTION: Notice of meeting. SUMMARY: The Agricultural Air Quality Task Force (AAQTF) will meet to continue discussions on...
Pauk, Jolanta; Szymul, Joanna
2014-01-01
Ground reaction forces (GRF) reflect the force history of human body contact with the ground. The purpose of this study was to explore human gait abnormalities due to planovalgus by comparing vertical GRF data between individuals with planovalgus and those with neutrally aligned feet. Second we estimated associations between various measurements and vertical GRF parameters in a pediatric population. Boys and girls between the ages of 4 and 18 years (72 planovalgus feet and 74 neutrally aligned feet) took part in this study. Ground reaction forces were recorded by two Kistler platforms and normalized to body weight. Comparison of vertical GRF between planovalgus and neutrally aligned feet suggests that the first and the second peaks of vertical force (Fz1, Fz2) are most affected by planovalgus. The results also indicate that neutrally aligned feet display a different ground reaction force pattern than planovalgus, and that differences between boys and girls may be observed. The shape of the vertical GRF curve can help in clinical interpretation of abnormal gait.
Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy.
Mackenzie, Samuel J; Getchell, Nancy; Modlesky, Christopher M; Miller, Freeman; Jaric, Slobodan
2009-08-01
Mackenzie SJ, Getchell N, Modlesky CM, Miller F, Jaric S. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy. To assess force coordination in children with hemiplegic cerebral palsy (CP) using a device that allows for testing both unimanual and bimanual manipulation tasks performed under static and dynamic conditions. Nonequivalent groups design. University research laboratory for motor control. Six children with hemiplegic CP (age, mean +/- SD, 11.6+/-1.8 y) and 6 typically developing controls (11.6+/-1.6 y). Not applicable. Children performed simple lifting and force-matching static ramp tasks by way of both unimanual and bimanual pulling using a device that measures grip force (force acting perpendicularly at the digits-device contact area) and load force (tangential force). Main outcome measures were grip/load force ratios (grip force scaling) and correlation coefficients (force coupling). CP subjects showed significantly higher grip/load force ratios (P<.05) and slightly lower correlation coefficients than the control group, with more pronounced differences for most tasks when using their involved hand. For subjects with CP, switching from unimanual to bimanual conditions did not bring changes in scaling or coupling for the involved hand (P>.05). Compared with healthy children, the impaired hand function in the hemiplegic CP pediatric population could be reflected in excessive grip force that is also decoupled from ongoing changes in load force. Therefore, the bimanual grip load device used in this study could provide a sensitive measure of grip force coordination in CP, although nonmotor deficits should be taken into account when asking children to perform more complex tasks.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... duties of the Task Force are to prepare and approve a plan for the use of the funds made available under... of the Task Force are to prepare and approve a plan for the use of the funds made available under... Force Meeting as Established by the Missouri River Protection and Improvement Act of 2000 (Title VII...
75 FR 33838 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-065)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Ad-Hoc Task Force on...
75 FR 15742 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-035)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Ad-Hoc Task Force on...
Honeywell's Working Parents Task Force. Final Report and Recommendations.
ERIC Educational Resources Information Center
Honeywell, Inc., Minneapolis, Minn.
This publication provides a summary of the Honeywell Working Parent Task Force's recommendations on how to solve problems experienced by working parents. The Task Force consisted of three committees: the Employment Practices Committee (EPC); the Parent Education Committee (PEC); and the Child Care Facilities Committee (CCFC). After examining a…
77 FR 71471 - Interagency Task Force on Veterans Small Business Development; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development; Notice of Meeting AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency... agenda for its public meeting of the Interagency Task Force on Veterans Small Business Development. The...
75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Nuclear Treaty... meetings. SUMMARY: The Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification will... Applications International Corporation, 4001 North Fairfax Drive, Suite 300, Arlington, VA. FOR FURTHER...
76 FR 70913 - Retrospective Review Under Executive Order 13579
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... Fukushima Task Force Report. DATES: November 16, 2011. ADDRESSES: You can access publicly available... Enhancing Reactor Safety in the 21st Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident'' (Fukushima Task Force Report, ML111861807), was issued. The Commission has...
76 FR 55394 - Meeting of the Task Force on Community Preventive Services
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the...), Department of Health and Human Services (HHS). ACTION: Notice of meeting. SUMMARY: The Centers for Disease... (Task Force). The Task Force--an independent, nonfederal body of nationally known leaders in public...
76 FR 4115 - Meeting of the Task Force on Community Preventive Services
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the...), Department of Health and Human Services (HHS). ACTION: Notice of meeting. SUMMARY: The Centers for Disease... (Task Force). The Task Force--an independent, nonfederal body of nationally known leaders in public...
75 FR 63846 - Meeting of the Task Force on Community Preventive Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Meeting of the...), Department of Health and Human Services (HHS). ACTION: Notice of meeting. SUMMARY: The Centers for Disease... (Task Force). The Task Force is an independent, nonfederal body of nationally known leaders in public...
75 FR 48929 - Notice of Meeting of the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service (NRCS), United States... Triangle Park, North Carolina 27711; (919) 541-5400. The Agricultural Air Quality Task Force (AAQTF) will meet to continue discussions on air quality issues relating to agriculture. Additionally, the Livestock...
NASA replanning efforts continue
NASA Astrophysics Data System (ADS)
Katzoff, Judith A.
A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.
Report of NASA Lunar Energy Enterprise Case Study Task Force
NASA Technical Reports Server (NTRS)
Kearney, John J.
1989-01-01
The Lunar Energy Enterprise Case Study Task Force was asked to determine the economic viability and commercial potential of mining and extracting He-3 from the lunar soil, and transporting the material to Earth for use in a power-generating fusion reactor. Two other space energy projects, the Space Power Station (SPS) and the Lunar Power Station (LPS), were also reviewed because of several interrelated aspects of these projects. The specific findings of the Task Force are presented. Appendices contain related papers generated by individual Task Force Members.
Cervera, Ricard; Rodríguez-Pintó, Ignasi; Colafrancesco, Serena; Conti, Fabrizio; Valesini, Guido; Rosário, Cristina; Agmon-Levin, Nancy; Shoenfeld, Yehuda; Ferrão, Claudia; Faria, Raquel; Vasconcelos, Carlos; Signorelli, Flavio; Espinosa, Gerard
2014-07-01
The 'Task Force on Catastrophic Antiphospholipid Syndrome (CAPS)' was developed on the occasion of the 14th International Congress on Antiphospholipid Antibodies. The objectives of this Task Force were to assess the current knowledge on pathogenesis, clinical and laboratory features, diagnosis and classification, precipitating factors and treatment of this condition in order to address recommendations for future research. This article summarizes the studies analyzed by the Task Force, its recommendations and the future research agenda. Copyright © 2014 Elsevier B.V. All rights reserved.
Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets
Thumser, Zachary C.; Slifkin, Andrew B.; Beckler, Dylan T.; Marasco, Paul D.
2018-01-01
Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts’ law for explicit targets with vision (r2 = 0.96) and implicit targets (r2 = 0.89), but not as well-described for explicit targets without vision (r2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts’ law to quantify the relative speed-accuracy relationship of any given grasper. PMID:29773999
Ly, Quoc Hung; Alaoui, Amina; Erlicher, Silvano; Baly, Laurent
2010-01-19
Several spring-damper-mass models of the human body have been developed in order to reproduce the measured ground vertical reaction forces during human running (McMahon and Cheng, 1990; Ferris et al., 1999; Liu and Nigg, 2000). In particular, Liu and Nigg introduced at the lower level of their model, i.e. at the interface between the human body and the ground, a nonlinear element representing simultaneously the shoe midsoles and the ground flexibility. The ground reaction force is modelled as the force supported by this nonlinear element, whose parameters are identified from several sets of experimental data. This approach proved to be robust and quite accurate. However, it does not explicitly take into account the shoe and the ground properties. It turns out to be impossible to study the influence of shoe materials on the impact force, for instance for footwear design purposes. In this paper, a modification of the Liu and Nigg's model is suggested, where the original nonlinear element is replaced with a bi-layered spring-damper-mass model: the first layer represents the shoe midsole and the second layer is associated with the ground. Ground is modelled as an infinite elastic half-space. We have assumed a viscoelastic behaviour of the shoe material, so the damping of shoe material is taken into account. A methodology for the shoe-soles characterization is proposed and used together with the proposed model. A parametric study is then conducted and the influence of the shoe properties on the impact force is quantified. Moreover, it is shown that impact forces are strongly affected by the ground stiffness, which should therefore be considered as an essential parameter in the footwear design. Copyright 2009 Elsevier Ltd. All rights reserved.
A theoretical investigation of ground effects on USB configurations
NASA Technical Reports Server (NTRS)
Lan, C. E.
1979-01-01
A formulation predicts the variation of circulation forces and jet reaction forces in ground proximity as a function of ground height. The predicted results agree well with available experimental data. It is shown that the wing-alone theory is not capable of predicting the ground effect for USB configurations.
Covert face recognition in congenital prosopagnosia: a group study.
Rivolta, Davide; Palermo, Romina; Schmalzl, Laura; Coltheart, Max
2012-03-01
Even though people with congenital prosopagnosia (CP) never develop a normal ability to "overtly" recognize faces, some individuals show indices of "covert" (or implicit) face recognition. The aim of this study was to demonstrate covert face recognition in CP when participants could not overtly recognize the faces. Eleven people with CP completed three tasks assessing their overt face recognition ability, and three tasks assessing their "covert" face recognition: a Forced choice familiarity task, a Forced choice cued task, and a Priming task. Evidence of covert recognition was observed with the Forced choice familiarity task, but not the Priming task. In addition, we propose that the Forced choice cued task does not measure covert processing as such, but instead "provoked-overt" recognition. Our study clearly shows that people with CP demonstrate covert recognition for faces that they cannot overtly recognize, and that behavioural tasks vary in their sensitivity to detect covert recognition in CP. Copyright © 2011 Elsevier Srl. All rights reserved.
Report of the Fermilab ILC Citizens' Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations.more » While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.« less
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS
Klusendorf, Anna; Kernozek, Thomas
2016-01-01
ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. Conclusions When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level of Evidence Level 3 PMID:27274423
Remote battlefield observer technology (REBOT)
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Uhlmann, Jeffrey K.; Julier, Simon J.; Kuo, Eddy
1999-07-01
Battlefield situation awareness is the most fundamental prerequisite for effective command and control. Information about the state of the battlefield must be both timely and accurate. Imagery data is of particular importance because it can be directly used to monitor the deployment of enemy forces in a given area of interest, the traversability of the terrain in that area, as well as many other variables that are critical for tactical and force level planning. In this paper we describe prototype REmote Battlefield Observer Technology (REBOT) that can be deployed at specified locations and subsequently tasked to transmit high resolution panoramic imagery of its surrounding area. Although first generation REBOTs will be stationary platforms, the next generation will be autonomous ground vehicles capable of transporting themselves to specified locations. We argue that REBOT fills a critical gap in present situation awareness technologies. We expect to provide results of REBOT tests to be conducted at the 1999 Marines Advanced Warfighting Demonstration.
Lifelong Transfer Learning for Heterogeneous Teams of Agents in Sequential Decision Processes
2016-06-01
making (SDM) tasks in dynamic environments with simulated and physical robots . 15. SUBJECT TERMS Sequential decision making, lifelong learning, transfer...sequential decision-making (SDM) tasks in dynamic environments with both simple benchmark tasks and more complex aerial and ground robot tasks. Our work...and ground robots in the presence of disturbances: We applied our methods to the problem of learning controllers for robots with novel disturbances in
Objective Lightning Probability Forecasts for East-Central Florida Airports
NASA Technical Reports Server (NTRS)
Crawford, Winfred C.
2013-01-01
The forecasters at the National Weather Service in Melbourne, FL, (NWS MLB) identified a need to make more accurate lightning forecasts to help alleviate delays due to thunderstorms in the vicinity of several commercial airports in central Florida at which they are responsible for issuing terminal aerodrome forecasts. Such forecasts would also provide safer ground operations around terminals, and would be of value to Center Weather Service Units serving air traffic controllers in Florida. To improve the forecast, the AMU was tasked to develop an objective lightning probability forecast tool for the airports using data from the National Lightning Detection Network (NLDN). The resulting forecast tool is similar to that developed by the AMU to support space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) for use by the 45th Weather Squadron (45 WS) in previous tasks (Lambert and Wheeler 2005, Lambert 2007). The lightning probability forecasts are valid for the time periods and areas needed by the NWS MLB forecasters in the warm season months, defined in this task as May-September.
Runners do not push off the ground but fall forwards via a gravitational torque.
Romanov, Nicholas; Fletcher, Graham
2007-09-01
The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.
Limitations to maximum running speed on flat curves.
Chang, Young-Hui; Kram, Rodger
2007-03-01
Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.
Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.
2004-01-01
In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact Area indicates a likely connection with the deeper water-producing zone. No pesticides, explosives, volatile organic compounds, semivolatile organic compounds, organic halogens, or perchlorate were found in water samples from the Southern High Plains aquifer at the Range.
Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum
2016-03-01
Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon Michelle
The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. Themore » Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.« less
Investigation of Ground Water Pollution at Air Force Plant Number 4, Fort Worth Texas
1986-10-01
Dbtibz~o Ud~mxtm!UCTtq! - INVESTIGATION OF GROUND WATER POLLUTION AT - AIR FORCE PLANT NO. 4 FORT WORTH, TEXAS REPORT TO - UNITED STATES AIR FORCE...performed at the plant : Three pairs of Paluxy monitoring wells weze drilled along the south boundary of the plant to determine if pollutants discovered in...a nonhazardous dye tracer in selected wells. v U, INVESTIGATION OF POLLUTION OF GROUND WATER IN THE PALUXY AQUIFER AT AIR FORCE PLANT NO. 4, FORT
Increased reaction times and reduced response preparation already starts at middle age
Wolkorte, Ria; Kamphuis, Janine; Zijdewind, Inge
2014-01-01
Generalized slowing characterizes aging and there is some evidence to suggest that this slowing already starts at midlife. This study aims to assess reaction time changes while performing a concurrent low-force and high-force motor task in young and middle-aged subjects. The high-force motor task is designed to induce muscle fatigue and thereby progressively increase the attentional demands. Twenty-five young (20–30 years, 12 males) and 16 middle-aged (35–55 years, 9 males) adults performed an auditory two-choice reaction time task (CRT) with and without a concurrent low- or high-force motor task. The CRT required subjects to respond to two different stimuli that occurred with a probability of 70 or 30%. The motor task consisted of index finger abduction, at either 10% (10%-dual-task) or 30% (30%-dual-task) of maximal voluntary force. Cognitive task performance was measured as percentage of correct responses and reaction times. Middle-aged subjects responded slower on the frequent but more accurately on the infrequent stimuli of CRT than young subjects. Both young and middle-aged subjects showed increased errors and reaction times while performing under dual-task conditions and both outcome measures increased further under fatiguing conditions. Only under 30%-dual-task demands, an age-effect on dual-task performance was present. Both single- and dual-task conditions showed that already at mid-life response preparation is seriously declined and that subjects implement different strategies to perform a CRT task. PMID:24808862
TASK FORCE REPORT ON ASSESSMENT AND EVALUATION.
ERIC Educational Resources Information Center
MORRIS, ROBERT
THE TASK FORCE ON ASSESSMENT AND EVALUATION HAS BEEN CHARGED TO RECOMMEND THE MOST EFFECTIVE MEANS FOR ASSESSING AND EVALUATING THE SHORT-TERM ACTIVITIES AND THE LONG-TERM ACHIEVEMENTS OF ACTION FOR BOSTON COMMUNITY DEVELOPMENT. THE GENERAL OBJECTIVES OF THE TASK FORCE ARE--THE ANALYSIS OF DATA RELEVANT FOR EVALUATING DAY-BY-DAY DECISION-MAKING,…
Inter-Association Task Force Report on Image.
ERIC Educational Resources Information Center
Special Libraries Association, Washington, DC.
In 1988, the Board of Directors of the Special Libraries Association provided funding to a task force to gather data which would determine how certain segments of society perceive librarians, how librarians view themselves and their colleagues, and to provide recommendations for addressing the issue of image. The task force project consisted of…
Report of the Social Studies Task Force.
ERIC Educational Resources Information Center
Gathman, John; And Others
In 1982 the Colorado Board of Education directed the State Board of Education to organize task forces to address a variety of state educational needs. This report, presented by the Social Studies Task Force, explains the group's purposes and concerns, provides a social studies definition, and outlines the Colorado grades K-12 social studies…
Human Health Effects, Task Force Assessment, Preliminary Report.
ERIC Educational Resources Information Center
Aronow, Wilbert S.; And Others
Presented in this preliminary report is one of seven assessments conducted by a special task force of Project Clean Air, the Human Health Effects Task Force. The reports summarize assessments of the state of knowledge on various air pollution problems, particularly in California, and make tentative recommendations as to what the University of…
Report of the Task Force on School Health.
ERIC Educational Resources Information Center
Maryland State Dept. of Health and Mental Hygiene, Baltimore.
The 1990 Report of the Task Force on School Health examines the current status of Maryland's school health programs and proposes 16 recommendations designed to implement a comprehensive school health (CSH) program to meet the needs of all students. The report describes the Task Force, which was appointed in 1989. After presenting a background on…
A Status Report from the Task Force on Marketing Research.
ERIC Educational Resources Information Center
Keim, William A.; And Others
Concerned with changes in enrollment and credit hour patterns, the chancellor of the Kansas City Metropolitan Community Colleges (MCC) created a special Task Force to consider recommendations for marketing strategies for the 1978-79 academic year. The Task Force reviewed regional and district demography, area population trends and density, age and…
Task Force on Education Funding Equity, Accountability, and Partnerships. Final Report.
ERIC Educational Resources Information Center
Maryland State Dept. of Legislative Services, Annapolis.
In 1997, Maryland formed the Task Force on Education Funding Equity, Accountability, and Partnerships. The group made a comprehensive review of education funding and programs in grades K-12 to ensure that students throughout Maryland have an equal opportunity for academic success. The task force's final report features the membership roster, the…
75 FR 43943 - Defense Science Board; Task Force on Nuclear Treaty Monitoring and Verification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Nuclear Treaty... meetings. SUMMARY: The Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification will... held September 13-14, and 25-26, 2010. ADDRESSES: The meetings will be held at Science Applications...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... Adoption of Technical Specifications Task Force Traveler TSTF-500, Revision 2, ``DC Electrical Rewrite... Technical Specifications Task Force (TSTF) Traveler TSTF-500, Revision 2, ``DC Electrical Rewrite--Update to... Reactor Systems Engineer, Technical Specifications Branch, Mail Stop: O-7 C2A, Division of Inspection and...
28 CFR 16.105 - Exemption of Foreign Terrorist Tracking Task Force System.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exemption of Foreign Terrorist Tracking Task Force System. 16.105 Section 16.105 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR... of Foreign Terrorist Tracking Task Force System. (a) The following system of records is exempt from 5...
26 CFR 54.9815-2713T - Coverage of preventive health services (temporary).
Code of Federal Regulations, 2011 CFR
2011-04-01
... the current recommendations of the United States Preventive Services Task Force with respect to the... States Preventive Services Task Force with respect to the individual. The provider bills the plan for an... A or B in the current recommendations of the United States Preventive Services Task Force with...
National Task Force on Student Aid Problems. Final Report.
ERIC Educational Resources Information Center
1975
This document presents a full discussion of the activities, findings, and recommendations of the National Task Force on Student Aid Problems. The task force was a voluntary association of concerned and interested agencies and organizations. Its only standing came from the support of those directly concerned with student aid problems. By design and…
Task Force on Education Funding Equity, Accountability, and Partnerships. Preliminary Report.
ERIC Educational Resources Information Center
Maryland State Dept. of Legislative Services, Annapolis.
In 1997, Maryland formed the Task Force on Education Funding Equity, Accountability, and Partnerships to ensure that students throughout Maryland have an equal opportunity for academic success. The Task Force's preliminary report features a comprehensive review of education funding and programs in grades K-12. The report presents membership and…
78 FR 44034 - Petition for Rulemaking Submitted by the Natural Resources Defense Council, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... the Fukushima Dai-ichi Accident,'' (Fukushima Task Force Report, ADAMS Accession No. ML111861807..., pages 43-46, of the Fukushima Task Force Report, which discusses the enhancement of spent fuel pool... Commission was still in the process of reviewing the Fukushima Task Force Report, and the NRC did not...
Initial Report of the Task Force on Cultural Competence Education in the Health Sciences
ERIC Educational Resources Information Center
New Mexico Higher Education Department, 2007
2007-01-01
This report summarizes the findings and recommendations of the Task Force on Cultural Competence Education and represents the distillation of the Task Force's efforts to fulfill its legislative charge. The report is intended to facilitate a statewide conversation about the health services provided to New Mexico's multicultural citizenry. It…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; Defense Task Force on Sexual Assault in the Military Services AGENCY: Department of Defense (DoD). ACTION: Termination of... Department of Defense gives notice that it is terminating the Defense Task Force on Sexual Assault in the...
ERIC Educational Resources Information Center
Wisconsin Governor's Office, Madison.
This report by the Blue Ribbon Task Force on Wisconsin's Telecommunications Infrastructure considers infrastructure to be the common network that connects individual residences, businesses, and agencies, rather than the individual systems and equipment themselves. The task force recognizes that advances in telecommunications technologies and…
The Washington State Task Force on Student Transportation Safety. Final Report.
ERIC Educational Resources Information Center
Washington State Legislature, Olympia.
Findings of a study conducted by the Washington State Task Force on Student Transportation Safety are presented in this report. The data-collection process involved four phases: meetings with experts in student transportation and pedestrian safety; public meetings, informational work sessions, and tours of problems areas; task force meetings; and…
Youth Employment. Final Recommendations of the State Superintendent's Task Force.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison.
This report contains the final recommendations of the task force on youth employment for the state of Wisconsin. The task force was specifically charged with studying issues related to working teenagers, reviewing existing laws and regulations on child labor, and developing recommendations to ensure that when teenagers work, their jobs do not…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... DEPARTMENT OF JUSTICE Task Force on Research on Violence Against American Indian and Alaska Native Women; Meeting AGENCY: Office on Violence Against Women, United States Department of Justice. ACTION... public meeting of the Task Force on Research on Violence Against American Indian and Alaska Native Women...
32 CFR 700.1053 - Commander of a task force.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...
32 CFR 700.1053 - Commander of a task force.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...
32 CFR 700.1053 - Commander of a task force.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Commander of a task force. 700.1053 Section 700.1053 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any...
77 FR 59627 - Homeland Security Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... purpose of reviewing and deliberating on recommendations by the HSAC's Cyber Skills Task Force. DATES: The.... The HSAC will meet to review and deliberate on the Cyber Skills Task Force report of findings and... details and the Cyber Skills Task Force report will be provided to interested members of the public at the...
Report of the Task Force on Declining Enrollment. Third Revision.
ERIC Educational Resources Information Center
Highline Public Schools, Seattle, WA.
The purpose of this task force was to study the program, facilities, and alternatives of the Highline School District as they relate to enrollment decline. Specifically, the task force was to establish criteria for identifying facilities where changes should be considered; identify and prioritize alternatives for use of excess classroom space; and…
77 FR 1913 - Notice of Meeting of the Agricultural Air Quality Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... Conservation Service Notice of Meeting of the Agricultural Air Quality Task Force AGENCY: Natural Resources...), Agricultural Air Quality Task Force (AAQTF) will meet to continue discussions on critical air quality issues... relationship between agricultural production and air quality. The meeting is open to the public, and a draft...
Adaptive changes in anticipatory postural adjustments with novel and familiar postural supports.
Hall, Leanne M; Brauer, Sandra; Horak, Fay; Hodges, Paul W
2010-02-01
Anticipatory postural adjustments (APAs) serve to stabilize posture prior to initiation of voluntary movement. This study examined the effects of changes in postural support on APAs using novel and familiar support paradigms. We also investigated whether postural strategies were refined with practice and how the CNS responded when multiple supports were available. Twelve healthy subjects stood on dual force platforms and performed 20 randomized left and right rapid leg-lift tasks in response to a visual cue under four conditions: unsupported, bilateral handgrip, bite plate, and a combined handgrip and bite plate condition. Vertical ground reaction forces, electromyography of limb, trunk and jaw muscles, and forces exerted on the support apparatus were recorded. Shift in center-of-pressure amplitude and duration were reduced with increased support. Muscles were recruited in advance of the focal movement when able to contribute to stability, and activity was modulated based on the amount of support available. The CNS adapted anticipatory postural strategies immediately with changes in condition regardless of familiarity with the support; however, adaptation was only complete at the first repetition in conditions that involved familiar support strategies. Tasks that involved a novel bite strategy continued to adapt with practice. In the multiple support condition, both hand and bite strategies were immediately incorporated; however, the contribution of each was not identical to conditions where supports were provided individually. This study emphasizes the flexibility of the CNS to organize postural strategies to meet the demands of postural stability in both familiar and novel situations.
Key Personnel and Organizations of the Soviet Military High Command.
1987-04-01
Europe--the Group of Soviet Forces Germany, Northern Group of Forces ( Poland ), Central Group of Forces (Czechoslovakia), and Southern Group of Forces...units of the groups of Soviet forces in the GDR, Poland , and Czechoslovakia; the air and ground force units from the Baltic, Belorussian, and Carpathian...military districts; the naval units of the Baltic Fleet; and the air, ground, and naval forces of the GDR, Poland , and Czechoslovakia (see Fig. 5a
Biomechanics of jumping in the flea.
Sutton, Gregory P; Burrows, Malcolm
2011-03-01
It has long been established that fleas jump by storing and releasing energy in a cuticular spring, but it is not known how forces from that spring are transmitted to the ground. One hypothesis is that the recoil of the spring pushes the trochanter onto the ground, thereby generating the jump. A second hypothesis is that the recoil of the spring acts through a lever system to push the tibia and tarsus onto the ground. To decide which of these two hypotheses is correct, we built a kinetic model to simulate the different possible velocities and accelerations produced by each proposed process and compared those simulations with the kinematics measured from high-speed images of natural jumping. The in vivo velocity and acceleration kinematics are consistent with the model that directs ground forces through the tibia and tarsus. Moreover, in some natural jumps there was no contact between the trochanter and the ground. There were also no observable differences between the kinematics of jumps that began with the trochanter on the ground and jumps that did not. Scanning electron microscopy showed that the tibia and tarsus have spines appropriate for applying forces to the ground, whereas no such structures were seen on the trochanter. Based on these observations, we discount the hypothesis that fleas use their trochantera to apply forces to the ground and conclude that fleas jump by applying forces to the ground through the end of the tibiae.
1988-01-01
Settlements ........ 2.6-21 2.6.2.7.4.2 Total Settleme. t ... 2.6-21 2.6.2.7.4.3 Lateral Deformations ........ 2.6-22 2.6.2.7.5 Limits for Soil Loads and...otherwise specified, such as construction loads , etc. 2.1-2 F - Loads due to lateral and vertical pressure of incidental liquids. H - Loads due to lateral ...design loads , as well as forces and moments imposed by the continuity of the structural framing system. Columns should be designed to sustain all design
ROTEX-TRIIFEX: Proposal for a joint FRG-USA telerobotic flight experiment
NASA Technical Reports Server (NTRS)
Hirzinger, G.; Bejczy, A. K.
1989-01-01
The concepts and main elements of a RObot Technology EXperiment (ROTEX) proposed to fly with the next German spacelab mission, D2, are presented. It provides a 1 meter size, six axis robot inside a spacelab rack, equipped with a multisensory gripper (force-torque sensors, an array of range finders, and mini stereo cameras). The robot will perform assembly and servicing tasks in a generic way, and will grasp a floating object. The man machine and supervisory control concepts for teleoperation from the spacelab and from ground are discussed. The predictive estimation schemes for an extensive use of time-delay compensating 3D computer graphics are explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon Michelle
The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force (TF1) includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, and identification of fuel performance and systemmore » codes applicable to ATF evaluation. The Cladding and Core Materials (TF2) and Fuel Concepts (TF3) task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment task force is chaired by Shannon Bragg-Sitton (Idaho National Laboratory [INL], U.S.), the Cladding Task Force is chaired by Marie Moatti (Electricite de France [EdF], France), and the Fuels Task Force is chaired by a Masaki Kurata (Japan Atomic Energy Agency [JAEA], Japan). The original Expert Group mandate was established for June 2014 to June 2016. In April 2016 the Expert Group voted to extend the mandate one additional year to June 2017 in order to complete the task force deliverables; this request was subsequently approved by the Nuclear Science Committee. This report provides an update on the status Systems Assessment Task Force activities.« less
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.
Enhanced Training by a Systemic Governance of Force Capabilities, Tasks, and Processes
2013-06-01
18th ICCRTS “C2 in Underdeveloped, Degraded and Denied Operational Environments” Enhanced Training by a Systemic Governance of Force Capabilities...TITLE AND SUBTITLE Enhanced Training by a Systemic Governance of Force Capabilities, Tasks, and Processes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...assess, evaluate and accredit the Swedish forces. This paper presents a Systemic Governance of Capabilities, Tasks, and Processes applied to the
Geutjens, C A; Clayton, H M; Kaiser, L J
2008-03-01
The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P<0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.
Evaluation of pliers' grip spans in the maximum gripping task and sub-maximum cutting task.
Kim, Dae-Min; Kong, Yong-Ku
2016-12-01
A total of 25 males participated to investigate the effects of the grip spans of pliers on the total grip force, individual finger forces and muscle activities in the maximum gripping task and wire-cutting tasks. In the maximum gripping task, results showed that the 50-mm grip span had significantly higher total grip strength than the other grip spans. In the cutting task, the 50-mm grip span also showed significantly higher grip strength than the 65-mm and 80-mm grip spans, whereas the muscle activities showed a higher value at 80-mm grip span. The ratios of cutting force to maximum grip strength were also investigated. Ratios of 30.3%, 31.3% and 41.3% were obtained by grip spans of 50-mm, 65-mm, and 80-mm, respectively. Thus, the 50-mm grip span for pliers might be recommended to provide maximum exertion in gripping tasks, as well as lower maximum-cutting force ratios in the cutting tasks.
Salloum, Ramzi G; Kohler, Racquel E; Jensen, Gail A; Sheridan, Stacey L; Carpenter, William R; Biddle, Andrea K
2014-03-01
Medicare covers several cancer screening tests not currently recommended by the U.S. Preventive Services Task Force (Task Force). In September 2002, the Task Force relaxed the upper age limit of 70 years for breast cancer screening recommendations, and in March 2003 an upper age limit of 65 years was introduced for cervical cancer screening recommendations. We assessed whether mammogram and Pap test utilization among women with Medicare coverage is influenced by changes in the Task Force's recommendations for screening. We identified female Medicare beneficiaries aged 66-80 years and used bivariate probit regression to examine the receipt of breast (mammogram) and cervical (Pap test) cancer screening reflecting changes in the Task Force recommendations. We analyzed 9,760 Medicare Current Beneficiary Survey responses from 2001 to 2007. More than two-thirds reported receiving a mammogram and more than one-third a Pap test in the previous 2 years. Lack of recommendation was given as a reason for not getting screened among the majority (51% for mammogram and 75% for Pap). After controlling for beneficiary-level socioeconomic characteristics and access to care factors, we did not observe a significant change in breast and cervical cancer screening patterns following the changes in Task Force recommendations. Although there is evidence that many Medicare beneficiaries adhere to screening guidelines, some women may be receiving non-recommended screening services covered by Medicare.
Deficits in inhibitory force control in young adults with ADHD.
Neely, Kristina A; Wang, Peiyuan; Chennavasin, Amanda P; Samimy, Shaadee; Tucker, Jacqueline; Merida, Andrea; Perez-Edgar, Koraly; Huang-Pollock, Cynthia
2017-05-01
Poor inhibitory control is a well-established cognitive correlate of adults with ADHD. However, the simple reaction time (RT) task used in a majority of studies records performance errors only via the presence or absence of a single key press. This all-or-nothing response makes it impossible to capture subtle differences in underlying processes that shape performance. Subsequently, all-or-nothing tasks may underestimate the prevalence of executive function deficits in ADHD. The current study measured inhibitory control using a standard Go/No-Go RT task and a more sensitive continuous grip force task among adults with (N=51, 22 female) and without (N=51, 29 female) ADHD. Compared to adults without ADHD, adults with ADHD made more failed inhibits in the classic Go/No-Go paradigm and produced greater and more variable force during motor inhibition. The amount of force produced on failed inhibits was a stronger predictor of ADHD-related symptoms than the number of commissions in the standard RT task. Adults with ADHD did not differ from those without ADHD on the mean force and variability of force produced in Go trials. These findings suggest that the use of a precise and continuous motor task, such as the force task used here, provides additional information about the nature of inhibitory motor control in adults with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of general principles of person transfer techniques on low back joint extension moment.
Katsuhira, Junji; Yamasaki, Syun; Yamamoto, Sumiko; Maruyama, Hitoshi
2010-01-01
The purpose of this study was to examine the effects of general principles of person transfer techniques specifically on the low back joint extension moment. These effects were examined by the following measurable quantitative parameters: 1) trunk bending angle, 2) knee flexion angle, 3) distance between the centers of gravity (COGs) of the caregiver and patient, representing the distance between the caregiver and patient, and 4) the vertical component of the ground reaction force representing the amount of the weight-bearing load on the caregiver's low back during transfers with and without assistive devices. Twenty students each took the role of caregiver, and one healthy adult simulated a patient. The participants performed three different transfer tasks: without any assistive device, with the patient wearing a low back belt, and with the caregiver using a transfer board. We found that the distance between the COGs and the vertical component of the ground reaction force, but not the trunk bending and knee flexion angles, were the variables that affected the low back joint extension moment. Our results suggest that the general principle of decreasing the distance between COGs is most effective for decreasing the low back joint extension moment during transfers under all conditions.
Farahpour, Nader; Jafarnezhad, AmirAli; Damavandi, Mohsen; Bakhtiari, Abbas; Allard, Paul
2016-06-14
The link between gait parameters and foot abnormalities in association with low back pain is not well understood. The objective of this study was to investigate the effects of excessive foot pronation as well as the association of LBP with excessive foot pronation on the GRF components during shod walking. Forty-five subjects were equally divided into a control group, a group of subjects with pronated feet only, and another group with pronated feet and LBP. Ground reaction forces were analyzed during shod walking. Foot pronation without low back pain was associated with increased lateral-medial ground reaction force, impulse, and time to peak of all reaction forces in heel contact phase (p<0.03). In low back pain patients with pronated foot, greater vertical reaction forces (p=0.001) and loading rate, and time to peak on propulsion force were observed compared to pronated foot without low back pain group. Impulse in posterior-anterior reaction force was smaller in the able-bodied group with normal foot than in the other groups (p<0.05). Positive peak of free moments of the LBP group was significantly greater than that in other groups (p<0.05). In conclusion, foot pronation alone was not associated with elevated vertical ground reaction forces. While, low back pain patients with foot pronation displayed higher vertical ground reaction force as well as higher loading rate. Present results reveal that gait ground reaction force components in low back pain patients with pronated foot may have clinical values on the prognosis and rehabilitation of mechanical LBP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finger Interdependence: Linking the Kinetic and Kinematic Variables
Kim, Sun Wook; Shim, Jae Kun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2008-01-01
We studied the dependence between voluntary motion of a finger and pressing forces produced by the tips of other fingers of the hand. Subjects moved one of the fingers (task finger) of the right hand trying to follow a cyclic, ramp-like flexion-extension template at different frequencies. The other fingers (slave fingers) were restricted from moving; their flexion forces were recorded and analyzed. Index finger motion caused the smallest force production by the slave fingers. Larger forces were produced by the neighbors of the task finger; these forces showed strong modulation over the range of motion of the task finger. The enslaved forces were higher during the flexion phase of the movement cycle as compared to the extension phase. The index of enslaving expressed in N/rad was higher when the task finger moved through the more flexed postures. The dependence of enslaving on both range and direction of task finger motion poses problems for methods of analysis of finger coordination based on an assumption of universal matrices of finger inter-dependence. PMID:18255182
Report of the MLA Task Force on Evaluating Scholarship for Tenure and Promotion
ERIC Educational Resources Information Center
Modern Language Association, 2007
2007-01-01
In 2004 the Executive Council of the Modern Language Association of America (MLA) created a task force to examine current standards and emerging trends in publication requirements for tenure and promotion in English and foreign language departments in the United States. To fulfill its charge, the task force reviewed numerous studies, reports, and…
Short-Circuiting the Bureaucracy: Policy Origins in Education.
ERIC Educational Resources Information Center
Graham, Hugh Davis
The Great Society's secret task forces created by Lyndon Johnson, particularly in the case-study area of federal education policy, show the use and misuse of the task force device. Modern use of it began with John F. Kennedy. Although he used the task force device effectively sometimes, he did not use it effectively in his educational programs in…
77 FR 39724 - U.S. Coral Reef Task Force Public Meeting and Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
...-DS61200000] U.S. Coral Reef Task Force Public Meeting and Public Comment AGENCY: Fish and Wildlife Service... Wildlife Service (Service), announce a public meeting of the U.S. Coral Reef Task Force (USCRTF) and a... strengthen U.S. government actions to better preserve and protect coral reef ecosystems. The Departments of...
Idaho Rural Education Task Force. Public School Information. Legislative Report, 2008
ERIC Educational Resources Information Center
Idaho State Department of Education, 2008
2008-01-01
The Idaho Rural Education Task Force was formed in July 2007 with the goal of proposing and examining solutions to challenges facing rural schools. The task force's work this year has focused on three areas: recruitment and retention of highly qualified teachers, funding shortages related to insurance costs and staff allowances, and the technology…
Lifelong Learning NCES Task Force: Final Report, Volume I. Working Paper Series.
ERIC Educational Resources Information Center
Binkley, Marilyn; Hudson, Lisa; Knepper, Paula; Kolstad, Andy; Stowe, Peter; Wirt, John
In September 1998, the National Center for Education Statistics (NCES) established a 1-year task force to review the NCES's role concerning lifelong learning. The eight-member task force established a working definition of lifelong learning ("a process or system through which individuals are able and willing to learn at all stages of life,…
The webinar was requested by the Justus-Warren Heart Disease and Stroke Prevention Task Force. From their website, “The task force was established in 1995 in North Carolina to provide statewide leadership for the prevention and management of cardiovascular disease. Meetings are...
History and background of the California Oak Mortality Task Force (COMTF)
Mark R. Stanley
2006-01-01
The California Oak Mortality Task Force was formed in August 2000 as a consensus group to address the impacts caused by Phytophthora ramorum. It is over 1000 strong with over 80 agencies, universities, public, and private groups currently involved. The Task Force has been a tremendous success and may serve as model for other similar efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... Association (``SIFMA'') formed the MMI Blue-Sky Task Force (``Task Force'') to address systemic and unique... processing. The Task Force, along other money market industry members,\\8\\ determined that DTC's current MMI... amount or proceeds after the 3 p.m. E.T. deadline for RTP instructions.\\9\\ Accordingly, DTC is proposing...
ERIC Educational Resources Information Center
Janke, Emily M.
2014-01-01
In May 2012, University of North Carolina (UNC) President Tom Ross simultaneously commissioned two task forces to develop indicators that all UNC campuses could use to measure "progress in community engagement and economic development." The charge to the Community Engagement Task Force and the Economic Development Task Force was to…
77 FR 16483 - Petition for Rulemaking Submitted by the Natural Resources Defense Council, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... Enhancing Reactor Safety in the 21st Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident'' (Fukushima Task Force Report, ADAMS Accession No. ML111861807), dated July 12..., of the Fukushima Task Force Report, regarding the enhancement of the ability of nuclear power plants...
San Juan College Task Force on Innovation 1995 Report.
ERIC Educational Resources Information Center
Moore, Nelle
In fall 1994, San Juan College, in New Mexico, established the Task Force on Innovation to examine changes in the paradigm of education and how those changes might affect the college. The Task Force determined that the primary driver of change in education was technology, and specifically the increasing number of means and ease of access to…
Report of the Task Force on Continuing Education and Non-Credit Instruction.
ERIC Educational Resources Information Center
Ernest, Richard J.; And Others
The Task Force on Continuing Education and Non-Credit Instruction was appointed to develop specific strategies for expanding lifelong learning and non-credit instruction in the Virginia community colleges. The task force reviewed a report on the state funding of non-credit instruction; wrote to the community college coordinating offices in 17…
Search skip specific nav links Home arrow News arrow June 27, 2012 ACHP Rightsizing Task Force to Meet in Cleveland The ACHP's Rightsizing Task Force will be making a visit to Cleveland, Ohio, June 25-26 for a tour and a listening session and open meeting. The task force will host a public meeting on June 26 at
ERIC Educational Resources Information Center
Minnesota Higher Education Center against Violence and Abuse, St. Paul.
In response to a 1993 Minnesota crime bill, four task forces reviewed violence education in professional higher education programs and made recommendations for legislation and law enforcement. The four task forces--in Law, Health Services, Human Services, and Education--made several critical recommendations that applied across professions:…
National Library of Education Advisory Task Force. Briefing Book.
ERIC Educational Resources Information Center
National Library of Education (ED/OERI), Washington, DC.
This briefing book with appendices was prepared for the initial meetings of the National Library of Education Advisory Task Force (NLE/ATF), in March 1996. An agenda for this meeting is included in the briefing book. The first section, "Governing Authorities for NLE and the Advisory Task Force," contains a copy of Public Law 103-227,…
Challenges faced by ice sheet projections: lessons from the SeaRISE effort
NASA Astrophysics Data System (ADS)
Nowicki, S.
2013-12-01
Projecting the future evolution of the Greenland and Antarctic ice sheets is a problem of enormous societal importance, as ice sheet influence our future sea levels. This crucial issue is however a non trivial task, as demonstrated by the Sea level Response to Ice Sheet Evolution (SeaRISE) effort: prescribing simple external forcings to a group of ice sheet models results in a spread in responses. Understanding the source of the diversity in the model results is therefore crucial in order to reduce the uncertainty in the projection. Just as in any future climate simulation, the analysis presented here demonstrates that the model spread in the SeaRISE effort is due to a number of factors. First is the problem of obtaining an initial configuration for the projection. The two commonly used methods, interglacial spin-up or data assimilation, have both advantages and drawbacks, and will affect the determination of fields that cannot be measured (such as basal slipperiness). Second is the uncertainty in actual observations, which includes but is not limited to surface mass balance, basal topography, ice thickness, and surface velocities. An additional issue with these observations is that they can be transient quantities which are not measured at the same time, but ice sheet models require them to be simultaneous. Third is the uncertainty in the models' physics and discretization, which is limited by our understanding (or lack of understanding) of crucial processes that often occur at subgrid scale relative to the resolution used by continental ice sheet models, and thus require parameterization. Grounding line migration and sliding laws are such an example. Fourth is the determination of the future forcing scenarios and their implementation as the external forcing. Unfortunately, as demonstrated in this analysis, all ice sheet models face these limitations to some degree, so that it is extremely difficult to identify a set of models and projections that should be trusted in preference to others. One model might be more suitable for assessing the impact of a warmer atmosphere because of its initialization procedure, but its deficiencies in capturing grounding line migration, for example, might make its projections for oceanic forcing unreliable. More work is thus required to evaluate individual ice sheet models' skills in projection, but this crucial and challenging task is left for future studies.
Hernandez, Rafael; Onar-Thomas, Arzu; Travascio, Francesco; Asfour, Shihab
2017-11-01
Laparoscopic training with visual force feedback can lead to immediate improvements in force moderation. However, the long-term retention of this kind of learning and its potential decay are yet unclear. A laparoscopic resection task and force sensing apparatus were designed to assess the benefits of visual force feedback training. Twenty-two male university students with no previous experience in laparoscopy underwent relevant FLS proficiency training. Participants were randomly assigned to either a control or treatment group. Both groups trained on the task for 2 weeks as follows: initial baseline, sixteen training trials, and post-test immediately after. The treatment group had visual force feedback during training, whereas the control group did not. Participants then performed four weekly test trials to assess long-term retention of training. Outcomes recorded were maximum pulling and pushing forces, completion time, and rated task difficulty. Extreme maximum pulling force values were tapered throughout both the training and retention periods. Average maximum pushing forces were significantly lowered towards the end of training and during retention period. No significant decay of applied force learning was found during the 4-week retention period. Completion time and rated task difficulty were higher during training, but results indicate that the difference eventually fades during the retention period. Significant differences in aptitude across participants were found. Visual force feedback training improves on certain aspects of force moderation in a laparoscopic resection task. Results suggest that with enough training there is no significant decay of learning within the first month of the retention period. It is essential to account for differences in aptitude between individuals in this type of longitudinal research. This study shows how an inexpensive force measuring system can be used with an FLS Trainer System after some retrofitting. Surgical instructors can develop their own tasks and adjust force feedback levels accordingly.
A teleoperation training simulator with visual and kinesthetic force virtual reality
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul
1992-01-01
A force-reflecting teleoperation training simulator with a high-fidelity real-time graphics display has been developed for operator training. A novel feature of this simulator is that it enables the operator to feel contact forces and torques through a force-reflecting controller during the execution of the simulated peg-in-hole task, providing the operator with the feel of visual and kinesthetic force virtual reality. A peg-in-hole task is used in our simulated teleoperation trainer as a generic teleoperation task. A quasi-static analysis of a two-dimensional peg-in-hole task model has been extended to a three-dimensional model analysis to compute contact forces and torques for a virtual realization of kinesthetic force feedback. The simulator allows the user to specify force reflection gains and stiffness (compliance) values of the manipulator hand for both the three translational and the three rotational axes in Cartesian space. Three viewing modes are provided for graphics display: single view, two split views, and stereoscopic view.
Training and Tactical Operationally Responsive Space Operations
NASA Astrophysics Data System (ADS)
Sorensen, B.; Strunce, R., Jr.
Current space assets managed by traditional space system control resources provide communication, navigation, intelligence, surveillance, and reconnaissance (ISR) capabilities using satellites that are designed for long life and high reliability. The next generation Operationally Responsive Space (ORS) systems are aimed at providing operational space capabilities which will provide flexibility and responsiveness to the tactical battlefield commander. These capabilities do not exist today. The ORS communication, navigation, and ISR satellites are being designed to replace or supplement existing systems in order to enhance the current space force. These systems are expected to rapidly meet near term space needs of the tactical forces. The ORS concept includes new tactical satellites specifically designed to support contingency operations such as increased communication bandwidth and ISR imagery over the theater for a limited period to support air, ground, and naval force mission. The Concept of Operations (CONOPS) that exists today specifies that in addition to operational control of the satellite, the tasking and scheduling of the ORS tactical satellite for mission data collection in support of the tactical warfighter will be accomplished within the Virtual Mission Operations Center (VMOC). This is very similar to what is currently being accomplished in a fixed Mission Operations Center on existing traditional ISR satellites. The VMOC is merely a distributed environment and the CONOPS remain virtually the same. As a result, there is a significant drawback to the current ORS CONOPS that does not account for the full potential of the ORS paradigm for supporting tactical forces. Although the CONOPS approach may be appropriate for experimental Tactical Satellites (TacSat), it ignores the issues associated with the In-Theater Commander's need to own and operate his dedicated TacSat for most effective warfighting as well as the Warfighter specific CONOPS. What is needed to realize the full potential of the ORS approach to the support of in-theater tactical forces is the development of satellite tasking, interface, and data retrieval capabilities and mission operations approaches from a warfighter centered perspective, and the development of realistic training and simulation capabilities that will allow development, demonstration, and assessment of ORS tactical CONOPS. A system for Training and Tactical ORS Operations (TATOO) is currently being developed. This system will support development and evaluation of ORS specific CONOPS approaches, and training and evaluation of those CONOPS implementations through dedicated training capabilities, facilities, and exercises. TATOO will support the operational side of ORS and will merge with the revolutionary ORS spacecraft development and deployment processes to make the ORS paradigm a reality. TATOO's primary objective is to support the In-Theater Commander and Warfighter by developing, training, and assessing ORS mission CONOPS for In-Theater tasking, scheduling, interface, and data retrieval for TacSats owned by In-Theater Commanders. TATOO provides a laboratory/classroom environment for the development, test and evaluation of ORS Tactical Mission CONOPS for In-Theater ORS operations. The TATOO laboratory will also be used to develop, evaluate, and document ORS Mission CONOPS for tactical ISR and other ORS missions. Within this framework, the laboratory/classroom can be used to develop the necessary training materials and procedures, as well as conduct training exercises that emphasize the training of In-Theater personal with regard to: Tactical Ground Station Mission Operations; Tactical Operations for Mission Tasking and Scheduling; Tactical Mission Data Retrieval; and, Support for Warfighter Operations.
Harrison, C H; Laussen, P C
2008-05-01
Donation after cardiac death (DCD) remains controversial in some pediatric institutions. An evidence-based, consensus-building approach to setting institutional policy about DCD can address the controversy openly and identify common ground. To resolve an extended internal debate regarding DCD policy at Children's Hospital Boston, a multidisciplinary task force was commissioned to engage in fact finding and deliberations about clinical and ethical issues in pediatric DCD, and attempt to reach consensus regarding the development of a protocol for pediatric DCD. Issues examined included values and attitudes of staff, families, and the public; number of possible candidates for DCD at the hospital; risks and benefits for child donors and their families; and research needs. Consensus was reached on a set of foundational ethical principles for pediatric DCD. With assistance from the local organ procurement organization (OPO), the task force developed a protocol for pediatric kidney DCD which most members believed could meet all the requirements of the foundational ethical principles. Complete consensus on the use of the protocol was not reached; however, almost all members supported initiation of kidney DCD for older pediatric patients who had wished to be organ donors. The hospital has implemented the protocol on this limited basis and established a process for considering proposals to expand the eligible donor population and include other organs.
Fox, Geraldine S; Stock, Saundra; Briscoe, Gregory W; Beck, Gary L; Horton, Rita; Hunt, Jeffrey I; Liu, Howard Y; Partner Rutter, Ashley; Sexson, Sandra; Schlozman, Steven C; Stubbe, Dorothy E; Stuber, Margaret L
2012-11-01
A new Child and Adolescent Psychiatry in Medical Education (CAPME) Task Force, sponsored by the Association for Directors of Medical Student Education in Psychiatry (ADMSEP), has created an inter-organizational partnership between child and adolescent psychiatry (CAP) educators and medical student educators in psychiatry. This paper outlines the task force design and strategic plan to address the long-standing dearth of CAP training for medical students. The CAPME ADMSEP Task Force, formed in 2010, identified common challenges to teaching CAP among ADMSEP's CAPME Task Force members, utilizing focus-group discussions and a needs-assessment survey. The Task Force was organized into five major sections, with inter-organizational action plans to address identified areas of need, such as portable modules and development of benchmark CAP competencies. The authors predict that all new physicians, regardless of specialty, will be better trained in CAP. Increased exposure may also improve recruitment into this underserved area.
Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma.
Wells, Samuel A; Asa, Sylvia L; Dralle, Henning; Elisei, Rossella; Evans, Douglas B; Gagel, Robert F; Lee, Nancy; Machens, Andreas; Moley, Jeffrey F; Pacini, Furio; Raue, Friedhelm; Frank-Raue, Karin; Robinson, Bruce; Rosenthal, M Sara; Santoro, Massimo; Schlumberger, Martin; Shah, Manisha; Waguespack, Steven G
2015-06-01
The American Thyroid Association appointed a Task Force of experts to revise the original Medullary Thyroid Carcinoma: Management Guidelines of the American Thyroid Association. The Task Force identified relevant articles using a systematic PubMed search, supplemented with additional published materials, and then created evidence-based recommendations, which were set in categories using criteria adapted from the United States Preventive Services Task Force Agency for Healthcare Research and Quality. The original guidelines provided abundant source material and an excellent organizational structure that served as the basis for the current revised document. The revised guidelines are focused primarily on the diagnosis and treatment of patients with sporadic medullary thyroid carcinoma (MTC) and hereditary MTC. The Task Force developed 67 evidence-based recommendations to assist clinicians in the care of patients with MTC. The Task Force considers the recommendations to represent current, rational, and optimal medical practice.
Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma
Asa, Sylvia L.; Dralle, Henning; Elisei, Rossella; Evans, Douglas B.; Gagel, Robert F.; Lee, Nancy; Machens, Andreas; Moley, Jeffrey F.; Pacini, Furio; Raue, Friedhelm; Frank-Raue, Karin; Robinson, Bruce; Rosenthal, M. Sara; Santoro, Massimo; Schlumberger, Martin; Shah, Manisha; Waguespack, Steven G.
2015-01-01
Introduction: The American Thyroid Association appointed a Task Force of experts to revise the original Medullary Thyroid Carcinoma: Management Guidelines of the American Thyroid Association. Methods: The Task Force identified relevant articles using a systematic PubMed search, supplemented with additional published materials, and then created evidence-based recommendations, which were set in categories using criteria adapted from the United States Preventive Services Task Force Agency for Healthcare Research and Quality. The original guidelines provided abundant source material and an excellent organizational structure that served as the basis for the current revised document. Results: The revised guidelines are focused primarily on the diagnosis and treatment of patients with sporadic medullary thyroid carcinoma (MTC) and hereditary MTC. Conclusions: The Task Force developed 67 evidence-based recommendations to assist clinicians in the care of patients with MTC. The Task Force considers the recommendations to represent current, rational, and optimal medical practice. PMID:25810047
Broder, Hillary L
2014-11-01
Objective : This paper describes the process and outcomes of the 2013 American Cleft Palate-Craniofacial Association task force on Holistic Outcomes. The goals and membership of the task force are presented. Methods : Using internet communication, the group introduced themselves, shared ideas and information related to holistic assessment and implementation of using a validated holistic measure, the Child Oral Health Impact Profile (COHIP) at participating international sites. Results : Data from the sites were analyzed using descriptive statistics. Administration of the COHIP was successful. It varied from self-completion as well as verbal presentation due to language differences and a function of the short time period to complete collection. Additionally qualitative comments were reported by the task force site directors. Conclusions : Future directions for holistic assessment and communication among task force members and sites were discussed at the Congress and are presented in this report.
NASA Astrophysics Data System (ADS)
Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.
2017-12-01
Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.
Loading and performance of the support leg in kicking.
Ball, Kevin
2013-09-01
The punt kick is important in many football codes and support leg kinematics and ground reaction forces have been implicated in injury and performance in kicking. To evaluate ground reaction forces and support leg kinematics in the punt kick. Cross sectional study. Seven elite Australian football players performed maximal kicks into a net using both the preferred and non-preferred legs. A force plate measured ground reaction forces and an optical motion capture system (200Hz) collected kinematic data during the stance phase of the kick. Preferred and non-preferred legs were compared and performance was evaluated by correlating parameters with foot speed at ball contact. Vertical forces were larger than running at a similar speed but did not reach levels that might be considered an injury risk. Braking forces were directed solely posteriorly, as for soccer kicks, but lateral force patterns varied with some players experiencing greater forces medially and others laterally. A more extended support leg, larger peak vertical and braking force during the stance phase and a shorter stance contact time was associated with larger kick leg foot speed at ball contact. No difference existed between the preferred and non-preferred legs for ground reaction forces or support leg mechanics. To punt kick longer, a straighter support leg, less time on the ground and stronger braking should be encouraged. Conditioning the support leg to provide stronger braking potential is recommended. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
A Model for Steering with Haptic-Force Guidance
NASA Astrophysics Data System (ADS)
Yang, Xing-Dong; Irani, Pourang; Boulanger, Pierre; Bischof, Walter F.
Trajectory-based tasks are common in many applications and have been widely studied. Recently, researchers have shown that even very simple tasks, such as selecting items from cascading menus, can benefit from haptic-force guidance. Haptic guidance is also of significant value in many applications such as medical training, handwriting learning, and in applications requiring precise manipulations. There are, however, only very few guiding principles for selecting parameters that are best suited for proper force guiding. In this paper, we present a model, derived from the steering law that relates movement time to the essential components of a tunneling task in the presence of haptic-force guidance. Results of an experiment show that our model is highly accurate for predicting performance times in force-enhanced tunneling tasks.
Results of telerobotic hand controller study using force information and rate control
NASA Technical Reports Server (NTRS)
Willshire, Kelli F.; Harrison, F. W.; Hogge, Edward F.; Williams, Robert L.; Soloway, Donald
1992-01-01
To increase quantified information about the effectiveness and subjective workload of force information relayed through manipulator input control devices, a space related task was performed by eight subjects with kinesthetic force feedback and/or local force accommodation through three different input control devices (i.e., hand controllers) operating in rate control mode. Task completion time, manipulator work, and subjective responses were measured. Results indicated a difference among the hand controllers. For the Honeywell six degree-of-freedom hand controller, the overall task completion times were shortest, the amount of work exerted was the least, and was the most preferred by test subjects. Neither force accommodation with or without reflection resulted in shorter task completion times or reduced work although those conditions were better than no force information for some aspects. Comparisons of results from previous studies are discussed.
Problems and research issues associated with the hybrid control of force and displacement
NASA Technical Reports Server (NTRS)
Paul, R. P.
1987-01-01
The hybrid control of force and position is basic to the science of robotics but is only poorly understood. Before much progress can be made in robotics, this problem needs to be solved in a robust manner. However, the use of hybrid control implies the existence of a model of the environment, not an exact model (as the function of hybrid control is to accommodate these errors), but a model appropriate for planning and reasoning. The monitored forces in position control are interpreted in terms of a model of the task as are the monitored displacements in force control. The reaction forces of the task of writing are far different from those of hammering. The programming of actions in such a modeled world becomes more complicated and systems of task level programming need to be developed. Sensor based robotics, of which force sensing is the most basic, implies an entirely new level of technology. Indeed, robot force sensors, no matter how compliant they may be, must be protected from accidental collisions. This implies other sensors to monitor task execution and again the use of a world model. This new level of technology is the task level, in which task actions are specified, not the actions of individual sensors and manipulators.
Experimental estimation of energy absorption during heel strike in human barefoot walking.
Baines, Patricia M; Schwab, A L; van Soest, A J
2018-01-01
Metabolic energy expenditure during human gait is poorly understood. Mechanical energy loss during heel strike contributes to this energy expenditure. Previous work has estimated the energy absorption during heel strike as 0.8 J using an effective foot mass model. The aim of our study is to investigate the possibility of determining the energy absorption by more directly estimating the work done by the ground reaction force, the force-integral method. Concurrently another aim is to compare this method of direct determination of work to the method of an effective foot mass model. Participants of our experimental study were asked to walk barefoot at preferred speed. Ground reaction force and lower leg kinematics were collected at high sampling frequency (3000 Hz; 1295 Hz), with tight synchronization. The work done by the ground reaction force is 3.8 J, estimated by integrating this force over the foot-ankle deformation. The effective mass model is improved by dropping the assumption that foot-ankle deformation is maximal at the instant of the impact force peak. On theoretical grounds it is clear that in the presence of substantial damping that peak force and peak deformation do not occur simultaneously. The energy absorption results, due the vertical force only, corresponding to the force-integral method is similar to the results of the improved application of the effective mass model (2.7 J; 2.5 J). However the total work done by the ground reaction force calculated by the force-integral method is significantly higher than that of the vertical component alone. We conclude that direct estimation of the work done by the ground reaction force is possible and preferable over the use of the effective foot mass model. Assuming that energy absorbed is lost, the mechanical energy loss of heel strike is around 3.8 J for preferred walking speeds (≈ 1.3 m/s), which contributes to about 15-20% of the overall metabolic cost of transport.
ERIC Educational Resources Information Center
Lysander, Katya; Horton, William S.
2012-01-01
Many communicative situations present interlocutors with the opportunity to use multiple modalities to establish shared perspectives on conversational referents, a process known as grounding. In the current study, we use a card-matching task to examine how conversational grounding in younger and older adults is influenced both by direct visual…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The danger zones—(1) Prohibited area. Waters of Santa Rosa Sound and Gulf of Mexico...
Stöggl, Thomas; Martiner, Alex
2017-01-01
ABSTRACT The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force–time curves revealed comparable shapes between all three systems. Force impulses were 13–34% lower with OpenGo when compared to AMTI. Despite differences in mean values in some exercise modes, correlations towards AMTI were between r = 0.8 and r = 1.0 in most situations. During fast motions, with high force and impact, OpenGo provided lower force and latency in force kinetics. During balance tasks, discrepancy in the centre of pressure was found medio-lateral, while anterio–posterior direction was closer to AMTI. With awareness of these limitations, OpenGo can be applied in both clinical and research settings to evaluate temporal, force and balance parameters during different types of motion. The fully mobile OpenGo system allows for the easy and quick system application, analysis and feedback under complex field conditions, as well. PMID:27010531
Ernst, Michael; Altenburg, Björn; Bellmann, Malte; Schmalz, Thomas
2017-11-16
Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.
ERIC Educational Resources Information Center
Indiana State Commission on Vocational and Technical Education, Indianapolis.
A task force representing the Indiana private sector was convened for two purposes: to (1) identify the impact of technology on required worker skills, the labor market, and the vocational education, training, and employment system; and (2) identify occupational areas that should be future growth areas for the state. Task force members reviewed…
ERIC Educational Resources Information Center
Maryland Higher Education Commission, 2016
2016-01-01
The Task Force to Study the Impact of Expanding Credit and Noncredit Courses for Students with Intellectual and Developmental Disabilities was formed in July 2013. Chapter 392, Acts of 2013, (House Bill 813) established the Task Force to Study the Impact of Expanding Credit and Noncredit Courses for Students with Intellectual and Developmental…
ERIC Educational Resources Information Center
Arizona State Board of Directors for Community Colleges, Phoenix.
The Task Force on Enrollment Growth Planning (TFEGP), authorized in 1992 by the State Board of Directors for Community Colleges (SBDCC) of Arizona, includes representatives from each community college as well as staff from SBDCC office. The Task Force was created to prepare enrollment growth estimates for community colleges through the year 2010;…
ERIC Educational Resources Information Center
Armstrong, William B.
In 1991, California's San Diego Community College District (SDCCD) formed a task force to investigate the effects of adopting academic calendars that end either before or after the winter holidays. To gather information, the task force performed a grade distribution analysis among district college students to determine the impact of fall semester…
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
Presented in this document are the results of a Task Force study in Florida that explored the feasibility of a baccalaureate degree program that can be completed in 3 academic years. The Task Force addressed itself to the issues surrounding time-shortened degrees: acceleration; locksteps; relevancy of educational objectives to individual and…
Report of the Task Force on the Status of Women at the University of California, Davis.
ERIC Educational Resources Information Center
Fisher, Kathleen M.
The charge given to the Task Force on the Status of Women at the University of California, Davis, was to determine the employment opportunities for women on the Davis campus. The Task Force addressed itself primarily to 4 major employment categories: non-academic staff, academic staff, faculty, and administration, with lesser consideration given…
A Report by the Governor's Task Force on Vocational and Technical Education.
ERIC Educational Resources Information Center
Governor's Task Force on Vocational and Technical Education, Columbus, OH.
On July 19, 1968, a Task Force on Vocational and Technical Education was created by the governor of Ohio to develop proposals for organization, financing, and legislation. Some major problems to which the Task Force gave attention were: (1) the serious gap between the need for and the availability of vocational and technical education, (2) the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... environmental issues raised in the Fukushima Task Force Report. The NRC is not instituting a public comment... Reactor Safety in the 21st Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident'' (Fukushima Task Force Report, ADAMS Accession No. ML111861807), dated July 12, 2011, as...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... the Fukushima Near-Term Task Force Recommendations 2.1 and 2.3. The request for information letters... addressing the Fukushima Near-Term Task Force Recommendations 2.1 and 2.3. The memorandum is available... Fukushima Near-Term Task Force Recommendations 2.1 and 2.3 (ADAMS Accession Number ML12056A046), as...
ERIC Educational Resources Information Center
Thompson, Bruce
Web-based statistical instruction, like all statistical instruction, ought to focus on teaching the essence of the research endeavor: the exercise of reflective judgment. Using the framework of the recent report of the American Psychological Association (APA) Task Force on Statistical Inference (Wilkinson and the APA Task Force on Statistical…
ERIC Educational Resources Information Center
Federal Communications Commission, Washington, DC.
This report describes activities and accomplishments of the Federal Communications Commission's Disabilities Issues Task Force on disabilities issues from March 1995 through April 1996, its first year. Introductory material includes a message from the chairman of the Commission and a statement of the Task Force's purpose, which is to address…
U. S. Atlantic Fleet, Task Force 85. Operation Plan Number 3-44
1944-07-27
Potential Targets in Sectors of Responsibility Gril /8thPhib/Al6-3 Serial: 0031(P) DEAN/14- Potential Targets in Se_otors t of Respon- sibility...tags accompany the remains, ANNEX QUEEN MEDICAL PLAN - Page 6 of 8 GrIl /8thPhib/Al6-3 WESTERN NAVAL TASK FORCE, Serial: 0037(P) TASK FORCE EIGHTY-FIVE
ERIC Educational Resources Information Center
Miller, Jerry W., Ed.; Mills, Olive, Ed.
The Task Force on Educational Credit and Credentials of the American Council on Education undertook a two-year study to determine how postsecondary education's system for awarding credit and credentials can be changed or its adequacy improved to meet today's educational and social needs. This book sets forth the Task Force's report and…
Tomorrow. The Report of the Task Force for the Study of Chemistry Education in the United States.
ERIC Educational Resources Information Center
American Chemical Society, Washington, DC.
An American Chemical Society (ACS) task force was charged to examine the state of chemistry education in the United States and to make recommendations in light of its findings. This document presents the task force's report and 39 major (and also secondary) recommendations. These recommendations, with accompanying discussions, focus on: (1)…
Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks.
Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M; Latash, Mark L
2014-03-01
This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative covariation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of "modes," hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force covariation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force covariation) can be naturally interpreted within the referent configuration hypothesis.
Enslaving in a serial chain: Interactions between grip force and hand force in isometric tasks
Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M.; Latash, Mark L.
2014-01-01
This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative co-variation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of “modes”, hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force co-variation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force co-variation) can be naturally interpreted within the referent configuration hypothesis. PMID:24309747
2013-01-01
Background We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Methods Rats underwent initial training for 4–6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Results Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw mechanical allodynia by task week 12. Conclusions Although not consistent in all tissues, we found several significant interactions between the critical musculoskeletal risk factors of force and repetition, consistent with a fatigue failure process in musculoskeletal tissues. Prolonged performance of HRHF tasks exhibited significantly increased risk for musculoskeletal disorders, while performance of moderate level tasks exhibited adaptation to task demands. PMID:24156755
Barbe, Mary F; Gallagher, Sean; Massicotte, Vicky S; Tytell, Michael; Popoff, Steven N; Barr-Gillespie, Ann E
2013-10-25
We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Rats underwent initial training for 4-6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw mechanical allodynia by task week 12. Although not consistent in all tissues, we found several significant interactions between the critical musculoskeletal risk factors of force and repetition, consistent with a fatigue failure process in musculoskeletal tissues. Prolonged performance of HRHF tasks exhibited significantly increased risk for musculoskeletal disorders, while performance of moderate level tasks exhibited adaptation to task demands.
Learning to combine high variability with high precision: lack of transfer to a different task.
Wu, Yen-Hsun; Truglio, Thomas S; Zatsiorsky, Vladimir M; Latash, Mark L
2015-01-01
The authors studied effects of practicing a 4-finger accurate force production task on multifinger coordination quantified within the uncontrolled manifold hypothesis. During practice, task instability was modified by changing visual feedback gain based on accuracy of performance. The authors also explored the retention of these effects, and their transfer to a prehensile task. Subjects practiced the force production task for 2 days. After the practice, total force variability decreased and performance became more accurate. In contrast, variance of finger forces showed a tendency to increase during the first practice session while in the space of finger modes (hypothetical commands to fingers) the increase was under the significance level. These effects were retained for 2 weeks. No transfer of these effects to the prehensile task was seen, suggesting high specificity of coordination changes. The retention of practice effects without transfer to a different task suggests that further studies on a more practical method of improving coordination are needed.
NASA Technical Reports Server (NTRS)
Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.
1979-01-01
Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.
Bezodis, Neil E; North, Jamie S; Razavet, Jane L
2017-09-01
A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.
The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.
Worthington, Peter; King, Mark; Ranson, Craig
2013-01-01
High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.
Task Analysis in Optical & Contact Lens Dispensing. Dispensing Opticians.
ERIC Educational Resources Information Center
Hrushowy, Eugene; Stanley, Dale
A task force of opticians and educators in British Columbia was assembled to determine the knowledge and skills required of dispensing opticians and contact lens specialists. The ideas generated by the task force were analyzed and distilled into the standardized tasks listed in this document, using Krathwohl's taxonomy. The document contains 36…
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn; Watson, Leela R.
2015-01-01
NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.
Maximal force and tremor changes across the menstrual cycle.
Tenan, Matthew S; Hackney, Anthony C; Griffin, Lisa
2016-01-01
Sex hormones have profound effects on the nervous system in vitro and in vivo. The present study examines the effect of the menstrual cycle on maximal isometric force (MVC) and tremor during an endurance task. Nine eumenorrheic females participated in five study visits across their menstrual cycle. In each menstrual phase, an MVC and an endurance task to failure were performed. Tremor across the endurance task was quantified as the coefficient of variation in force and was assessed in absolute time and relative percent time to task failure. MVC decreases 23% from ovulation to the mid luteal phase of the menstrual cycle. In absolute time, the mid luteal phase has the highest initial tremor, though the early follicular phase has substantially higher tremor than other phases after 150 s of task performance. In relative time, the mid luteal phase has the highest level of tremor throughout the endurance task. Both MVC and tremor during an endurance task are modified by the menstrual cycle. Performance of tasks and sports which require high force and steadiness to exhaustion may be decreased in the mid luteal phase compared to other menstrual phases.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... Prevention of Suicide by Members of the Armed Forces; Meeting AGENCY: Department of Defense (DoD). ACTION... of Suicide by Members of the Armed Forces (hereafter, Task Force) will meet on February 11, 2010, to gather information pertaining to suicide and suicide prevention programs for members of the Armed...
Hwang, Ing-Shiou; Huang, Cheng-Ya
2016-01-01
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634
ERIC Educational Resources Information Center
Weyers, Lori; Langerman, Philip
In 1989-90, the General Education Task Force of the Wisconsin Technical College System (WTCS) was convened to determine the role of the general education curriculum in the attainment of skills that enhance the likelihood of success among technical college graduates in their careers, homes and communities. The Task Force consisted of at least one…
ERIC Educational Resources Information Center
Klepac, Robert K.; Ronan, George F.; Andrasik, Frank; Arnold, Kevin D.; Belar, Cynthia D.; Berry, Sharon L.; Christofff, Karen A.; Craighead, Linda W.; Dougher, Michael J.; Dowd, E. Thomas; Herbert, James D.; McFarr, Lynn M.; Rizvi, Shireen L.; Sauer, Eric M.; Strauman, Timothy J.
2012-01-01
The Association for Behavioral and Cognitive Therapies initiated an interorganizational task force to develop guidelines for integrated education and training in cognitive and behavioral psychology at the doctoral level in the United States. Fifteen task force members representing 16 professional associations participated in a yearlong series of…
ERIC Educational Resources Information Center
New Hampshire State Div. of Mental Health and Developmental Services, Concord.
This report presents results and recommendations of a two-year study and information-gathering effort by the New Hampshire Task Force on Homelessness, in compliance with the charge of the State legislature. The report is comprised of five sections. Section 1, "Introduction," presents an overview of the Task Force and a report on the…
ERIC Educational Resources Information Center
Williamson, J. Peter
The Task Force on College and University Endowment Policy examines endowment policy in a broad context. They feel that it is important to preserve private colleges and universities and develop a sense of mission about how best to pursue this objective. The Task Force reviews policy issues faced by managers of endowment funds for institutions of…
Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology
DOE Office of Scientific and Technical Information (OSTI.GOV)
PI: Lily Y. Young
2009-06-04
Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.« less
Reschechtko, Sasha; Zatsiorsky, Vladimir M.; Latash, Mark L.
2016-01-01
Manipulating objects with the hands requires the accurate production of resultant forces including shear forces; effective control of these shear forces also requires the production of internal forces normal to the surface of the object(s) being manipulated. In the present study, we investigated multi-finger synergies stabilizing shear and normal components of force, as well as drifts in both components of force, during isometric pressing tasks requiring a specific magnitude of shear force production. We hypothesized that shear and normal forces would evolve similarly in time, and also show similar stability properties as assessed by the decomposition of inter-trial variance within the uncontrolled manifold hypothesis. Healthy subjects were required to accurately produce total shear and total normal forces with four fingers of the hand during a steady-state force task (with and without visual feedback) and a self-paced force pulse task. The two force components showed similar time profiles during both shear force pulse production and unintentional drift induced by turning the visual feedback off. Only the explicitly instructed components of force, however, were stabilized with multi-finger synergies. No force-stabilizing synergies and no anticipatory synergy adjustments were seen for the normal force in shear force production trials. These unexpected qualitative differences in the control of the two force components – which are produced by some of the same muscles and show high degree of temporal coupling – are interpreted within the theory of control with referent coordinates for salient variables. These observations suggest the existence of two classes of neural variables: one that translates into shifts of referent coordinates and defines changes in magnitude of salient variables, and the other controlling gains in back-coupling loops that define stability of the salient variables. Only the former are shared between the explicit and implicit task components. PMID:27601252
Force-stabilizing synergies in motor tasks involving two actors
Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2015-01-01
We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the sub-spaces that affect and do not affect salient performance variables. PMID:26105756
Force-stabilizing synergies in motor tasks involving two actors.
Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L
2015-10-01
We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the subspaces that affect and do not affect salient performance variables.
The Role of Direct and Visual Force Feedback in Suturing Using a 7-DOF Dual-Arm Teleoperated System.
Talasaz, Ali; Trejos, Ana Luisa; Patel, Rajni V
2017-01-01
The lack of haptic feedback in robotics-assisted surgery can result in tissue damage or accidental tool-tissue hits. This paper focuses on exploring the effect of haptic feedback via direct force reflection and visual presentation of force magnitudes on performance during suturing in robotics-assisted minimally invasive surgery (RAMIS). For this purpose, a haptics-enabled dual-arm master-slave teleoperation system capable of measuring tool-tissue interaction forces in all seven Degrees-of-Freedom (DOFs) was used. Two suturing tasks, tissue puncturing and knot-tightening, were chosen to assess user skills when suturing on phantom tissue. Sixteen subjects participated in the trials and their performance was evaluated from various points of view: force consistency, number of accidental hits with tissue, amount of tissue damage, quality of the suture knot, and the time required to accomplish the task. According to the results, visual force feedback was not very useful during the tissue puncturing task as different users needed different amounts of force depending on the penetration of the needle into the tissue. Direct force feedback, however, was more useful for this task to apply less force and to minimize the amount of damage to the tissue. Statistical results also reveal that both visual and direct force feedback were required for effective knot tightening: direct force feedback could reduce the number of accidental hits with the tissue and also the amount of tissue damage, while visual force feedback could help to securely tighten the suture knots and maintain force consistency among different trials/users. These results provide evidence of the importance of 7-DOF force reflection when performing complex tasks in a RAMIS setting.
Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation
NASA Technical Reports Server (NTRS)
Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.
2010-01-01
INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The results demonstrate astronauts adaptive capabilities and full performance recovery within days after flight.
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
Footwear and Foam Surface Alter Gait Initiation of Typical Subjects
Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel
2015-01-01
Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of Phase 1. PMID:26270323
Performance evaluation of a six-axis generalized force-reflecting teleoperator
NASA Technical Reports Server (NTRS)
Hannaford, B.; Wood, L.; Guggisberg, B.; Mcaffee, D.; Zak, H.
1989-01-01
Work in real-time distributed computation and control has culminated in a prototype force-reflecting telemanipulation system having a dissimilar master (cable-driven, force-reflecting hand controller) and a slave (PUMA 560 robot with custom controller), an extremely high sampling rate (1000 Hz), and a low loop computation delay (5 msec). In a series of experiments with this system and five trained test operators covering over 100 hours of teleoperation, performance was measured in a series of generic and application-driven tasks with and without force feedback, and with control shared between teleoperation and local sensor referenced control. Measurements defining task performance included 100-Hz recording of six-axis force/torque information from the slave manipulator wrist, task completion time, and visual observation of predefined task errors. The task consisted of high precision peg-in-hole insertion, electrical connectors, velcro attach-de-attach, and a twist-lock multi-pin connector. Each task was repeated three times under several operating conditions: normal bilateral telemanipulation, forward position control without force feedback, and shared control. In shared control, orientation was locally servo controlled to comply with applied torques, while translation was under operator control. All performance measures improved as capability was added along a spectrum of capabilities ranging from pure position control through force-reflecting teleoperation and shared control. Performance was optimal for the bare-handed operator.
Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E
2017-11-01
The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related ( P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test. Copyright © 2017 the American Physiological Society.
The Oklahoma Attorney General's Task Force report on the State of End-of-Life Health Care, 2005.
Edmondson, W A Drew
2005-05-01
This article includes the recommendations submitted by the 15 members of the Oklahoma Attorney General's Task Force in their Report on the State of End-of-Life Health Care. The task force was created on April 21, 2004, and their report was accepted by Attorney General W.A. Drew Edmondson at a press conference April 11, 2005. It has been forwarded to members of the Oklahoma Legislature, relevant state agencies and organizations with an invitation to join with members of the task force to continue efforts to improve end-of-life care for Oklahomans. Copies of the report are available upon request to the Office of Attorney General.
The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.
Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L
2013-09-01
Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.
Vestibular control of standing balance is enhanced with increased cognitive load.
McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H
2017-04-01
When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.
Slipping during side-step cutting: anticipatory effects and familiarization.
Oliveira, Anderson Souza Castelo; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav
2014-04-01
The aim of the present study was to verify whether the expectation of perturbations while performing side-step cutting manoeuvres influences lower limb EMG activity, heel kinematics and ground reaction forces. Eighteen healthy men performed two sets of 90° side-step cutting manoeuvres. In the first set, 10 unperturbed trials (Base) were performed while stepping over a moveable force platform. In the second set, subjects were informed about the random possibility of perturbations to balance throughout 32 trials, of which eight were perturbed (Pert, 10cm translation triggered at initial contact), and the others were "catch" trials (Catch). Center of mass velocity (CoMVEL), heel acceleration (HAC), ground reaction forces (GRF) and surface electromyography (EMG) from lower limb and trunk muscles were recorded for each trial. Surface EMG was analyzed prior to initial contact (PRE), during load acceptance (LA) and propulsion (PRP) periods of the stance phase. In addition, hamstrings-quadriceps co-contraction ratios (CCR) were calculated for these time-windows. The results showed no changes in CoMVEL, HAC, peak GRF and surface EMG PRE among conditions. However, during LA, there were increases in tibialis anterior EMG (30-50%) concomitant to reduced EMG for quadriceps muscles, gluteus and rectus abdominis for Catch and Pert conditions (15-40%). In addition, quadriceps EMG was still reduced during PRP (p<.05). Consequently, CCR was greater for Catch and Pert in comparison to Base (p<.05). These results suggest that there is modulation of muscle activity towards anticipating potential instability in the lower limb joints and assure safety to complete the task. Copyright © 2014. Published by Elsevier B.V.
Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe
2017-08-18
Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.
Effect of hoof boots and toe-extension shoes on the forelimb kinetics of horses during walking.
Amitrano, Fernando N; Gutierrez-Nibeyro, Santiago D; Schaeffer, David J
2016-05-01
OBJECTIVE To determine and compare the effect of hoof boots (HBs) and shoes with a toe extension on stance duration, ground reaction force, and sole length in contact with the ground in nonlame horses during walking. ANIMALS 6 nonlame Standardbreds. PROCEDURES Force plate gait analyses of the forelimbs were performed while the horses were walking barefoot before manipulation of feet (baseline), while the horses were walking fitted with HBs, while the horses were walking shod with toe-extension shoes, and while the horses were walking barefoot after shoe removal. Horses underwent radiography of both forelimb feet to determine the sole length in contact with the ground when barefoot, wearing HBs, and shod with toe-extension shoes. Stance duration, ground reaction force, and sole length were compared among the various walking sessions. RESULTS Compared with baseline findings, stance duration increased significantly when horses were fitted with HBs (7%) or toe-extension shoes (5%). Peak forelimb ground reaction force was similar among walking sessions; however, time of braking force peak was significantly greater during the stance phase only when horses wore HBs. Also, the sole length in contact with the ground was significantly longer in horses fitted with HBs (14.3 cm) or shod with the toe-extension shoes (17.6 cm), compared with that for one of the barefoot hooves (12.7 cm). CONCLUSIONS AND CLINICAL RELEVANCE In nonlame horses, use of HBs prolonged the stance time and time of braking force peak, which is indicative of a slower deceleration phase during limb impact with the ground. Also, the use of HBs prolonged the deceleration phase of the stride and increased the sole length in contact with the ground.
Impaired Inhibitory Force Feedback in Fixed Dystonia.
Mugge, Winfred; Schouten, Alfred C; van Hilten, Jacobus J; van der Helm, Frans C T
2016-04-01
Complex regional pain syndrome (CRPS) is a multifactorial disorder associated with an aberrant host response to tissue injury. About 25% of CRPS patients suffer poorly understood involuntary sustained muscle contractions associated with dysfunctional reflexes that result in abnormal postures (fixed dystonia). A recent modeling study simulated fixed dystonia (FD) caused by aberrant force feedback. The current study aims to validate this hypothesis by experimentally recording the modulation of reflexive force feedback in patients with FD. CRPS patients with and without FD, patients with FD but without CRPS, as well as healthy controls participated in the experiment. Three task instructions and three perturbation characteristics were used to evoke a wide range of responses to force perturbations. During position tasks ("maintain posture"), healthy subjects as well as patients resisted the perturbations, becoming more stiff than when being relaxed (i.e., the relax task). Healthy subjects and CRPS patients without FD were both more compliant during force tasks ("maintain force") than during relax tasks, meaning they actively gave way to the imposed forces. Remarkably, the patients with FD failed to do so. A neuromuscular model was fitted to the experimental data to separate the distinct contributions of position, velocity and force feedback, as well as co-contraction to the motor behavior. The neuromuscular modeling indicated that inhibitory force feedback is deregulated in patients with FD, for both CRPS and non-CRPS patients. From previously published simulation results and the present experimental study, it is concluded that aberrant force feedback plays a role in fixed dystonia.
Effect of loudness on reaction time and response force in different motor tasks.
Jaśkowski, Piotr; Włodarczyk, Dariusz
2005-12-01
Van der Molen and Keuss, in 1979 and 1981, showed that paradoxically long reaction times occur with extremely strong auditory stimuli when the task is difficult, e.g., choice-by-location or Simon paradigm. It was argued that this paradoxical behavior of RT is due to active inhibition of an arousal-dependent bypassing mechanism to prevent false responses. As the peak force, i.e., maximal force exerted by participants on a response key, is considered to be related to immediate arousal, we predicted that for extremely loud stimuli and for difficult tasks, lengthening of RT should be associated with reduction of peak force. Moreover, these effects should be enhanced when emphasis is on accuracy rather than speed. Although the relation between RT and intensity depended on task difficulty, no increase in RT was found for the loudest tones. Moreover, peak force increased monotonically with loudness, showing no tendency to be suppressed for loudest tones and difficult tasks.
Corporate funding and conflicts of interest: a primer for psychologists.
Pachter, Wendy S; Fox, Ronald E; Zimbardo, Philip; Antonuccio, David O
2007-12-01
A presidential task force on external funding was established by the American Psychological Association (APA) in 2003 to review APA policies, procedures, and practices regarding the acceptance of funding and support from private corporations for educational and training programs; continuing education offerings; research projects; publications; advertising; scientific and professional meetings and conferences; and consulting, practice, and advocacy relationships. This article, based on the Executive Summary of the APA Task Force on External Funding Final Report, presents the findings and unanimous recommendations of the task force in the areas of association income, annual convention, research and journals, continuing education, education, practice, and conflicts of interest and ethics. The task force concluded that it is important for both APA and individual psychologists to become familiar with the challenges that corporate funding can pose to their integrity. The nature and extent of those challenges led the task force to recommend that APA develop explicit policies, educational materials, and continuing education programs to preserve the independence of psychological science, practice, and education. (Copyright) 2007 APA.
2010-10-01
On February 9, 2010, the same day the First Lady launched the Let's Move! campaign, President Obama created a new interagency White House Task Force on Childhood Obesity, charged with creating and implementing a comprehensive action plan to end the childhood obesity epidemic. The resulting action plan was developed by experts from across the federal government, with substantial public input, and released on May 11. The first chapter of the task force report discusses strategies for getting children a healthy start on life, including supporting breastfeeding. Here is an excerpt from the discussion of breastfeeding that appears in the report. The full text of the task force report can be found at www.letsmove.gov . —Martha Coven, JD Special Assistant to the President for Mobility and Opportunity White House Domestic Policy Council Lead Staff, White House Task Force on Childhood Obesity.
Improving the Agility of the NATO Response Force (NRF)
2010-04-01
the MCCE and the MIH helicopter task force. As 168 Hauser and Kernic eds., 140-141. 169 NATO...agility through unified efforts. Initiatives such as the MIH helicopter task force and the Movement Coordination Centre Europe (MCCE) are positive
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This document contains the final report of a California Task Force created to promote self-esteem and personal responsibility. It begins with an executive summary listing key principles of the task force and providing recommendations and discussions in each of six major areas upon which the report focuses. The next section presents the task…
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 14 2010-01-01 2009-01-01 true Fact Sheet-The Federal Interagency Task Force on Food... (CONTINUED) PROPERTY MANAGEMENT Management of Property Exhibit D to Subpart B of Part 1955—Fact Sheet—The Federal Interagency Task Force on Food and Shelter for the Homeless Editorial Note: Exhibit D is not...
ERIC Educational Resources Information Center
Bossone, Richard M., Ed.
Proceedings of the University/Urban Schools Task Force conference on what works in urban schools are summarized in this report. The future direction of the Task Force, articulated by conference participants, is described as a move toward the conceptualization and design of programs to teach thinking skills versus programs that mainly teach subject…
ERIC Educational Resources Information Center
British Columbia Teachers' Federation, Vancouver.
In 1998, the British Columbia Teachers' Federation (BCTF) appointed an eight-member task force to investigate the effectiveness of the education system for First Nations students. The task force report and recommendations are intended to serve several groups of Aboriginal students: First Nations students, with or without status under Canada's…
ERIC Educational Resources Information Center
North Carolina State Department of Education, 2004
2004-01-01
This study is a follow up to the Last Best Chance report published in 1989. A task force of 29 education leaders was challenged to help chart the course for middle level education in North Carolina. While examining middle level education (ages 11 through 14), task force members continuously asked, "What should it look like in order for all…
ERIC Educational Resources Information Center
State Univ. of New York, Albany. Office of the Chancellor.
This document reports on the work of a task force charged with formulating recommendations on the kind of preparation an incoming student should have to assure successful entry to and completion of the freshman year of study at the State University of New York (SUNY). In addition, the task force was asked to specify what program of study and forms…
Defense Science Board Task Force Report on Cyber Defense Management
2016-09-01
manage cyber security is often a verymanual and labor intensive process. When a crisis hits, DoD responses range from highly automatedand instrumented...DSB Task Force Report on Cyber Defense Management September 2016 (U) This page intentionally blank REPORT OF THE DEFENSE SCIENCE BOARD STUDY ON Cyber ...DEFENSE FOR ACQUISITION, TECHNOLOGY & LOGISTICS SUBJECT: Final Report of the Defense Science Board (DSB) Task Force on Cyber Defense Management I am
Flow Control and Design Assessment for Drainage System at McMurdo Station, Antarctica
2014-11-24
Council BMP Best Management Practice CASQUA California Storm Water Quality Task Force CRREL Cold Regions Research and Engineering Laboratory DS...ponds The California Storm Water Quality Task Force (CASQUA 1993) defines a sediment basin as “a pond created by excavation or constructing an em...British Standards Institution. California Storm Water Quality Task Force (CASQUA). 1993. ESC41: Check Dams. In Stormwater Best Management Practices
ERIC Educational Resources Information Center
Optimum Computer Systems, Inc., Washington, DC.
This paper presents the reports of the National Task Forces on Urban, Rural, Migrant, Native American and Bilingual/Bicultural Education. The Task Forces were asked to pinpoint strategies for instructional and programmatic improvement in these areas. The focus of inquiry was on reading and mathematics instruction. Attention was also paid to…
Pachter, Lee M; Lieberman, Leslie; Bloom, Sandra L; Fein, Joel A
The Philadelphia ACE Task Force is a community based collaborative of health care providers, researchers, community-based organizations, funders, and public sector representatives. The mission of the task force is to provide a venue to address childhood adversity and its consequences in the Philadelphia metropolitan region. In this article we describe the origins and metamorphosis of the Philadelphia ACE Task Force, which initially was narrowly focused on screening for adverse childhood experiences (ACEs) in health care settings but expanded its focus to better represent a true community-based approach to sharing experiences with addressing childhood adversity in multiple sectors of the city and region. The task force has been successful in developing a research agenda and conducting research on ACEs in the urban context, and has identified foci of local activity in the areas of professional training and workforce development, community education, and local practical interventions around adversity, trauma, and resiliency. In this article we also address the lessons learned over the first 5 years of the task force's existence and offers recommendations for future efforts to build a local community-based ACEs collaborative. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
1980-01-01
TECHNIQUES IMPROVING RAPIDLY C-7 INDUSTRY THRUSTS IN 70s DRIVING FORCE : IMPROVE PRODUCT QUALITY * EASE MAINTENANCE, MODIFICATION IMPROVE PERFORMANCE...together a task force to make recommendations on what we should be doing about computer secur- ity. Other members of the task force came from both our...of the marketing task force mostly echoed and endorsed the user’s report. Both reports were issued in March of 1973. Notice that DoD 5200.28 had just
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Expert system for on-board satellite scheduling and control
NASA Technical Reports Server (NTRS)
Barry, John M.; Sary, Charisse
1988-01-01
An Expert System is described which Rockwell Satellite and Space Electronics Division (S&SED) is developing to dynamically schedule the allocation of on-board satellite resources and activities. This expert system is the Satellite Controller. The resources to be scheduled include power, propellant and recording tape. The activities controlled include scheduling satellite functions such as sensor checkout and operation. The scheduling of these resources and activities is presently a labor intensive and time consuming ground operations task. Developing a schedule requires extensive knowledge of the system and subsystems operations, operational constraints, and satellite design and configuration. This scheduling process requires highly trained experts anywhere from several hours to several weeks to accomplish. The process is done through brute force, that is examining cryptic mnemonic data off line to interpret the health and status of the satellite. Then schedules are formulated either as the result of practical operator experience or heuristics - that is rules of thumb. Orbital operations must become more productive in the future to reduce life cycle costs and decrease dependence on ground control. This reduction is required to increase autonomy and survivability of future systems. The design of future satellites require that the scheduling function be transferred from ground to on board systems.
Evaluation of Chemistry-Climate Model Results using Long-Term Satellite and Ground-Based Data
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
2005-01-01
Chemistry-climate models attempt to bring together our best knowledge of the key processes that govern the composition of the atmosphere and its response to changes in forcing. We test these models on a process by process basis by comparing model results to data from many sources. A more difficult task is testing the model response to changes. One way to do this is to use the natural and anthropogenic experiments that have been done on the atmosphere and are continuing to be done. These include the volcanic eruptions of El Chichon and Pinatubo, the solar cycle, and the injection of chlorine and bromine from CFCs and methyl bromide. The test of the model's response to these experiments is their ability to produce the long-term variations in ozone and the trace gases that affect ozone. We now have more than 25 years of satellite ozone data. We have more than 15 years of satellite and ground-based data of HC1, HN03, and many other gases. I will discuss the testing of models using long-term satellite data sets, long-term measurements from the Network for Detection of Stratospheric Change (NDSC) , long-term ground-based measurements of ozone.
NASA Astrophysics Data System (ADS)
Tom, Michael; Trujillo, Edward
1994-06-01
Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.
Science in space with the Space Station
NASA Technical Reports Server (NTRS)
Banks, Peter M.
1987-01-01
The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.
Amodal completion of moving objects by pigeons.
Nagasaka, Yasuo; Wasserman, Edward A
2008-01-01
In a series of four experiments, we explored whether pigeons complete partially occluded moving shapes. Four pigeons were trained to discriminate between a complete moving shape and an incomplete moving shape in a two-alternative forced-choice task. In testing, the birds were presented with a partially occluded moving shape. In experiment 1, none of the pigeons appeared to complete the testing stimulus; instead, they appeared to perceive the testing stimulus as incomplete fragments. However, in experiments 2, 3, and 4, three of the birds appeared to complete the partially occluded moving shapes. These rare positive results suggest that motion may facilitate amodal completion by pigeons, perhaps by enhancing the figure - ground segregation process.
Stability of multifinger action in different state spaces
Reschechtko, Sasha; Zatsiorsky, Vladimir M.
2014-01-01
We investigated stability of action by a multifinger system with three methods: analysis of intertrial variance, application of transient perturbations, and analysis of the system's motion in different state spaces. The “inverse piano” device was used to apply transient (lifting-and-lowering) perturbations to individual fingers during single- and two-finger accurate force production tasks. In each trial, the perturbation was applied either to a finger explicitly involved in the task or one that was not. We hypothesized that, in one-finger tasks, task-specific stability would be observed in the redundant space of finger forces but not in the nonredundant space of finger modes (commands to explicitly involved fingers). In two-finger tasks, we expected that perturbations applied to a nontask finger would not contribute to task-specific stability in mode space. In contrast to our expectations, analyses in both force and mode spaces showed lower stability in directions that did not change total force output compared with directions that did cause changes in total force. In addition, the transient perturbations led to a significant increase in the enslaving index. We consider these results within a theoretical scheme of control with referent body configurations organized hierarchically, using multiple few-to-many mappings organized in a synergic way. The observed volatility of enslaving, greater equifinality of total force compared with elemental variables, and large magnitude of motor equivalent motion in both force and mode spaces provide support for the concept of task-specific stability of performance and the existence of multiple neural loops, which ensure this stability. PMID:25253478
Stability of multifinger action in different state spaces.
Reschechtko, Sasha; Zatsiorsky, Vladimir M; Latash, Mark L
2014-12-15
We investigated stability of action by a multifinger system with three methods: analysis of intertrial variance, application of transient perturbations, and analysis of the system's motion in different state spaces. The "inverse piano" device was used to apply transient (lifting-and-lowering) perturbations to individual fingers during single- and two-finger accurate force production tasks. In each trial, the perturbation was applied either to a finger explicitly involved in the task or one that was not. We hypothesized that, in one-finger tasks, task-specific stability would be observed in the redundant space of finger forces but not in the nonredundant space of finger modes (commands to explicitly involved fingers). In two-finger tasks, we expected that perturbations applied to a nontask finger would not contribute to task-specific stability in mode space. In contrast to our expectations, analyses in both force and mode spaces showed lower stability in directions that did not change total force output compared with directions that did cause changes in total force. In addition, the transient perturbations led to a significant increase in the enslaving index. We consider these results within a theoretical scheme of control with referent body configurations organized hierarchically, using multiple few-to-many mappings organized in a synergic way. The observed volatility of enslaving, greater equifinality of total force compared with elemental variables, and large magnitude of motor equivalent motion in both force and mode spaces provide support for the concept of task-specific stability of performance and the existence of multiple neural loops, which ensure this stability. Copyright © 2014 the American Physiological Society.
An Engineering Model of Human Balance Control-Part I: Biomechanical Model.
Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard
2016-01-01
We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.
Ecological Relevance Determines Task Priority in Older Adults' Multitasking.
Doumas, Michail; Krampe, Ralf Th
2015-05-01
Multitasking is a challenging aspect of human behavior, especially if the concurrently performed tasks are different in nature. Several studies demonstrated pronounced performance decrements (dual-task costs) in older adults for combinations of cognitive and motor tasks. However, patterns of costs among component tasks differed across studies and reasons for participants' resource allocation strategies remained elusive. We investigated young and older adults' multitasking of a working memory task and two sensorimotor tasks, one with low (finger force control) and one with high ecological relevance (postural control). The tasks were performed in single-, dual-, and triple-task contexts. Working memory accuracy was reduced in dual-task contexts with either sensorimotor task and deteriorated further under triple-task conditions. Postural and force performance deteriorated with age and task difficulty in dual-task contexts. However, in the triple-task context with its maximum resource demands, older adults prioritized postural control over both force control and memory. Our results identify ecological relevance as the key factor in older adults' multitasking. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1992-04-15
JAPAN’S ROLE IN THE NEW ERA BY .1 Colonel Yasuhiro Naomi ELECTE .F Japan Ground Self Defense Force ,4aY 1.4 19,92 A DISTRIBUTION STATEMENT A: Approved...Colonel Yasuhiro Naomi D.ti ibltof Japan Ground Self Defense Force ,v’ilti~ity Cod - A~a~i ardj r Colonel Donald W. Boose, Jr...Pennsylvania 17013 ABSTRACT AUTHOR: Colonel Yasuhiro Naomi, Japan Ground Self -Defense Force TITLE: Japan’s Role in the New Era FORMAT: Individual Study
Forward Air Controllers in the Vietnam War: Exemplars of Audacity, Innovation, and Irreverence
2016-06-10
Controllers (FACs). They were bold men who linked air power to ground forces, supersonic jets to propellers, and bombs to targets. They faced their...were bold men who linked air power to ground forces, supersonic jets to propellers, and bombs to targets. They faced their enemy at low altitudes, in...They were bold men who linked air power to ground forces, supersonic jets to propellers, and bombs to targets. FACs were the cutting edge of the
Faber, G S; Kingma, I; Kuijer, P P F M; van der Molen, H F; Hoozemans, M J M; Frings-Dresen, M H W; van Dieën, J H
2009-09-01
The goal of this study was to compare the effects of the task variables block mass, working height and one- vs. two-handed block handling on low back and shoulder loading during masonry work. In a mock-up of a masonry work site, nine masonry workers performed one- and two-handed block-lifting and block-placing tasks at varying heights (ranging from floor to shoulder level) with blocks of varying mass (ranging from 6 to 16 kg). Kinematics and ground reaction forces were measured and used in a 3-D linked segment model to calculate low back and shoulder loading. Increasing lifting height appeared to be the most effective way to reduce low back loading. However, working at shoulder level resulted in relatively high shoulder loading. Therefore, it was recommended to organise masonry work in such a way that blocks are handled with the hands at about iliac crest height as much as possible.
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
Recruitment of the Rhesus soleus and medial gastrocnemius before, during and after spaceflight
NASA Technical Reports Server (NTRS)
Roy, R. R.; Hodgson, J. A.; Aragon, J.; Day, M. K.; Kozlovskaya, I.; Edgerton, V. R.
1996-01-01
Electromyograms were recorded from the soleus and medial gastrocnemius muscles and tendon force from the medial gastrocnemius muscle of 2 juvenile Rhesus monkeys before, during and after Cosmos flight 2229 and of ground control animals. Recording sessions were made while the Rhesus were performing a foot pedal motor task. Preflight testing indicated normal patterns of recruitment between the soleus and medial gastrocnemius, i.e. a higher level of recruitment of the soleus compared to the medial gastrocnemius during the task. Recording began two days into the spaceflight and showed that the media gastrocnemius was recruited preferentially over the soleus. This observation persisted throughout the flight and for the 2 week period of postflight testing. These data indicate a significant change in the relative recruitment of slow and fast extensor muscles under microgravity conditions. The appearance of clonic-like activity in one muscle of each Rhesus during flight further suggests a reorganization in the neuromotor system in a microgravity environment.
Fore-Aft Ground Force Adaptations to Induced Forelimb Lameness in Walking and Trotting Dogs
Abdelhadi, Jalal; Wefstaedt, Patrick; Nolte, Ingo; Schilling, Nadja
2012-01-01
Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles. PMID:23300614
(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.
Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.
Oliver, Gretchen D; Plummer, Hillary
2011-07-01
The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.
NASA Technical Reports Server (NTRS)
Grantham, William D.; Williams, Robert H.
1987-01-01
For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.
Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J
2015-09-18
Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multifunctional Battalion Task Force Training: Slovenian Armed Forces Battalion Training Cycle
2016-06-10
MULTIFUNCTIONAL BATTALION TASK FORCE TRAINING: SLOVENIAN ARMED FORCES BATTALION TRAINING CYCLE A thesis presented to...Forces Battalion Training Cycle 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Major Ales Avsec 5d...Bn TF) training cycle . It focuses on how the SAF is conducting the infantry and multifunctional Bn TF training. In particular, it deals with mission
ERIC Educational Resources Information Center
Ridley, William J.; Hull, McAllister H., Jr.
Designed to assist educational decision-makers at the school and district level, this report summarizes the work of the National Task Force on Educational Technology, which was formed in the fall of 1984 to investigate the potential of appropriately integrated technology for improving learning in American schools. The task force used six primary…
ERIC Educational Resources Information Center
Gainer, William J.
This General Accounting Office (GAO) testimony before the Subcommittee on Postsecondary Education, Committee on Education and Labor, House of Representatives, concerns the findings of the task force that addressed the increasing costs of student loan defaults. The task force report is considered, generally, to provide additional incentives and…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Select Committee on Hunger.
The Domestic Task Force of the House Select Committee on Hunger met to hear testimony on women and hunger in Appalachia and on food assistance programs and legislation, including H.R. 2100, the 1985 farm bill. Introductory remarks by task force members outline the bill's food assistance provisions, which include increased funding for food stamp…
ERIC Educational Resources Information Center
Office of Education (DHEW), Washington, DC.
This report is one of six to be released by as many task forces on educational improvement and reform. The main body of this report consists of five sections: (a) an introduction, which briefly describes the work of the task force; (b) a description of the alternative of community participation in education; (c) recommendations; (d) access to…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
Recommendations of the Belmont Task Force concerning the problem of student loan defaults are offered to the U.S. House of Representatives. The task force concludes that the purpose of the Guaranteed Student Loan (GSL) program has changed significantly in the last decade. While originally established as a loan of convenience for middle-income…
VELLAS, B.; PAHOR, M.; MANINI, T.; ROOKS, D.; GURALNIK, J.M.; MORLEY, J.; STUDENSKI, S.; EVANS, W.; ASBRAND, C.; FARIELLO, R.; PEREIRA, S.; ROLLAND, Y.; VAN KAN, G. ABELLAN; CESARI, M.; CHUMLEA, WM.C.; FIELDING, R.
2014-01-01
An international task force of academic and industry leaders in sarcopenia research met on December 5, 2012 in Orlando, Florida to develop guidelines for designing and executing randomized clinical trials of sarcopenia treatments. The Task Force reviewed results from previous trials in related disease areas to extract lessons relevant to future sarcopenia trials, including practical issues regarding the design and conduct of trials in elderly populations, the definition of appropriate target populations, and the selection of screening tools, outcome measures, and biomarkers. They discussed regulatory issues, the challenges posed by trials of different types of interventions, and the need for standardization and harmonization. The Task Force concluded with recommendations for advancing the field toward better clinical trials. PMID:23933872
Task Force on Teacher Education in Physics: Findings and Recommendations
NASA Astrophysics Data System (ADS)
Otero, Valerie
2010-03-01
In response to the national crisis in science education, including low performance in high school physical science and a critical shortage of highly qualified physics teachers, a National Task Force was convened to investigate the state of physics education in the United States. The Task Force spent one year collecting data from over 900 universities and conducting site visits at 13 universities that were identified as ``high producers'' of physics teachers. The final report of the Task Force will be published early in 2010 and will highlight the findings and recommendations that resulted from the study. In this presentation, the main findings and recommendations will be presented along with selected case studies that illustrate exemplary practices in physics and education departments.
Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi
2016-06-01
Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.