High Alpha Technology Program (HATP) ground test to flight comparisons
NASA Technical Reports Server (NTRS)
Hall, R. M.; Banks, D. W.; Fisher, David F.; Ghaffari, F.; Murri, D. G.; Ross, J. C.; Lanser, Wendy R.
1994-01-01
This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans.
Advanced composite elevator for Boeing 727 aircraft
NASA Technical Reports Server (NTRS)
1979-01-01
Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.
NASA Astrophysics Data System (ADS)
Black, Stephen T.; Eshleman, Wally
1997-01-01
This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.
Orion EFT-1 Heat Shield move from LASF to VAB for Ground Test Article Integration
2017-04-26
The heat shield for Exploration Flight Test-1 is transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations to be integrated with the Ground Test Article to be utilized for future Underway Recovery Testing. After transport from the Launch Abort System Facility (LASF) to the Vehicle Assembly Building (VAB), the heat shield is lifted off of the transport truck and placed onto foam pads (dunnage) for inspection in Highbay 2 of the VAB.
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1990-01-01
Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1988-01-01
Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.
The advanced orbiting systems testbed program: Results to date
NASA Technical Reports Server (NTRS)
Newsome, Penny A.; Otranto, John F.
1993-01-01
The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.
X-29 High Alpha Test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan
2003-01-01
This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.
The Joint Winter Runway Friction Measurement Program: NASA Perspective
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1996-01-01
Some background information is given together with the scope and objectives of the 5-year, Joint National Aeronautics & Space Administration (NASA)/Transport Canada (TC)/Federal Aviation Administration (FAA) Winter Runway Friction Measurement Program. The range of the test equipment, the selected test sites and a tentative test program schedule are described. NASA considers the success of this program critical in terms of insuring adequate ground handling performance capability in adverse weather conditions for future aircraft being designed and developed as well as improving the safety of current aircraft ground operations.
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Dorwald, F.
1982-01-01
The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.
Overview of the solar dynamic ground test demonstration program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1993-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).
NASA Boeing 757 HIRF test series low power on-the-ground tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.
1996-08-01
The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. Themore » tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.« less
Considerations for use of the RORA program to estimate ground-water recharge from streamflow records
Rutledge, A.T.
2000-01-01
The RORA program can be used to estimate ground-water recharge in a basin from analysis of a streamflow record. The program can be appropriate for use if the ground-water flow system is characterized by diffuse areal recharge to the water table and discharge to a stream. The use of the program requires an estimate of a recession index, which is the time required for ground-water discharge to recede by one log cycle after recession becomes linear or near-linear on the semilog hydrograph. Although considerable uncertainty is inherent in the recession index, the results of the RORA program may not be sensitive to this variable. Testing shows that the program can yield consistent estimates under conditions that include leakage to or from deeper aquifers and ground-water evapotranspiration. These tests indicate that RORA estimates the net recharge, which is recharge to the water table minus leakage to a deeper aquifer, or recharge minus ground-water evapotranspiration. Before the program begins making calculations it designates days that fit a requirement of antecedent recession, and these days are used in calculations. The program user might increase the antecedent-recession requirement above its default value to reduce the influence of errors that are caused by direct-surface runoff, but other errors can result from the reduction in the number of peaks detected. To obtain an understanding of flow systems, results from the RORA program might be used in conjunction with other methods such as analysis of ground-water levels, estimates of ground-water discharge from other forms of hydrograph separation, and low-flow variables. Relations among variables may be complex for a variety of reasons; for example, there may not be a unique relation between ground-water level and ground-water discharge, ground-water recharge and discharge are not synchronous, and low-flow variables can be related to other factors such as the recession index.
Qualification of Electrical Ground Support Equipment for New Space Programs
NASA Technical Reports Server (NTRS)
SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.
2011-01-01
With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.
Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1994-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.
ITOS meteorological satellite system: TIROS M spacecraft (ITOS 1), volume 3
NASA Technical Reports Server (NTRS)
1970-01-01
The test programs for TIROS M are reported. Test histories reported include: mechanical test models, thermal test models, antenna test models, ETM test program, and flight acceptance. Prelaunch activities and ground station equipment are described.
NASA Technical Reports Server (NTRS)
1977-01-01
The panel focused its attention on those areas that are considered most significant for flight success and safety. Elements required for the Approach and Landing Test Program, the Orbital Flight Test Program, and those management systems and their implementation which directly affect safety, reliability, and quality control, were investigated. Ground facilities and the training programs for the ground and flight crews were studied. Of special interest was the orbiter thermal protection subsystems.
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
Advanced composite vertical fin for L-1011 aircraft
NASA Technical Reports Server (NTRS)
Jackson, A. C.
1984-01-01
The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.
NASA Technical Reports Server (NTRS)
1975-01-01
The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.
Ground Vibration Testing Options for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry
2011-01-01
New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
DOT National Transportation Integrated Search
1976-11-01
This document presents the test results from the State-of-the-Art Post-Repair Engineering Test Program conducted at the DOT High-Speed Ground Test Center, Pueblo, Colorado, from March 18th to 29th, 1974. The SOAC has been developed under UMTA's Urban...
Apollo experience report: Safety activities
NASA Technical Reports Server (NTRS)
Rice, C. N.
1975-01-01
A description is given of the flight safety experiences gained during the Apollo Program and safety, from the viewpoint of program management, engineering, mission planning, and ground test operations was discussed. Emphasis is placed on the methods used to identify the risks involved in flight and in certain ground test operations. In addition, there are discussions on the management and engineering activities used to eliminate or reduce these risks.
Payload test philosophy. [to provide confidence in Shuttle structural math models
NASA Technical Reports Server (NTRS)
Mayhew, D.
1979-01-01
Shuttle payload test philosophy is discussed with reference to testing to provide confidence in Shuttle structural math models. Particular attention is given the Shuttle quarter-scale program and the Mated Vertical Ground Vibration Test Program.
Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions
NASA Technical Reports Server (NTRS)
Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)
2000-01-01
With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker monitors the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane is attached to the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers help prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker helps prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
NASA Technical Reports Server (NTRS)
1976-01-01
Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.
Electronics systems test laboratory testing of shuttle communications systems
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Bromley, L. K.
1985-01-01
Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2009-01-01
This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground Operations Aerospace Language (GOAL). Volume 3: Data bank
NASA Technical Reports Server (NTRS)
1973-01-01
The GOAL (Ground Operations Aerospace Language) test programming language was developed for use in ground checkout operations in a space vehicle launch environment. To insure compatibility with a maximum number of applications, a systematic and error-free method of referencing command/response (analog and digital) hardware measurements is a principle feature of the language. Central to the concept of requiring the test language to be independent of launch complex equipment and terminology is that of addressing measurements via symbolic names that have meaning directly in the hardware units being tested. To form the link from test program through test system interfaces to the units being tested the concept of a data bank has been introduced. The data bank is actually a large cross-reference table that provides pertinent hardware data such as interface unit addresses, data bus routings, or any other system values required to locate and access measurements.
Noise measurement flight test: Data-analyses Aerospatiale SA-365N Dauphin 2 helicopter
NASA Astrophysics Data System (ADS)
Newman, J. S.; Rickely, E. J.; Daboin, S. A.; Beattie, K. R.
1984-04-01
This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program with the Dauphin twin-jet helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise. This report is the second in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983. The Dauphin test program involved the acquisition of detailed acoustical, position and meteorological data. This test program was designed to address a series of objectives including: (1) acquisition of acoustical data for use in assessing heliport environment impact, (2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, (4) determination of noise event duration influences on energy dose acoustical metrics, (5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and (6) documentation of noise levels acquired using international helicopter noise certification test procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandt, A.; Lowell, M.
2012-05-01
GSA's Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies.
The NAS kernel benchmark program
NASA Technical Reports Server (NTRS)
Bailey, D. H.; Barton, J. T.
1985-01-01
A collection of benchmark test kernels that measure supercomputer performance has been developed for the use of the NAS (Numerical Aerodynamic Simulation) program at the NASA Ames Research Center. This benchmark program is described in detail and the specific ground rules are given for running the program as a performance test.
Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent
NASA Technical Reports Server (NTRS)
Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.
2008-01-01
For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.
NASA Technical Reports Server (NTRS)
Whitaker, Mike
1991-01-01
Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.
NASA Technical Reports Server (NTRS)
Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.
2015-01-01
Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.
Strategies for Validation Testing of Ground Systems
NASA Technical Reports Server (NTRS)
Annis, Tammy; Sowards, Stephanie
2009-01-01
In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane lifts the Orion heat shield from Exploration Flight Test-1 up off its transporter. It will be lowered onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
NASA Technical Reports Server (NTRS)
1976-01-01
Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.
optical, and structural integrity of the full scale ASTEC solar collector before further development proceeds. This document specifies these initial...engineering ground tests recommended for testing petals and other critical components of the ASTEC collector. It defines the requirements and
JPL control/structure interaction test bed real-time control computer architecture
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1989-01-01
The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.
TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center
2017-12-12
TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-1-011B Vehicle Test Facilities at Aberdeen... Test Center and Yuma Test Center 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d. PROJECT NUMBER 5e... Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ
Competency Tests and Graduation Requirements. Second Edition.
ERIC Educational Resources Information Center
Keefe, James W.
Interest in applied performance testing and concern about the quality of the high school diploma are finding a common ground: graduation requirements. A competency is a complex capability applicable in real life situations, and can be used as program objectives in a competency-based, criterion-referenced program. In such a program, applied…
TESTING OF A 20-METER SOLAR SAIL SYSTEM
NASA Technical Reports Server (NTRS)
Gaspar, J. L.; Behun, V.; Mann, T.; Murphy D.; Macy, B.
2005-01-01
This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program1-3. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance4. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods were evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
TESTING OF A 20-METER SOLAR SAIL SYSTEM
NASA Technical Reports Server (NTRS)
Gaspar, Jim L.; Behun, Vaughan; Mann, Troy; Murphy, Dave; Macy, Brian
2005-01-01
This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods are evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
Destructive Physical Analysis of Flight- and Ground-Tested Sodium-Sulfur Cells
NASA Technical Reports Server (NTRS)
Wasz, Margot L.; Carter, Boyd J.; Donet, Charles M.; Baldwin, Richard S.
1999-01-01
Destructive physical analysis (DPA) was used to study the effects of microgravity on the sulfur electrode in sodium-sulfur cells. The cells examined in this work were provided by the Air Force Research Laboratory (AFRL) from their program on sodium-sulfur technology. The Naval Research Laboratory (NRL) provided electrical characterization of the flight-tested and ground-tested cells.
Aircraft and ground vehicle friction measurements obtained under winter runway conditions
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1989-01-01
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.
Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction
NASA Technical Reports Server (NTRS)
Pike, C. P.; Stevens, N. J.
1980-01-01
A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.
The Stanford equivalence principle program
NASA Technical Reports Server (NTRS)
Worden, Paul W., Jr.; Everitt, C. W. Francis; Bye, M.
1989-01-01
The Stanford Equivalence Principle Program (Worden, Jr. 1983) is intended to test the uniqueness of free fall to the ultimate possible accuracy. The program is being conducted in two phases: first, a ground-based version of the experiment, which should have a sensitivity to differences in rate of fall of one part in 10(exp 12); followed by an orbital experiment with a sensitivity of one part in 10(exp 17) or better. The ground-based experiment, although a sensitive equivalence principle test in its own right, is being used for technology development for the orbital experiment. A secondary goal of the experiment is a search for exotic forces. The instrument is very well suited for this search, which would be conducted mostly with the ground-based apparatus. The short range predicted for these forces means that forces originating in the Earth would not be detectable in orbit. But detection of Yukawa-type exotic forces from a nearby large satellite (such as Space Station) is feasible, and gives a very sensitive and controllable test for little more effort than the orbiting equivalence principle test itself.
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.
Promon's participation in the Brasilsat program: first & second generations
NASA Astrophysics Data System (ADS)
Depaiva, Ricardo N.
This paper presents an overview of the Brasilsat program, space and ground segments, developed by Hughes and Promon. Promon is a Brazilian engineering company that has been actively participating in the Brasilsat Satellite Telecommunications Program since its beginning. During the first generation, as subcontractor of the Spar/Hughes/SED consortium, Promon had a significant participation in the site installation of the Ground Segment, including the antennas. During the second generation, as partner of a consortium with Hughes, Promon participated in the upgrade of Brasilsat's Ground Segment systems: the TT&C (TCR1, TCR2, and SCC) and the COCC (Communications and Operations Control Center). This upgrade consisted of the design and development of hardware and software to support the second generation requirements, followed by integration and tests, factory acceptance tests, transport to site, site installation, site acceptance tests and warranty support. The upgraded systems are distributed over four sites with remote access to the main ground station. The solutions adopted provide a high level of automation, and easy operator interaction. The hardware and software technologies were selected to provide the flexibility to incorporate new technologies and services from the demanding satellite telecommunications market.
Critical Issues in Large-Scale Assessment: A Resource Guide.
ERIC Educational Resources Information Center
Redfield, Doris
The purpose of this document is to provide practical guidance and support for the design, development, and implementation of large-scale assessment systems that are grounded in research and best practice. Information is included about existing large-scale testing efforts, including national testing programs, state testing programs, and…
A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems
NASA Technical Reports Server (NTRS)
Hall, Nancy Rabel
2006-01-01
A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.
Ground Operations Aerospace Language (GOAL)
NASA Technical Reports Server (NTRS)
1973-01-01
GOAL, is a test engineer oriented language designed to be used to standardize procedure terminology and as the test programming language to be used for ground checkout operations in a space vehicle launch environment. The material presented concerning GOAL includes: (1) a historical review, (2) development objectives and requirements, (3) language scope and format, and (4) language capabilities.
Flight test experience and controlled impact of a remotely piloted jet transport aircraft
NASA Technical Reports Server (NTRS)
Horton, Timothy W.; Kempel, Robert W.
1988-01-01
The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.
1999-01-01
Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.
2004-06-01
with TAs C-52A, C-52E, C-52N, and C-52W. It is used for air-to- ground munitions testing, countermeasures development and testing, and ground ...feet above ground level regardless of underlying land use . • Participating in “air shows” and fly-overs by U.S. Air Force aircraft at non-Air Force...Intermittent Intermittent 46 OSS Source : U.S. Government, 2001 Airway/Air Traffic Control The Warning Areas used by Eglin AFB are surrounded by
Sodium Sulfur Technology Program Nastec
NASA Technical Reports Server (NTRS)
Highley, Bob; Somerville, W. Andrew
1992-01-01
The NaSTEC program focuses on developing currently available sodium sulfur cells for use in space applications and investigating the operational parameters of the cells. The specific goals of the program are to determine the operational parameters and verify safety limits of Na/S technology battery cells; test long term zero-g operation; and create a life test database. The program approach and ground and flight test objectives are described in textual and graphic form.
NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1996-01-01
A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.
1987-01-01
APPENDIX B- DATA REDUCTION PROGRAM .............................. 403 LIST OF ILLUSTRATIONS FIGURE NO. PAGE 1. Instrumented Test Pad Layout...weight to produce the same yield relative to hemis- pherical TNT. The test specimens were placed at ground zero in a particular in- plant geometry...The containers were either scaled from the original size or tested in full- scale configurations. The test charges were placed at ground zero and
Mated vertical ground vibration test
NASA Technical Reports Server (NTRS)
Ivey, E. W.
1980-01-01
The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.
Testing of Unmanned Ground Vehicle (UGV) Systems
2009-02-12
Emissions - Intra-system EMC TOP 1-2-51253 TOP 1-2-51154 TOP 2-2-61355 Determines whether the item tested meets the electromagnetic radiation ...effects, static electricity, and lightning criteria and the maximum electromagnetic radiation environment to which the test item may be exposed...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 2-2-540 Testing of Unmanned Ground Vehicle (UGV) Systems 5c. PROGRAM ELEMENT NUMBER 5d
2005-08-03
Finding of No Significant Impact and the Environmental Assessment for Theater Missile Defense Ground- Based Radar Testing Program at Fort Devens ...2000 "* Record of Decision for Site Preparation Activities at the Missile Defense System Test Bed at Fort Greely, Alaska, 2001 "* Record of Decision...to Establish a Ground-Based Midcourse Defense Initial Defensive Operations Capability at Fort Greely, Alaska, 2003 These documents are available at the
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
Tire and runway surface research
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1986-01-01
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
NASA Technical Reports Server (NTRS)
Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.
2010-01-01
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.
Overview of Avionics and Electrical Ground Support Equipment
NASA Technical Reports Server (NTRS)
Clarke, Sean C.
2011-01-01
Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.
Constellation Program Electrical Ground Support Equipment Research and Development
NASA Technical Reports Server (NTRS)
McCoy, Keegan S.
2010-01-01
At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.
Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems
NASA Technical Reports Server (NTRS)
Switzer, George F.; Britt, Charles L.
1996-01-01
This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.
NASA's program on icing research and technology
NASA Technical Reports Server (NTRS)
Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.
1989-01-01
NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.
Apollo experience report: Launch escape propulsion subsystem
NASA Technical Reports Server (NTRS)
Townsend, N. A.
1973-01-01
The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.
User manual for the NTS ground motion data base retrieval program: ntsgm
DOE Office of Scientific and Technical Information (OSTI.GOV)
App, F.N.; Tunnell, T.W.
1994-05-01
The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and theremore » are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.« less
NASA Technical Reports Server (NTRS)
Edgerton, A. T.; Trexler, D. T.; Sakamoto, S.; Jenkins, J. E.
1969-01-01
The field measurement program conducted at the NASA/USGS Southern California Test Site is discussed. Ground truth data and multifrequency microwave brightness data were acquired by a mobile field laboratory operating in conjunction with airborne instruments. The ground based investigations were performed at a number of locales representing a variety of terrains including open desert, cultivated fields, barren fields, portions of the San Andreas Fault Zone, and the Salton Sea. The measurements acquired ground truth data and microwave brightness data at wavelengths of 0.8 cm, 2.2 cm, and 21 cm.
Microwave Power Transmission System Studies. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.
1975-01-01
A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less
Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan
NASA Technical Reports Server (NTRS)
1973-01-01
The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino; Seible, Frieder
1990-01-01
Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.
2015-04-01
troubleshooting avionics system faults while the aircraft is on the ground. The core component of the PATS-30, the ruggedized laptop, is no longer sustainable...as well as trouble shooting avionics system faults while the aircraft is on the ground. The PATS-70 utilizes up-to-date, sustainable technology for...Operational Flight Program (OFP) software loading and diagnostic avionics system testing and includes additional TPSs to enhance its capability
GTA (ground test accelerator) Phase 1: Baseline design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedulesmore » and resource requirements are provided. (LEW)« less
SEASAT A satellite scatterometer
NASA Technical Reports Server (NTRS)
Bianchi, R.; Heath, A.; Marsh, S.; Borusiewicz, J.
1978-01-01
The analyses performed in the early period of the program which formed the basis of the sensor design is reviewed, along with the sensor design. The test program is outlined, listing all tests performed and the environmental exposure (simulated) for each, as applicable. Ground support equipment designed and built for assembly integration and field testing is described. The software developed during the program and the algorithms/flow diagrams which formed the bases for the software are summarized.
Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy
2006-01-01
Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.
Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.
1996-01-01
Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.
Voyager spacecraft electrostatic discharge testing
NASA Technical Reports Server (NTRS)
Whittlesey, A.; Inouye, G.
1980-01-01
The program of environmental testing undergone by the Voyager spacecraft in order to simulate the transient voltage effects of electrostatic discharges expected in the energetic plasma environment of Jupiter is reported. The testing consists of studies of the electrostatic discharge characteristics of spacecraft dielectrics in a vacuum-chamber-electron beam facility, brief piece part sensitivity tests on such items as a MOSFET multiplexer and the grounding of the thermal blanket, and assembly tests of the magnetometer boom and the science boom. In addition, testing of a complete spacecraft was performed using two arc sources to simulate long and short duration discharge sources for successive spacecraft shielding and grounding improvements. Due to the testing program, both Voyager 1 and Voyager 2 experienced tolerable electrostatic discharge-caused transient anomalies in science and engineering subsystems, however, a closer duplication of the spacecraft environment is necessary to predict and design actual spacecraft responses more accurately.
Flight-and ground-test evaluation of pyrrone foams
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Kelliher, W. C.
1972-01-01
Two Pyrrone materials, pure Pyrrone foam with a density of 481 kg/cu m and hollow glass microsphere-Pyrrone composite with a density of 962 kg/cu m, were tested in the Langley 20-inch hypersonic arc heated tunnel at pressure levels from 0.06 to 0.27 atm and heating rates from 1.14 to 11.4 MW/sq m. The 481-kg/cu m Pyrrone foam was also flight tested as an experiment aboard a Pacemaker test vehicle. The results of the ground tests indicated that the thermal effectiveness of the 481-kg/cu m Pyrrone foam was superior to the 962-kg/cu m glass sphere-Pyrrone composite. The 481-kg/cu m Pyrrone foam had approximately one-half the thermal effectiveness of low density phenolic nylon. The 481-kg/cu m Pyrrone foam experienced random mechanical char removal over the entire range of test conditions. Char thermal property inputs for an ablation computer program were developed from the ground test data of the 481-kg/cu m Pyrrone foam. The computer program using these developed char thermal properties, as well as the measured uncharred material properties, adequately predicted the in-depth temperature histories measured during the Pacemaker flight.
Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program
NASA Technical Reports Server (NTRS)
Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.
1998-01-01
Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.
Software for an Experimental Air-Ground Data Link : Volume 2. System Operation Manual
DOT National Transportation Integrated Search
1975-10-01
This report documents the complete software system developed for the Experimental Data Link System which was implemented for flight test during the Air-Ground Data Link Development Program (FAA-TSC- Project Number FA-13). The software development is ...
Software for Experimental Air-Ground Data Link Volume I : Functional Description and Flowcharts.
DOT National Transportation Integrated Search
1975-10-01
Experimental Data Link System which was implemented for flight test during the Air-Ground Data Link Development Program (FAA-TSC Project Number FA-13). : The software development is presented in three volumes as follows: : Volume I: -- Functional Des...
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less
NASA Technical Reports Server (NTRS)
1974-01-01
The proposed spacecraft consists of a bus module, containing all subsystems required for support of the sensors, and a payload module containing all of the sensor equipment. The two modules are bolted together to form the spacecraft, and electrical interfaces are accomplished via mated connectors at the interface plane. This approach permits independent parallel assembly and test operations on each module up until mating for final spacecraft integration and test operations. Proposed program schedules recognize the need to refine sensor/spacecraft interfaces prior to proceeding with procurement, reflect the lead times estimated by suppliers for delivery of equipment, reflect a comprehensive test program, and provide flexibility for unanticipated problems. The spacecraft systems are described in detail along with aerospace ground equipment, ground handling equipment, the launch vehicle, imaging radar incorporation, and systems tests.
Flight Test Results of VDL-3, 1090ES, and UAT Datalinks for Weather Information Communication
NASA Technical Reports Server (NTRS)
Griner, James
2006-01-01
This presentation describes final test results for the Weather Information Communications (WINCOMM) program at the NASA Glenn Research Center on flight testing of the 1090 Extended Squitter (1090ES), VDL Mode 3, and Universal Access Transceiver (UAT) data links as a medium for weather data exchange. It presents an architectural description of the use of 1090ES to meet the program objectives of sending turbulence information, the use of VDL Mode 3 to send graphical weather images, and the use of UAT for transmitting weather sensor data. This presentation provides a high level definition of the changes made to both avionics and ground-based receivers as well as the ground infrastructure used to support flight testing and future implementation. Summary of results from flight tests of these datalinks will also be presented.
Testing an automated method to estimate ground-water recharge from streamflow records
Rutledge, A.T.; Daniel, C.C.
1994-01-01
The computer program, RORA, allows automated analysis of streamflow hydrographs to estimate ground-water recharge. Output from the program, which is based on the recession-curve-displacement method (often referred to as the Rorabaugh method, for whom the program is named), was compared to estimates of recharge obtained from a manual analysis of 156 years of streamflow record from 15 streamflow-gaging stations in the eastern United States. Statistical tests showed that there was no significant difference between paired estimates of annual recharge by the two methods. Tests of results produced by the four workers who performed the manual method showed that results can differ significantly between workers. Twenty-two percent of the variation between manual and automated estimates could be attributed to having different workers perform the manual method. The program RORA will produce estimates of recharge equivalent to estimates produced manually, greatly increase the speed od analysis, and reduce the subjectivity inherent in manual analysis.
Software for an experimental air-ground data link : volume 1. functional description and flowcharts.
DOT National Transportation Integrated Search
1975-10-01
This report documents the complete software system developed for the Experimental Data Link System which was implementd for flight test during the Air-Ground Data Link Development Program. The software development is presented in three volumes as fol...
LLNL electro-optical mine detection program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.; Aimonetti, W.; Barth, M.
1994-09-30
Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem ofmore » sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.« less
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.
1990-01-01
A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
NASA Technical Reports Server (NTRS)
Stakolich, E. G.
1978-01-01
An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.
Ground state of the time-independent Gross Pitaevskii equation
NASA Astrophysics Data System (ADS)
Dion, Claude M.; Cancès, Eric
2007-11-01
We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence to the true ground state. Versions are given for the one-, two-, and three-dimensional equation, using either a spectral method, well suited for harmonic trapping potentials, or a spatial grid. Program summaryProgram title: GPODA Catalogue identifier: ADZN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5339 No. of bytes in distributed program, including test data, etc.: 19 426 Distribution format: tar.gz Programming language: Fortran 90 Computer: ANY (Compilers under which the program has been tested: Absoft Pro Fortran, The Portland Group Fortran 90/95 compiler, Intel Fortran Compiler) RAM: From <1 MB in 1D to ˜10 MB for a large 3D grid Classification: 2.7, 4.9 External routines: LAPACK, BLAS, DFFTPACK Nature of problem: The order parameter (or wave function) of a Bose-Einstein condensate (BEC) is obtained, in a mean field approximation, by the Gross-Pitaevskii equation (GPE) [F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463]. The GPE is a nonlinear Schrödinger-like equation, including here a confining potential. The stationary state of a BEC is obtained by finding the ground state of the time-independent GPE, i.e., the order parameter that minimizes the energy. In addition to the standard three-dimensional GPE, tight traps can lead to effective two- or even one-dimensional BECs, so the 2D and 1D GPEs are also considered. Solution method: The ground state of the time-independent of the GPE is calculated using the Optimal Damping Algorithm [E. Cancès, C. Le Bris, Int. J. Quantum Chem. 79 (2000) 82]. Two sets of programs are given, using either a spectral representation of the order parameter [C.M. Dion, E. Cancès, Phys. Rev. E 67 (2003) 046706], suitable for a (quasi) harmonic trapping potential, or by discretizing the order parameter on a spatial grid. Running time: From seconds in 1D to a few hours for large 3D grids
Overview of the Ares I Scale Model Acoustic Test Program
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2011-01-01
Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.
The Kenya rangeland ecological monitoring unit
NASA Technical Reports Server (NTRS)
Stevens, W. E. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Methodology for aerial surveys and ground truth studies was developed, tested, and revised several times to produce reasonably firm methods of procedure. Computer programs were adapted or developed to analyze, store, and recall data from the ground and air monitoring surveys.
DOT National Transportation Integrated Search
2000-04-01
Satellite imagery could conceivably be added to data traditionally collected in traffic monitoring programs to allow wide spatial coverage unobtainable from ground-based sensors in a safe, off-the-road environment. Previously, we estimated that 1-m r...
DOT National Transportation Integrated Search
2000-04-01
Satellite imagery could conceivably be added to data traditionally collected in traffic monitoring programs to allow wide spatial coverage unobtainable from ground-based sensors in a safe, off-the-road environment. Previously, we estimated that 1-m r...
NASA Technical Reports Server (NTRS)
Arnett, R. W.; Voth, R. O.
1972-01-01
An analysis and computer program are described for calculating the thermal stratification and the associated self-pressurization of a closed liquid hydrogen tank. FORTRAN-IV language is used and runs were made on IBM 360/65 and CDC 3600 computers. Comparisons are made between the program calculations and test results from both ground and orbital coast tests of a Centaur space vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include safety systems, isotope heat source, converter, product assurance, hardware fabrication, acceptance testing, and ground support equipment. (TFD)
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less
A new method for aerodynamic test of high altitude propellers
NASA Astrophysics Data System (ADS)
Gong, Xiying; Zhang, Lin
A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers' wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method.
Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Bowers, Albion H.; Pahle, Joseph W.
1996-01-01
Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Antarctica as a testing ground for manned missions to the Moon and Mars
NASA Astrophysics Data System (ADS)
Demidov, N. E.; Lukin, V. V.
2017-03-01
This paper is concerned with the study of expedition activity in Antarctica as a part of the search for useful analogies and solutions which can be taken into account in planning manned missions to the Moon and Mars. The following is considered: natural analogies, human factors, station facilities, means of transportation, scientific programs, safety issues, and historical and political analogies. A rationalization is given for the idea of creating a testing ground in Antarctica (stations Vostok, Novolazarevskaya, Jetty Oasis) for ground-based simulation of functioning of a lunar and Martian base.
2011-11-21
CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Multi-Payload Processing Facility, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Launch Equipment Test Facility, the Operations & Checkout Building and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann
2011-11-21
CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Launch Equipment Test Facility in the Industrial Area, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Operations & Checkout Building, the Multi-Payload Processing Facility and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann
2011-11-21
CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Launch Equipment Test Facility in the Industrial Area, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Operations & Checkout Building, the Multi-Payload Processing Facility and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann
Programs for Testing an SSME-Monitoring System
NASA Technical Reports Server (NTRS)
Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary;
2007-01-01
A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.
Rapid Ascent Simulation at NASA-MSFC
NASA Technical Reports Server (NTRS)
Sisco, Jimmy D.
2004-01-01
The Environmental Test Facility (ETF), located at NASA-Marshall Space Flight Center, Huntsville, Alabama, has provided thermal vacuum testing for several major programs since the 1960's. The ETF consists of over 13 thermal vacuum chambers sized and configured to handle the majority of test payloads. The majority of tests require a hard vacuum with heating and cryogenics. NASA's Return-to-Flight program requested testing to simulate a launch from the ground to flight using vacuum, heating and cryogenics. This paper describes an effective method for simulating a launch.
NASA Technical Reports Server (NTRS)
Ray, David C.; Jelinsky, Sharon; Welsh, Barry Y.; Malina, Roger F.
1990-01-01
A stringent contamination-control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments, whose performance in the 80-900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination-control program has been implemented over the last three years during assembly, test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. Various approaches are discussed which have been used during ground operations to meet optics' contamination goals within the project schedule and budget. The measured optical properties of EUV witness mirrors are also presented which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high-vacuum test-chamber environments.
JWST Telescope Integration and Test Progress
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva
2016-01-01
The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.
School-Based Intervention for Test Anxiety
ERIC Educational Resources Information Center
Yeo, Lay See; Goh, Valerie Grace; Liem, Gregory Arief D.
2016-01-01
Background: With children today being tested at younger ages, test anxiety has an earlier onset age. There is relatively limited research on test anxiety management programs with elementary school children. The theoretical basis for this nonrandomized pre-post intervention study is grounded in cognitive and behavioral interventions for test…
2017-04-06
center’s wind tunnels, gas turbine sea level and altitude test cells, space chambers, altitude rocket cells, ballistic ranges, arc heaters and other...number of programs, and the difficulty getting new programs approved, the services are reluctant to delay or cancel programs. Performance problems in...manpower as an indirect cost would alleviate problems with maintaining expertise. The indirect costs provide for security, base infrastructure
ATS-F ground station integration
NASA Technical Reports Server (NTRS)
1975-01-01
The ATS ground stations were described, including a system description, operational frequencies and bandwidth, and a discussion of individual subsystems. Each station configuration is described as well as its floor plan. The station performance, as tested by the GSI, is displayed in chart form providing a summary of the more important parameters tested. This chart provides a listing of test data, by site, for comparison purposes. Also included is a description of the ATS-6 experiments, the equipment, and interfaces required to perform these experiments. The ADP subsystem and its role in the experiments is also described. A description of each program task and a summary of the activities performed were then given. These efforts were accomplished at the Rosman II Ground Station, located near Rosman N.C., the Mojave Ground Station, located near Barstow Ca., and the GSI Contractors plant located near Baltimore, Md.
Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane
NASA Technical Reports Server (NTRS)
Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.
1993-01-01
The exhaust characteristics of the F-18 aircraft with an F404 engine are examined with reference to the results of an acoustic flight testing program. The discussion covers an overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results. In addition, the paper presents the exhaust velocity and Mach number data for the climb-to-cruise, Aircraft Noise Prediction Program validation, and ground tests.
A Theory-Grounded Measure of Adolescents’ Response to a Media Literacy Intervention
Greene, Kathryn; Yanovitzky, Itzhak; Carpenter, Amanda; Banerjee, Smita C.; Magsamen-Conrad, Kate; Hecht, Michael L.; Elek, Elvira
2016-01-01
Media literacy interventions offer promising avenues for the prevention of risky health behaviors among children and adolescents, but current literature remains largely equivocal about their efficacy. The primary objective of this study was to develop and test theoretically-grounded measures of audiences’ degree of engagement with the content of media literacy programs based on the recognition that engagement (and not participation per se) can better explain and predict individual variations in the effects of these programs. We tested the validity and reliability of a measure of engagement with two different samples of 10th grade high school students who participated in a pilot and actual test of a brief media literacy curriculum. Four message evaluation factors (involvement, perceived novelty, critical thinking, personal reflection) emerged and demonstrate acceptable reliability. PMID:28042522
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2009-01-01
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.
Rocketdyne Development of RBCC Engine for Low Cost Access to Space
NASA Technical Reports Server (NTRS)
Ortwerth, P.; Ratekin, G.; Goldman, A.; Emanuel, M.; Ketchum, A.; Horn, M.
1997-01-01
Rocketdyne is pursuing the conceptual design and development of a Rocket Based Combined Cycle (RBCC) engine for booster and SSTO, advanced reusable space transportation ARTT systems under contract with NASA Marshall Space Flight Center. The Rocketdyne concept is fixed geometry integrated Rocket, Ram Scramjet which is Hydrogen fueled and uses Hydrogen regenerative cooling. Vision vehicle integration studies have determined that scramjet operation to Mach 12 has high payoff for low cost reusable space transportation. Rocketdyne is internally developing versions of the concept for other applications in high speed aircraft and missiles with Hydrocarbon fuel systems. Subscale engine ground testing is underway for all modes of operation from takeoff to Mach 8. High altitude Rocket only mode tests will be completed as part of the ground test program to validate high expansion ratio performance. A unique feature of the ground test series is the inclusion of dynamic trajectory simulation with real time Mach number, altitude, engine throttling, and RBCC mode changes in a specially modified freejet test facility at GASL. Preliminary cold flow Air Augmented Rocket mode test results and Short Combustor tests have met program goals and have been used to integrate all modes of operation in a single combustor design with a fixed geometry inlet for design confirmation tests. A water cooled subscale engine is being fabricated and installed for test beginning the last quarter of 1997.
Load control system. [for space shuttle external tank ground tests
NASA Technical Reports Server (NTRS)
Grosse, J. C.
1977-01-01
The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.
Review of Nuclear Thermal Propulsion Ground Test Options
NASA Technical Reports Server (NTRS)
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
Galileo Parachute System modification program
NASA Technical Reports Server (NTRS)
Mcmenamin, H. J.; Pochettino, L. R.
1984-01-01
This paper discusses the development program conducted on the Galileo Parachute System following the slow opening performance of the main parachute during the first system drop test. The parachute system is part of the Galileo entry probe that will descend through the Jupiter atmosphere. The uncontrolled parachute opening experienced in this test was not acceptable for the probe system. Therefore, the main parachute design was modified and the system sequence was changed to prevent a recurrence. These alterations and their system effects were evaluated analytically, and in a ground test program. At the conclusion of this phase, the system drop test was successfully repeated.
NASA Technical Reports Server (NTRS)
Bigler, W. B., II
1977-01-01
The NASA passenger ride quality apparatus (PRQA), a ground based motion simulator, was compared to the total in flight simulator (TIFS). Tests were made on PRQA with varying stimuli: motions only; motions and noise; motions, noise, and visual; and motions and visual. Regression equations for the tests were obtained and subsequent t-testing of the slopes indicated that ground based simulator tests produced comfort change rates similar to actual flight data. It was recommended that PRQA be used in the ride quality program for aircraft and that it be validated for other transportation modes.
Study and development of acoustic treatment for jet engine tailpipes
NASA Technical Reports Server (NTRS)
Nelson, M. D.; Linscheid, L. L.; Dinwiddie, B. A., III; Hall, O. J., Jr.
1971-01-01
A study and development program was accomplished to attenuate turbine noise generated in the JT3D turbofan engine. Analytical studies were used to design an acoustic liner for the tailpipe. Engine ground tests defined the tailpipe environmental factors and laboratory tests were used to support the analytical studies. Furnace-brazed, stainless steel, perforated sheet acoustic liners were designed, fabricated, installed, and ground tested in the tailpipe of a JT3D engine. Test results showed the turbine tones were suppressed below the level of the jet exhaust for most far field polar angles.
The CF6 engine performance improvement
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1982-01-01
As part of the NASA-sponsored Engine Component Improvement (ECI) Program, a feasibility analysis of performance improvement and retention concepts for the CF6-6 and CF6-50 engines was conducted and seven concepts were identified for development and ground testing: new fan, new front mount, high pressure turbine aerodynamic performance improvement, high pressure turbine roundness, high pressure turbine active clearance control, low pressure turbine active clearance control, and short core exhaust nozzle. The development work and ground testing are summarized, and the major test results and an enomic analysis for each concept are presented.
Aircraft radial-belted tire evaluation
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.
1990-01-01
An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.
CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test
NASA Technical Reports Server (NTRS)
Voland, R. T.; Auslender, A. H.; Smart, M. K.; Roudakov, A. S.; Semenov, V. L.; Kopchenov, V.
1999-01-01
The Russian Central Institute of Aviation Motors (CIAM) performed a flight test of a CIAM-designed, hydrogen-cooled/fueled dual-mode scramjet engine over a Mach number range of approximately 3.5 to 6.4 on February 12, 1998, at the Sary Shagan test range in Kazakhstan. This rocket-boosted, captive-carry test of the axisymmetric engine reached the highest Mach number of any scramjet engine flight test to date. The flight test and the accompanying ground test program, conducted in a CIAM test facility near Moscow, were performed under a NASA contract administered by the Dryden Flight Research Center with technical assistance from the Langley Research Center. Analysis of the flight and ground data by both CIAM and NASA resulted in the following preliminary conclusions. An unexpected control sensor reading caused non-optimal fueling of the engine, and flowpath modifications added to the engine inlet during manufacture caused markedly reduced inlet performance. Both of these factors appear to have contributed to the dual-mode scramjet engine operating primarily in a subsonic combustion mode. At the maximum Mach number test point, combustion caused transition from supersonic flow at the fuel injector station to primarily subsonic flow in the combustor. Ground test data were obtained at similar conditions to the flight test, allowing for a meaningful comparison between the ground and flight data. The results of this comparison indicate that the differences in engine performance are small.
Strategies for Ground Based Testing of Manned Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Beyer, Jeff; Peacock, Mike; Gill, Tracy
2009-01-01
Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.
Ground Software Maintenance Facility (GSMF) user's manual
NASA Technical Reports Server (NTRS)
Aquila, V.; Derrig, D.; Griffith, G.
1986-01-01
Instructions for the Ground Software Maintenance Facility (GSMF) system user is provided to operate the GSMF in all modes. The GSMF provides the resources for the Automatic Test Equipment (ATE) computer program maintenance (GCOS and GOAL). Applicable reference documents are listed. An operational overview and descriptions of the modes in terms of operator interface, options, equipment, material utilization, and operational procedures are contained. Test restart procedures are described. The GSMF documentation tree is presented including the user manual.
NASA Technical Reports Server (NTRS)
Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.
2018-01-01
The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.
Wireless Sensor Applications in Extreme Aeronautical Environments
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2013-01-01
NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.
NASA Technical Reports Server (NTRS)
1977-01-01
The panel reviewed the following areas of major significance for the Approach and Landing Test program: mission planning and crew training, flight-readiness of the Carrier Aircraft and the Orbiter, including its flight control and avionics system, facilities, and communications and ground support equipment. The management system for risk assessment was investigated. The Orbital Flight Test Program was also reviewed. Observations and recommendations are presented.
NASA Technical Reports Server (NTRS)
Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.
1990-01-01
Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.
2009-01-01
As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.
Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program
NASA Astrophysics Data System (ADS)
1991-09-01
A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.
NASA Technical Reports Server (NTRS)
Griner, James H.; Jirberg, Russ; Frantz, Brian; Kachmar, Brian A.
2006-01-01
NASA s Aviation Safety Program was created for the purpose of making a significant reduction in the incidents of weather related aviation accidents by improving situational awareness. The objectives of that program are being met in part through advances in weather sensor technology, and in part through advances in the communications technology that are developed for use in the National Airspace System. It is this latter element, i.e., the improvements in aviation communication technologies, that is the focus of the Weather Information Communications project. This report describes the final flight test results completed under the WINCOMM project at the NASA Glenn Research Center of the 1090 Extended Squitter (1090ES) and VDL Mode 3 (VDL-3) data links as a medium for weather data exchange. It presents the use of 1090ES to meet the program objectives of sending broadcast turbulence information and the use of VDL-3 to send graphical weather images. This report provides the test requirements and test plans, which led to flight tests, as well as final results from flight testing. The reports define the changes made to both avionics and ground-based receivers as well as the ground infrastructure to support implementation of the recommended architecture, with a focus on the issues associated with these changes.
NASA Technical Reports Server (NTRS)
Cosentino, Gary B.
2008-01-01
The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.
Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane
NASA Technical Reports Server (NTRS)
Kempel, R. W.; Horton, T. W.
1985-01-01
A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.
Apollo Block I Spacesuit Development and Apollo Block II Spacesuit Competition
NASA Technical Reports Server (NTRS)
McBarron, Jim
2013-01-01
Jim McBarron has over 40 years of experience with the U.S. Air Force pressure suit and NASA spacesuit development and operations. As a result of his experience, he shared his significant knowledge about the requirements and modifications made to the Gemini spacesuit, which were necessary to support the Apollo Block I Program. In addition, he provided an overview of the Apollo Block II Spacesuit competition test program conducted by the NASA Manned Spacecraft Center. Topics covered included the program's chronology; competition test program ground rules, scoring details, and final test results; and the implementation of resulting modifications to the Apollo Spacesuit Program. He concluded his presentation by identifying noteworthy lessons learned.
JWST Pathfinder Telescope Risk Reduction Cryo Test Program
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Scorse, Thomas R.; Spina, John A.; Noel, Darin M.; Havey, Keith A., Jr.; Huguet, Jesse A.; Whitman, Tony L.; Wells, Conrad; Walker, Chanda B.; Lunt, Sharon;
2015-01-01
In 2014, the Optical Ground Support Equipment was integrated into the large cryo vacuum chamber at Johnson Space Center (JSC) and an initial Chamber Commissioning Test was completed. This insured that the support equipment was ready for the three Pathfinder telescope cryo tests. The Pathfinder telescope which consists of two primary mirror segment assemblies and the secondary mirror was delivered to JSC in February 2015 in support of this critical risk reduction test program prior to the flight hardware. This paper will detail the Chamber Commissioning and first optical test of the JWST Pathfinder telescope.
Aircraft and Ground Vehicle Winter Runway Friction Assessment
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1999-01-01
Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.
V/STOL and STOL ground effects and testing techniques
NASA Technical Reports Server (NTRS)
Kuhn, R. E.
1987-01-01
The ground effects associated with V/STOL operation were examined and an effort was made to develop the equipment and testing techniques needed for that understanding. Primary emphasis was on future experimental programs in the 40 x 80 and the 80 x 120 foot test sections and in the outdoor static test stand associated with these facilities. The commonly used experimental techniques are reviewed and data obtained by various techniques are compared with each other and with available estimating methods. These reviews and comparisons provide insight into the limitations of past studies and the testing techniques used and identify areas where additional work is needed. The understanding of the flow mechanics involved in hovering and in transition in and out of ground effect is discussed. The basic flow fields associated with hovering, transition and STOL operation of jet powered V/STOL aircraft are depicted.
Digital electronic engine control history
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1984-01-01
Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.
Ukrainian Program for Material Science in Microgravity
NASA Astrophysics Data System (ADS)
Fedorov, Oleg
Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.
NASA Technical Reports Server (NTRS)
SaintOnge, Thomas H.
2010-01-01
The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.
NASA Technical Reports Server (NTRS)
1995-01-01
Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, R.A.
2002-05-09
This ecological risk assessment for a testing program at Yuma Proving Ground, Arizona, is a demonstration of the Military Ecological Risk Assessment Framework (MERAF; Suter et al. 2001). The demonstration is intended to illustrate how risk assessment guidance concerning-generic military training and testing activities and guidance concerning a specific type of activity (e.g., low-altitude aircraft overflights) may be implemented at a military installation. MERAF was developed with funding from the Strategic Research and Development Program (SERDP) of the Department of Defense. Novel aspects of MERAF include: (1) the assessment of risks from physical stressors using an ecological risk assessment framework,more » (2) the consideration of contingent or indirect effects of stressors (e.g., population-level effects that are derived from habitat or hydrological changes), (3) the integration of risks associated with different component activities or stressors, (4) the emphasis on quantitative risk estimates and estimates of uncertainty, and (5) the modularity of design, permitting components of the framework to be used in various military risk assessments that include similar activities. The particular subject of this report is the assessment of ecological risks associated with a testing program at Cibola Range of Yuma Proving Ground, Arizona. The program involves an Apache Longbow helicopter firing Hellfire missiles at moving targets, i.e., M60-A1 tanks. Thus, the three component activities of the Apache-Hellfire test were: (1) helicopter overflight, (2) missile firing, and (3) tracked vehicle movement. The demonstration was limited, to two ecological endpoint entities (i.e., potentially susceptible and valued populations or communities): woody desert wash communities and mule deer populations. The core assessment area is composed of about 126 km{sup 2} between the Chocolate and Middle Mountains. The core time of the program is a three-week period, including fourteen days of activity in August of 2000.« less
Annual Report by Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1980-01-01
Elements of the shuttle program that directly affect the mission success and crew safety were investigated. These elements included the shuttle orbiter, the main engine, the solid rocket boosters, avionic system, ground support equipment and the approach and landing operations. The thermal protection systems were studied in detail. Crew training and ground simulation test procedures were reviewed.
Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis
NASA Astrophysics Data System (ADS)
Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus
2011-05-01
The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.
Flight Testing the X-48B at the Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Cosenito, Gary B.
2010-01-01
Topics discussed include: a) UAV s at NASA Dryden, Past and Present; b) Why Do We Flight Test?; c) The Blended (or Hybrid) Wing-Body Advantage; d) Program Objectives; e) The X-48B Vehicle and Ground Control Station; and f) Flight Test Highlights & Video.
The Effects of a 6-Week Plyometric Training Program on Agility
Miller, Michael G.; Herniman, Jeremy J.; Ricard, Mark D.; Cheatham, Christopher C.; Michael, Timothy J.
2006-01-01
The purpose of the study was to determine if six weeks of plyometric training can improve an athlete's agility. Subjects were divided into two groups, a plyometric training and a control group. The plyometric training group performed in a six week plyometric training program and the control group did not perform any plyometric training techniques. All subjects participated in two agility tests: T-test and Illinois Agility Test, and a force plate test for ground reaction times both pre and post testing. Univariate ANCOVAs were conducted to analyze the change scores (post - pre) in the independent variables by group (training or control) with pre scores as covariates. The Univariate ANCOVA revealed a significant group effect F2,26 = 25.42, p=0.0000 for the T-test agility measure. For the Illinois Agility test, a significant group effect F2,26 = 27.24, p = 0.000 was also found. The plyometric training group had quicker posttest times compared to the control group for the agility tests. A significant group effect F2,26 = 7.81, p = 0.002 was found for the Force Plate test. The plyometric training group reduced time on the ground on the posttest compared to the control group. The results of this study show that plyometric training can be an effective training technique to improve an athlete's agility. Key Points Plyometric training can enhance agility of athletes. 6 weeks of plyometric training is sufficient to see agility results. Ground reaction times are decreased with plyometric training PMID:24353464
Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1995-01-01
A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.
2016-08-03
Engineers complete a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
Integration Testing of Space Flight Systems
NASA Technical Reports Server (NTRS)
Honeycutt, Timothy; Sowards, Stephanie
2008-01-01
Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.
The X-33 Extended Flight Test Range
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.
1998-01-01
Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
Performance verification testing of the Arkal Pressurized Stormwater Filtration System was conducted under EPA's Environmental Technology Verification Program on a 5.5-acre parking lot and grounds of St. Mary's Hospital in Milwaukee, Wisconsin. The system consists of a water sto...
Solar Sail Loads, Dynamics, and Membrane Studies
NASA Technical Reports Server (NTRS)
Slade, K. N.; Belvin, W. K.; Behun, V.
2002-01-01
While a number of solar sail missions have been proposed recently, these missions have not been selected for flight validation. Although the reasons for non-selection are varied, principal among them is the lack of subsystem integration and ground testing. This paper presents some early results from a large-scale ground testing program for integrated solar sail systems. In this series of tests, a 10 meter solar sail tested is subjected to dynamic excitation both in ambient atmospheric and vacuum conditions. Laser vibrometry is used to determine resonant frequencies and deformation shapes. The results include some low-order sail modes which only can be seen in vacuum, pointing to the necessity of testing in that environment.
Tonkin, M.J.; Hill, Mary C.; Doherty, John
2003-01-01
This document describes the MOD-PREDICT program, which helps evaluate userdefined sets of observations, prior information, and predictions, using the ground-water model MODFLOW-2000. MOD-PREDICT takes advantage of the existing Observation and Sensitivity Processes (Hill and others, 2000) by initiating runs of MODFLOW-2000 and using the output files produced. The names and formats of the MODFLOW-2000 input files are unchanged, such that full backward compatibility is maintained. A new name file and input files are required for MOD-PREDICT. The performance of MOD-PREDICT has been tested in a variety of applications. Future applications, however, might reveal errors that were not detected in the test simulations. Users are requested to notify the U.S. Geological Survey of any errors found in this document or the computer program using the email address available at the web address below. Updates might occasionally be made to this document, to the MOD-PREDICT program, and to MODFLOW- 2000. Users can check for updates on the Internet at URL http://water.usgs.gov/software/ground water.html/.
Measurement and Simulation of Low Frequency Impulse Noise and Ground Vibration from Airblasts
NASA Astrophysics Data System (ADS)
Hole, L. R.; Kaynia, A. M.; Madshus, C.
1998-07-01
This paper presents numerical simulations of low frequency ground vibration and dynamic overpressure in air using two different numerical models. Analysis is based on actual recordings during blast tests at Haslemoen test site in Norway in June 1994. It is attempted to use the collected airblast-induced overpressures and ground vibrations in order to asses the applicability of the two models. The first model is a computer code which is based on a global representation of ground and atmospheric layers, a so-called Fast Field Program (FFP). A viscoelastic and a poroelastic version of this model is used. The second model is a two-dimensionalmoving-loadformulation for the propagation of airblast over ground. The poroelastic FFP gives the most complete and realistic reproduction of the processes involved, including decay of peak overpressure amplitude and dominant frequency of signals with range. It turns out that themoving-loadformulation does not provide a complete description of the physics involved when the speed of sound in air is different from the ground wavespeeds.
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
The General Aviation Propulsion (GAP) Program
NASA Technical Reports Server (NTRS)
2008-01-01
The General Aviation Propulsion (GAP) Program Turbine Engine Element focused on the development of an advanced small turbofan engine. Goals were good fuel consumption and thrust-to-weight ratio, and very low production cost. The resulting FJX-2 turbofan engine showed the potential to meet all of these goals. The development of the engine was carried through to proof of concept testing of a complete engine system. The proof of concept engine was ground tested at sea level and in altitude test chambers. A turboprop derivative was also sea-level tested.
Apollo Soyuz test project press kit: USA-USSR
NASA Technical Reports Server (NTRS)
1975-01-01
The goals and program of the mission are described. Operations from preflight crew training through splashdown are included. Spacecraft and launch vehicle configurations are given. The 27 joint and unilateral experiments to be performed are described. A flight plan and a schedule of activities is included, together with brief crew biographies. The ground support system is discussed; it includes control centers in Houston and Moscow, and an ATS satellite to relay ground-air-ground communications. The global tracking network and the television transmission system are also described.
Consumer Outcomes After Implementing CommonGround as an Approach to Shared Decision Making.
Salyers, Michelle P; Fukui, Sadaaki; Bonfils, Kelsey A; Firmin, Ruth L; Luther, Lauren; Goscha, Rick; Rapp, Charles A; Holter, Mark C
2017-03-01
The authors examined consumer outcomes before and after implementing CommonGround, a computer-based shared decision-making program. Consumers with severe mental illness (N=167) were interviewed prior to implementation and 12 and 18 months later to assess changes in active treatment involvement, symptoms, and recovery-related attitudes. Providers also rated consumers on level of treatment involvement. Most consumers used CommonGround at least once (67%), but few used the program regularly. Mixed-effects regression analyses showed improvement in self-reported symptoms and recovery attitudes. Self-reported treatment involvement did not change; however, for a subset of consumers with the same providers over time (N=83), the providers rated consumers as more active in treatment. This study adds to the growing literature on tools to support shared decision making, showing the potential benefits of CommonGround for improving recovery outcomes. More work is needed to better engage consumers in CommonGround and to test the approach with more rigorous methods.
NASA Technical Reports Server (NTRS)
Putnam, Terrill W.; Ayers, Theodore G.
1989-01-01
Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.
NASA Technical Reports Server (NTRS)
Putnam, Terrill W.; Ayers, Theodore G.
1988-01-01
Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on Exploration Mission 1.
NASA Technical Reports Server (NTRS)
Knouse, G.; Weber, W.
1985-01-01
A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.
NASA Astrophysics Data System (ADS)
Knouse, G.; Weber, W.
1985-04-01
A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.
Human-in-the-Loop Integrated Life Support Systems Ground Testing
NASA Technical Reports Server (NTRS)
Henninger, Donald L.; Marmolejo, Jose A.; Westheimer, David T.
2011-01-01
Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chamber) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international partners.
Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing
NASA Technical Reports Server (NTRS)
Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.
1992-01-01
The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.
2017-04-28_W88 ALT 370 Program Overview(OUO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Vonceil
2017-04-01
All major program milestones have been met and the program is executing within budget. The ALT 370 program achieved Phase 6.4 authorization in February of this year. Five component Final Design Reviews (FDRs) have been completed, indicating progress in finalizing the design and development phase of the program. A series of ground-based qualification activities have demonstrated that designs are meeting functional requirements. The first fully functional flight test, FCET-53, demonstrated end-to-end performance in normal flight environments in February. Similarly, groundbased nuclear safety and hostile environments testing indicates that the design meets requirements in these stringent environments. The first in amore » series of hostile blast tests was successfully conducted in April.« less
2018-01-11
Darrell Foster, chief of Project Management in Exploration Ground Systems, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
LSS systems planning and performance program
NASA Technical Reports Server (NTRS)
Mckenna, Victoria Jones; Dendy, Michael J.; Naumann, Charles B.; Rice, Sally A.; Weathers, John M.
1993-01-01
This report describes, using viewgraphs, the Marshall Space Flight Center's Large Space Structures Ground Test Facilities located in building 4619. Major topics include the Active Control Evaluation of Systems (ACES) Laboratory; the Control-Structures Interaction/Controls, Astrophysics, and Structures Experiment in Space (CSI/CASES); Advanced Development Facility; and the ACES Guest Investigator Program.
Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests
NASA Technical Reports Server (NTRS)
Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.
1976-01-01
Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.
NASA's Advanced Space Transportation Hypersonic Program
NASA Technical Reports Server (NTRS)
Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)
2002-01-01
NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... Machining and N welding of ground support parts for planes. Manufacturing & N precision grinding and testing... governing drug and alcohol testing to clarify that each person who performs a safety-sensitive function for a regulated employer by contract, including bysubcontract at any tier, is subject to testing. DATES...
Doerscher, Darin R; Lutz, Terry L; Whisenant, Stephen J; Smith, Kerry R; Morris, Craig A; Schroeder, Carl M
2015-09-01
The Agricultural Marketing Service (AMS) purchases boneless and ground beef for distribution to recipients through federal nutrition assistance programs, including the National School Lunch Program, which represents 93% of the overall volume. Approximately every 2,000 lb (ca. 907 kg) of boneless beef and 10,000 lb (ca. 4,535 kg) of ground beef are designated a "lot" and tested for Escherichia coli O157:H7, Salmonella, standard plate count organisms (SPCs), E. coli, and coliforms. Any lot of beef positive for E. coli O157:H7 or for Salmonella, or any beef with concentrations of organisms exceeding critical limits for SPCs (100,000 CFU g(-1)), E. coli (500 CFU g(-1)), or coliforms (1,000 CFU g(-1)) is rejected for purchase by AMS and must be diverted from federal nutrition assistance programs. From July 2011 through June 2014, 537,478,212 lb (ca. 243,795,996 kg) of boneless beef and 428,130,984 lb (ca. 194,196,932 kg) of ground beef were produced for federal nutrition assistance programs. Of the 230,359 boneless beef samples collected over this period, 82 (0.04%) were positive for E. coli O157:H7, 924 (0.40%) were positive for Salmonella, 222 (0.10%) exceeded the critical limit for SPCs, 69 (0.03%) exceeded the critical limit for E. coli, and 123 (0.05%) exceeded the critical limit for coliforms. Of the 46,527 ground beef samples collected over this period, 30 (0.06%) were positive for E. coli O157:H7, 360 (0.77%) were positive for Salmonella, 20 (0.04%) exceeded the critical limit for SPCs, 22 (0.05%) exceeded the critical limit for E. coli, and 17 (0.04%) exceeded the critical limit for coliforms. Cumulatively, these data suggest beef produced for the AMS National School Lunch Program is done so under an adequate food safety system, as indicated by the low percentage of lots that were pathogen positive or exceeded critical limits for indicator organisms.
Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada
Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.
1996-01-01
The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding itself. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. An apparent deficiency in the current understanding is a lack of knowledge about flow directions and rates away from major areas of testing. Efforts are necessary to delineate areas of downgradient flow and to identify factors that constrain and control flow within these areas. These efforts also should identify the areas most critical to gaining detailed understanding and to establishing long-term monitoring sites necessary for effective remediation.
Reliability program requirements for aeronautical and space system contractors
NASA Technical Reports Server (NTRS)
1987-01-01
General reliability program requirements for NASA contracts involving the design, development, fabrication, test, and/or use of aeronautical and space systems including critical ground support equipment are prescribed. The reliability program requirements require (1) thorough planning and effective management of the reliability effort; (2) definition of the major reliability tasks and their place as an integral part of the design and development process; (3) planning and evaluating the reliability of the system and its elements (including effects of software interfaces) through a program of analysis, review, and test; and (4) timely status indication by formal documentation and other reporting to facilitate control of the reliability program.
Electric power system test and verification program
NASA Technical Reports Server (NTRS)
Rylicki, Daniel S.; Robinson, Frank, Jr.
1994-01-01
Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.
Naugle, Alecia Larew; Holt, Kristin G; Levine, Priscilla; Eckel, Ron
2005-03-01
We analyzed raw ground beef testing data to determine whether a decrease in the rate of Escherichia coli O157:H7-positive raw ground beef samples has occurred since the inception of Food Safety and Inspection Service (U.S. Department of Agriculture) regulatory actions and microbiological testing concerning this commodity and pathogen. A main effects log-linear Poisson regression model was constructed to evaluate the association between fiscal year and the rate of E. coli O157:H7-positive raw ground beef samples while controlling for the effect of season for the subset of test results obtained from fiscal year (FY)2000 through FY2003. Rate ratios were used to compare the rate of E. coli O157:H7-positive raw ground beef samples between sequential years to identify year-to-year differences. Of the 26,521 raw ground beef samples tested from FY2000 through FY2003, 189 (0.71%) tested positive for E. coli O157:H7. Year-to-year comparisons identified a 50% reduction in the rate of positive ground beef samples from FY2002 to FY2003 when controlling for season (95% CI, 10 to 72% decrease; P = 0.02). This decrease was the only significant year-to-year change in the rate of E. coli O157:H7-positive raw ground beef samples but was consistent in samples obtained from both federally inspected establishments and retail outlets. We believe this decrease is attributed to specific regulatory actions by Food Safety and Inspection Service and subsequent actions implemented by the industry, with the goal of reducing E. coli O157:H7 adulteration of raw ground beef. Continued monitoring is necessary to confirm that the decrease in the rate of E. coli O157:H7 in raw ground beef samples we observed here represents the beginning of a sustained trend.
RCS tests utilize ground-plane effects
NASA Astrophysics Data System (ADS)
Knott, E. F.
1984-03-01
It is noted that the ground effects must be thoroughly understood to attain the proper radar cross section (RCS) configurations for a specific test. If the ground is sufficiently smooth, it acts as a mirror. Ground reflections then serve to enhance the incident field strength. If an asphalt or concrete ground plane has not been constructed, the soil must be kept free of vegetation and must be graded and leveled to exploit the effect. To elucidate the role of the ground plane, the various ways that energy propagates to the target and back are considered. In implementing a ground-plane RCS measurement program, it is important that the target height, antenna height, target range, and radar wavelength be chosen so as to place the target at a peak in the interference pattern. It is pointed out that in order to maximize the received signal, the antenna should be depressed below the bisector of the angle between the direct and indirect paths subtended at the radar receiving antenna. The precise amount of depression depends on the antenna radiation pattern.
Development of a Ground Test and Analysis Protocol for NASA's NextSTEP Phase 2 Habitation Concepts
NASA Technical Reports Server (NTRS)
Gernhardt, Michael L.; Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F. J.
2018-01-01
The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic questions and associated rationales, derived from these candidate architectural objectives, provide the framework by which the ground-test protocol will address the DSG stack elements and configurations, systems and subsystems, and habitation, science, and EVA functions. From these strategic questions, high-level functional requirements for the DSG were drafted and associated ground-test objectives and analysis protocols were established. Bottom-up development incorporated objectives from NASA SMEs in autonomy, avionics and software, communication, environmental control and life support systems, exercise, extravehicular activity, exploration medical operations, guidance navigation and control, human factors and behavioral performance, human factors and habitability, logistics, Mission Control Center operations, power, radiation, robotics, safety and mission assurance, science, simulation, structures, thermal, trash management, and vehicle health. Top-down and bottom-up objectives were integrated to form overall functional requirements - ground-test objectives and analysis mapping. From this mapping, ground-test objectives were organized into those that will be evaluated through inspection, demonstration, analysis, subsystem standalone testing, and human-in-the-loop (HITL) testing. For the HITL tests, mission-like timelines, procedures, and flight rules have been developed to directly meet ground test objectives and evaluate specific functional requirements. Data collected from these assessments will be analyzed to determine the acceptability of habitation element configurations and the combinations of capabilities that will result in the best habitation platform to be recommended by the test team for Phase 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.
As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.
GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2013-01-01
Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.
NASA Technical Reports Server (NTRS)
1973-01-01
A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.
Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing
NASA Technical Reports Server (NTRS)
Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.
2014-01-01
CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.
Testing of lift/cruise fan exhaust deflector. [for a tip turbine lift fan in short takeoff aircraft
NASA Technical Reports Server (NTRS)
Schlundt, D. W.
1975-01-01
A lift/cruise exhaust deflector system for the LF336/A tip turbine lift fan was designed, built, and tested to determine the design and performance characteristics of a large-scale, single swivel nozzle thrust vectoring system. The exhaust deflector static testing was performed at the Ames Research Center outside static test stand facilities. The test hardware was installed on a hydraulic lift platform to permit both in and out of ground effect testing. The exhaust flow of the LF336/A lift fan was vectored from 0 degrees through 130 degrees during selected fan speeds to obtain performance at different operating conditions. The system was operated with and without flow vanes installed in the small radius bends to evaluate the system performance based on a proposed method of improving the internal flow losses. The program also included testing at different ground heights, to the nozzle exhaust plane, to obtain ground effect data, and the testing of two methods of thrust spoiling using a duct bypass door system and nozzle flap system.
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chace, D.A.; Roberts, R.M.; Palmer, J.B.
WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbedmore » and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.« less
Leake, S.A.; Prudic, David E.
1991-01-01
Removal of ground water by pumping from aquifers may result in compaction of compressible fine-grained beds that are within or adjacent to the aquifers. Compaction of the sediments and resulting land subsidence may be permanent if the head declines result in vertical stresses beyond the previous maximum stress. The process of permanent compaction is not routinely included in simulations of ground-water flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U.S. Geological Survey modular finite-difference ground- water flow model. The new program, the Interbed-Storage Package, is designed to be incorporated into this model. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of the skeletal component of elastic specific storage and the thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the ground-water flow model by adding an additional term to the right-hand side of the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum (preconsolidation) head. Two tests were performed to verify that the package works correctly. The first test compared model-calculated storage and compaction changes to hand-calculated values for a three-dimensional simulation. Model and hand-calculated values were essentially equal. The second test was performed to compare the results of the Interbed-Storage Package with results of the one-dimensional Helm compaction model. This test problem simulated compaction in doubly draining confining beds stressed by head changes in adjacent aquifers. The Interbed-Storage Package and the Helm model computed essentially equal values of compaction. Documentation of the Interbed-Storage Package includes data input instructions, flow charts, narratives, and listings for each of the five modules included in the package. The documentation also includes an appendix describing input instructions and a listing of a computer program for time-variant specified-head boundaries. That package was developed to reduce the amount of data input and output associated with one of the Interbed-Storage Package test problems.
Computer program to predict aircraft noise levels
NASA Technical Reports Server (NTRS)
Clark, B. J.
1981-01-01
Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.
System Testing of Ground Cooling System Components
NASA Technical Reports Server (NTRS)
Ensey, Tyler Steven
2014-01-01
This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.
Distributed operating system for NASA ground stations
NASA Technical Reports Server (NTRS)
Doyle, John F.
1987-01-01
NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, G.S.; Trudeau, D.A.; Savard, C.S.
The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather thanmore » ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.« less
Airborne Visible Laser Optical Communications Program (AVLOC)
NASA Technical Reports Server (NTRS)
Ward, J. H.
1975-01-01
The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.
Arthur, Terrance M; Bosilevac, Joseph M; Nou, Xiangwu; Koohmaraie, Mohammad
2005-08-01
Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.
Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1
NASA Technical Reports Server (NTRS)
Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.
1986-01-01
The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.
Space Shuttle External Tank Project status
NASA Technical Reports Server (NTRS)
Davis, R. M.
1980-01-01
The External Tank Project is reviewed with emphasis on the DDT&E and production phases and the lightweight tank development. It is noted that the DDT&E phase is progressing well with the structural and ground vibration test article programs complete, the propulsion test article program progressing well, and the component qualification and verification testing 92% complete. New tools and facilities are being brought on line to support the increased build rate for the production phase. The lightweight tank, which will provide additional payload in orbit, is progressing to schedule with first delivery in early 1982.
Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah
Feltis, R.D.; Robinson, G.B. Jr.
1963-01-01
A test-drilling program was conducted by the U.S. Geological Survey in the upper Sevier River drainage basin (fig. 1) in the summer of 1962. The program was part of a ground-water investigation made in cooperation with the Utah State Engineer. The drilling was financed cooperatively through the State Engineer by the U.S. Geological Survey, Garfield, Piute, Sevier, Sanpete, and Millard Counties, and various water users within those counties. Drilling began in May and continued through September 1962, and 21 test holes were drilled.
GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandt, A.; Lowell, M.
2012-05-01
This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energymore » technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.« less
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
Application of the Life Safety Code to a Historic Test Stand
NASA Technical Reports Server (NTRS)
Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.
2011-01-01
NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact. An effort was launched to thoroughly evaluate the applicable life safety requirements, examine the context in which they were derived, and determine a means by which the TS4550 modifications could be made within budget and on schedule, while still providing the occupants with appropriate levels of safety.
The JT9D Jet Engine Diagnostics Program
NASA Technical Reports Server (NTRS)
Olsson, W. J.
1982-01-01
The various engine deterioration phenomena that affect JT9D performance retention were studied, and approaches to improve performance retention of engines were identified. The program included surveys of historical data, monitoring of in service engines, ground and flight testing of instrumented engines, analysis, and analytical modeling. Performance deterioration is made up of both short and long term modes, both of which are flight cycle related phenomena. Short term deterioration occurs primarily during airplane acceptance testing prior to delivery to the airline. This effect is caused by flight load and power induced clearance closures and engine deflections with resulting rubbing of airfoils and seals. Long term deterioration is caused by erosion of airfoils and gas path seals during ground operation and take off and by cyclic induced thermal distortion of the high pressure turbine airfoils. Studies of possible remedial approaches have shown that performance retention within 1 to 2 percent of initial revenue service performance can be achieved with a proper program of hot section and cold section maintenance.
Human in the Loop Integrated Life Support Systems Ground Testing
NASA Technical Reports Server (NTRS)
Henninger, Donald L.; Marmolejo, Jose A.; Seaman, Calvin H.
2012-01-01
Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chambers) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere capable of 14.7 to 8 psi total pressure and 21 to 32% oxygen concentration, life support systems (food, air, and water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon, Mars). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international, industrial and academic partners.
Flight service environmental effects on composite materials and structures
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Baker, Donald J.
1992-01-01
NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.
Composite armored vehicle advanced technology demonstator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.
1996-12-31
Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
NASA Technical Reports Server (NTRS)
Hsia, Wei Shen
1989-01-01
A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.
Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program
NASA Technical Reports Server (NTRS)
Hoffman, E. L.; Payne, L.; Carter, A. L.
1975-01-01
Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.
A survey of experiments and experimental facilities for control of flexible structures
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.
1989-01-01
This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.
Infrasound Signals from Ground-Motion Sources
2008-09-01
signals as a basis for discriminants between underground nuclear tests ( UGT ) and earthquakes (EQ). In an earlier program, infrasound signals from... UGTs and EQs were collected at ranges of a few hundred kilometers, in the far-field. Analysis of these data revealed two parameters that had potential...well. To study the near-field signals, we are using computational techniques based on modeled ground motions from UGTs and EQs. One is the closed
2016-08-03
Technicians with Praxair pressurize the hydrogen trailer before offloading liquid hydrogen during a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
Reliability aspects of a composite bolted scarf joint. [in wing skin splice
NASA Technical Reports Server (NTRS)
Reed, D. L.; Eisenmann, J. R.
1975-01-01
The design, fabrication, static test, and fatigue test of both tension and compression graphite-epoxy candidates for a wing splice representative of a next-generation transport aircraft was the objective of the reported research program. A single-scarf bolted joint was selected as the design concept. Test specimens were designed and fabricated to represent an upper-surface and a lower-surface panel containing the splice. The load spectrum was a flight-by-flight random-load history including ground-air-ground loads. The results of the fatigue testing indicate that, for this type of joint, the inherent fatigue resistance of the laminate is reflected in the joint behavior and, consequently, the rate of damage accumulation is very slow under realistic fatigue loadings.
On-board computer progress in development of A 310 flight testing program
NASA Technical Reports Server (NTRS)
Reau, P.
1981-01-01
Onboard computer progress in development of an Airbus A 310 flight testing program is described. Minicomputers were installed onboard three A 310 airplanes in 1979 in order to: (1) assure the flight safety by exercising a limit check of a given set of parameters; (2) improve the efficiency of flight tests and allow cost reduction; and (3) perform test analysis on an external basis by utilizing onboard flight types. The following program considerations are discussed: (1) conclusions based on simulation of an onboard computer system; (2) brief descriptions of A 310 airborne computer equipment, specifically the onboard universal calculator (CUB) consisting of a ROLM 1666 system and visualization system using an AFIGRAF CRT; (3) the ground system and flight information inputs; and (4) specifications and execution priorities for temporary and permanent programs.
Republic P-47G Thunderbolt Undergoes Ground Testing
1945-06-21
A Republic P-47G Thunderbolt is tested with a large blower on the hangar apron at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The blower could produce air velocities up to 250 miles per hour. This was strong enough to simulate take-off power and eliminated the need to risk flights with untried engines. The Republic P-47G was loaned to the laboratory to test NACA modifications to the Wright R-2800 engine’s cooling system at higher altitudes. The ground-based tests, seen here, were used to map the engine’s normal operating parameters. The P-47G then underwent an extensive flight test program to study temperature distribution among the engine’s 18 cylinders and develop methods to improve that distribution.
Environmental Exposure Effects on Composite Materials for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Hoffman, D. J.
1980-01-01
The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects, ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Reusable LH2 tank technology demonstration through ground test
NASA Technical Reports Server (NTRS)
Bianca, C.; Greenberg, H. S.; Johnson, S. E.
1995-01-01
The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.
Flight test summary of modified fuel systems
NASA Technical Reports Server (NTRS)
Barrett, B. G.
1976-01-01
Two different aircraft designs, each with two modified fuel control systems, were evaluated. Each aircraft was evaluated in a given series of defined ground and flight conditions while quantitative and qualitative observations were made. During this program, some ten flights were completed, and a total of about 13 hours of engine run time was accumulated by the two airplanes. The results of these evaluations with emphasis on the operational and safety aspects were analyzed. Ground tests of the engine alone were not able to predict acceptable limiting lean mixture settings for the flight envelopes of the Cessna Models 150 and T337.
NASA tire/runway friction projects
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1995-01-01
The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.
2009-10-26
Mission managers, from left, NASA Constellation Program manager Jeff Hanley, Ares I-X Launch Director Ed Mango, Ares I-X mission manager Bob Ess, Ground Operations Manager Philip "Pepper" Phillips, review the latest data in Firing Room One of the Launch Control Center (LCC) at the Kennedy Space Center during the launch countdown of the Ares I-X rocket in Cape Canaveral, Fla., Tuesday, Oct. 27, 2009. The flight test of Ares I-X will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I. Photo Credit: (NASA/Bill Ingalls)
2009-10-26
Mission managers, from left, NASA Ares I-X Assistant Launch Director Pete Nickolenko, Ground Operations Manager Philip "Pepper" Phillips, Ares I-X Launch Director Ed Mango, and Constellation Program manager Jeff Hanley review the latest weather radar from Firing Room One of the Launch Control Center (LCC) at the Kennedy Space Center during the launch countdown of the Ares I-X rocket in Cape Canaveral, Fla., Tuesday, Oct. 27, 2009. The flight test of Ares I-X will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary
1991-01-01
NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.
As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.
Active vibration control activities at the LaRC - Present and future
NASA Technical Reports Server (NTRS)
Newsom, J. R.
1990-01-01
The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
Alternative Approach to Vehicle Element Processing
NASA Technical Reports Server (NTRS)
Huether, Jacob E.; Otto, Albert E.
1995-01-01
The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick
2005-01-01
This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.
MINEMOTION3D: A new set of Programs for Predicting Ground Motion From Explosions in Complex 3D Media
NASA Astrophysics Data System (ADS)
Tibuleac, I. M.; Bonner, J. L.; Orrey, J. L.; Yang, X.
2004-12-01
Predicting ground motion from complicated mining explosions is important for mines developing new blasting programs in regions where vibrations must be kept below certain levels. Additionally, predicting ground motion from mining explosions in complex 3D media is important for moment estimation for nuclear test treaty monitoring. Both problems have been addressed under the development of a new series of numerical prediction programs called MINEMOTION3D including 1) Generalized Fourier Methods to generate Green's functions in 3D media for a moment tensor source implementation and 2) MineSeis3D, a program that simulates seismograms for delay-fired mining explosions with a linear relationship between signals from small size individual shots. To test the programs, local recordings (5 - 23 km) of three production shots at a mine in northern Minnesota were compared to synthetic waveforms in 3D media. A non-zero value of the moment tensor component M12 was considered, to introduce a horizontal spall component into the waveform synthesis when the Green's functions were generated for each model. Methods using seismic noise crosscorrelation for improved inter-element subsurface structure estimation were also evaluated. Comparison of the observed and synthetic waveforms shows promising results. The shape and arrival times of the normalized synthetic and observed waveforms are similar for most of the stations. The synthetic and observed waveform amplitude fit is best for the vertical components in the mean 3D model and worst for the transversal components. The observed effect of spall on the waveform spectra was weak in the case of fragmentation delay fired commercial explosions. Commercial applications of the code could provide data needed for designing explosions which do not exceed ground vibration requirements posed by the U.S. Department of the Interior, Office of Surface Mining.
Experimental program for real gas flow code validation at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul
1989-01-01
The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.
NASA Technical Reports Server (NTRS)
Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace
2012-01-01
The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.
Quiet Sonic Booms: A NASA and Industry Progress Report
NASA Technical Reports Server (NTRS)
Larson, David Nils; Martin, Roy; Haering, Edward A.
2011-01-01
The purpose of this Oral Presentation is to present a progress report on NASA and Industry efforts related to Quiet Sonic Boom Program activities. This presentation will review changes in aircraft shaping to produce quiet supersonic booms and associated supersonic flight test methods and results. In addition, new flight test profiles have been recently developed that have allowed for the generation of sonic booms of varying intensity. These new flight test profiles have allowed for ground testing of the response of various building structures to sonic booms and the associated public acceptability to various sonic boom intensities. The new flight test profiles and associated ground measurement test methods will be reviewed. Finally, this Oral Presentation will review the International Regulatory requirements that would be involved to change aviation regulation and allow for overland quiet supersonic flight.
Electrophoretic separator for purifying biologicals, part 1
NASA Technical Reports Server (NTRS)
Mccreight, L. R.
1978-01-01
A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.
Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description
Christenson, S.C.; Parkhurst, D.L.
1987-01-01
In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium, selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.
NASA Technical Reports Server (NTRS)
Hilton, D. A.; Henderson, H. R.; Maglieri, D. J.; Bigler, W. B., II
1978-01-01
In order to expand the data base of helicopter external noise characteristics, a flyover noise measurement program was conducted utilizing the NASA Civil Helicopter Research Aircraft. The remotely operated multiple array acoustics range (ROMAAR) and a 2560-m linear microphone array were utilized for the purpose of documenting the noise characteristics of the test helicopter during flyby and landing operations. By utilizing both ROMAAR concept and the linear array, the data necessary to plot the ground noise footprints and noise radiation patterns were obtained. Examples of the measured noise signature of the test helicopter, the ground noise footprint or contours, and the directivity patterns measured during level flyby and landing operations of a large, multibladed, nonbanging helicopter, the CH-53, are presented.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, launch director for Exploration Mission 1 (EM-1). The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on EM-1.
Environmental test program for superconducting materials and devices
NASA Technical Reports Server (NTRS)
Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren
1991-01-01
This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.
Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Kristy, Michael H.
1995-01-01
A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.
1990 Environmental monitoring report, Tonopah Test Range, Tonopah, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, A.; Phelan, J.; Wolff, T.
1991-05-01
There is no routine radioactive emission from Sandia National Laboratories, Tonopah Test Range (SNL, TTR). However, based on the types of test activities such as air drops, gun firings, ground- launched rockets, air-launched rockets, and other explosive tests, possibilities exist that small amounts of depleted uranium (DU) (as part of weapon components) may be released to the air or to the ground because of unusual circumstances (failures) during testing. Four major monitoring programs were used in 1990 to assess radiological impact on the public. The EPA Air Surveillance Network (ASN) found that the only gamma ({gamma}) emitting radionuclide on themore » prefilters was beryllium-7 ({sup 7}Be), a naturally-occurring spallation product formed by the interaction of cosmic radiation with atmospheric oxygen and nitrogen. The weighted average results were consistent with the area background concentrations. The EPA Thermoluminescent Dosimetry (TLD) Network and Pressurized Ion Chamber (PIC) reported normal results. In the EPA Long-Term Hydrological Monitoring Program (LTHMP), analytical results for tritium ({sup 3}H) in well water were reported and were well below DOE-derived concentration guides (DCGs). In the Reynolds Electrical and Engineering Company (REECo) Drinking Water Sampling Program, analytical results for {sup 3}H, gross alpha ({alpha}), beta ({beta}), and {gamma} scan, strontium-90 ({sup 90}Sr) and plutonium-239 ({sup 239}Pu) were within the EPA's primary drinking water standards. 29 refs., 5 figs., 15 tabs.« less
NASA Technical Reports Server (NTRS)
Shaffer, R. M.
1973-01-01
A detailed description is given of the methods of choose the duplication film and chemistry currently used in the NASA-ERTS Ground Data Handling System. The major ERTS photographic duplication goals are given as background information to justify the specifications for the desirable film/chemistry combination. Once these specifications were defined, a quantitative evaluation program was designed and implemented to determine if any recommended combinations could meet the ERTS laboratory specifications. The specifications include tone reproduction, granularity, MTF and cosmetic effects. A complete description of the techniques used to measure the test response variables is given. It is anticipated that similar quantitative techniques could be used on other programs to determine the optimum film/chemistry consistent with the engineering goals of the program.
A Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Stanley, M. D.; Leblanc, J. C.
1977-01-01
The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.
1962-02-05
Pilot and Paresev 1 preparing for a landing on the Rogers dry lakebed in 1962 at Edwards Air Force Base, California. The flight program began with ground tow tests. Several tows were made before liftoff was attempted to check the control rigging and to familiarize the pilot with the vehicle’s ground stability. As the pilot’s confidence and experience increased, tow speeds were also increased until liftoff was attained. Liftoff was at about 40 knots indicated airspeed (kias).
NASA Technical Reports Server (NTRS)
Huff, H.; You, Z.; Williams, T.; Nichols, T.; Attia, J.; Fogarty, T. N.; Kirby, K.; Wilkins, R.; Lawton, R.
1998-01-01
As integrated circuits become more sensitive to charged particles and neutrons, anomalous performance due to single event effects (SEE) is a concern and requires experimental verification and quantification. The Center for Applied Radiation Research (CARR) at Prairie View A&M University has developed experiments as a participant in the NASA ER-2 Flight Program, the APEX balloon flight program and the Student Launch Program. Other high altitude and ground level experiments of interest to DoD and commercial applications are being developed. The experiment characterizes the SEE behavior of high speed and high density SRAM's. The system includes a PC-104 computer unit, an optical drive for storage, a test board with the components under test, and a latchup detection and reset unit. The test program will continuously monitor the stored checkerboard data pattern in the SW and record errors. Since both the computer and the optical drive contain integrated circuits, they are also vulnerable to radiation effects. A latchup detection unit with discrete components will monitor the test program and reset the system when necessary. The first results will be obtained from the NASA ER-2 flights, which are now planned to take place in early 1998 from Dryden Research Center in California. The series of flights, at altitudes up to 70,000 feet, and a variety of flight profiles should yield a distribution of conditions for correlating SEES. SEE measurements will be performed from the time of aircraft power-up on the ground throughout the flight regime until systems power-off after landing.
Development and Testing of the Orion CEV Parachute Assembly System (CPAS)
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; Taylor, Anthony P.; Sinclair, Robert; Olmstead, Randy; Kelley, Christopher; Johnson, Justin; Melgares, Michael; Morris, Aaron; Bledsoe, Kristin
2009-01-01
The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference.
NASA Technical Reports Server (NTRS)
Dowden, Donald J.; Bessette, Denis E.
1987-01-01
The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.
NASA Technical Reports Server (NTRS)
1979-01-01
A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.
High-Lift Flight Tunnel - Phase II Report. Phase 2 Report
NASA Technical Reports Server (NTRS)
Lofftus, David; Lund, Thomas; Rote, Donald; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This medium (nitrogen) is cryogenic and pressurized to achieve full flight Reynolds numbers higher than any existing ground test facility world-wide for the range of 0.05 to 0.50 Mach. The results of the Phase II study provide excellent assurance that the HiLiFT concept will provide a valuable low-speed, high Reynolds number ground test facility. The design studies concluded that the HiLiFT facility is feasible to build and operate and the analytical studies revealed no insurmountable difficulties to realizing a practical high Reynolds number ground test facility. It was determined that a national HiLiFT facility, including development, would cost approximately $400M and could be operational by 2013 if fully funded. Study participants included National Aeronautics and Space Administration Langley Research Center as the Program Manager and MSE Technology Applications, Inc., (MSE) of Butte, Montana as the prime contractor and study integrator. MSE#s subcontractors included the University of Texas at Arlington for aerodynamic analyses and the Argonne National Laboratory for magnetic levitation and linear motor technology support.
1980-05-01
the M203 charge during May 1979 at Aberdeen Proving Ground . The data collection and analysis effort is part of a continuing program undertaken by...May to 18 May 1979 the M198 towed howitzer and the M109 self- propelled howitzer were fired with the 14203 charge at the Aberdeen Proving Grounds ...howitzer and the M109 self- propeiled howitzer were fired with the M203 charge at the Aberdeen Proving Grounds . This section of the report gives the
Naugle, Alecia Larew; Barlow, Kristina E; Eblen, Denise R; Teter, Vanessa; Umholtz, Robert
2006-11-01
The U.S. Food Safety and Inspection Service (FSIS) tests sets of samples of selected raw meat and poultry products for Salmonella to ensure that federally inspected establishments meet performance standards defined in the pathogen reduction-hazard analysis and critical control point system (PR-HACCP) final rule. In the present report, sample set results are described and associations between set failure and set and establishment characteristics are identified for 4,607 sample sets collected from 1998 through 2003. Sample sets were obtained from seven product classes: broiler chicken carcasses (n = 1,010), cow and bull carcasses (n = 240), market hog carcasses (n = 560), steer and heifer carcasses (n = 123), ground beef (n = 2,527), ground chicken (n = 31), and ground turkey (n = 116). Of these 4,607 sample sets, 92% (4,255) were collected as part of random testing efforts (A sets), and 93% (4,166) passed. However, the percentage of positive samples relative to the maximum number of positive results allowable in a set increased over time for broilers but decreased or stayed the same for the other product classes. Three factors associated with set failure were identified: establishment size, product class, and year. Set failures were more likely early in the testing program (relative to 2003). Small and very small establishments were more likely to fail than large ones. Set failure was less likely in ground beef than in other product classes. Despite an overall decline in set failures through 2003, these results highlight the need for continued vigilance to reduce Salmonella contamination in broiler chicken and continued implementation of programs designed to assist small and very small establishments with PR-HACCP compliance issues.
Constellation's First Flight Test: Ares I-X
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Askins, Bruce R.
2010-01-01
On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.
NASA Technical Reports Server (NTRS)
1994-01-01
This manual presents a series of recommended techniques that can increase overall operational effectiveness of both flight and ground based NASA systems. It provides a set of tools that minimizes risk associated with: (1) restoring failed functions (both ground and flight based); (2) conducting complex and highly visible maintenance operations; and (3) sustaining a technical capability to support the NASA mission using aging equipment or facilities. It considers (1) program management - key elements of an effective maintainability effort; (2) design and development - techniques that have benefited previous programs; (3) analysis and test - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design techniques that address NASA field experience. This document is a valuable resource for continuous improvement ideas in executing the systems development process in accordance with the NASA 'better, faster, smaller, and cheaper' goal without compromising safety.
An overview of the quiet short-haul research aircraft program
NASA Technical Reports Server (NTRS)
Shovlin, M. D.; Cochrane, J. A.
1978-01-01
An overview of the Quiet Short Haul Research Aircraft (QSRA) Program is presented, with special emphasis on its propulsion and acoustic aspects. A description of the NASA technical participation in the program including wind tunnel testing, engine ground tests, and advanced aircraft simulation is given. The aircraft and its systems are described and, measured performance, where available, is compared to program goals. Preliminary data indicate that additional research and development are needed in some areas of which acoustics is an example. Some of these additional research areas and potential experiments using the QSRA to develop the technology are discussed. The concept of the QSRA as a national flight research facility is explained.
Evaluation of Carburized and Ground Face Gears
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Handschuh, Robert F.; Heath, Gregory F.; Sheth, Vijay
1999-01-01
Experimental durability tests were performed on carburized and ground AIS19310 steel face gears. The tests were in support of a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) to enhance face-gear technology. The tests were conducted in the NASA Glenn spiral-bevel-gear/face-gear test facility. Tests were run at 2300 rpm face gear speed and at loads of 64, 76, 88, 100, and 112-percent of the design torque of 377 N-m (3340 in-lb). The carburized and ground face gears demonstrated the required durability when run for ten-million cycles at each of the applied loads. Proper installation was critical for the successful operation of the spur pinions and face gears. A large amount of backlash produced tooth contact patterns that approached the inner-diameter edge of the face-gear tooth. Low backlash produced tooth contact patterns that approached the outer-diameter edge of the face-gear tooth. Measured backlashes in the range of 0.178 to 0.254 mm (0.007 to 0.010 in) produced acceptable tooth contact patterns.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
ERIC Educational Resources Information Center
Bien, Andrea Caroline
2013-01-01
This dissertation addresses questions about the impact and consequences of current school reforms by examining how mandated packaged reading programs contribute to a commodification of knowledge that is changing conceptualizations of literacy, teaching, and learning. Grounded in cultural-historical theories of literacy and learning, this work…
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
2016-08-03
Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.
Development of load spectra for Airbus A330/A340 full scale fatigue tests
NASA Technical Reports Server (NTRS)
Schmidt, H.-J.; Nielsen, Thomas
1994-01-01
For substantiation of the recently certified medium range Airbus A330 and long range A340 the full scale fatigue tests are in progress. The airframe structures of both aircraft types are tested by one set of A340 specimens. The development of the fatigue test spectra for the two major test specimens which are the center fuselage and wing test and the rear fuselage test is described. The applied test load spectra allow a realistic simulation of flight, ground and pressurization loads and the finalization of the tests within the pre-defined test period. The paper contains details about the 1 g and incremental flight and ground loads and the establishment of the flight-by-flight test program, i.e., the definition of flight types, distribution of loads within the flights and randomization of flight types in repeated blocks. Special attention is given to procedures applied for acceleration of the tests, e.g. omission of lower spectrum loads and a general increase of all loads by ten percent.
2011-12-02
CAPE CANAVERAL, Fla. – NASA's Liberty Star ship heads into the Atlantic Ocean where tests will be performed on an Orion flight test capsule. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.
Framework for a ground-water quality monitoring and assessment program for California
Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler
2003-01-01
The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.
NASA Technical Reports Server (NTRS)
Shane, S. J.
1985-01-01
Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.
Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-03-01
This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.
Study of control force limits for female pilots.
DOT National Transportation Integrated Search
1973-12-01
The study described in this paper was the second phase in a ground- based control force testing program conducted by the University of Oklahoma and the Civil Aeromedical Institute of the Federal Aviation Administration located in Oklahoma City, Oklah...
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.
2008-01-01
All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).
2011-12-02
CAPE CANAVERAL, Fla. – Testing is under way on an Orion flight test capsule in the Atlantic Ocean. The tests are being monitored by workers aboard NASA's Liberty Star ship. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – Testing is under way on an Orion flight test capsule in the Atlantic Ocean. The tests are being monitored by workers aboard NASA's Liberty Star ship. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Radiofrequency testing of satellite segment of simulated 30/20 GHz satellite communications system
NASA Technical Reports Server (NTRS)
Leonard, R. F.; Kerczewski, R.
1985-01-01
A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.
Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft
NASA Astrophysics Data System (ADS)
Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.
2018-05-01
In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.
MLP-1 on Crawler Transporter 2 (CT-2)
2017-03-22
Ground support technicians walk alongside NASA's upgraded crawler-transporter 2 (CT-2), carrying mobile launcher platform 1, as it slowly travels on the crawlerway at the agency's Kennedy Space Center in Florida. The crawler's upgrades and modifications will be monitored and tested under loaded conditions during its travel to the crawlerway Pad A/B split and back to the crawler yard to confirm it is ready to support the load of the mobile launcher carrying the Space Launch System with Orion atop for the first test flight, Exploration Mission 1. The Ground Systems Development and Operations Program at Kennedy is managing upgrades to the crawler.
Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.
America's Atomic Army: The Historical Archaeology of Camp Desert Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan R. Edwards
2007-11-02
Established in 1951, Camp Desert Rock served as the training ground for America's 'Atomic Army'. For the next six years, U.S. ground troops traveled to the Nevada desert to participate in military maneuvers during atmospheric atomic weapons testing. Nearly 60,000 soldiers received physical and psychological training in atomic warfare. Abandoned when atmospheric testing ended, Camp Desert Rock was dismantled and its buildings moved to other locations. Today, the camp appears as a sterile expanse of desert marked by rock-lined tent platforms, concrete foundations, and trash scatters. Although visually unimposing, the site is rich with the history of America's nuclear testingmore » program.« less
Definition study for an extended manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
1971-01-01
A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.
Development of a PC-based ground support system for a small satellite instrument
NASA Astrophysics Data System (ADS)
Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.
1993-11-01
The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.
NASA Astrophysics Data System (ADS)
Iiames, J. S.; Riegel, J.; Lunetta, R.
2013-12-01
Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.
An adaptable, low cost test-bed for unmanned vehicle systems research
NASA Astrophysics Data System (ADS)
Goppert, James M.
2011-12-01
An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.
NASA Technical Reports Server (NTRS)
Homan, D. J.
1977-01-01
A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.
Colby, Margaret; Hecht, Michael L.; Miller-Day, Michelle; Krieger, Janice L.; Syvertsen, Amy K.; Graham, John W.; Pettigrew, Jonathan
2014-01-01
A central challenge facing twenty-first century community-based researchers and prevention scientists is curriculum adaptation processes. While early prevention efforts sought to develop effective programs, taking programs to scale implies that they will be adapted, especially as programs are implemented with populations other than those with whom they were developed or tested. The principle of cultural grounding, which argues that health message adaptation should be informed by knowledge of the target population and by cultural insiders, provides a theoretical rational for cultural regrounding and presents an illustrative case of methods used to reground the keepin’ it REAL substance use prevention curriculum for a rural adolescent population. We argue that adaptation processes like those presented should be incorporated into the design and dissemination of prevention interventions. PMID:22961604
Colby, Margaret; Hecht, Michael L; Miller-Day, Michelle; Krieger, Janice L; Syvertsen, Amy K; Graham, John W; Pettigrew, Jonathan
2013-03-01
A central challenge facing twenty-first century community-based researchers and prevention scientists is curriculum adaptation processes. While early prevention efforts sought to develop effective programs, taking programs to scale implies that they will be adapted, especially as programs are implemented with populations other than those with whom they were developed or tested. The principle of cultural grounding, which argues that health message adaptation should be informed by knowledge of the target population and by cultural insiders, provides a theoretical rational for cultural regrounding and presents an illustrative case of methods used to reground the keepin' it REAL substance use prevention curriculum for a rural adolescent population. We argue that adaptation processes like those presented should be incorporated into the design and dissemination of prevention interventions.
Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.
1990-01-01
A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown.
The Mice in Council: An Acquisition Fable
2012-02-01
ground defensive systems to air defensive systems.” Everyone cheered because the mouse industrial base could now compete favorably with the cows ... dairy industry and the chickens’ egg industry. The program manager directed that full-rate production begin. The mouse factories churned out bells...to the cows . Moral Contracting, logistics, engineering, budgeting, testing, finan- cial and program management cannot make a product work. Unless you
NASA Technical Reports Server (NTRS)
1974-01-01
System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.
The Photovolatic Power Converter: A Technology Readiness Assessment
2005-06-01
Field Test Configurations .............................................................42 Figure 8. SBR Deployed on a pack and flat on the ground...2. Atira and NPS47 The Graduate School of Business and Public Policy ( BPP ) is one of four schools that organizes and conducts research projects...at NPS. “ BPP is responsible for eight graduate academic programs and awards eight graduate degrees. The largest program is the resident defense
Effectiveness Testing and Evaluation of Non-Lethal Weapons for Crowd Management
2014-06-01
and Combat Service Support• Program Executive Office Ground Combat Systems • Program Executive Office Soldier TACOM LCMC MG Michael J. Terry Assigned...technologies and explosive ordnance disposal Fire Control: Battlefield digitization; embedded system software; aero ballistics and telemetry ARDEC...influence predictive variables Introduction Crowd Behavior Research at TBRL UNCLASSIFIED 7 Data Measurement • Vicon V8i system • 24 cameras • 120 fps
Tire/runway friction interface
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1990-01-01
An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.
A study and evaluation of image analysis techniques applied to remotely sensed data
NASA Technical Reports Server (NTRS)
Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.
1976-01-01
An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.
NASA Technical Reports Server (NTRS)
Cassidy, J. J., III
1978-01-01
NASCAP simulates the charging process for a complex object in either tenuous plasma (geosynchronous orbit) or ground test (electron gun source) environment. Program control words, the structure of user input files, and various user options available are described in this computer programmer's user manual.
49 CFR 219.4 - Recognition of a foreign railroad's workplace testing program.
Code of Federal Regulations, 2010 CFR
2010-10-01
... policy dealing with co-worker and self-reporting of alcohol and drug abuse problems; (iii) Random drug... delivery. Room W12-140 on the ground floor of the West Building, 1200 New Jersey Avenue, SE., Washington...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The present conference on flight testing encompasses avionics, flight-testing programs, technologies for flight-test predictions and measurements, testing tools, analysis methods, targeting techniques, and flightline testing. Specific issues addressed include flight testing of a digital terrain-following system, a digital Doppler rate-of-descent indicator, a high-technology testbed, a low-altitude air-refueling flight-test program, techniques for in-flight frequency-response testing for helicopters, limit-cycle oscillation and flight-flutter testing, and the research flight test of a scaled unmanned air vehicle. Also addressed are AV-8B V/STOL performance analysis, incorporating pilot-response time in failure-case testing, the development of pitot static flightline testing, targeting techniques for ground-based hover testing, a low-profilemore » microsensor for aerodynamic pressure measurement, and the use of a variable-capacitance accelerometer for flight-test measurements.« less
Flight Test of Propulsion Monitoring and Diagnostic System
NASA Technical Reports Server (NTRS)
Gabel, Steve; Elgersma, Mike
2002-01-01
The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.
Analysis of strain gage reliability in F-100 jet engine testing at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Holanda, R.
1983-01-01
A reliability analysis was performed on 64 strain gage systems mounted on the 3 rotor stages of the fan of a YF-100 engine. The strain gages were used in a 65 hour fan flutter research program which included about 5 hours of blade flutter. The analysis was part of a reliability improvement program. Eighty-four percent of the strain gages survived the test and performed satisfactorily. A post test analysis determined most failure causes. Five failures were caused by open circuits, three failed gages showed elevated circuit resistance, and one gage circuit was grounded. One failure was undetermined.
Static tests of excess ground attenuation at Wallops Flight Center
NASA Astrophysics Data System (ADS)
Sutherland, L. C.; Brown, R.
1981-06-01
An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.
Discerning Trends in Performance Across Multiple Events
NASA Technical Reports Server (NTRS)
Slater, Simon; Hiltz, Mike; Rice, Craig
2006-01-01
Mass Data is a computer program that enables rapid, easy discernment of trends in performance data across multiple flights and ground tests. The program can perform Fourier analysis and other functions for the purposes of frequency analysis and trending of all variables. These functions facilitate identification of past use of diagnosed systems and of anomalies in such systems, and enable rapid assessment of related current problems. Many variables, for computation of which it is usually necessary to perform extensive manual manipulation of raw downlist data, are automatically computed and made available to all users, regularly eliminating the need for what would otherwise be an extensive amount of engineering analysis. Data from flight, ground test, and simulation are preprocessed and stored in one central location for instantaneous access and comparison for diagnostic and trending purposes. Rules are created so that an event log is created for every flight, making it easy to locate information on similar maneuvers across many flights. The same rules can be created for test sets and simulations, and are searchable, so that information on like events is easily accessible.
Static tests of excess ground attenuation at Wallops Flight Center
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Brown, R.
1981-01-01
An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.
HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations
NASA Technical Reports Server (NTRS)
Kimmel, Roger L.; Prabhu, Dinesh
2015-01-01
The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.
2011-12-02
CAPE CANAVERAL, Fla. – Workers, on the deck of NASA's Liberty Star ship and in a boat in the Atlantic Ocean, prepare to begin testing of an Orion flight test capsule. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – Workers on the deck of NASA's Liberty Star ship prepare for testing in the Atlantic Ocean of an Orion flight test capsule to begin. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – From a boat in the Atlantic Ocean, workers secure lines to an Orion flight test capsule during preparations for testing the capsule as their colleagues look on from the deck of NASA's Liberty Star ship. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – Workers on the deck of NASA's Liberty Star ship prepare for testing in the Atlantic Ocean of an Orion flight test capsule to begin. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – NASA's Liberty Star ship departs Port Canaveral in Florida with an Orion flight test capsule secured to its deck. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
2011-12-02
CAPE CANAVERAL, Fla. – NASA's Liberty Star ship departs Port Canaveral in Florida with an Orion flight test capsule secured to its deck. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2015-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2014-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
Conducting tests for statistically significant differences using forest inventory data
James A. Westfall; Scott A. Pugh; John W. Coulston
2013-01-01
Many forest inventory and monitoring programs are based on a sample of ground plots from which estimates of forest resources are derived. In addition to evaluating metrics such as number of trees or amount of cubic wood volume, it is often desirable to make comparisons between resource attributes. To properly conduct statistical tests for differences, it is imperative...
Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 1
NASA Technical Reports Server (NTRS)
Harris, C. E.; Jelalian, A. V.
1979-01-01
Modification, construction, test and operation of an advanced airborne carbon dioxide laser Doppler system for detecting clear air turbulence are described. The second generation CAT program and those auxiliary activities required to support and verify such a first-of-a-kind system are detailed: aircraft interface; ground and flight verification tests; data analysis; and laboratory examinations.
In-flight thrust determination
NASA Technical Reports Server (NTRS)
Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas
1986-01-01
The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.
Navy Budget (1992): Potential Reductions in Research, Development, Test, and Evaluation Programs
1991-09-01
Army’s fiber optic guided missile employs a video camera and single spool fiber payout system to provide a contin- uous data link to a ground station for...January 1991 the Navy’s technical design agent for the MK-48 tor- pedo has been directing a major research and testing effort. The results of these
Experimental aeroelasticity in wind tunnels - History, status, and future in brief
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.
1993-01-01
The state of the art of experimental aeroelasticity in the United States is assessed. A brief history of the development of ground test facilities, apparatus, and testing methods is presented. Several experimental programs are described that were previously conducted and helped to improve the state of the art. Some specific future directions for improving and enhancing experimental aeroelasticity are suggested.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.
1988-01-01
Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.
NASA Technical Reports Server (NTRS)
Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark
2011-01-01
A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.
Integrated Solar Upper Stage Technical Support
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
NASA Lewis Research Center is participating in the Integrated Solar Upper Stage (ISUS) program. This program is a ground-based demonstration of an upper stage concept that will be used to generate both solar propulsion and solar power. Solar energy collected by a primary concentrator is directed into the aperture of a secondary concentrator and further concentrated into the aperture of a heat receiver. The energy stored in the receiver-absorber-converter is used to heat hydrogen gas to provide propulsion during the orbital transfer portion of the mission. During the balance of the mission, electric power is generated by thermionic diodes. Several materials issues were addressed as part of the technical support portion of the ISUS program, including: 1) Evaluation of primary concentrator coupons; 2) Evaluation of secondary concentrator coupons; 3) Evaluation of receiver-absorber-converter coupons; 4) Evaluation of in-test witness coupons. Two different types of primary concentrator coupons were evaluated from two different contractors-replicated coupons made from graphite-epoxy composite and coupons made from microsheet glass. Specular reflectivity measurements identified the replicated graphite-epoxy composite coupons as the primary concentrator material of choice. Several different secondary concentrator materials were evaluated, including a variety of silver and rhodium reflectors. The specular reflectivity of these materials was evaluated under vacuum at temperatures up to 800 C. The optical properties of several coupons of rhenium on graphite were evaluated to predict the thermal performance of the receiver-absorber-converter. Finally, during the ground test demonstration, witness coupons placed in strategic locations throughout the thermal vacuum facility were evaluated for contaminants. All testing for the ISUS program was completed successfully in 1997. Investigations related to materials issues have proven helpful in understanding the operation of the test article, leading to a potential ISUS flight test in 2002.
A hardware-in-the-loop simulation program for ground-based radar
NASA Astrophysics Data System (ADS)
Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna
2011-06-01
A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.
On the anomalies in single-jet hover suckdown data
NASA Technical Reports Server (NTRS)
Kuhn, Richard E.; Bellavia, David C.; Wardwell, Douglas A.; Corsiglia, Victor R.
1991-01-01
The data from nine different investigations of the suckdown induced in ground effect by a single jet issuing from plates of various sizes and shapes have been examined and compared. The results show that the generally accepted method for estimating suckdown significantly underestimated the suckdown for most of the configurations. The study identified several factors that could contribute to the differences. These include ground board size, plate edge effects, jet flow quality, jet impingement angle, the size of the chamber in which the tests were run, and obstructions in the region above the model. Most of these factors have not been investigated and in many cases items such as the size of the test chamber, jet flow quality, ground board size, etc., have not even been shown in the documents reporting the investigation. A program to investigate the effects of these factors is recommended.
F-35A Training Basing Environmental Impact Statement. Volume 1
2012-06-01
Global Change Research Program USMC U.S. Marine Corps USN U.S. Navy UTTR Utah Test and Training Range VCP vitrified clay pipe VFR Visual Flight...burning flare struck the ground, it could result in a fire, with potential environmental consequences. The design , manufacturing, and testing process...C–6, and C–7). Of these, 14 are considered to have the potential to be designated as an NRHP Missile Test Stands Historic District. Premilitary
Autotracking from space - The TDRSS approach
NASA Astrophysics Data System (ADS)
Spearing, R. E.; Harper, W. R.
The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.
Autotracking from space - The TDRSS approach
NASA Technical Reports Server (NTRS)
Spearing, R. E.; Harper, W. R.
1984-01-01
The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.
Modeling Weather Impact on Ground Delay Programs
NASA Technical Reports Server (NTRS)
Wang, Yao; Kulkarni, Deepak
2011-01-01
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
NASA Astrophysics Data System (ADS)
Cook, Stephen; Hueter, Uwe
2003-08-01
NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
Study on Spacelab software development and integration concepts
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.
NASA Technical Reports Server (NTRS)
Griner, James H., Jr.
2004-01-01
This report describes preliminary results of work done by JHU/APL under contract to the NASA Glenn Research Center to support flight testing of the Universal Access Transceiver (UAT) data link as a medium for weather data exchange. It presents a high level architectural description of the use of UAT to meet the program objectives with an identification of issues associated with the use of this data link, including a high level definition of the changes required to UAT avionics and ground-based receivers and supporting ground infrastructure to support implementation of the recommended architecture with focus on the issues associated with these changes.
NASA Technical Reports Server (NTRS)
Myers, Dale
1987-01-01
An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.
NASA Astrophysics Data System (ADS)
Johnson, Charles E.; Persinger, Randy R.; Lemon, James J.; Volkert, Keith J.
Comprehensive testing and monitoring approaches have been formulated and implemented for Intelsat VI, which is the largest commercial satellite in service. An account is given of the ground test program from unit level through launch site activities, giving attention to the test data handling system. Test methods unique to Intelsat VI encompass near-field anechoic chamber antenna measurements, offloading 1-g deployment of solar cell and deflector antennas, and electrostatic discharge measurements. The problems accruing to the sheer size of this spacecraft are stressed.
Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.
1995-01-01
A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.
The Malaysian English Language Competency Dilemma: Recovering Lost Grounds through MUET.
ERIC Educational Resources Information Center
Chan, Swee Heng; Wong, Bee Eng
2002-01-01
Provides insights into the Malaysian English language policy, required standards, and testing in language use in Malaysian tertiary institutions. Gives information about backwash effects in particular about institutional programs related to the teaching of English as a Second Language. (Author/VWL)
Cryogenics Testbed Laboratory Flange Baseline Configuration
NASA Technical Reports Server (NTRS)
Acuna, Marie Lei Ysabel D.
2013-01-01
As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.
2002-10-01
This is a ground level view of Test Stand 500 at the east test area of the Marshall Space Flight Center. Originally constructed in 1966, Test Stand 500 is a multipurpose, dual-position test facility. The stand was utilized to test liquid hydrogen/liquid oxygen turbopumps and combustion devices for the J-2 engine. One test position has a high superstructure with lines and tankage for testing liquid hydrogen and liquid oxygen turbopumps while the other position is adaptable to pressure-fed test programs such as turbo machinery bearings or seals. The facility was modified in 1980 to support Space Shuttle main engine (SSME) bearing testing.
Shuttle/Agena study. Annex A: Ascent agena configuration
NASA Technical Reports Server (NTRS)
1972-01-01
Details are presented on the Agena rocket vehicle description, vehicle interfaces, environmental constraints and test requirements, software programs, and ground support equipment. The basic design concept for the Ascent Agena is identified as optimization of reliability, flexibility, performance capabilities, and economy through the use of tested and flight-proven hardware. The development history of the Agenas A, B, and D is outlined and space applications are described.
Electromagnetic Environmental Effects System Testing
2009-09-02
Procedure (TOP) 1-2-511 Electromagnetic Environmental Effects System Testing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...airborne, sea, space, and ground systems , including associated ordnance, as stated in military standard (MIL-STD)-464A “Electromagnetic Environmental...Effects Requirement for Systems ”, as well as ADS-37A-PRF “Aeronautical Design Standard for the Electromagnetic Environmental Effects (E3) Performance and
Evaluation of Candidate Millimeter Wave Sensors for Synthetic Vision
NASA Technical Reports Server (NTRS)
Alexander, Neal T.; Hudson, Brian H.; Echard, Jim D.
1994-01-01
The goal of the Synthetic Vision Technology Demonstration Program was to demonstrate and document the capabilities of current technologies to achieve safe aircraft landing, take off, and ground operation in very low visibility conditions. Two of the major thrusts of the program were (1) sensor evaluation in measured weather conditions on a tower overlooking an unused airfield and (2) flight testing of sensor and pilot performance via a prototype system. The presentation first briefly addresses the overall technology thrusts and goals of the program and provides a summary of MMW sensor tower-test and flight-test data collection efforts. Data analysis and calibration procedures for both the tower tests and flight tests are presented. The remainder of the presentation addresses the MMW sensor flight-test evaluation results, including the processing approach for determination of various performance metrics (e.g., contrast, sharpness, and variability). The variation of the very important contrast metric in adverse weather conditions is described. Design trade-off considerations for Synthetic Vision MMW sensors are presented.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.
1990-01-01
A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
NASA Technical Reports Server (NTRS)
Anderson, W. E.; Boxwell, R.; Crockett, D. V.; Ross, R.; Lewis, T.; McNeal, C.; Verdarame, K.
1999-01-01
For propulsion applications that require that the propellants are storable for long periods, have a high density impulse, and are environmentally clean and non-toxic, the best choice is a combination of high-concentration hydrogen peroxide (High Test Peroxide, or HTP) and a liquid hydrocarbon (LHC) fuel. The HTP/LHC combination is suitable for low-cost launch vehicles, space taxi and space maneuvering vehicles, and kick stages. Orbital Sciences Corporation is under contract with the NASA Marshall Space Flight Center in cooperation with the Air Force Research Lab to design, develop and demonstrate a new low-cost liquid upper stage based on HTP and JP-8. The Upper Stage Flight Experiment (USFE) focuses on key technologies necessary to demonstrate the operation of an inherently simple propulsion system with an innovative, state-of-the-art structure. Two key low-cost vehicle elements will be demonstrated - a 10,000 lbf thrust engine and an integrated composite tank structure. The suborbital flight test of the USFE is scheduled for 2001. Preceding the flight tests are two major series of ground tests at NASA Stennis Space Center and a subscale tank development program to identify compatible composite materials and to verify their compatibility over long periods of time. The ground tests include a thrust chamber development test series and an integrated stage test. This paper summarizes the results from the first phase of the thrust chamber development tests and the results to date from the tank material compatibility tests. Engine and tank configurations that meet the goals of the program are described.
Culturally Grounded Prevention for Minority Youth Populations: A Systematic Review of the Literature
Lauricella, Michela; Valdez, Jessica K.; Okamoto, Scott K.; Helm, Susana; Zaremba, Colleen
2016-01-01
Contemporary prevention science has focused on the application of cultural adaptations of evidence-based prevention programs for minority youth populations. Far less is known about culturally grounded methods that are intended to organically develop prevention programs within specific populations and communities. This article systematically reviews recent literature on culturally grounded interventions used to prevent health disparities in ethnic minority youth populations. In this review, we assessed 31 peer-reviewed articles published in 2003 or later that fit inclusionary criteria pertaining to the development and evaluation of culturally grounded prevention programs. The evaluated studies indicated different approaches toward cultural grounding, as well as specific populations, geographic regions, and health issues that have been targeted. Specifically, the findings indicated that most of the studies focused on the development and evaluation of culturally grounded HIV/STI and substance abuse prevention programs for Mexican American, African American, and American Indian/Alaska Native youth residing in the South or Southwestern U.S. These studies largely relied on community-based participatory or qualitative research methods to develop programs from the “ground up.” This review has implications for the development of future culturally grounded and culturally adapted prevention programs targeting underserved minority youth populations and geographic regions. Specifically, it identifies populations and regions where culturally grounded prevention efforts are underdeveloped or non-existent, providing some scientific direction for the future development of these types of programs. PMID:26733384
Lauricella, Michela; Valdez, Jessica K; Okamoto, Scott K; Helm, Susana; Zaremba, Colleen
2016-02-01
Contemporary prevention science has focused on the application of cultural adaptations of evidence-based prevention programs for minority youth populations. Far less is known about culturally grounded methods that are intended to organically develop prevention programs within specific populations and communities. This article systematically reviews recent literature on culturally grounded interventions used to prevent health disparities in ethnic minority youth populations. In this review, we assessed 31 peer-reviewed articles published in 2003 or later that fit inclusionary criteria pertaining to the development and evaluation of culturally grounded prevention programs. The evaluated studies indicated different approaches toward cultural grounding, as well as specific populations, geographic regions, and health issues that have been targeted. Specifically, the findings indicated that most of the studies focused on the development and evaluation of culturally grounded HIV/STI and substance abuse prevention programs for Mexican-American, African American, and American Indian/Alaska Native youth residing in the South or Southwestern US. These studies largely relied on community-based participatory or qualitative research methods to develop programs from the "ground up." This review has implications for the development of future culturally grounded and culturally adapted prevention programs targeting underserved minority youth populations and geographic regions. Specifically, it identifies populations and regions where culturally grounded prevention efforts are underdeveloped or non-existent, providing some scientific direction for the future development of these types of programs.
NASA Technical Reports Server (NTRS)
Weller, W. H.
1983-01-01
A program of experimental and analytical research was performed to demonstrate the degree of correlation achieved between measured and computed rotor inplane stability characteristics. The experimental data were obtained from hover and wind tunnel tests of a scaled bearingless main rotor model. Both isolated rotor and free-hub conditions were tested. Test parameters included blade built-in cone and sweep angles; rotor inplane structural stiffness and damping; pitch link stiffness and location; and fuselage damping, inertia, and natural frequency. Analytical results for many test conditions were obtained. In addition, the analytical and experimental results were examined to ascertain the effects of the test parameters on rotor ground and air resonance stability. The results from this program are presented herein in tabular and graphical form.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
Reusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene
1996-01-01
Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.
None
2018-01-16
Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.
A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)
NASA Technical Reports Server (NTRS)
Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.
1993-01-01
The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).
2011-12-02
CAPE CANAVERAL, Fla. – At Port Canaveral in Florida, NASA's Liberty Star ship, with an Orion flight test capsule secured to its deck, passes the jetties as it heads toward the Atlantic Ocean. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
2011-12-02
CAPE CANAVERAL, Fla. – An Orion flight test capsule aboard the deck of NASA's Liberty Star ship is moments away from being pulled overboard into the Atlantic Ocean. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – NASA's Liberty Star ship, with an Orion flight test capsule secured to its deck, passes through the mouth of Port Canaveral in Florida into the Atlantic Ocean. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
2011-12-02
CAPE CANAVERAL, Fla. – At Port Canaveral in Florida, NASA's Liberty Star ship, with an Orion flight test capsule secured to its deck, heads out of port toward the Atlantic Ocean. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
2011-12-02
CAPE CANAVERAL, Fla. – NASA's Liberty Star ship, with an Orion flight test capsule secured to its deck, passes through the mouth of Port Canaveral in Florida on its way to the Atlantic Ocean. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
2011-12-02
CAPE CANAVERAL, Fla. – An Orion flight test capsule makes a splash into the Atlantic Ocean as it slides from the deck of NASA's Liberty Star ship into the water. The Crew Module Recovery Attach Fitting Test (CRAFT) on the capsule, which began at-sea operations Nov. 29, is under way. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2011-12-02
CAPE CANAVERAL, Fla. – At Port Canaveral in Florida, an Orion flight test capsule is secured to the deck of NASA's Liberty Star ship. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
Automatic arc welding of propulsion system tubing in close proximity to sensitive electronic devices
NASA Technical Reports Server (NTRS)
Lumsden, J. M.; Whittlesey, A. C.
1981-01-01
The planned final assembly of the Galileo spacecraft propulsion system tubing, which involves welding in close proximity to sensitive electronics, raised significant concerns about the effects of electromagnetic coupling of weld energy on CMOS and other sensitive integrated circuits. A test program was established to assess the potential of an orbital arc welder and an RF-induction brazing machine to damage sensitive electronic equipment. Test parameters were varied to assess the effectiveness of typical transient suppression practices such as grounding, bonding, and shielding. A technique was developed to calibrate the hazard levels at the victim-circuit location; this technique is described along with the results and conclusions of the test program.
2014-05-10
CAPE CANAVERAL, Fla. – The San Diego Padres' mascot checks out NASA's Orion boilerplate test vehicle inside Petco Park in San Diego, California. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Flight and ground tests of a GOES satellite time receiver for satellite communications applications
NASA Technical Reports Server (NTRS)
Swanson, R. L.; Nichols, S. A.
1981-01-01
A satellite time receiver was tested in various environmental conditions during the past year. The commercial receiver designed to work with the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES). The test program included operation at low elevation during flight in a military cargo aircraft and long term comparison with laboratory standards. The GOES satellite time receiver offers an opportunity to provide easy wide area coverage synchronization at low cost.
NASA-Ames Life Sciences Flight Experiments program - 1980 status report
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.; Macleod, G.; Williams, B. A.
1980-01-01
The paper deals with the ESA's Spacelab LSFE (Life Sciences Flight Experiments) program which, once operational, will provide new and unique opportunities to conduct research into the effects of spaceflight and weightlessness on living organisms under conditions approximating ground-based laboratories. Spacelab missions, launched at 18-month intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and similar life sciences.
XM-1 Tank EMP Susceptibility and Survivability Test Program and Plan
1980-11-01
electric field vector. The Vertical EMP Electromagnetic interference (EMI) shielding Simulator ( VEMPS ) produces a non-threat- is used on cable...polarized fields in the VEMPS to determine 2.3 Oveiall Program Activity Flow 5 , bulk current waveforms on interior cabling Figure 1 (p. 8) expresses...measured. The vertically polarized VEMPS the ground, it is not readily obvious how the will be used to measure harness sheath cur- currents on the
2002-10-01
This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.
Description of Liquid Nitrogen Experimental Test Facility
NASA Technical Reports Server (NTRS)
Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.
1991-01-01
The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.
Description of liquid nitrogen experimental test facility
NASA Technical Reports Server (NTRS)
Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.
1992-01-01
The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.
Experimental Supersonic Combustion Research at NASA Langley
NASA Technical Reports Server (NTRS)
Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne
1998-01-01
Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.
Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications
NASA Technical Reports Server (NTRS)
Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.
NASA Technical Reports Server (NTRS)
Haddad, Michael E.
2008-01-01
On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.
Strategies for Ground Testing of Manned Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Beyer, Jeff; Gill, Tracy; Peacock, Mike
2009-01-01
One of the primary objectives of NASA's Vision for Space Exploration is the creation of a permanently manned lunar outpost. Facing the challenge of establishing a human presence on the moon will require new innovations and technologies that will be critical to expanding this exploration to Mars and beyond. However, accomplishing this task presents an unprecedented set of obstacles, one of the more significant of which is the development of new strategies for ground test and verification. Present concepts for the Lunar Surface System (LSS) architecture call for the construction of a series of independent yet tightly coupled modules and elements to be launched and assembled in incremental stages. Many of these will be fabricated at distributed locations and delivered shortly before launch, precluding any opportunity for testing in an actual integrated configuration. Furthermore, these components must operate flawlessly once delivered to the lunar surface since there is no possibility for returning a malfunctioning module to Earth for repair or modification. Although undergoing continual refinement, this paper will present the current state of the plans and models that have been devised for meeting the challenge of ground based testing for Constellation Program LSS as well as the rationale behind their selection.
Reusable launch vehicle development research
NASA Technical Reports Server (NTRS)
1995-01-01
NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.
Satellite Contamination and Materials Outgassing Knowledgebase - An Interactive Database Reference
NASA Technical Reports Server (NTRS)
Green, D. B.; Burns, Dewitt (Technical Monitor)
2001-01-01
The goal of this program is to collect at one site much of the knowledge accumulated about the outgassing properties of aerospace materials based on ground testing, the effects of this outgassing observed on spacecraft in flight, and the broader contamination environment measured by instruments on-orbit. We believe that this Web site will help move contamination a step forward, away from anecdotal folklore toward engineering discipline. Our hope is that once operational, this site will form a nucleus for information exchange, that users will not only take information from our knowledge base, but also provide new information from ground testing and space missions, expanding and increasing the value of this site to all. We urge Government and industry users to endorse this approach that will reduce redundant testing, reduce unnecessary delays, permit uniform comparisons, and permit informed decisions.
Flow visualization studies of VTOL aircraft models during Hover in ground effect
NASA Technical Reports Server (NTRS)
Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.
1995-01-01
A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.
2011-12-02
CAPE CANAVERAL, Fla. – Dawn at Port Canaveral in Florida finds preparations under way for the departure of NASA's Liberty Star ship. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
2011-12-02
CAPE CANAVERAL, Fla. – Preparations are under way at Port Canaveral in Florida for the early-morning departure of NASA's Liberty Star ship. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs
NASA Technical Reports Server (NTRS)
Shane, S. J.
1985-01-01
The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.
NASA Technical Reports Server (NTRS)
1991-01-01
The AFTI F-16 flying at high angle of attack, shown in the final configuration and paint finish. Dummy Sidewinder air-to-air missles are attached to the wing tips. The white objects visible on the wing racks represent practice bomb dispensers, used in weapon tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
Spacecraft System Integration and Test: SSTI Lewis critical design audit
NASA Technical Reports Server (NTRS)
Brooks, R. P.; Cha, K. K.
1995-01-01
The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.
The SHOOT cryogenic components - Testing and applicability to other flight programs
NASA Technical Reports Server (NTRS)
Dipirro, Michael J.; Schein, Michael E.; Boyle, Robert F.; Figueroa, Orlando; Lindauer, David A.; Mchugh, Daniel C.; Shirron, P. J.
1990-01-01
Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.
NASA Technical Reports Server (NTRS)
Holloway, G. F.
1975-01-01
An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.
Evaluation of Q-band instrumentation requirements for Strategic Satellite System (SSS) program
NASA Astrophysics Data System (ADS)
Raponi, D. J.
1981-12-01
Q-band instrumentation appropriate for testing the Strategic Satellite System (SSS) satellite terminal is evaluated in terms of current and projected availability; desired and practical measurement capabilities; required development; and schedule/cost impacts to the program. The Air Force is considering several approaches to increasing the strategic communications capability now provided by the recently deployed ultra high frequency (UHF) Air Force Satellite Communications (AFSATCOM) system. The Strategic Satellite System (SSS) was proposed to improve antijam (AJ) characteristics through the use of advanced modulation techniques and higher frequencies (8 and 44 GHz) on links between ground and airborne terminals and the satellites. This report is an assessment of Q-band (44 GHz) test instrumentation requirements, availability, and accuracy as these factors affect cost and schedule for the SSS satellite terminal development program. Though the SSS program has been cancelled, information presented in the report has applicability to the EHF MILSTAR program.
Control research in the NASA high-alpha technology program
NASA Technical Reports Server (NTRS)
Gilbert, William P.; Nguyen, Luat T.; Gera, Joseph
1990-01-01
NASA is conducting a focused technology program, known as the High-Angle-of-Attack Technology Program, to accelerate the development of flight-validated technology applicable to the design of fighters with superior stall and post-stall characteristics and agility. A carefully integrated effort is underway combining wind tunnel testing, analytical predictions, piloted simulation, and full-scale flight research. A modified F-18 aircraft has been extensively instrumented for use as the NASA High-Angle-of-Attack Research Vehicle used for flight verification of new methods and concepts. This program stresses the importance of providing improved aircraft control capabilities both by powered control (such as thrust-vectoring) and by innovative aerodynamic control concepts. The program is accomplishing extensive coordinated ground and flight testing to assess and improve available experimental and analytical methods and to develop new concepts for enhanced aerodynamics and for effective control, guidance, and cockpit displays essential for effective pilot utilization of the increased agility provided.
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.
1992-01-01
NASA Ames Research Center has been conducting a program to improve the methods for predicting the jet-induced lift loss (suckdown) and hot gas ingestion on jet Short Takeoff and Vertical Landing (STOVL) aircraft during hover near the ground. As part of that program, small-scale hover tests were conducted to expand the current data base and to improve upon the current empirical methods for predicting jet-induced lift loss and hot gas ingestion (HGI) effects. This report is one of three data reports covering data obtained from hover tests conducted at Lockheed Aeronautical Systems, Rye Canyon Facility. It will include dynamic (time dependent) test data for both lift loss and HGI parameters (height, nozzle temperature, nozzle pressure ratio, and inlet location). The flat plate models tested were tandem jet configurations with three planform variations and variable position side-by-side sucking inlets mounted above the planform. Temperature time lags from 8-15 seconds were observed before the model temperatures stabilize. This was larger than the expected 1.5-second lag calculated from literature. Several possible explanations for the flow temperatures to stabilize may include some, or all, of the following: thermocouple lag, radiation to the model surface, and heat loss to the ground board. Further investigations are required to understand the reasons for this temperature lag.
A ground-water-quality monitoring program for Nevada
Nowlin, Jon O.
1986-01-01
A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.
VEGA, the European small launcher: Development status, future perspectives, and applications
NASA Astrophysics Data System (ADS)
Bianchi, Stefano; VEGA Integrated Project Team (IPT)
2008-07-01
This paper presents a technical and programmatic overview of the VEGA launch system program currently in development for the European Space Agency, which includes the development and qualification activities of the small launcher VEGA, of the ground infrastructure, and of all the launcher elements. Several programmatic milestones have been successfully achieved so far: most subsystems have gone through the critical design review or qualification review. The launcher system critical design review has been performed during spring 2007 as well. Concerning propulsion, all the three development models of the solid rocket motors have been successfully tested between December 2005 and December 2006. The first qualification model engine of the liquid propulsion upper module has successfully completed its firing campaign and the test campaign for the second model has just started. The liquid upper stage AVUM engine has been tested as well. The VEGA ground segment program has entered its final lapse by completing the detailed design of the various subsystems. The installation phase in the launch range site (Kourou, French Guyane) is in full swing. The integration of the Mobile Gantry, necessary to integrate the launcher, is almost completed as for the main structure.
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 2; Design Report
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
Critical Design Reviews (CDR's) were held on the Solar Dynamic Ground Test Demonstrator (SDGTD). This CDR summary report will provide the following information for each of the system components and the system integration: (1) A bibliography of design/design review documentation; (2) A summary of the major discussion issues from issues from each design review; (3) A definition of the component and system detail designs along with the bottom line from the supporting analysis; (4) Status and key results from pertinent development activities on-going in the CDR time period; (5) A brief description of planned testing; and (6) A discussion of issues stiff open at the completion of CDR. Appendix 1 to this report contains a listing and status (as of 28 June 1993) of all the action items generated during all SDGTD CDRs. The reader should remember that the SDGTD program is being conducted in an open communication forum, and program participants are encouraged to ask questions or request information. Team members are allowed and encouraged to participate in the reviews on an equal basis. No request for information, as long as it is within the work scope, is refused, so many action items are generated.
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Berkopec, F. D.; Blech, R. A.
1976-01-01
The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
NASA Astrophysics Data System (ADS)
Schulze, Norman R.; Maxfield, B.; Boucher, C.
1995-01-01
Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.
Spacecraft load, design and test philosophies
NASA Technical Reports Server (NTRS)
Wada, B. K.
1986-01-01
The development of spacecraft loads, design and test philosophies at the Jet Propulsion Laboratory (JPL) during the past 25 years is presented. Examples from the JPL's Viking, Voyager and Galileo spacecraft are used to explain the changes in philosophy necessary to meet the program requirements with a reduction in cost and schedule. Approaches to validate mathematical models of large structures which can't be ground tested as an overall system because of size and/or adverse effects of terrestrial conditions such as gravity are presented.
1982-01-01
Hardy, Rand, and Rittler (HRR) pseudoisochromatic plates and the Farnsworth D15 color panel; these tests were normal. However, in an anomaloscopic...measures (e.g., slit-lamp and ophthalmoscopic examinations ) rather than quantitative visual function tests (e.g., Snellen acuity, contrast transfer, color...arose from eye examination programs ii ..’ 1C- following field tests at Fort Hunter Liggett, California and at Yuma Proving Ground, Arizona. Most, if
Final test results for the ground operations demonstration unit for liquid hydrogen
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.
Evaluation of Liquefaction Susceptibility of Clean Sands after Blast Densification
NASA Astrophysics Data System (ADS)
Vega Posada, Carlos Alberto
The effect of earthquakes on infrastructure facilities is an important topic of interest in geotechnical research. A key design issue for such facilities is whether or not liquefaction will occur during an earthquake. The consequences of this type of ground failure are usually severe, resulting in severe damage to a facility and in some cases the loss of human life. One approach to minimize the effect of liquefaction is to improve the ground condition by controlled blasting. The main limitations of the blast densification technique are that the design is mostly empirical and verification studies of densification have resulted in contradictory results in some case studies. In such cases, even though the ground surface settles almost immediately after blasting, common verification tests such as the cone penetration test (CPT), standard penetration test (SPT), and shear wave velocity test (Vs) suggest that the soil mass has not been improved at all. This raises concerns regarding the future performance of the soil and casts doubts on whether or not the improved deposit is still susceptible to liquefaction. In this work, a blast densification program was implemented at the Oakridge Landfill located in Dorchester County, SC, to gain information regarding the condition of a loose sand deposit during and after each blast event. In addition, an extensive laboratory testing program was conducted on reconstituted sand specimens to evaluate the mechanical behavior of saturated and gassy, medium dense sands during monotonic and cyclic loading. The results from the field and laboratory program indicate that gas released during blasting can remain trapped in the soil mass for several years, and this gas greatly affects the mechanical behavior of the sand. Gas greatly increases the liquefaction resistance of the soil. If the gas remains in the sand over the life of a project, then it will maintain this increased resistance to liquefaction, whether or not the penetration resistance increases with time. As part of this work, a methodology based on the critical state concepts was described to quantify the amount of densification needed at a certain project to make the soil more resistant to liquefaction and flow.
Magellan attitude and articulation control subsystem closed loop testing
NASA Technical Reports Server (NTRS)
Olschansky, David G.
1987-01-01
In the spring of 1989, the Magellan spacecraft will embark on a two-year mission to map the surface of the planet Venus. Guiding it there will be the Attitude and Articulation Control Subsystem (AACS). To ensure reliable operations the AACS is being put through a rigorous test program at Martin Marietta Denver Aerospace. Before Magellan ever leaves the Space Shuttle bay from which it is to be launched, its components will have flown a simulated spaceflight in a ground-based lab. The primary objectives of the test program are to verify form, fit, and function of the AACS, particularly subsystem external interfaces and functional operation of the flight software. This paper discusses the Magellan Closed Loop Test Systems which makes realistic tests possible by simulating the dynamic and 'visual' flight environment for AACS components in the lab.
Ground based simulation of life sciences Spacelab experiments
NASA Technical Reports Server (NTRS)
Rummel, J. A.; Alexander, W. C.; Bush, W. H.; Johnston, R. S.
1978-01-01
The third in a series of Spacelab Mission Development tests was a joint effort of the Ames Research and Johnson Space Centers to evaluate planned operational concepts of the Space Shuttle life sciences program. A three-man crew conducted 26 experiments and 12 operational tests, utilizing both human and animal subjects. The crew lived aboard an Orbiter/Spacelab mockup for the seven-day simulation. The Spacelab was identical in geometry to the European Space Agency design, complete with removable rack sections and stowage provisions. Communications were controlled as currently planned for operational Shuttle flights. A Science Operations Remote Center at the Ames Research Center was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, describes the facilities and test program, and outlines the results of this test.
Experiences with Testing the Largest Ground System NASA Has Ever Built
NASA Technical Reports Server (NTRS)
Lehtonen, Ken; Messerly, Robert
2003-01-01
In the 1980s, the National Aeronautics and Space Administration (NASA) embarked upon a major Earth-focused program called Mission to Planet Earth. The Goddard Space Flight Center (GSFC) was selected to manage and develop a key component - the Earth Observing System (EOS). The EOS consisted of four major missions designed to monitor the Earth. The missions included 4 spacecraft. Terra (launched December 1999), Aqua (launched May 2002), ICESat (Ice, Cloud, and Land Elevation Satellite, launched January 2003), and Aura (scheduled for launch January 2004). The purpose of these missions was to provide support for NASA s long-term research effort for determining how human-induced and natural changes affect our global environment. The EOS Data and Information System (EOSDIS), a globally distributed, large-scale scientific system, was built to support EOS. Its primary function is to capture, collect, process, and distribute the most voluminous set of remotely sensed scientific data to date estimated to be 350 Gbytes per day. The EOSDIS is composed of a diverse set of elements with functional capabilities that require the implementation of a complex set of computers, high-speed networks, mission-unique equipment, and associated Information Technology (IT) software along with mission-specific software. All missions are constrained by schedule, budget, and staffing resources, and rigorous testing has been shown to be critical to the success of each mission. This paper addresses the challenges associated with the planning, test definition. resource scheduling, execution, and discrepancy reporting involved in the mission readiness testing of a ground system on the scale of EOSDIS. The size and complexity of the mission systems supporting the Aqua flight operations, for example, combined with the limited resources available, prompted the project to challenge the prevailing testing culture. The resulting success of the Aqua Mission Readiness Testing (MRT) program was due in no small measure to re-structuring the traditional programmatic and technical approach to a more efficient and robust program. Programmatically, it meant gaining the endorsement, commitment, and cooperation of the numerous subsystem element managers and other stakeholder organizations. Technically, it required an MRT program that was agile, could rapidly adapt to requirements changes, and was flexible in its overall approach. Furthermore, this paper addresses the following questions: 1. What are the key ingredients (e.g., test tools, organization) needed to conduct a successful MRT program? 2. What distinguishes EOS MRT from the traditional system testing approach? 3. Where should the focus of testing be since it is infeasible to test every element or subsystem? 4. How can MRT be applied effectively to other systems or missions? To provide answers to these questions, this paper relies heavily on real-life, hands-on experiences ("lessons learned") gained during mission readiness testing of the Terra ground system and, most recently, the Aqua and ICESat missions. Moreover, this paper explores how lessons learned were turned into lessons applied for the upcoming Aura mission. Although derived from the EOS missions, MRT techniques and strategies can be applied to enhance the testing of other missions.
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.
2002-01-01
This progress report focuses on the use of the STructural Analysis RoutineS suite program, SOLIDS, input for the AeroStructures Test Wing. The AeroStructures Test Wing project as a whole is described. The use of the SOLIDS code to find the mode shapes of a structure is discussed. The frequencies, and the structural dynamics to which they relate are examined. The results of the CFD predictions are compared to experimental data from a Ground Vibration Test.
2007-10-30
Flight Test wmv format Joint Ground Robotics Program, Mr. Duane Gotvald, Deputy Project Manager , PEO GCS Robotic Systems Joint Program 1...Mr. Al Brown, TMO Deputy Director, PMITTS, PEO STRI 1. Targets Management Office wmv format Strength through Industry & Technology National...Ferguson, RCN, NDHQ 10:20AM DTRMC, OSD Strategic Plan Jerry Christensen, DOT&E 10:40 Target Management Initiative Ken McCormick, DOT&E 11:10AM
NASA Technical Reports Server (NTRS)
1991-01-01
The topics presented are covered in viewgraph form. Programmatic objectives are: (1) to improve characterization of the orbital debris environment; and (2) to provide a passive sensor test bed for debris collision detection systems. Technical objectives are: (1) to study LEO debris altitude, size and temperature distribution down to 1 mm particles; (2) to quantify ground based radar and optical data ambiguities; and (3) to optimize debris detection strategies.
Maglev program test plan. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
deBenedet, D.; Gilchrist, A.J.; Karanian, L.A.
1992-07-01
Maglev systems represent a promising evolution in the high-speed ground transportation, offering speeds in excess of 300 mph along with the potential for low operating costs and minimal environmental impact. The goal of this effort is to investigate the feasibility and viability of maglev systems in the United States. The emergence of a sophisticated technology such as maglev requires a need for a coordinated research test program and the determination of test requirements to identify and mitigate development risk and to maximize the use of domestic resources. The study is directed toward the identification and characterization of maglev systems developmentmore » risks tied to a preliminary system architecture. Research objectives are accomplished by surveying experiences from previous maglev development programs, both foreign and domestic, and interviews with individuals involved with maglev research and testing. Findings include ninety-four distinct development risks and twenty risk types. Planning and implementation requirements are identified for a maglev test program, including the development of a facilities strategy to meet any operational concepts that evolve out of early development effort. Also specified is the logical development flow and associated long-lead support needs for sub-scale and full-scale testing.« less
NASA Technical Reports Server (NTRS)
1989-01-01
This photo depicts the AFTI F-16 in the configuration used midway through the program. The sensor pods were added to the fuselage, but the chin canards remained in place. Painted in non-standard gray tones, it carried Sidewinder air-to-air missles on its wingtips. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
2000-12-08
Ground crewmen help guide the alignment of the X-40 technology demonstrator as the experimental craft is gently lowered to the ground by a U.S. Army CH-47 Chinook cargo helicopter following a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. The X-37 will be carried into space aboard a space shuttle and then released to perform various maneuvers and a controlled re-entry through the Earth's atmosphere to an airplane-style landing on a runway, controlled entirely by pre-programmed computer software. Following a series of captive-carry flights, the X-40 made several free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The captive carry flights helped verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether.
An overview of the NASA rotary engine research program
NASA Technical Reports Server (NTRS)
Meng, P. R.; Hady, W. F.
1984-01-01
A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.
GSFC Systems Test and Operation Language (STOL) functional requirements and language description
NASA Technical Reports Server (NTRS)
Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.
1978-01-01
The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Kramer, Edward H.
1988-01-01
The Ion Auxiliary Propulsion System (IAPS) experiment is designed for launch on an Air Force Space Test Program satellite (NASA-TM-78859; AIAA Paper No. 78-647). The primary objective of the experiment is to flight qualify the 8 cm mercury ion thruster system for stationkeeping applications. Secondary objectives are measuring the interactions between operating ion thruster systems and host spacecraft, and confirming the design performance of the thruster systems. Two complete 8 cm mercury ion thruster subsystems will be flown. One of these will be operated for 2557 on and off cycles and 7057 hours at full thrust. Tests are currently under way in support of the IAPS flight experiment. In this test an IAPS thruster is being operated through a series of startup/run/shut-down cycles which simulate thruster operation during the planned flight experiment. A test facility description and operational considerations of this testing using an engineering model 8 cm thruster (S/N 905) is the subject of this paper. Final results will be published at a later date when the ground test has been concluded.
NASA Technical Reports Server (NTRS)
Cassinis, R.; Lechi, G. M.; Tonelli, A. M.
1974-01-01
ERTS-1 imagery of the volcanic areas of southern Italy was used primarily for the evaluation of space platform capabilties in the domains of regional geology, soil and rock-type classification and, more generally, to study the environment of active volcanoes. The test sites were selected and equipped primarily to monitor thermal emission, but ground truth data was also collected in other domains (reflectance of rocks, soils and vegetation). The test areas were overflown with a two channel thermal scanner, while a thermo camera was used on the ground to monitor the hot spots. The primary goal of this survey was to plot the changes in thermal emission with time in the framework of a research program for the surveillance of active volcanoes. However, another task was an evaluation of emissivity changes by comparing the outputs of the two thermal channels. These results were compared with the reflectance changes observed on multispectral ERTS-1 imagery.
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3
Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.
2008-01-01
The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.
Advanced composite elevator for Boeing 727 aircraft, volume 2
NASA Technical Reports Server (NTRS)
Chovil, D. V.; Grant, W. D.; Jamison, E. S.; Syder, H.; Desper, O. E.; Harvey, S. T.; Mccarty, J. E.
1980-01-01
Preliminary design activity consisted of developing and analyzing alternate design concepts and selecting the optimum elevator configuration. This included trade studies in which durability, inspectability, producibility, repairability, and customer acceptance were evaluated. Preliminary development efforts consisted of evaluating and selecting material, identifying ancillary structural development test requirements, and defining full scale ground and flight test requirements necessary to obtain Federal Aviation Administration (FAA) certification. After selection of the optimum elevator configuration, detail design was begun and included basic configuration design improvements resulting from manufacturing verification hardware, the ancillary test program, weight analysis, and structural analysis. Detail and assembly tools were designed and fabricated to support a full-scope production program, rather than a limited run. The producibility development programs were used to verify tooling approaches, fabrication processes, and inspection methods for the production mode. Quality parts were readily fabricated and assembled with a minimum rejection rate, using prior inspection methods.
The Next Generation of Ground Operations Command and Control; Scripting in C no. and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
Scripting languages have become a common method for implementing command and control solutions in space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL) offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground operations. Although compiled programs seem to be unsuited for interactive user control and are more complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language while offering the hands-on and ease of control of a scripting language. ERS is currently used by the International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control procedures into a standard programming language, while making use of Microsoft's Visual Studio for developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user control during procedure execution using a robust graphical user input and output feature. The availability of VB and C# programmers, and the richness of the languages and their development environment, has allowed ERS to lower our "script" development time and maintenance costs at the Marshall POIC.
X-43A Vehicle During Ground Testing
NASA Technical Reports Server (NTRS)
1999-01-01
The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.
2018-01-11
Josie Burnett, director or Exploration Research and Technology Programs, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
Rutledge, A.T.
1998-01-01
The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.
NASA Technical Reports Server (NTRS)
Knox, James C.; Stanley, Christine M.
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
2018-01-11
Lisa Colloredo, deputy program manager for the Commercial Crew Program, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.
1966-09-15
This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Joint Services Electronics Program.
1983-04-01
shape of the photon-assisted tunneling features and of their dependence on laser power. The cleanest test of the theory was made at 4.2 K, above T...Properties of Small-area Tunnel Junctions by research unit 2; Nonequilibrium Switching Phenomena on Picosecond Time Scales by research unit 2; Liquid...ocean, with the lower ends grounded or joined by a third conductor in a tunnel through the mountain has been suc-Tested. A theoretical and experimental
NASA Technical Reports Server (NTRS)
Howland, G. R.; Durno, J. A.; Twomey, W. J.
1990-01-01
Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, all four ogive panels have been installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-10-30
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Orion ground test vehicle is being prepared for installation of the ogive panels in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians attach the fourth ogive panel on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
Dust-penetrating (DUSPEN) see-through lidar for helicopter situational awareness in DVE
NASA Astrophysics Data System (ADS)
Murray, James T.; Seely, Jason; Plath, Jeff; Gotfredson, Eric; Engel, John; Ryder, Bill; Van Lieu, Neil; Goodwin, Ron; Wagner, Tyler; Fetzer, Greg; Kridler, Nick; Melancon, Chris; Panici, Ken; Mitchell, Anthony
2013-10-01
Areté Associates recently developed and flight tested a next-generation low-latency near real-time dust-penetrating (DUSPEN) imaging lidar system. These tests were accomplished for Naval Air Warfare Center (NAWC) Aircraft Division (AD) 4.5.6 (EO/IR Sensor Division) under the Office of Naval Research (ONR) Future Naval Capability (FNC) Helicopter Low-Level Operations (HELO) Product 2 program. Areté's DUSPEN system captures full lidar waveforms and uses sophisticated real-time detection and filtering algorithms to discriminate hard target returns from dust and other obscurants. Down-stream 3D image processing methods are used to enhance pilot visualization of threat objects and ground features during severe DVE conditions. This paper presents results from these recent flight tests in full brown-out conditions at Yuma Proving Grounds (YPG) from a CH-53E Super Stallion helicopter platform.
Dust-Penetrating (DUSPEN) "see-through" lidar for helicopter situational awareness in DVE
NASA Astrophysics Data System (ADS)
Murray, James T.; Seely, Jason; Plath, Jeff; Gotfreson, Eric; Engel, John; Ryder, Bill; Van Lieu, Neil; Goodwin, Ron; Wagner, Tyler; Fetzer, Greg; Kridler, Nick; Melancon, Chris; Panici, Ken; Mitchell, Anthony
2013-05-01
Areté Associates recently developed and flight tested a next-generation low-latency near real-time dust-penetrating (DUSPEN) imaging lidar system. These tests were accomplished for Naval Air Warfare Center (NAWC) Aircraft Division (AD) 4.5.6 (EO/IR Sensor Division) under the Office of Naval Research (ONR) Future Naval Capability (FNC) Helicopter Low-Level Operations (HELO) Product 2 program. Areté's DUSPEN system captures full lidar waveforms and uses sophisticated real-time detection and filtering algorithms to discriminate hard target returns from dust and other obscurants. Down-stream 3D image processing methods are used to enhance pilot visualization of threat objects and ground features during severe DVE conditions. This paper presents results from these recent flight tests in full brown-out conditions at Yuma Proving Grounds (YPG) from a CH-53E Super Stallion helicopter platform.
Farrar, Jerry W.; Chleboun, Kimberly M.
1999-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for 8 standard reference samples -- T-157 (trace constituents), M-150 (major constituents), N-61 (nutrient constituents), N-62 (nutrient constituents), P-32 (low ionic strength constituents), GWT-5 (ground-water trace constituents), GWM- 4 (ground-water major constituents),and Hg-28 (mercury) -- that were distributed in March 1999 to 120 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 111 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the 8 standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
NASA Technical Reports Server (NTRS)
1976-01-01
The program called CTRANS is described which was designed to perform radiative transfer computations in an atmosphere with horizontal inhomogeneities (clouds). Since the atmosphere-ground system was to be richly detailed, the Monte Carlo method was employed. This means that results are obtained through direct modeling of the physical process of radiative transport. The effects of atmopheric or ground albedo pattern detail are essentially built up from their impact upon the transport of individual photons. The CTRANS program actually tracks the photons backwards through the atmosphere, initiating them at a receiver and following them backwards along their path to the Sun. The pattern of incident photons generated through backwards tracking automatically reflects the importance to the receiver of each region of the sky. Further, through backwards tracking, the impact of the finite field of view of the receiver and variations in its response over the field of view can be directly simulated.
Visual Navigation - SARE Mission
NASA Technical Reports Server (NTRS)
Alonso, Roberto; Kuba, Jose; Caruso, Daniel
2007-01-01
The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.
Boore, David M.
2000-01-01
A simple and powerful method for simulating ground motions is based on the assumption that the amplitude of ground motion at a site can be specified in a deterministic way, with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers, and it is widely used to predict ground motions for regions of the world in which recordings of motion from damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms that can be used to predict ground motions. SMSIM is a set of programs for simulating ground motions based on the stochastic method. This Open-File Report is a revision of an earlier report (Boore, 1996) describing a set of programs for simulating ground motions from earthquakes. The programs are based on modifications I have made to the stochastic method first introduced by Hanks and McGuire (1981). The report contains source codes, written in Fortran, and executables that can be used on a PC. Programs are included both for time-domain and for random vibration simulations. In addition, programs are included to produce Fourier amplitude spectra for the models used in the simulations and to convert shear velocity vs. depth into frequency-dependent amplification. The revision to the previous report is needed because the input and output files have changed significantly, and a number of new programs have been included in the set.
NASA Astrophysics Data System (ADS)
Kriebel, Mary M.; Sanks, Terry M.
1992-02-01
Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.
Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)
NASA Technical Reports Server (NTRS)
Elam, S. K.
2000-01-01
The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Mark J; Efroymson, Rebecca Ann; Hargrove, William Walter
A multiple stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper describes the ecological risk assessment for the tracked vehicle movement component of the testing program. The principal stressor associated with tracked vehicle movement was soil disturbance, and a resulting, secondary stressor was hydrological change. Water loss to washes and wash vegetation was expected to result from increased infiltration and/or evaporation associated with disturbancesmore » to desert pavement. The simulated exposure of wash vegetation to water loss was quantified using estimates of exposed land area from a digital ortho quarter quad aerial photo and field observations, a 30 30 m digital elevation model, the flow accumulation feature of ESRI ArcInfo, and a two-step process in which runoff was estimated from direct precipitation to a land area and from water that flowed from upgradient to a land area. In all simulated scenarios, absolute water loss decreased with distance from the disturbance, downgradient in the washes; however, percentage water loss was greatest in land areas immediately downgradient of a disturbance. Potential effects on growth and survival of wash trees were quantified by using an empirical relationship derived from a local unpublished study of water infiltration rates. The risk characterization concluded that neither risk to wash vegetation growth or survival nor risk to mule deer abundance and reproduction was expected. The risk characterization was negative for both the incremental risk of the test program and the combination of the test and pretest disturbances.« less
NASA Technical Reports Server (NTRS)
1974-01-01
Weight and cost optimized EOS communication links are determined for 2.25, 7.25, 14.5, 21, and 60 GHz systems and for a 10.6 micron homodyne detection laser system. EOS to ground links are examined for 556, 834, and 1112 km EOS orbits, with ground terminals at the Network Test and Tracking Facility and at Goldstone. Optimized 21 GHz and 10.6 micron links are also examined. For the EOS to Tracking and Data Relay Satellite to ground link, signal-to-noise ratios of the uplink and downlink are also optimized for minimum overall cost or spaceborne weight. Finally, the optimized 21 GHz EOS to ground link is determined for various precipitation rates. All system performance parameters and mission dependent constraints are presented, as are the system cost and weight functional dependencies. The features and capabilities of the computer program to perform the foregoing analyses are described.
Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.
1980-01-01
This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)
NASA Technical Reports Server (NTRS)
Yager, T. J.; Dreher, R. C.
1976-01-01
A limited test program was conducted to extend and supplement the braking and cornering data on a 30 x 11.5-14.5, type VIII, aircraft tire to refine the tire/runway friction model for use in the development of an aircraft ground performance simulation. Tire traction data were obtained on dry, wet and flooded runway surfaces at ground speeds ranging from 5 to 100 knots and at yaw angles extending up to 12 deg. These friction coefficients are presented as a function of slip characteristics, namely, the maximum and skidding drag coefficients and the maximum cornering coefficients are presented as a function of both ground speed and yaw angle to extend existing data on that tire size. Tire braking and cornering capabilities were shown to be affected by vehicle ground speed, wheel yaw attitude and the extent of surface wetness.
ATS-6 engineering performance report. Volume 3: Telecommunications and power
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
Functional design requirements and in-orbit operations, performance, and anomalies are discussed for (1) the communications subsystem, (2) the electrical power system, and (3) the telemetry and command subsystem. The latter includes a review of ground support. Tracking and data relay experiments and the Apollo-Soyuz test program are reviewed.
Planning Future Instructional Programs through Computerized L2 Dynamic Assessment
ERIC Educational Resources Information Center
Ebadi, Saman; Saeedian, Abdulbaset
2016-01-01
Dynamic Assessment (DA) is a postmodern notion in testing which sees instruction and assessment as inextricably mingled contending that learners will progress if provided with dynamic interactions. The main purpose of the study is to see if the scores generated by the computerized dynamic assessment (C-DA) which is grounded in Vygotsky's…
ERIC Educational Resources Information Center
Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline
2014-01-01
The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…
Marshall Space Flight Center Telescience Resource Kit
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.
Component-Level Electronic-Assembly Repair (CLEAR) System Architecture
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.
2011-01-01
This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.
Innovative Test Operations to Support Orion and Future Human Rated Missions
NASA Technical Reports Server (NTRS)
Koenig, William J.; Garcia, Rafael; Harris, Richard F.; See, Michael J.; Van Lear, Benjamin S.; Dobson, Jill M.; Norris, Scott Douglas
2017-01-01
This paper describes how the Orion program is implementing new and innovative test approaches and strategies in an evolving development environment. The early flight test spacecraft are evolving in design maturity and complexity requiring significant changes in the ground test operations for each mission. The testing approach for EM-2 is planned to validate innovative Orion production acceptance testing methods to support human exploration missions in the future. Manufacturing and testing at Kennedy Space Center in the Neil Armstrong Operations and Checkout facility will provide a seamless transition directly to the launch site avoiding transportation and checkout of the spacecraft from other locations.
Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation
NASA Astrophysics Data System (ADS)
Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko
2016-07-01
One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.
Environmentally Friendly Corrosion Preventative Compounds
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela
2012-01-01
The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.
This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less
2013-05-15
EDWARDS, Calif. – ED13-0142-01: With its wings and tail structure removed and shrouded in plastic wrap for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its approach-and-landing flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
2013-05-15
EDWARDS, Calif. – ED13-0142-03: Shrouded in plastic wrap with its wings and tail structure removed for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake in front of the control tower at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
NASA Astrophysics Data System (ADS)
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
The reduction of takeoff ground roll by the application of a nose gear jump strut
NASA Technical Reports Server (NTRS)
Eppel, Joseph C.; Maisel, Martin D.; Mcclain, J. Greer; Luce, W.
1994-01-01
A series of flight tests were conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short take off and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low-speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high-pressure pneumatic system and a control system provided the extendable nose gear, or jump strut, capability. The limited flight test program explored the effects of thrust-to-weight ratio, wing loading, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that a reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut, as predicted. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined.
NASA Technical Reports Server (NTRS)
Eppel, Joseph C.; Hardy, Gordon; Martin, James L.
1994-01-01
A series of flight tests was conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short takeoff and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high pressure pneumatic system and a control system provided the extendible nose gear, or 'jump strut,' capability. The limited flight test program explored the effects of thrust-to-weight ratio, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that the predicted reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley P.
2004-01-01
Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.
Thermal energy storage flight experiments
NASA Technical Reports Server (NTRS)
Namkoong, D.
1989-01-01
Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.
1976-10-01
construc- tion should consider the losses incurred by the E samples and the 2.4% bending/wrap pressure los1 (TOD) incurred by the A-6 sample with respect...charging condi- tions. These elements should be deleted . 418j 2. Grounding Pole a) The contact hook did not ensure positive contact with the load or... deleted as a requirement for the HLH prototype during the ATC program. However, the system was included in the ITR and span position changes were
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
Nuclear Electric Propulsion Technology Panel findings and recommendations
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
1992-01-01
Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, L.M.
1995-12-12
The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less
Space reactor power 1986 - A year of choices and transition
NASA Technical Reports Server (NTRS)
Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.
1986-01-01
Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.
Seasat. Volume 3: Ground systems
NASA Technical Reports Server (NTRS)
Pounder, E. (Editor)
1980-01-01
The Seasat Project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June of 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The ground systems using during the mission life are discussed. Descriptions of the operating organization, the system elements, and the testing program are included. The various phases of the mission: launch and orbit insertion; cruise; and calibration are discussed. A special section is included on the orbit maneuver activites. Operations during the satellite failure are reviewed and summarized.
Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
2014-01-01
This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.
NASA Technical Reports Server (NTRS)
Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.
1999-01-01
As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.
Large Payload Ground Transportation and Test Considerations
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.
2016-01-01
Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels, pyrotechnic devices, and high pressure gasses. Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure—roads, bridges, airframes, and buildings—necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider where and how large spacecraft are manufactured, tested, and launched could result in unforeseen cost to modify existing (or develop new) infrastructure, or incur additional risk due to increased handling operations or eliminating key verifications. Although this paper focuses on the canceled Altair spacecraft as a case study, the issues identified here have wide applicability to other large payloads, including concepts under consideration for NASA’s Evolvable Mars Campaign.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1993-01-01
Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.
2014-05-11
CAPE CANAVERAL, Fla. – Fans sign the banner surrounding NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California, before the start of a San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-10
CAPE CANAVERAL, Fla. – Doug Lenhardt, Kennedy Space Center's Exploration Flight Test-1, or EFT-1, mission integration manager displays a baseball from the San Diego Padres inside Petco Park in San Diego, California. NASA's Orion boilerplate test vehicle is on display at the stadium. The boilerplate test vehicle is being prepared for an EFT-1 pre-transportation test. The Ground Systems Development and Operations Program will run the test to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-10
CAPE CANAVERAL, Fla. – The Orion boilerplate test vehicle is on display at Petco Park in San Diego, California, before the San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-11
CAPE CANAVERAL, Fla. – A San Diego Padres fan on stilts stands near NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California. The boilerplate test vehicle will be prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-11
CAPE CANAVERAL, Fla. – Fans sign the banner draped around NASA's Orion boilerplate test vehicle on display at the San Diego Padres Petco Field in San Diego, California, before the start of the baseball game. The test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-10
CAPE CANAVERAL, Fla. – The Orion boilerplate test vehicle is on display at Petco Park in San Diego, California, before the San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-11
CAPE CANAVERAL, Fla. – Fans check out NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California, before the start of a San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-10
CAPE CANAVERAL, Fla. – The Orion boilerplate test vehicle is on display at Petco Park in San Diego, California, before the San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-05-11
CAPE CANAVERAL, Fla. – Fans check out NASA's Orion boilerplate test vehicle on display at Petco Park in San Diego, California, before the start of a San Diego Padres' baseball game. The boilerplate test vehicle is being prepared for an Exploration Flight Test-1, or EFT-1, pre-transportation test. The Ground Systems Development and Operations Program will run the test at the U.S. Naval Base San Diego to simulate retrieval and transportation procedures for Orion after it splashes down in the ocean and is retrieved for return to land and ground transportation back to Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Design Considerations for Human Rating of Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Parkinson, Douglas
2010-01-01
I.Human-rating is specific to each engine; a. Context of program/project must be understood. b. Engine cannot be discussed independently from vehicle and mission. II. Utilize a logical combination of design, manufacturing, and test approaches a. Design 1) It is crucial to know the potential ways a system can fail, and how a failure can propagate; 2) Fault avoidance, fault tolerance, DFMR, caution and warning all have roles to play. b. Manufacturing and Assembly; 1) As-built vs. as-designed; 2) Review procedures for assembly and maintenance periodically; and 3) Keep personnel trained and certified. c. There is no substitute for test: 1) Analytical tools are constantly advancing, but still need test data for anchoring assumptions; 2) Demonstrate robustness and explore sensitivities; 3) Ideally, flight will be encompassed by ground test experience. III. Consistency and repeatability is key in production a. Maintain robust processes and procedures for inspection and quality control based upon development and qualification experience; b. Establish methods to "spot check" quality and consistency in parts: 1) Dedicated ground test engines; 2) Random components pulled from the line/lot to go through "enhanced" testing.
Radon mitigation at Birch Cliff Public School.
Moridi, R; Becker, E
1996-01-01
In 1991, Canadian Institute for Radiation Safety (CAIRS) conducted a radon screening program in all Metropolitan Toronto public schools. Birch Cliff Public School had a radon progeny level higher than the action level of 4.16 x 10(-7) Jm-3 (20 mWL). Follow-up radon testing was carried out at the school. Locations on the ground floor and in the basement were tested. All locations on the ground floor had radon progeny levels below the action level. Six locations in the basement had readings above the action level. All cracks and openings in the basement were sealed and a new heating/ventilating (HV) system for the basement was designed and installed. Then, the basement was tested again. Radon progeny levels are now well below the action level with an average of 7.43 x 10(-8) Jm-3 (3.57 mWL). This is about one fifth of the average radon progeny level found in the first stage of follow-up testing.
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the fourth ogive panel is lifted by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. Three of the panels have already been installed on the test vehicle. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the fourth ogive panel is lifted by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. Three of the panels have already been installed on the test vehicle. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-07
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians monitor the progress as the fourth ogive panel is lifted by crane so that they can be installed on the Orion ground test vehicle in Vehicle Assembly Building high bay 4. Three of the panels have already been installed on the test vehicle. The ogive panels enclose and protect the Orion spacecraft and attach to the Launch Abort System. The test vehicle is being used by the Ground Systems Development and Operations Program for path finding operations, including simulated manufacturing, assembly and stacking procedures. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett
Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures
NASA Technical Reports Server (NTRS)
Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.
2013-01-01
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Environmentally friendly corrosion preventive compounds for ground support structures
NASA Astrophysics Data System (ADS)
Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move
2018-02-22
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.
Flight service evaluation of composite components on Bell 206L and Sikorsky S-76 helicopters
NASA Technical Reports Server (NTRS)
Baker, D. J.
1983-01-01
Progress on two programs to evaluate composite structural components in flight service on commercial helicopters is described. Thirty-six ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin were installed on Bell Model 206L helicopters that are operating in widely different climatic areas. Four horizontal stabilizers and ten tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, specimens from materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 14,000 hours of accumulated service on the 206L components, tests on a S-76 horizontal stabilizer after 1600 hours of service, tests on a S-76 tail rotor spar after 2300 hours service, and two years of ground based exposure of material coupons are reported.
Development and flight test of a helicopter compact, portable, precision landing system concept
NASA Technical Reports Server (NTRS)
Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.
1984-01-01
An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.
Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.
2009-01-01
This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.
NASA aircraft trailing vortex research
NASA Technical Reports Server (NTRS)
Mcgowan, W. A.
1971-01-01
A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.
Predicting the Effects of Test Media in Ground-Based Propulsion Testing
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Parker, Peter A.; Chelliah, Harsha K.; Cutler, Andrew D.; Givi, Peyman; Hassan, Hassan, A.
2006-01-01
This paper discusses the progress of work which began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program has several components including the development of advance algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that will provide data for the modeling efforts will also be described, along with with the associated nonintrusive diagnostics used to collect the data.
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
2010-10-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
May, Brian D.
1992-01-01
The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less