Science.gov

Sample records for ground thermal regime

  1. Thermal Regime Change of a Retreating Polythermal Glacier from Repeat Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Rippin, D. M.; Willis, I. C.; Sevestre, H.

    2014-12-01

    Polythermal glaciers (i.e. glaciers that consist of some combination of both warm and cold ice) are common in the Arctic (e.g. Aschwanden and Blatter, 2005). Recent work (e.g. Rippin et al. 2011; Gusmeroli et al., 2012; Wilson and Flowers, 2013; Wilson et al., 2013) has focussed on how their polythermal structure might change in response to a warming climate. These studies suggest that the nature of future thermal regime change is complex, such that the relative volume of temperate ice in a shrinking glacier may increase or decrease, depending on local geographical, meteorological and hydrological parameters. Here, we present a unique data-set from the well-studied glacier Midtre Lovénbreen in Svalbard, which has shown continued and sustained retreat in recent years. We have a network of ground penetrating radar (GPR) lines from this glacier, first surveyed in 2006 and then repeat-surveyed along exactly the same lines in 2012. Despite significant retreat and thinning, our data suggests that minimal changes in thermal regime have taken place over this period, reinforcing previous observations of a significant lag in the rate at which the thermal regime responds to mass balance changes (cf. Rippin et al., 2011). Such a 'thermal lag' has implications for evolving hydrological and dynamical behaviour of these glaciers, and also for the future mass balance response. In this paper, we comment on the observed changes and consider the implications for our understanding of future thermal regime evolution. ReferencesAschwanden, A., and H. Blatter. 2005. Meltwater production due to strain heating in Storglaciären, Sweden. JGR, 110, doi:10.1029/2005JF000,328. Rippin, D.M., J.L. Carrivick and C. Williams. 2011. Evidence towards a thermal lag in the response of Kårsaglaciären, northern Sweden, to climate change. J. Glac., 57(205), 895-903. Gusmeroli, A., P. Jansson, R. Pettersson and T. Murray. 2012. Twenty years of cold surface layer thinning at Storglaciaren, sub

  2. Ground surface thermal regime of rock glaciers in the High Tatra Mts., Slovakia

    NASA Astrophysics Data System (ADS)

    Uxa, Tomáš; Mida, Peter

    2017-04-01

    Numerous lobate- or tongue-shaped debris accumulations, mostly interpreted as rock glaciers, have recently been recognized in the High Tatra Mts., Slovakia (49˚ 10' N, 20˚ 08' E). These prominent landforms arise due to creep of voluminous debris-ice mixtures, and as such they are excellent indicators of present or past permafrost existence. Hence rock glaciers are extensively utilized to model the distribution of permafrost in mountain areas. However, commonly applied rules of thumb may not be entirely indicative to discriminate particularly between the inactive (permafrost in disequilibrium with present climate) and relict (without permafrost) rock glaciers, which may substantially complicate permafrost modelling. Accordingly, the information about their thermal state is essential to calibrate and validate regional permafrost models. Limited ground temperature data have been, however, available from the High Tatra Mts. to date and therefore, we bring the updated and enhanced results from the thermal investigations of eleven rock glaciers located in the Slavkovská dolina and Veľká Studená dolina valleys at elevations between 1832 and 2090 m asl. Ground surface temperature (GST) has been continuously monitored at seven rock glaciers between October 2014 and September 2016 using nine Minikin Tie (EMS Brno Inc.) and iButton DS1922L (Maxim Integrated Inc.) loggers with an accuracy of ±0.2 and ±0.5 ˚ C, respectively. In addition, the bottom temperature of snow (BTS) was measured at 306 locations during spring of 2015 and 2016 to map potential permafrost occurrence within all the surveyed rock glaciers and in their immediate surroundings. Mean annual ground surface temperature (MAGST) of the rock glaciers ranged between -1.3 ˚ C and +2.6 ˚ C and averaged +1.0 ˚ C and +0.8 ˚ C in 2014-2015 and 2015-2016, respectively. Two sites continually showed negative MAGST and two other sites were below +0.5 ˚ C and +1.0 ˚ C, respectively. This strongly contrasts with

  3. Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models.

    PubMed

    Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr

    2017-04-15

    Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario.

  4. Observations on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change

    NASA Astrophysics Data System (ADS)

    Mauro, Guglielmin

    2004-01-01

    Active-layer monitoring and the permafrost thermal regime are key indicators of climate change. The results of 3 years (1997-1999) of active-layer monitoring at one high-mountain site (La Foppa, 46°28'42″N; 10°11'18″E, 2670 m a.s.l.) and at one Antarctic site (Boulder Clay, 74°44'45″S; 164°01'17″E, 205 m a.s.l) are presented. The initial analysis of a thermal profile in a borehole (100.3 m deep) within mountain permafrost at Stelvio (3000 m a.s.l., 46°30'59″N; 10°28'35″E) is also presented. At the alpine site, the active-layer thickness variations (between 193 and 229 cm) relate to both the snow cover and to the air temperature changes. By contrast, at the Antarctic site, there is a strong direct linkage only between air temperature fluctuations and active-layer variations. At the alpine (La Foppa) site, the relationship between climate and active-layer thickness is complicated by thermal offset that is almost negligible at both the Stelvio and Antarctic sites. The permafrost temperature profile at Stelvio site contains a climate signal suitable for paleoclimate reconstruction. The permafrost at this site has a mean annual ground surface temperature (MAGST) of -1.9 °C (during 1998/1999), an active layer of about 2.5 m thick and a total thickness of ˜200 m. Analysis of the MAGST history, obtained by applying a simple heat conduction one-dimensional model, revealed the occurrence of a cold period from 1820 to 1940 followed by a warming period until 1978. Since the beginning of the 1980s, temperature dropped (less than 2 °C) until the middle 1990s, when a new period of warming started. All these climatic changes fit well with the glacial fluctuations in the area and with other paleoclimatic information derived from different proxy data.

  5. Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji

    2016-09-01

    We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.

  6. Effects of spatially variable snow cover on thermal regime and hydrology of an Arctic ice wedge polygon landscape identified using ground penetrating radar and LIDAR datasets

    NASA Astrophysics Data System (ADS)

    Gusmeroli, A.; Liljedahl, A. K.; Peterson, J. E.; Hubbard, S. S.; Hinzman, L. D.

    2012-12-01

    Ice wedge polygons are common in Arctic terrains underlain by permafrost. Permafrost degradation could transform low- into high centered polygons, causing profound changes in the hydrologic regime of Arctic lands, which in turn, could affect the energy balance and subsurface biodegradation of organic carbon responsible for greenhouse gas production. Understanding the linkages between microtopography, snow cover, thermal properties, and thaw depth is critical for developing a predictive understanding of terrestrial ecosystems and their feedbacks to climate. In this study, we use high frequency (500-1000 MHz) ground penetrating radar (GPR) data acquired in spring 2012 within the Next Generation Ecosystem Experiment (NGEE) study site in Barrow, AK to characterize the spatial variability of snow distribution. We compare it's distribution to microtopography, estimated using LIDAR data, and thaw depth, also estimated using ground penetrating radar collected at different times during the year and simulated over time using mechanistic thermal-hydrologic modeling. The high spatial resolution offered by LIDAR and ground penetrating radar permit detailed investigations of the control of microtopography on snow and thaw layer depth. Results suggest that microtopographical variations are responsible for substantial differences in snow accumulation. In low centered polygons, snow depth can be up to four times greater in the troughs than on the rims. Both modeling and observations suggest that the microtopography-governed snow thickness affects the thermal properties of the subsurface and thus the thaw layer thickness; regions with thicker snowpack generally correspond to regions of greater thaw depth. We conclude that a transition from low- to high centered polygons will not only impact watershed runoff but, since snow accumulation is sensitive to the microtopography, it will also impact snow distribution. In turn, snow distribution affects thaw depth thickness, and the

  7. A thermal ground cloak

    NASA Astrophysics Data System (ADS)

    Yang, Tianzhi; Wu, Qinghe; Xu, Weikai; Liu, Di; Huang, Lujun; Chen, Fei

    2016-02-01

    The thermal cloak has been a long-standing scientific dream of researchers and engineers. Recently thermal metamaterials with man-made micro-structure have been presented based on the principle of transformation optics (TO). This new concept has received considerable attention, which is a powerful tool for manipulating heat flux in thermal imaging systems. However, the inherent material singularity has long been a captivation of experimental realization. As an alternative method, the scattering-cancellation-based cloak (or bi-layer thermal cloak) has been presented to remove the singularity for achieving the same cloaking performance. Nevertheless, such strategy needs prerequisite knowledge (geometry and conductivity) of the object to be cloaked. In this paper, a new thermal ground cloak is presented to overcome the limitations. The device is designed, fabricated and measured to verify the thermal cloaking performance. We experimentally show that the remarkably low complexity of the device can fully and effectively be manipulated using realizable transformation thermal devices. More importantly, this thermal ground cloak is designed to exclude heat flux without knowing the information of the cloaked object.

  8. The thermal regime beneath cultural blocky materials: Ground temperature measurements in and around the Scythian Kurgans of the Russian Altay Mountains.

    NASA Astrophysics Data System (ADS)

    van de Kerchove, Ruben; Goossens, Rudi

    2010-05-01

    During historical times, the Altay Mountains were repeatedly occupied by several, mainly nomadic, cultures. Among them were the Scythians who lived in the area (and far beyond), from the 8th until the 2nd century BC. This culture is widely known for their specific burial rituals, including the burying of their death in a kurgan: a burial mound consisting of a coarse debris surface layer, overlaying a burial chamber. Due to this composition, together with the continental alpine climate of the Altay Mountains, several of these graves were found frozen, thanks to the existence of ice lenses and permafrost beneath the structures. If frozen, these kurgans contained well preserved bodies, often with the tattoos on their skin intact. As nowadays a distinct temperature rising is showed in these continental mountain ranges, the hundreds of kurgans, and especially these ones located at the lower fringe of the permafrost area, are likely to defrost within decades. As a result, the valuable, frozen, organic and inorganic content will get lost, resulting in a loss of extremely valuable cultural heritage and knowledge. Therefore, extensive permafrost research regarding the thermal state of the frozen tombs and the spatial distribution of the mountain permafrost is necessary to forecast which of the tombs are endangered by thawing. In the framework of this project a first expedition was organized in the Russian Altay Mountains during the summer of 2008. During this expedition, the valleys of Dzhazator, Tarkhata, Kalanegir and Ulandryk were visited in succession and temperature installments were made in order to give an overview of the thermal regime in the area. Beside installments intended for regional modelling, special sensors were placed in order to focus on the specific thermal regime related to the Scythian kurgans. This poster gives the first results of the temperature data as recorded by sensors located in and around the burial mounds. At first attention is given to the

  9. Thermal regimes of Malaysian sedimentary basins

    SciTech Connect

    Abdul Halim, M.F. )

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulation time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.

  10. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.; Dumberry, M.; Steinle-Neumann, G.

    2015-10-01

    Unlike the Earth, where the liquid core isentrope is shallower than the core liquidus, at the lower pressures inside Mercury's core the isentrope can be steeper than the melting temperature. As a consequence, upon cooling, the isentrope may first enter a solid stability field near the core mantle boundary and produce ironrich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, crystallization initiated near the top might generate sufficient buoyancy flux to drive magnetic field generation by compositional convection.In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for an internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high-pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials. We use a 1-dimensional parametrized thermal evolution model in the stagnant lid regime for the mantle (e.g. [1]) that is coupled to the core. The model for the mantle takes into account the formation of the crust due to melting at depth. Mantle convection is driven by heat producing radioactive elements, heat loss from secular cooling and from the heat supplied by the core. The heat generated inside the core is mainly provided from secular cooling, from the latent heat released at iron freezing, and from gravitational energy resulting form the release of light elements at the inner core-outer core boundary as well as from the sinking of iron-rich snow and subsequent upwellings of light elements in the snow zone. If the heat flow out of the core is smaller than the heat transported along the core isentrope a thermal boundary will from at the top of the outer core. To determine the extension of the convecting region inside the liquid core we calculate the convective power [2]. Finally, we

  11. CSDP: The seismology of continental thermal regimes

    SciTech Connect

    Aki, K.

    1990-05-01

    This is a progress report for the past one year of research (year 3 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. The past year has been extremely productive especially in the area of interpretation theory, including the following two major break-throughs. One is the derivation of an integral equation for time-dependent power spectra, which unified all the existing theories on seismic scattering (including the radiative transfer theory for total energy and single and multiple scattering theories based on the ray approach) and offers more complete and economical solutions to the problems of seismic scattering and attenuation. The other is the new formula for synthetic seismograms for layered media with irregular interfaces, combining the T-matrix method for an arbitrary shaped inclusion and the method of global generalized reflection/transmission coefficients for layered media. Both breakthroughs will enable us to deal with seismic observations in complex earth structures more efficiently and accurately. In the area of experimental studies, we discovered seismic guided waves trapped in the San Andreas fault near Parkfield, California. 54 refs., 14 figs.

  12. CSDP: Seismology of continental thermal regime

    SciTech Connect

    Aki, K.

    1989-04-01

    This is a progress report for the past one year of research (year 2 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. During the past year, two Ph.D. thesis works were completed under the present project. One is a USC thesis on seismic wave propagation in anisotropic media with application to defining fractures in the earth. The other is a MIT thesis on seismic Q and velocity structure for the magma-hydrothermal system of the Valles Caldera, New Mexico. The P.I. co-organized the first International Workshop on Volcanic Seismology at Capri, Italy in October 1988, and presented the keynote paper on the state-of-art of volcanic seismology''. We presented another paper at the workshop on Assorted Seismic Signals from Kilauea Volcano, Hawaii. Another international meeting, namely, the Chapman Conference on seismic anisotropy in the earth's crust at Berkeley, California in May 1988, was co-organized by the co-P.I. (P.C.L), and we presented our work on seismic waves in heterogeneous and anisotropic media. Adding the publications and presentations made in the past year to the list for the preceding year, the following table lists 21 papers published, submitted or presented in the past two years of the present project. 65 refs., 334 figs., 1 tab.

  13. Envisioning, quantifying, and managing thermal regimes on river networks

    Treesearch

    E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....

  14. Envisioning, quantifying, and managing thermal regimes on river networks

    USGS Publications Warehouse

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  15. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, Attilio; Dumberry, Mathieu; Van Hoolst, Tim; Steinle-Neumann, Gerd

    2015-04-01

    Unlike the Earth, where the liquid core isentrope is less steep than the core melting temperature, at the lower pressures inside Mercury's core the isentrope can be steepper than the melting temperature. As a consequence, upon cooling, the isentrope may first cross the melting temperature near the core mantle boundary and produce iron-rich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, top down crystallization is expected to generate sufficient buoyancy flux to drive magnetic field generation by compositional convection. In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials.

  16. Thermal machines beyond the weak coupling regime

    NASA Astrophysics Data System (ADS)

    Gallego, R.; Riera, A.; Eisert, J.

    2014-12-01

    How much work can be extracted from a heat bath using a thermal machine? The study of this question has a very long history in statistical physics in the weak-coupling limit, when applied to macroscopic systems. However, the assumption that thermal heat baths remain uncorrelated with associated physical systems is less reasonable on the nano-scale and in the quantum setting. In this work, we establish a framework of work extraction in the presence of quantum correlations. We show in a mathematically rigorous and quantitative fashion that quantum correlations and entanglement emerge as limitations to work extraction compared to what would be allowed by the second law of thermodynamics. At the heart of the approach are operations that capture the naturally non-equilibrium dynamics encountered when putting physical systems into contact with each other. We discuss various limits that relate to known results and put our work into the context of approaches to finite-time quantum thermodynamics.

  17. Thermal regime of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Sass, J. H.

    1984-01-01

    From studies of the global heat flow data set, it has been generalized, with respect to the continental lithosphere, that there is a negative correlation between heat flow and the lithosphere's tectonic edge, and that the lithosphere's thermal evolution is similar to that of the ocean basins, resulting in a 'stable geotherm' in both environments. It is presently noted that a regional study perspective for heat flow data leads to doubts concerning the general applicability of either statement. Rao et al. (1982) have demonstrated that the data are not normally distributed, and that it is not possible to establish a negative correlation between heat flow and age in a rigorous statistical fashion. While some sites of stable continental blocks may have a geotherm that is by chance similar to that for old ocean basins, this need not hold true generally, and many stable continental terranes will be characterized by geotherms very different from those for old ocean basins.

  18. Vegetation management with fire modifies peatland soil thermal regime.

    PubMed

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime

  19. Thermal regimes of Mexican spotted owl nest stands

    Treesearch

    Joseph L. Ganey

    2004-01-01

    To evaluate the hypothesis that spotted owls (Strix occidentalis) select habitats with cool microclimates to avoid high daytime temperatures, I sampled thermal regimes in nest areas used by Mexican spotted owls (S. o. lucida) in northern Arizona. I sampled air temperature at 30-min intervals in 30 pairs of nest and random sites...

  20. An assessment of thermal regime in and around Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2016-04-01

    Terrestrial surface heat flow provides a direct means to estimate the crustal thermal structure. However, the number of heat flow data is limited and spatially very inhomogeneous and even in regions with measurements the data quality varies. To provide an attempt at a higher resolution map of heat flow, we newly measured and acquired thermal conductivity data from existing samples and data. 122 core samples from 42 sites at 37 Japanese volcanoes [Coordinating Committee for Prediction of Volcanic Eruption core analysis group, 2011] were measured for thermal conductivity, thermal capacity, and bulk density, which may be used to improve the thermal regime of volcanoes. Also, to estimate the heat flow using geothermal gradient data, the closest thermal conductivity data is used for each gradient data [Tanaka et al., 2004]. This approach does not take into account geological and hydrodynamical models to use the thermal conductivity, but this assumption works well enough to provide rough estimates of heat flow from geothermal gradient. On the other hand, the depth of magnetic sources based on spectrum analysis of magnetic anomaly data [e.g., Spector and Grant, 1970] is one of several proxies for estimating thermal regime at depth. This analysis is still controversial, however, good correlation between estimated depths of crustal magnetic sources and heat flow suggests that this depth may reflect the broad average temperature. We discuss some of the limitations and possible uses for various data sources.

  1. Geomorphic and Thermal Steady State Regimes: Reality or Wishful Thinking?

    NASA Astrophysics Data System (ADS)

    Lock, J.; Furlong, K.

    2003-04-01

    In many tectonic geomorphic studies, it is assumed that rates of uplift within an orogen are matched by rates of exhumation producing a steady-state orogen. However, the tools used to determine exhumation are thermally driven (e.g. Fission Track, U-Th/He) and exhumation can substantially perturb the crustal thermal regime. Since knowing the thermal regime is key to determining exhumation from thermochronology, problems arise. In order to interpret a rate of exhumation we make the assumption that an area is in thermal 'steady state', which in young active orogens unlikely exists. Taiwan, the Southern Alps, Fiordland, and Nanga Parbat are relatively young mountain belts that have begun to uplift or have experienced increased rates of uplift during the past 5-10 Ma. As there is a time lag between the onset of uplift and achieving geomorphic steady state and again between reaching geomorphic steady state and thermal steady state, these orogens may be too young to have achieved this final stage. Additionally, young orogens may not have experienced a constant rate of uplift and denudation in the time over which the thermochronometers average. Certainly, in the case of the Southern Alps, present uplift rates can not have existed since uplift begun. Therefore, an apparent age is recording a transient thermal state. Even in a case where geomorphic steady state exists i.e. exhumation balances uplift, it is unlikely that a thermal steady state has been reached. This precludes the simple interpretation of exhumation rates often made. When multiple thermochronometers are used, inconsistencies can arise. For example, an increase in the rate of uplift is often observed when comparing the rates of exhumation using different thermochronometers. Our modeling shows that in some cases this phenomena is actually eliminated by considering the transient nature of the thermal regime following the onset of uplift and exhumation of an active orogen. To accurately determine exhumation rate

  2. Spectral effectiveness of engineered thermal cloaks in the frequency regime

    PubMed Central

    Petiteau, David; Guenneau, Sebastien; Bellieud, Michel; Zerrad, Myriam; Amra, Claude

    2014-01-01

    We analyse basic thermal cloaks designed via different geometric transforms applied to thermal cloaking. We evaluate quantitatively the effectiveness of these heterogeneous anisotropic thermal cloaks through the calculation of the standard deviation of the isotherms. The study addresses the frequency regime and we point out the cloak's spectral effectiveness. We find that all these cloaks have comparable effectiveness irrespective of whether or not they have singular conductivity at their inner boundary. However, approximate cloaking with multi-layered cloak critically depends upon the homogenization algorithm and it is shown that the standard deviation varies linearly with the inverse of the number of layers. PMID:25486981

  3. Thermal regime of ventilation shafts and its regulation

    SciTech Connect

    Petrov, N.N.; Timoshenko, N.I.

    1986-03-01

    This paper evaluates the regime of air flow through a ventilation shaft and the nondimensional heat-exchange criteria. It is shown that the air temperature in the shaft is affected more by the walls than by the reinforcement structure metal and that the heat released by internal combustion engines could be an alternative source for heating the air. High bypass aircraft turbojet engines decommissioned after their maximum surface life on planes could be used for this purpose. The study of the thermal regime in the shaft in the case of a sudden change of air temperature such as occurs during ventilation reversals has established the requirements for air heating equipment.

  4. Effect of thermal noise on random lasers in diffusion regime

    NASA Astrophysics Data System (ADS)

    Zarei, Mohammad Ali; Hosseini-Farzad, Mahmood; Montakhab, Afshin

    2015-09-01

    In this paper, we study the effects of thermal noise on the time evolution of a weak light pulse (probe) in the presence of a strong light pulse (pump) within a gain medium which includes random scatterer particles. Suitable thermal noise term is added to a set of four coupled equations including three diffusion equations for energy densities and a rate equation for the upper level population in a four-level gain medium. These equations have been solved simultaneously by Crank-Nicholson numerical method. The main result is that the back-scattered output probe light is increased as the thermal noise strength is increased and simultaneously, with the same rate, the amplified spontaneous emission is decreased. Therefore, the amplified response of the random laser in diffusion regime for the input probe pulse is enhanced due to effect of the thermal noise.

  5. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  6. Changes of soil thermal and hydraulic regimes in the Heihe River Basin.

    PubMed

    Peng, Xiaoqing; Mu, Cuicui

    2017-09-02

    Soil thermal and hydraulic regimes are critical factors influencing terrestrial processes in cold regions. Collection of field data from frozen ground has occurred at point scales, but limited data exist that characterize changes of soil thermal and hydraulic regimes at the scale of the whole Heihe River Basin. This study uses a long-term regional climate model coupled with land surface model to investigate the soil thermal and hydraulic regime changes at a large spatial scale. It also explores potential factors, including the climate and non-climate factors. Results show that there is significant variability in mean annual air temperature (MAAT) of about 0.47 °C/decade during 1980-2013. A time series of area-averaged mean annual soil temperature (MAST) over the whole Heihe River Basin shows a significant increase between 0.25 and 0.36 °C/decade during 1984-2013, with a net change of 0.9 °C. A trend of increasing wetness is found in soil moisture. Frozen days (FD) decreased significantly both in seasonally frozen ground (SFG) regions and permafrost regions, with a net change between 7 and 13 days during 1984-2013. Freezing index (FI) had a positive effect on FD, while thawing index (TI), MAAT, precipitation, and normalized difference vegetation index (NDVI) had a negative effect. These results are important to understand dynamic mechanisms of soil freeze/thaw cycles.

  7. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  8. Photopyroelectric Technique, in the Thermally Thin Regime, for Thermal Effusivity Measurements of Liquids

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Jaime-Fonseca, M. R.; Díaz-Reyes, J.; Gómez-Gómez, Y. M.; Bautista-Ramírez, M. E.; Muñoz-Diosdado, A.; Gálvez-Coyt, G.

    2016-02-01

    A photopyroelectric methodology using pyroelectric devices in the thermally thin regime, for the measurement of the thermal effusivity of liquids, is described. A commercial buzzer, taking advantage of the pyroelectric activity of the ceramic material (PZT in this case), is used to achieve this goal. Equivalence for thermal effusivity measurements between this photopyroelectric methodology and a previously reported photoacoustic technique, in the front configuration, is established. The thermal effusivity of six liquids was measured using this device, and very good agreement was found with corresponding values reported in the literature.

  9. Historical thermal regimes define limits to coral acclimatization.

    PubMed

    Howells, Emily J; Berkelmans, Ray; van Oppen, Madeleine J H; Willis, Bette L; Bay, Line K

    2013-05-01

    Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n=20 colonies) or partial (50%) mortality at temperatures 1.1 degrees C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n=10 colonies) or partial (42%) mortality at temperatures 2.5 degrees C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern

  10. Thermal regime of soils in the atlantic high mountain. The central massiff of Picos de Europa (Spain)

    NASA Astrophysics Data System (ADS)

    Pisabarro, Alfonso; Serrano, Enrique; José González Trueba, Juan; Pellitero, Ramón

    2015-04-01

    The study of ground thermal regime has got large interest because determine significant geomorphological processes, particularly in the high mountain where do not exist vegetal cover on the ground. Picos de Europa massifs is located in the North of the Iberian Peninsula (43°18'to 43°7'N and 5°7' to 4°36'W, Spain). It is a wet and temperate high mountain environment characterized by the presence of calcareous rock, featured by karst processes and Pleistocene glaciers. The aim of this work is analyse the thermal behavior of ground along the year at different altitudes and know limits of ice presence on the ground to differentiate stages without ice, with seasonal ice or potential permafrost. Temperature data were obtained by 12 thermal micro sensors I-Bottom and UTL-Geotest AG data-logger with centesimal accuracy undertaken to 5-10 cm depth. Micro sensors distribution vary between 1110 and 2535 m a.s.l. exploiting the sites with best topoclimatic terms in order to obtain the coldest records like ancient glaciers. The period of recordings was 2003-2007. It was enough to obtain parameters like annual ground medium temperatures, freeze and thaw cycles, freeze index or number of months with temperatures below zero. Thermal phases on the ground have been obtained. The thermal regime varies according topoclimatic conditions in the sites above cryonival stage (above 1800 m a.s.l.). It was possible to determinate four phases; highest temperatures, autumn change, winter isotherm and melt. The winter isotherm is the longest phase (6-10 months) due to the intense snowfall. During this period do not exist thermal daily amplitude and the minimum and maximum temperatures are similar; always into the interval (-0.1°C to 0°C). However there are sites where the cold is enough to break the wintry isotherm during several days with records around -6°C. The days with freeze and thaw cycles are scarce and concentrated in autumn during periods without snow cover. Results show that

  11. Thermal Evolution and Crystallisation Regimes of the Martian Core

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Pommier, A.

    2015-12-01

    Though it is accepted that Mars has a sulfur-rich metallic core, its chemical and physical state as well as its time-evolution are still unconstrained and debated. Several lines of evidence indicate that an internal magnetic field was once generated on Mars and that this field decayed around 3.7-4.0 Gyrs ago. The standard model assumes that this field was produced by a thermal (and perhaps chemical) dynamo operating in the Martian core. We use this information to construct parameterized models of the Martian dynamo in order to place constraints on the thermochemical evolution of the Martian core, with particular focus on its crystallization regime. Considered compositions are in the FeS system, with S content ranging from ~10 and 16 wt%. Core radius, density and CMB pressure are varied within the errors provided by recent internal structure models that satisfy the available geodetic constraints (planetary mass, moment of inertia and tidal Love number). We also vary the melting curve and adiabat, CMB heat flow and thermal conductivity. Successful models are those that match the dynamo cessation time and fall within the bounds on present-day CMB temperature. The resulting suite of over 500 models suggest three possible crystallization regimes: growth of a solid inner core starting at the center of the planet; freezing and precipitation of solid iron (Fe- snow) from the core-mantle boundary (CMB); and freezing that begins midway through the core. Our analysis focuses on the effects of core properties that are expected to be constrained during the forthcoming Insight mission.

  12. Thermal regime of permafrost at Prudhoe Bay, Alaska

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cuttings permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperature gradient at ~600 m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady-state conditions. Interpretation of the gradient contrast in terms of a simple model for the conductivity of an aggregate yields the mean ice content and thermal conductivities for the frozen and thawed sections (8.1 and 4.7 mcal/cm sec ?C, respectively). These results yield a heat flow of ~1.3 HFU which is similar to other values on the Alaskan Arctic Coast; the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. Curvature in the upper 160 m of the temperature profiles represents a warming of ~1.8?C of the mean surface temperature, and a net accumulation of 5-6 kcal/cm 2 by the solid earth surface during the last 100 years or so. Rising sea level and thawing sea cliffs probably caused the shoreline to advance tens of kilometers in the last 20,000 years, inundating a portion of the continental shelf that is presently the target of intensive oil exploration. A simple conduction model suggests that this recently inundated region is underlain by near-melting ice-rich permafrost to depths of 300-500 m; its presence is important to seismic interpretations in oil exploration and to engineering considerations in oil production. With confirmation of the permafrost configuration by offshore drilling, heat-conduction models can yield reliable new information on the chronology of arctic shorelines.

  13. Quasiparticle explanation of the weak-thermalization regime under quench in a nonintegrable quantum spin chain

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2017-02-01

    The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007), 10.1103/PhysRevLett.106.050405] of a nonintegrable quantum Ising model with longitudinal field under such a quench setting found different behaviors for different initial quantum states. One particular case called the "weak-thermalization" regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a t-3 /2 decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.

  14. Heterogeneity and thermal modeling of ground water.

    PubMed

    Ferguson, Grant

    2007-01-01

    Heat transport in aquifers is becoming an increasingly important topic due to recent growth in the use of ground water in thermal applications. However, the effect of heterogeneity on heat transport in aquifers has yet to be examined in the same detail as it has been for solute transport, and it is unclear what effect this may have on our ability to create accurate models. This study examines this issue through stochastic modeling using the geostatistics for two aquifers with low and high degrees of heterogeneity. The results indicate that there is considerable uncertainty in the distribution of heat associated with injection of warm water into an aquifer. Heterogeneity in the permeability field was also found to slightly reduce the ability to recover this introduced heat at a later time. These simulations also reveal that hydrodynamic macrodispersion is an important consideration in some heat flow problems.

  15. Numerical simulation of thermal-hydraulic generators running in a single regime

    NASA Astrophysics Data System (ADS)

    Chioreanu, Nicolae; Mitran, Tudor; Rus, Alexandru; Beles, Horia

    2014-06-01

    The paper presents the basis for the design of thermal-hydraulic generators running in a single regime. The thermal-hydraulic generators in a single regime running represent an absolute novelty worldwide (a pioneer invention). Based on the methodology concerning this subject, the design calculus for an experimental model was developed.

  16. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  17. Power signatures of electric field and thermal switching regimes in memristive SET transitions

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick R.; Hughart, David; Lohn, Andrew J.; Gao, Xujiao; Mamaluy, Denis; Marinella, Matthew J.

    2016-06-01

    We present a study of the ‘snap-back’ regime of resistive switching hysteresis in bipolar TaO x memristors, identifying power signatures in the electronic transport. Using a simple model based on the thermal and electric field acceleration of ionic mobilities, we provide evidence that the ‘snap-back’ transition represents a crossover from a coupled thermal and electric-field regime to a primarily thermal regime, and is dictated by the reconnection of a ruptured conducting filament. We discuss how these power signatures can be used to limit filament radius growth, which is important for operational properties such as power, speed, and retention.

  18. Subsurface hydro-thermal regime and the atmospheric hydroclimate by a climate model

    NASA Astrophysics Data System (ADS)

    Saito, K.

    2009-04-01

    experiments were run for 20 years, forced by the climatological sea surface temperature and sea ice concentrations derived from the 1981-2000 period, after 150-year spin-up for the subsurface regime. The last 9 years were taken for the analysis. Different complexity of the subsurface hydro-thermal physics simulated different near-surface thermal states and seasonality. The refined physics showed warmer summer and cooler winter. The difference was most apparent in high latitudes; surface air temperature increased about 2°C in summer (zonal average, only over land), and decreased by about 5°C in winter. The improved physics and the presence of the top organic layer kept more ground ice during the warmer seasons. The total amount of soil moisture (i.e. soil wetness), however, did not change by the change of the physics. This helped mitigating the unrealistically fast and large flux of heat within the ground and at the interface between the atmosphere and the land surface, and fed back to the change in the subsurface thermal regime (e.g., active layer depth, or length of ground freezing), and affected the seasonality. It also led to improvement of the cumulative temperature indices for the atmospheric forcing in the warm and cold season (e.g. Thaw and Freezing Index). . The difference in the near-surface thermal state in high latitudes also affected snow accumulation in winter,earlier and larger for the finer physics, although precipitation did not vary largely except in the lower latitudes, at the southern flank of the Tibetan Plateau, where large precipitation differences were found during the summer monsoonal period, leading to a contrast between wetter Tibetan Plateau and drier coastal China. Land-average total annual runoff did not vary greatly between integrations at all latitudes; however, its seasonal distribution showed large difference. During the melting season, high-latitude runoff was greater for the finer physics due to shallower active layer, whereas it was

  19. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference.

    PubMed

    Xia, Keyu; Evers, Jörg

    2009-11-27

    Ground state cooling of a nanomechanical resonator coupled to a superconducting flux qubit is discussed. By inducing quantum interference to cancel unwanted heating excitations, ground state cooling becomes possible in the nonresolved regime. The qubit is modeled as a three-level system in Lambda configuration, and the driving fluxes are applied such that the qubit absorption spectrum exhibits electromagnetically induced transparency, thereby canceling the unwanted excitations. As our scheme allows the application of strong cooling fields, fast and efficient cooling can be achieved.

  20. THERMAL TEST ALCOVE HEATED DRIFT GROUND SUPPORT ANALYSIS

    SciTech Connect

    S. Bonabian

    1996-10-03

    The main purpose and objective of this analysis is to analyze the stability of the Thermal Test Facility Heated Drift and to design a ground support system. The stability of the Heated Drift is analyzed considering in situ, seismic, and thermal loading conditions. A ground support system is recommended to provide a stable opening for the Heated Drift. This report summarizes the results of the analyses and provides the details of the recommended ground support system for the Heated Drift. The details of the ground support system are then incorporated into the design output documents for implementation in the field.

  1. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  2. Soil Thermal and Moisture Regimes in the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Sushama, L.; Laprise, R.; Caya, D.

    2004-05-01

    Soil moisture, with its high spatial and temporal variability, is important in understanding and predicting a large number of processes including land-atmospheric interactions. In many northern-latitude regions, spring melt-water derived from the winter snow pack represents the greatest source for the yearly ground moisture budget. The ability of the Canadian Regional Climate model (CRCM4.0) with its three-layer, physically based, land-surface scheme (CLASS) to simulate the hydrological cycle, especially the soil moisture and thermal regimes, over a domain covering Eastern Canada and part of Eastern United States, is investigated. The CRCM was driven by NCEP reanalyses and was run at 45-km horizontal grid-point spacing for a five-year period from 1993-1997. The model simulates reasonably well the annual cycle of soil moisture variation. Air-soil temperature phase-space diagrams are examined for regions with (1) no snow-cover, (2) seasonal snow-cover and (3) permanent snow-cover. The annual air/soil thermal orbits help assess the nature of the heat transfer process in the subsurface qualitatively and hence in identifying areas of conductive and non-conductive regimes of the subsurface. In high-latitude cold regions with permanent snow-cover, the heat transfer is predominantly conductive, whereas in regions with seasonal snow-cover, the heat transfer is mostly non-conductive during periods of phase change. The top layers in regions of no snow-cover, in the domain considered, also exhibit seasonal nonconductive type of heat transfer. The hydrological fields such as snow-cover, precipitation and runoff are also verified against observations over two northern basins. The simulated basin average values of the various hydrological fields agree very well with observations. The closely coupled average energy partitioning and water partitioning are also simulated reasonably well in the model.

  3. Long-lasting floods buffer the thermal regime of the Pampas

    NASA Astrophysics Data System (ADS)

    Houspanossian, Javier; Kuppel, Sylvain; Nosetto, Marcelo; Di Bella, Carlos; Oricchio, Patricio; Barrucand, Mariana; Rusticucci, Matilde; Jobbágy, Esteban

    2016-10-01

    The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape ( 2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

  4. A thermal profile method to identify potential ground-water discharge areas and preferred salmonid habitats for long river reaches

    USGS Publications Warehouse

    Vaccaro, J.J.; Maloy, K.J.

    2006-01-01

    The thermal regime of riverine systems is a major control on aquatic ecosystems. Ground water discharge is an important abiotic driver of the aquatic ecosystem because it provides preferred thermal structure and habitat for different types of fish at different times in their life history. In large diverse river basins with an extensive riverine system, documenting the thermal regime and ground-water discharge is difficult and problematic. A method was developed to thermally profile long (5-25 kilometers) river reaches by towing in a Lagrangian framework one or two probes that measure temperature, depth, and conductivity. One probe is towed near the streambed and, if used, a second probe is towed near the surface. The probes continuously record data at 1-3-second intervals while a Global Positioning System logs spatial coordinates. The thermal profile provides valuable information about spatial and temporal variations in habitat, and, notably, indicates ground-water discharge areas. This method was developed and tested in the Yakima River Basin, Washington, in summer 2001 during low flows in an extreme drought year. The temperature profile comprehensively documents the longitudinal distribution of a river's temperature regime that cannot be captured by fixed station data. The example profile presented exhibits intra-reach diversity that reflects the many factors controlling the temperature of a parcel of water as it moves downstream. Thermal profiles provide a new perspective on riverine system temperature regimes that represent part of the aquatic habitat template for lotic community patterns.

  5. Nuclear Thermal Propulsion Ground Test History

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start

  6. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    NASA Astrophysics Data System (ADS)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  7. Thermal Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  8. Morphology, properties, and regimes of migrational-mycelial agrochernozems with different ground moistening (Belgorod oblast)

    NASA Astrophysics Data System (ADS)

    Lebedeva, I. I.; Bazykina, G. S.; Grebennikov, A. M.; Smirnova, L. G.; Tyutyunov, S. I.

    2016-12-01

    Agrochernozems of a catena (local divide, backslope, and footslope positions on a gentle slope of southern aspect) on the fields of Belgorodskoe farm were studied. The soils are developed from lithologically heterogeneous sediments with temporal accumulation of precipitation water above the lithological contact. A close correlation between the morphology and properties of the soils and the character of their water regime in different positions of the catena was found. Agrochernozems of the divide belong to the migrational-mycelial type of forest-steppe chernozems according to their humus profile, water regime, and slightly differentiated distribution of carbonates. Agrochernozems on the backslope with a higher ground moistening have a more contrasting water regime with the topsoil drying in the summer, a sharper decrease in the humus content down the soil profile, and a distinct carbonate-accumulative horizon with a smooth upper boundary, which makes them closer to the type of steppe agrochernozems. The soils of the footslope are characterized by alternation of the percolative and exudative water regimes; these soils are classified as quasigley agrochernozems with a shortened humus horizon and with dispersed and pendant forms of pedogenic carbonates. The character of moistening, morphology, and properties of the studied soils allow us to state that their genesis is controlled by the local ecological conditions with minimal influence of erosional processes on the slope.

  9. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  10. Fluid temperatures: Modeling the thermal regime of a river network

    Treesearch

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  11. The DOE Thermal Regimes Drilling Program through 1987

    SciTech Connect

    Not Available

    1988-07-01

    In response to strong endorsement from the scientific community, in the form of a report by the Continental Scientific Drilling Committee of the National Academy of Sciences (CSDC, 1984), the Office of Basic Energy Sciences of the DOE undertook a program of investigations of young magmatic intrusions and their associated thermal systems. To date, the effort has encompassed the first phases of a program to investigate the roots of active hydrothermal systems and has also investigated the thermal, chemical, and mechanical behavior of geologically recent (less than 600 years) magmatic extrusions. Shallow to intermediate-depth holes have been drilled and cored into hydrothermal systems in the silicic Valles and Long Valley calderas and at the crustal spreading center of the Salton Trough. These projects are briefly summarized here and are covered in greater detail in the accompanying appendices.

  12. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  13. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  14. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  15. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    NASA Astrophysics Data System (ADS)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  16. Three-dimensional numerical modeling of thermal regime and slab dehydration beneath Kanto and Tohoku, Japan

    NASA Astrophysics Data System (ADS)

    Ji, Yingfeng; Yoshioka, Shoichi; Manea, Vlad Constantin; Manea, Marina; Matsumoto, Takumi

    2017-01-01

    Although the thermal regime of the interface between two overlapping subducting plates, such as those beneath Kanto, Japan, is thought to play an important role in affecting the distribution of interplate and intraslab earthquakes, the estimation of the thermal regime remains challenging to date. We constructed a three-dimensional (3-D) thermal convection model to simulate the subduction of the Pacific plate along the Japan Trench and Izu-Bonin Trench, including the subduction of the Philippine Sea beneath Kanto and investigated the slab thermal regime and slab water contents in this complex tectonic setting. Based on the subduction parameters tested in generic models with two flat oceanic plates, a faster or thicker plate subducting in a more trench-normal direction produces a colder slab thermal regime. The interplate temperature of the cold anomaly beneath offshore Kanto was approximately 300°C colder than that beneath offshore Tohoku at a same depth of 40 km and approximately 600°C colder at a depth of 70 km. The convergence between the two subducting plates produces an asymmetric thermal structure in the slab contact zone beneath Kanto, which is characterized by clustered seismicity in the colder southwestern half. The thermo-dehydration state of the mid-ocean ridge basalt near the upper surface of the subducted Pacific plate controls the interplate seismicity beneath the Kanto-Tohoku region according to the spatial concurrence of the thermo-dehydration and seismicity along the megathrust fault zone of the subducted Pacific plate.

  17. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; McKay, C. P.; Friedmann, E. I.

    1988-01-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.

  18. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-01

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture - without recourse to model calibration - several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and

  19. Extreme hydrodynamic atmospheric loss near the critical thermal escape regime

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Lammer, H.; Odert, P.; Kulikov, Yu. N.; Kislyakova, K. G.

    2015-04-01

    By considering martian-like planetary embryos inside the habitable zone of solar-like stars we study the behaviour of the hydrodynamic atmospheric escape of hydrogen for small values of the Jeans escape parameter β < 3, near the base of the thermosphere, that is defined as a ratio of the gravitational and thermal energy. Our study is based on a 1D hydrodynamic upper atmosphere model that calculates the volume heating rate in a hydrogen-dominated thermosphere due to the absorption of the stellar soft X-ray and extreme ultraviolet (XUV) flux. In case of a monatomic gas, we find that when the β value near the mesopause/homopause level exceeds a critical value of ˜2.5, there exists a steady hydrodynamic solution with a smooth transition from subsonic to supersonic flow. For a fixed XUV flux, the escape rate of the upper atmosphere is an increasing function of the temperature at the lower boundary. Our model results indicate a crucial enhancement of the atmospheric escape rate, when the Jeans escape parameter β decreases to this critical value. When β becomes ≤2.5, there is no stationary hydrodynamic transition from subsonic to supersonic flow. This is the case of a fast non-stationary atmospheric expansion that results in extreme thermal atmospheric escape rates.

  20. Thermal inertia mapping of below ground objects and voids

    NASA Astrophysics Data System (ADS)

    Del Grande, Nancy K.; Ascough, Brian M.; Rumpf, Richard L.

    2013-05-01

    Thermal inertia (effusivity) contrast marks the borders of naturally heated below ground object and void sites. The Dual Infrared Effusivity Computed Tomography (DIRECT) method, patent pending, detects and locates the presence of enhanced heat flows from below ground object and void sites at a given area. DIRECT maps view contrasting surface temperature differences between sites with normal soil and sites with soil disturbed by subsurface, hollow or semi-empty object voids (or air gaps) at varying depths. DIRECT utilizes an empirical database created to optimize the scheduling of daily airborne thermal surveys to view and characterize unseen object and void types, depths and volumes in "blind" areas.

  1. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect

    Shipers, L.R.; Allen, G.C.

    1992-09-09

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  2. Thermal regime of the San Andreas fault near Parkfield, California

    USGS Publications Warehouse

    Sass, J.H.; Williams, C.F.; Lachenbruch, A.H.; Galanis, S.P.; Grubb, F.V.

    1997-01-01

    Knowledge of the temperature variation with depth near the San Andreas fault is vital to understanding the physical processes that occur within the fault zone during earthquakes and creep events. Parkfield is near the southern end of the Coast Ranges segment of the San Andreas fault. This segment has higher mean heat flow than the Cape Mendocino segment to the northwest or the Mojave segment to the southeast. Boreholes were drilled specifically for the U.S. Geological Survey's Parkfield earthquake prediction experiment or converted from other uses at 25 sites within a few kilometers of the fault near Parkfield. These holes, which range in depth from 150 to over 1500 m, were intended mainly for the deployment of volumetric strain meters, water-level recorders, and other downhole instruments. Temperature profiles were obtained from all the holes, and heat flow values were estimated from 17 of them. For a number of reasons, including a paucity of thermal conductivity data and rugged local topography, the accuracy of individual determinations was not sufficiently high to document local variations in heat flow. Values range from 54 to 92 mW m-2, with mean and 95% confidence limits of 74 ?? 4 mW m-2. This mean is slightly lower than the mean (83 ?? 3) of 39 previously published values from the central Coast Ranges, but it is consistent with the overall pattern of elevated heat flow in the Coast Ranges, and it is transitional to the mean of 68 ?? 2 mW m-2 that characterizes the Mojave segment of the San Andreas fault immediately to the south. The lack of a heat flow peak near the fault underscores the absence of a frictional thermal anomaly and provides additional support for a very small resolved shear stress parallel to the San Andreas fault and the nearly fault-normal maximum compressive stress observed in this region. Estimates of subsurface thermal conditions indicate that the seismic-aseismic transition for the Parkfield segment corresponds to temperatures in the

  3. Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north

    NASA Astrophysics Data System (ADS)

    Jiang, Yueyang; Zhuang, Qianlai; Sitch, Stephen; O'Donnell, Jonathan A.; Kicklighter, David; Sokolov, Andrei; Melillo, Jerry

    2016-07-01

    In the circumpolar north (45-90°N), permafrost plays an important role in vegetation and carbon (C) dynamics. Permafrost thawing has been accelerated by the warming climate and exerts a positive feedback to climate through increasing soil C release to the atmosphere. To evaluate the influence of permafrost on C dynamics, changes in soil temperature profiles should be considered in global C models. This study incorporates a sophisticated soil thermal model (STM) into a dynamic global vegetation model (LPJ-DGVM) to improve simulations of changes in soil temperature profiles from the ground surface to 3 m depth, and its impacts on C pools and fluxes during the 20th and 21st centuries. With cooler simulated soil temperatures during the summer, LPJ-STM estimates ~ 0.4 Pg C yr- 1 lower present-day heterotrophic respiration but ~ 0.5 Pg C yr- 1 higher net primary production than the original LPJ model resulting in an additional 0.8 to 1.0 Pg C yr- 1 being sequestered in circumpolar ecosystems. Under a suite of projected warming scenarios, we show that the increasing active layer thickness results in the mobilization of permafrost C, which contributes to a more rapid increase in heterotrophic respiration in LPJ-STM compared to the stand-alone LPJ model. Except under the extreme warming conditions, increases in plant production due to warming and rising CO2, overwhelm the e nhanced ecosystem respiration so that both boreal forest and arctic tundra ecosystems remain a net C sink over the 21st century. This study highlights the importance of considering changes in the soil thermal regime when quantifying the C budget in the circumpolar north.

  4. A Ground-Nesting Galliform's Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds.

    PubMed

    Carroll, J Matthew; Davis, Craig A; Elmore, R Dwayne; Fuhlendorf, Samuel D

    2015-01-01

    The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.

  5. Reduced gravity and ground testing of a two-phase thermal management system for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hill, D. G.; Hsu, K.; Parish, R.; Dominick, J.

    1988-01-01

    Experiments were performed aboard the NASA-JSC KC-135 aircraft to study the effect of reduced gravity on two-phase (liquid/vapor) flow and condensation. A prototype two-phase thermal management system for a large spacecraft was tested. Both visual observation and photography of the flow regimes were made. Ground test simulations of the KC-135 flight tests were conducted for comparison purposes. Two-phase pressure drops were predictable by the Heat Transfer Research Institute (HTRI) method, or the Friedel correlation.

  6. Incorporating Retention Time to Refine Models Predicting Thermal Regimes of Stream Networks Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data s...

  7. Network-based Prediction of Lotic Thermal Regimes Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data sour...

  8. Network-based Prediction of Lotic Thermal Regimes Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data sour...

  9. Incorporating Retention Time to Refine Models Predicting Thermal Regimes of Stream Networks Across New England

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data s...

  10. Predicting thermal regimes of stream networks across the Chesapeake Bay Watershed: Natural and anthropogenic influences

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting joint effects of watershed management activities and climate change on fish habitat suitability. We have compiled a database of lotic temperature time series across the Chesapeake Bay Watershed (725 station-year combinat...

  11. Predicting Thermal Regimes of Stream Networks Across New England: Natural and Anthropogenic Influences

    EPA Science Inventory

    Thermal regime is a critical factor in models predicting joint effects of watershed management activities and climate change on habitat suitability for fish. We used a database of lotic temperature time series across New England (> 7000 station-year combinations) from state a...

  12. Thermal regimes and snowpack relations of periglacial talus slopes, Sierra Nevada, California, USA.

    Treesearch

    Constance I Millar; Robert D. Westfall; Diane L. Delany

    2014-01-01

    Thermal regimes of eight periglacial talus slopes, at contrasting elevations, aspects, and substrates, in the Sierra Nevada, California, had complex microclimatic patterns partially decoupled from external conditions. Over three years, warm seasons showed mean talus matrix temperatures and daily variances lower than surfaces and cooler than free-air; talus surface and...

  13. Predicting Thermal Regimes of Stream Networks Across New England: Natural and Anthropogenic Influences

    EPA Science Inventory

    Thermal regime is a critical factor in models predicting joint effects of watershed management activities and climate change on habitat suitability for fish. We used a database of lotic temperature time series across New England (> 7000 station-year combinations) from state a...

  14. Predicting thermal regimes of stream networks across the Chesapeake Bay Watershed: Natural and anthropogenic influences

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting joint effects of watershed management activities and climate change on fish habitat suitability. We have compiled a database of lotic temperature time series across the Chesapeake Bay Watershed (725 station-year combinat...

  15. A method to transform a variable thermal regime to a physiologically equivalent effective temperature.

    PubMed

    Mitz, Charles; Thome, Christopher; Thompson, Jeroen; Manzon, Richard G; Wilson, Joanna Y; Boreham, Douglas R

    2017-04-01

    We present a method to characterize variable thermal regimes in terms of an equivalent or effective temperature. Our method is based on a first order exponential transformation of a time series of temperatures to yield an exponentially-weighted mean temperature characteristic of the regime and independent of any particular species or end point. The resulting effective temperature or exponential mean, Te¯, offers an improved method for summarizing mean temperature where biological response scales exponentially to temperature. The exponential mean allows growth under varying thermal regimes to be predicted using constant temperature models and offers a compact descriptor communicating the growth capacity of variable thermal regimes. The method combines mathematical simplicity with translatability to different Q10 values without recourse to the underlining time series data. It also provides a quantitative baseline that improves on mean temperature by incorporating the effect of Jensen's inequality and it remains applicable at near zero temperatures where thermal sums lack accuracy. Copyright © 2017. Published by Elsevier Ltd.

  16. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    Treesearch

    Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy. Haggerty

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year.2. To more...

  17. Uncooled microbolometer thermal imaging sensors for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Figler, Burton D.

    2001-09-01

    Starting in the early 1990's, uncooled microbolometer thermal imaging sensor technology began to move out of the basic development laboratories of the Honeywell Corporation in Minneapolis and into applied development at several companies which have licensed the basic technology. Now, this technology is addressing military, government, and commercial applications in the real world. Today, thousands of uncooled microbolometer thermal imaging sensors are being produced and sold annually. At the same time, applied research and development on the technology continues at an unabated pace. These research and development efforts have two primary goals: 1) improving sensor performance in terms of increased resolution and greater thermal sensitivity and 2) reducing sensor cost. Success is being achieved in both areas. In this paper we will describe advances in uncooled microbolometer thermal imaging sensor technology as they apply to the modern battlefield and to unattended ground sensor applications in particular. Improvements in sensor performance include: a) reduced size, b) increased spatial resolution, c) increased thermal sensitivity, d) reduced electrical power, and e) reduced weight. For battlefield applications, unattended sensors are used not only in fixed ground locations, but also on a variety of moving platforms, including remotely operated ground vehicles, as well as Micro and Miniature Aerial Vehicles. The use of uncooled microbolometer thermal imaging sensors on these platforms will be discussed, and the results from simulations, of an uncooled microbolometer sensor flying on a Micro Aerial Vehicle will be presented. Finally, we will describe microbolometer technology advancements currently being made or planned at BAE SYSTEMS. Where possible, examples of actual improvements, in the form of real imagery and/or actual performance measurements, will be provided.

  18. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  19. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    DOE PAGES

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; ...

    2016-09-27

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. Here, we present an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world fieldmore » sites, utilizing the best available data to characterize and parameterize the models. We also develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Moreover, areas of significant disagreement between model results and observations highlight the importance of field

  20. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    SciTech Connect

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-27

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. Here, we present an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We also develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Moreover, areas of significant disagreement between model results and observations highlight the importance of field

  1. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The

  2. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    SciTech Connect

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-07-28

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF{sub 6} sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  3. The Influence of Groundwater Flow on Thermal Regimes in Mountainous Terrain

    SciTech Connect

    Forster, Craig; Smith, Leslie

    1986-01-21

    Active circulation of cool groundwater in mountainous terrain can cause an advective disturbance of the thermal regime. This factor complicates interpretation of data collected in geothermal exploration programs. An isothermal free-surface model has been developed which provides qualitative insight into the nature of an advective disturbance as it is affected by topography, permeability and climate. A fully coupled model of fluid and heat transfer is being developed for quantitative study of idealized mountain hydrothermal systems.

  4. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands

    NASA Astrophysics Data System (ADS)

    Kirillin, Georgiy; Wen, Lijuan; Shatwell, Tom

    2017-04-01

    The hydrology of the lake-rich Tibetan Plateau is important for the global climate, yet little is known about the thermal regime of Tibetan lakes due to scant data. We (i) investigated the characteristic seasonal temperature patterns and recent trends in the thermal and stratification regimes of lakes on the Tibetan Plateau and (ii) tested the performance of the one-dimensional lake parameterization scheme FLake for the Tibetan lake system. For this purpose, we combined 3 years of in situ lake temperature measurements, several decades of satellite observations, and the global reanalysis data. We chose the two largest freshwater Tibetan lakes, Ngoring and Gyaring, as study sites. The lake model FLake faithfully reproduced the specific features of the high-altitude lakes and was subsequently applied to reconstruct the vertically resolved heat transport in both lakes during the last 4 decades. The model suggested that Ngoring and Gyaring were ice-covered for about 6 months and stratified in summer for about 4 months per year with a short spring overturn and a longer autumn overturn. In summer the surface mixed boundary layer extended to 6-8 m of depth and was about 20 % shallower in the more turbid Gyaring. The thermal regime of the transparent Ngoring responded more strongly to atmospheric forcing than Gyaring, where the higher turbidity damped the response. According to the reanalysis data, air temperatures and humidity have increased, whereas solar radiation has decreased, since the 1970s. Surprisingly, the modeled mean lake temperatures did not change, nor did the phenology of the ice cover or stratification. Lake surface temperatures in summer increased only marginally. The reason is that the increase in air temperature was offset by the decrease in radiation, probably due to increasing humidity. This study demonstrates that air temperature trends are not directly coupled to lake temperatures and underscores the importance of shortwave radiation for the thermal

  5. Thermal transport in Si and Ge nanostructures in the `confinement' regime

    NASA Astrophysics Data System (ADS)

    Kwon, Soonshin; Wingert, Matthew C.; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-01

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  6. A fluctuating thermal regime improves long-term survival of quiescent prepupal Megachile rotundata (Hymenoptera: Megachilidae).

    PubMed

    Rinehart, Joseph P; Yocum, George D; Kemp, William P; Greenlee, Kendra J

    2013-06-01

    The alfalfa leafcutting bee Megachile rotundata (F.) is the primary pollinator for alfalfa seed production. Under standard management conditions, the alfalfa leafcutting bee develops to the diapausing prepupal stage under field conditions, after which they are cold-stored at a static temperature until the following spring, when temperatures are raised and development resumes. We have assessed the effects of a fluctuating thermal regime (FTR) during overwintering cold storage, where bees were exposed to a daily 1 h pulse of 20 degrees C, and compared viability and insect quality to bees stored under a static thermal regime. Our results demonstrate that implementing an FTR protocol dramatically increases the survival of cold-stored alfalfa leafcutting bees, effectively extending their shelf-life into the subsequent growing season. These findings could substantially ameliorate significant obstacles that restrict the more widespread use of this important pollinator, such as the biological constraints that restrict its use in early blooming crops, and yearly fluctuations in bee prices that add significant financial uncertainty to end users. This study also strengthens a growing body of evidence that indicates FTR protocols are superior to static thermal regime protocols for insect cold storage.

  7. Active Thermal Control Experiments for LISA Ground Verification Testing

    NASA Astrophysics Data System (ADS)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f < 1 mHz and which by extension is suitable for in-flight thermal control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  8. Ground temperature regime and periglacial dynamics in three different sites from the summit area in Sierra Nevada (southern Spain) from 2006 to 2012

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Oliva, Marc; Salva-Catarineu, Montserrat; Gómez-Ortiz, Antonio

    2013-04-01

    Ground temperatures and its control on snow cover are crucial factors conditioning the activity of current periglacial processes in the highest lands of Sierra Nevada (Betique Range, Iberian Peninsula). We present summary results of the monitoring period from September 2006 to August 2012 in three sites with contrasting topography, aspect and snow cover. Temperatures loggers have recorded data at 2 hours time lapse at: a) Veleta glacial cirque, an environment with marginal permafrost and a small active rock glacier in it (3107 m asl), b) the flat summit plateau of Collado de los Machos (3297 m) characterized by the existence of inactive sorted circles with scarce snow cover, and c) the southern cirque of Rio Seco, an area with moderate snow cover and widespread solifluction lobes (3105 m). We discuss the periglacial activity in the three study sites in relation with ground temperatures. Results show evidence of the decisive control played by snow cover (duration and thickness) in the thermal regime of the ground (rhythm, depth and intensity of freezing). Only the site in the Veleta cirque has revealed the existence of permafrost, which is inexistent at the summit plateaus and southern cirques. The freezing and thawing of the ground depends substantially on the geographical characteristics of the sites, although a common pattern is detected: the thawing occurs more rapidly than the freezing and the number of freeze-thaw cycles in air temperatures is substantially higher than in ground temperatures.

  9. Computational Modeling of Radiative, Thermal, and Kinetic Regimes of Flame Spread

    NASA Astrophysics Data System (ADS)

    Simsek, Aslihan

    The purpose of this thesis presented is to analyze flame spread over thermally thin solid fuels in three regimes of flame spread process; radiative, thermal, and kinetic regimes. The analyses have been performed using a comprehensive two dimensional computational fluid dynamics (CFD) model written in Fortran language developed by Bhattacharjee. Flame spread over thermally thin fuels in quiescent and opposing flow microgravity environments is investigated. An extinction study is performed with different computational domain sizes for a set of fuel thicknesses to understand the effect of domain size on the extinction velocities in the radiative and kinetic regimes. The effect of development length boundary layer is studied in both radiative and kinetic regimes. It is found that flame spread rate, flame size, flame temperature, blow-off and radiative extinction velocities depend on the development length and the boundary layer created by the opposing flow. A correlation between the extinction development length and opposed flow velocity is established. Flame spread over open cell phenolic foam is investigated in detail in a quiescent microgravity environment. The critical fuel thickness is found at different oxygen concentrations and compared to those for PMMA. Pressure, oxygen concentration, and radiation studies are also performed to analyze the flame spread over foam. To understand the effect of radiation on flame spread, the CFD model is coupled with two different radiation models in a microgravity environment. The first radiation model includes gas to surface conduction, gas to environment radiation loss, gas to surface feedback radiation, and surface to environment radiation loss. The second model only excludes gas to surface radiation feedback. The results obtained using these two models are compared with the CFD results; one with radiation completely neglected, and one with only gas to surface radiation feedback neglected. Flame spread in downward

  10. Wave theories of non-laminar charged particle beams: from quantum to thermal regime

    NASA Astrophysics Data System (ADS)

    Fedele, Renato; Tanjia, Fatema; Jovanović, Dusan; de Nicola, Sergio; Ronsivalle, Concetta; Ronsivalle

    2014-04-01

    The standard classical description of non-laminar charged particle beams in paraxial approximation is extended to the context of two wave theories. The first theory that we discuss (Fedele R. and Shukla, P. K. 1992 Phys. Rev. A 45, 4045. Tanjia, F. et al. 2011 Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G. Strasbourg, France: European Physical Society) is based on the Thermal Wave Model (TWM) (Fedele, R. and Miele, G. 1991 Nuovo Cim. D 13, 1527.) that interprets the paraxial thermal spreading of beam particles as the analog of quantum diffraction. The other theory is based on a recently developed model (Fedele, R. et al. 2012a Phys. Plasmas 19, 102106; Fedele, R. et al. 2012b AIP Conf. Proc. 1421, 212), hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of single beam particle (uncertainty principle and spin) and provides collective description of beam transport in the presence of quantum paraxial diffraction. Both in quantum and quantum-like regimes, the beam transport is governed by a 2D non-local Schrödinger equation, with self-interaction coming from the nonlinear charge- and current-densities. An envelope equation of the Ermakov-Pinney type, which includes collective effects, is derived for both TWM and QWM regimes. In TWM, such description recovers the well-known Sacherer's equation (Sacherer, F. J. 1971 IEEE Trans. Nucl. Sci. NS-18, 1105). Conversely, in the quantum regime and in Hartree's mean field approximation, one recovers the evolution equation for a single-particle spot size, i.e. for a single quantum ray spot in the transverse plane (Compton regime). We demonstrate that such quantum evolution equation contains the same information as the evolution equation for the beam spot size that describes the beam as a whole. This is done heuristically by defining the lowest QWM state accessible by a system of non-overlapping fermions. The latter are associated with temperature values that are

  11. Characterizing Ground and Thermal States of Few-Body Hamiltonians

    NASA Astrophysics Data System (ADS)

    Huber, Felix; Gühne, Otfried

    2016-07-01

    The question whether a given quantum state is a ground or thermal state of a few-body Hamiltonian can be used to characterize the complexity of the state and is important for possible experimental implementations. We provide methods to characterize the states generated by two- and, more generally, k -body Hamiltonians as well as the convex hull of these sets. This leads to new insights into the question of which states are uniquely determined by their marginals and to a generalization of the concept of entanglement. Finally, certification methods for quantum simulation can be derived.

  12. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.

    PubMed

    Hoogeboom-Pot, Kathleen M; Hernandez-Charpak, Jorge N; Gu, Xiaokun; Frazer, Travis D; Anderson, Erik H; Chao, Weilun; Falcone, Roger W; Yang, Ronggui; Murnane, Margaret M; Kapteyn, Henry C; Nardi, Damiano

    2015-04-21

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  13. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    SciTech Connect

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  14. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    DOE PAGES

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; ...

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate ofmore » heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.« less

  15. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    PubMed Central

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-01-01

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations. PMID:25831491

  16. Hydrodynamics and thermal regime of a shallow reef-atoll rim

    NASA Astrophysics Data System (ADS)

    Maticka, S. A.; Lowe, R.; Monismith, S. G.

    2016-02-01

    As our understanding of reef-system hydrodynamics continues to advance, reef-atoll systems are still not fully understood. Of the reef-atoll research projects, few have focused on the smaller scale physics in these systems. Field observations and Delft3D model simulations are used to identify the dominant physics on the shallow outer rim ( 3 km wide) of a reef-atoll, Scott Reef, in the Timor Sea. Observations are used to understand what governs the thermal climate in these shallow regions. The reef-lagoon is characterized by a horseshoe shape that leaves the lagoon partially exposed to the ocean, with a meso-tidal regime (2-4 m). The physics on the rim appear to be dominated by tides. Temperature fluctuations follow a diurnal heating and cooling regime, with an additional tidal influence.

  17. The effects of regional groundwater flow in the thermal regime of a basin

    SciTech Connect

    Smith, Leslie; Chapman, David S.

    1982-09-01

    Numerical solutions of the equations of fluid flow and heat transport are used to quantify the effects of groundwater flow on the subsurface thermal regime. Simulations are carried out for a vertical section through a basin with a distance of 40 km separating the regional topographic high and low. Emphasis is placed on understanding the conditions under which advective effects significantly perturb the thermal field. The transition from conduction-dominated to advection-dominated thermal regimes is sharp and depends primarily on the topographic configuration of the water table, the magnitude and spatial distribution of permeability, hydraulic anisotropy and depth of active flow. Deviations of surface heat flow from the background heat flux are a measurable effect of groundwater flow and depend on the same factors. Our results show that from zero to almost one hundred per cent of the section may have surface heat flow significantly different from background heat flow, depending upon the nature of the hydrogeologic environment. A limited spatial variability in a distributed set of heat flow measurements and/or linear temperature-depth profiles does not ensure that surface heat flow measurements are not disturbed. The results of our simulations suggest that knowledge of the complete environment of a site, including the water table configuration and subsurface flow system, combined with more closely spaced heat flow measurements may be necessary to unravel the true background heat flux in active flow regions.

  18. A 3-D thermal regime model suitable for cold accumulation zones of polythermal mountain glaciers

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Gagliardini, O.; Vincent, C.; Wagnon, P.

    2014-09-01

    Analysis of the thermal and mechanical response of high altitude glaciers to climate change is crucial to assess future glacier hazards associated with thermal regime changes. This paper presents a new fully thermo-mechanically coupled transient thermal regime model including enthalpy transport, firn densification, full-Stokes porous flow, free surface evolution, strain heating, surface meltwater percolation, and refreezing. The model is forced by daily air temperature data and can therefore be used to perform prognostic simulations for different future climate scenarios. The set of equations is solved using the finite element ice sheet/ice flow model Elmer/Ice. This model is applied to the Col du Dôme glacier (Mont Blanc area, 4250 m a.s.l., France) where a comprehensive data set is available. The results show that the model is capable of reproducing observed density and velocity fields as well as borehole temperature evolution. The strong spatial variability of englacial temperature change observed at Col du Dôme is well reproduced. This spatial variability is mainly a result of the variability of the slope aspect of the glacier surface and snow accumulation. Results support the use of this model to study the influence of climate change on cold accumulation zones, in particular to estimate where and under what conditions glaciers will become temperate in the future.

  19. Thermal regimes and effusive trends at Nyamuragira volcano (DRC) from MODIS infrared data

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Cigolini, C.

    2013-08-01

    Nyamuragira volcano is one of the most active African volcanoes. Eruptions have been occurring every 3-4 years throughout the last century. Here, we analyse satellite infrared data, collected by MODIS sensor to estimate the volcanic radiative power (VRP, in W) and energy (VRE; in J) released during the 2001, 2002, 2004, 2006-2007, 2010 and 2011-2012 eruptions. Based on the statistical distribution of VRP measurements, we found that thermal emissions at Nyamuragira fall into three distinct radiating regimes. The high-radiating regime occurs during the emplacement of poorly insulated lava flows and characterise most of the effusive activity. The moderate-radiating regime is associated with open-vent activity (Strombolian explosions and/or lava lake activity) eventually accompanied by the emplacement of short-lived and well-insulated flows. A third radiating regime (low-radiating regime) occurs during periods, which may last weeks to months, that follow each eruption and are associated with the cooling of the effused lava flows. By applying the radiant density approach to MODIS-derived VRP we also estimated the time-averaged lava discharge rates (TADR; in m3 s-1) and we analysed the effusive trends of the above eruptions. We found that the transition between the effusive and open-vent activity typically takes place when TADR reduces to low values (<5 m3 s-1) and marks a change in the eruptive style of the volcano. Finally, we observed a clear correlation between the volume of erupted lava and its cooling time. This suggests that the average thickness of the analysed lava flows is more variable than previously thought and sheds light on the uncertainty in calculating erupted volumes assuming that lava flow areas have uniform thickness.

  20. Thermal Regime and Meteorological Parameters Monitoring in Alpine Permafrost Rockwalls: the Aiguille du Midi

    NASA Astrophysics Data System (ADS)

    Morra di Cella, U.; Cremonese, E.; Deline, P.; Gruber, S.; Pogliotti, P.; Ravanel, L.

    2009-04-01

    During the last decades the alpine region has revealed to be extremely sensitive to ongoing increasing temperatures and permafrost has been identified as one of six cryospheric indicators of global climate change. In high-mountain regions the permafrost evidences are scarse and punctual, while its occurrence is wide and its distribution is mainly controlled by complex topography and ground cover condition. In such environment, steep bedrock slopes are abundant and contain a significant proportion of permafrost whose thermal response is very fast compared to permafrost in gentle morphology because of its less amount of ice content. Due to logistical problems like accessibility, costs, weather conditions, etc..., monitoring sites in such environments are few, while an increase of measurements of rockwall temperature and system energy balance is fundamental for the calibration and validation of both physical and statistical permafrost models. Started in the framework of the French-Italian project PERMAdataROC (www.fondazionemontagnasicura.org/multimedia/permadataroc/) and presently developped within the EU co-funded project PermaNET (www.permanet-alpinespace.eu), several monitoring sites have been equipped during the last years in the Western Alps from a collaboration of Swiss, French and Italian researchers, with the aim to cover the widest range of climatic, topographic, morphological and geological conditions. In such network, the Aiguille du Midì can be considered one of the most advanced site in high-mountain permafrost research thanks to the convergence of several instrumental approaches, but also a "cooperation laboratory" among different research groups. The site has been choosen because of its elevation, aspects variability, steep slopes and accessibility all over the year. In details, ARPA Valle d'Aosta in collaboration with University of Zurich started in 2006 the monitoring of rockwall thermal regimes and of some meteorological parameters on the different

  1. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    2006-11-01

    Ultrahigh-temperature (UHT) granulite metamorphism is documented predominantly in the Neoarchean to Cambrian rock record, but UHT granulite metamorphism also may be inferred at depth in Cenozoic orogenic systems. The first occurrence of UHT granulite metamorphism in the record signifies a change in geodynamics that generated transient sites of very high heat flow. Many UHT granulite metamorphic belts may have developed in settings analogous to modern continental backarcs; on a warmer Earth, destruction of oceans floored by thinner lithosphere may have generated hotter backarcs than those associated with the modern Pacific ring of fire. Medium-temperature eclogite high- pressure (EHP) granulite metamorphism is documented in the Neoarchean rock record and at intervals throughout the Proterozoic and Paleozoic record. EHP granulite metamorphic belts are complementary to UHT granulite metamorphic belts in that they are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record, but lawsonite blueschist eclogite metamorphism (high pressure [HP]) and ultrahigh-pressure metamorphism (UHP) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HP-UHP metamorphism registers the low thermal gradients and deep subduction of continental crust during the early stage of subduction-to-collision orogenesis. A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics, and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both UHT and EHP granulite metamorphism since the Neoarchean marks the onset of a “Proterozoic plate tectonics” regime, which evolved during a Neoproterozoic transition to the modern plate tectonics regime, characterized by colder subduction as chronicled by HP

  2. Thermal stability of spent coffee ground polysaccharides: galactomannans and arabinogalactans.

    PubMed

    Simões, Joana; Maricato, Elia; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2014-01-30

    In order to better understand the thermal stability of spent coffee grounds (SCG) galactomannans and arabinogalactans and the reactions that can occur upon roasting, long term isothermal exposures, up to 3h, were performed at 160, 180, 200, 220, and 240 °C. The resultant products were analysed according to the sugars and linkage composition and also by electrospray mass spectrometry. Galactomannans did not loss mass at T ≤ 200 °C during exposures up to 3h whereas the arabinogalactans showed that thermal stability only for T ≤ 180 °C. This was in accordance with the estimated activation energies of their thermal decomposition of 138 kJ/mol and 94 kJ/mol, respectively. The roasting of galactomannans promoted the formation of new glycosidic linkages, with occurrence of 2-, 6-, 2,3-, 2,6-, 3,6-, 2,3,6-, 3,4,6-linked mannose residues, 3,4,6-linked galactose residues, and terminally-linked glucose residues, observed by methylation analysis. Depolymerisation and formation of anhydrohexose residues at the reducing end and mannose-glucose isomerisation were also observed. The roasting of galactomannans at 200 °C promoted their solubility in water upon alkali extraction and neutralisation.

  3. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    NASA Astrophysics Data System (ADS)

    Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.

    2015-12-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.

  4. Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes

    SciTech Connect

    Kolstad, George A.; Rowley, John C.

    1987-01-16

    This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

  5. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes.

    PubMed

    Manenti, T; Sørensen, J G; Moghadam, N N; Loeschcke, V

    2016-09-01

    Laboratory selection in thermal regimes that differed in the amplitude and the predictability of daily fluctuations had a marked effect on stress resistance and life history traits in Drosophila simulans. The observed evolutionary changes are expected to be the result of both direct and correlated responses to selection. Thus, a given trait might not evolve independently from other traits because of genetic correlations among these traits. Moreover, different test environments can induce novel genetic correlations because of the activation of environmentally dependent genes. To test whether and how genetic correlations among stress resistance and life history traits constrain evolutionary adaptation, we used three populations of D. simulans selected for 20 generations in constant, predictable and unpredictable daily fluctuating thermal regimes and tested each of these selected populations in the same three thermal regimes. We explored the relationship between genetic correlations between traits and the evolutionary potential of D. simulans by comparing genetic correlation matrices in flies selected and tested in different thermal test regimes. We observed genetic correlations mainly between productivity, body size, starvation and desiccation tolerance, suggesting that adaptation to the three thermal regimes was affected by correlations between these traits. We also found that the correlations between some traits such as body size and productivity or starvation tolerance and productivity were determined by test regime rather than selection regime that is expected to limit genetic adaptation to thermal regimes in these traits. The results of this study suggest that several traits and several environments are needed to explore adaptive responses, as genetic and environmentally induced correlations between traits as results obtained in one environment cannot be used to predict the response of the same population in another environment.

  6. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year. 2. To more completely describe thermal regimes, we developed several descriptors of magnitude, variability, frequency, duration and timing of thermal events throughout a year. We evaluated how these descriptors change over time using long-term (1979–2009), continuous temperature data from five relatively undisturbed cold-water streams in western Oregon, U.S.A. In addition to trends for each descriptor, we evaluated similarities among them, as well as patterns of spatial coherence, and temporal synchrony. 3. Using different groups of descriptors, we were able to more fully capture distinct aspects of the full range of variability in thermal regimes across space and time. A subset of descriptors showed both higher coherence and synchrony and, thus, an appropriate level of responsiveness to examine evidence of regional climatic influences on thermal regimes. Most notably, daily minimum values during winter–spring were the most responsive descriptors to potential climatic influences. 4. Overall, thermal regimes in streams we studied showed high frequency and low variability of cold temperatures during the cold-water period in winter and spring, and high frequency and high variability of warm temperatures during the warm-water period in summer and autumn. The cold and warm periods differed in the distribution of events with a higher frequency and longer duration of warm events in summer than cold events in winter. The cold period exhibited lower variability in the duration of events, but showed more variability in timing. 5. In conclusion, our results highlight the importance of a year-round perspective in identifying the most responsive

  7. Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials

    NASA Technical Reports Server (NTRS)

    Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.

    1977-01-01

    The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.

  8. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  9. Shallow temperatures and thermal regime in the hydrocarbon province of Tierra del Fuego

    SciTech Connect

    Zielinski, G.W.; Bruchhausen, P.M.

    1983-01-01

    A suite of shallow (<2 m deep) thermal measurements across the San Sebastian oil and gas field, northeastern Tierra del Fuego, indicates at least a 200 mWm/sup -2/ (5 HFU) thermal anomaly over the field. The anomaly appears to be of subsurface origin and, due to its magnitude, must be caused by a localized discharge of deep ground water. A single published heat flow value and deep bottom hole temperature data for the area suggest a regional heat flow that is at least 20 mWm/sup -2/ (0.5 HFU) higher than the world average for similar tectonic provinces (postPrecambrian non-orogenic). Maturation level estimates based on the heat flow and burial history of sediments suggest considerable lateral migration (at least 100 km) of hydrocarbons from deeper in the Magellan basin. From estimates of the timing of possible oil generation, minimum average migration velocity is within 1 or 2 orders of magnitude of the ground water velocity required to cause the local and regional heat flow anomalies. This suggests that ground water moving from deeper in the Magellan basin might simultaneously transport hydrocarbons and heat to the area. Volume flux estimates require that hydrocarbon concentrations significantly greater than possible via aqueous molecular solution.

  10. Thermal and water regime of green roof segments filled with Technosol

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch

    2016-04-01

    Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  11. Many-body formalism for thermally excited wave packets: A way to connect the quantum regime to the classical regime

    NASA Astrophysics Data System (ADS)

    Chenu, Aurélia; Combescot, Monique

    2017-06-01

    Free classical particles have well-defined momentum and position, while free quantum particles have well-defined momentum but a position fully delocalized over the sample volume. We develop a many-body formalism based on wave-packet operators that connects these two limits, the thermal energy being distributed between the state spatial extension and its thermal excitation. The corresponding mixed quantum-classical states, which render the Boltzmann operator diagonal, are the physically relevant states when the temperature is finite. The formulation of many-body Hamiltonians in terms of these thermally excited wave packets and the resulting effective scatterings is provided.

  12. The plasma wake field excitation: Recent developments from thermal to quantum regime

    NASA Astrophysics Data System (ADS)

    Fedele, Renato; Tanjia, Fatema; de Nicola, Sergio; Jovanović, Dušan; Jovanović

    2013-12-01

    To describe the transverse nonlinear and collective self-consistent interaction of a long relativistic electron or positron beam with an unmagnetized plasma, a pair of coupled nonlinear differential equations were proposed by Fedele and Shukla in 1992 (Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045). They were obtained within the quantum-like description provided by the thermal wave model and the theory of plasma wake field excitation. The pair of equations comprises a 2D Schrödinger-like equation for a complex wave function (whose squared modulus is proportional to beam density) and a Poisson-like equation for the plasma wake potential. The dispersion coefficient of the Schrödinger-like equation is proportional to the beam thermal emittance. More recently, Fedele-Shukla equations have been further applied to magnetized plasmas, and solutions were found in the form of nonlinear vortex states and ring solitons. They have been also applied to plasma focusing problems and extended from thermal to quantum regimes. We present here a review of the original approach, and subsequent developments.

  13. Thermal ground water flow systems in the thrust zone in southeastern Idaho

    SciTech Connect

    Ralston, D.R.

    1983-05-01

    The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

  14. The Influence of Seasonal Climatic Parameters on the Permafrost Thermal Regime in West Siberia

    NASA Astrophysics Data System (ADS)

    Popova, V. V.; Shmakin, A. B.

    2009-12-01

    Statistical correlations between seasonal air temperatures and snow depths and active layer depths and permafrost temperatures were analyzed for tundra (Marre-Salle) and northern taiga (Nadym) sites in Western Siberia. Interannual variations in active layer depth in the tundra zone correlated with the average air temperature of the current summer, and in peatland and humid tundra, also with summer temperatures of the preceding 1-2 years. In the northern taiga zone, the active layer depth related to current summer air temperature and to a lesser extent, to spring and/or winter air temperatures. Variations in summer permafrost temperatures at 5-10m depth were correlated with spring air temperatures in the current and preceding 1-2 years. The weather regime during the preceding 1-2 years, therefore, reinforced or weakened ground temperature variations in a given year. Overall, the most important factors influencing the permafrost regime were spring and summer air temperatures, and in one case snow depth. However, statistical links between meteorological and permafrost parameters varied between the tundra and northern taiga zones and among landscape types within each zone, emphasizing the importance of analyses at short temporal scales and for individual terrain units.

  15. The influence of thermal regime on gasoline direct injection engine performance and emissions

    NASA Astrophysics Data System (ADS)

    Leahu, C. I.; Tarulescu, S.

    2016-08-01

    This paper presents the experimental research regarding to the effects of a low thermal regime on fuel consumption and pollutant emissions from a gasoline direct injection (GDI) engine. During the experimental researches, the temperature of the coolant and oil used by the engine were modified 4 times (55, 65, 75 and 85 oC), monitoring the effects over the fuel consumption and emissions (CO2, CO and NOx). The variations in temperature of the coolant and oil have been achieved through AVL coolant and oil conditioning unit, integrated in the test bed. The obtained experimental results reveals the poor quality of exhaust gases and increases of fuel consumption for the gasoline direct injection engines that runs outside the optimal ranges for coolant and oil temperatures.

  16. Response of high-mountain Altai thermal regime to climate global warming of recent decades

    NASA Astrophysics Data System (ADS)

    Bezuglova, N. N.; Zinchenko, G. S.; Malygina, N. S.; Papina, T. S.; Barlyaeva, T. V.

    2012-12-01

    The paper presents a brief climatic characteristic and statistical analysis on dynamics of thermal regime in Altai Mountains. The close correlation between temperature series of the Russian and northern part of Mongolian Altai was determined. It was found that the rate of temperature increase for the period under consideration (1940-2008) ranged from 0.19 to 0.53 °С/10 years, and the most significant increase was registered during the cold seasons. During the maximum global warming (1980-1999), a 2-4.5 times increase of annual average temperature was observed as compared to the period of 1940-1979. The temperature series variations obtained with the Welch's method and wavelet analysis correspond to the periods of North Atlantic Oscillation and solar activity variation.

  17. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    NASA Technical Reports Server (NTRS)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  18. Thermal regimes, nonnative trout, and their influences on native Bull Trout in the Upper Klamath River Basin, Oregon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Heltzel, Jeannie; Dunham, Jason; Heck, Michael; Banish, Nolan P.

    2016-01-01

    The occurrence of fish species may be strongly influenced by a stream’s thermal regime (magnitude, frequency, variation, and timing). For instance, magnitude and frequency provide information about sublethal temperatures, variability in temperature can affect behavioral thermoregulation and bioenergetics, and timing of thermal events may cue life history events, such as spawning and migration. We explored the relationship between thermal regimes and the occurrences of native Bull Trout Salvelinus confluentus and nonnative Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta across 87 sites in the upper Klamath River basin, Oregon. Our objectives were to associate descriptors of the thermal regime with trout occurrence, predict the probability of Bull Trout occurrence, and estimate upper thermal tolerances of the trout species. We found that each species was associated with a different suite of thermal regime descriptors. Bull Trout were present at sites that were cooler, had fewer high-temperature events, had less variability, and took longer to warm. Brook Trout were also observed at cooler sites with fewer high-temperature events, but the sites were more variable and Brook Trout occurrence was not associated with a timing descriptor. In contrast, Brown Trout were present at sites that were warmer and reached higher temperatures faster, but they were not associated with frequency or variability descriptors. Among the descriptors considered, magnitude (specifically June degree-days) was the most important in predicting the probability of Bull Trout occurrence, and model predictions were strengthened by including Brook Trout occurrence. Last, all three trout species exhibited contrasting patterns of tolerating longer exposures to lower temperatures. Tolerance limits for Bull Trout were lower than those for Brook Trout and Brown Trout, with contrasts especially evident for thermal maxima. Our results confirm the value of exploring a suite of thermal

  19. Effect of tidal regime on the thermal tolerance of the marine gastropod Lunella smaragda (Gmelin 1791).

    PubMed

    Mortensen, B J D; Dunphy, B J

    2016-08-01

    The tidal cycle around New Zealand results in spring low tides consistently occurring during the hottest part of the day (mid-afternoon) in north-eastern New Zealand, and during the cooler dawn/dusk periods in the north-west of the country. We hypothesised that due to mid-afternoon spring low tides, intertidal populations residing at north-eastern sites would show greater thermotolerance than their north-west conspecifics. To test this we used the marine gastropod, Lunella smaragda, which were collected from sites on both the East and West coasts of the Auckland region and exposed to an acute heat shock. Thermotolerance was measured as survivorship (LT50), drop down time (time to heat coma) and thermal stability of the anaerobic energy producing enzyme Tauropine dehydrogenase. Furthermore, temperature loggers were deployed at each site so as to record and compare thermal regimes among sites. A strong temperature spike associated with spring low tide was found at all sites, and maximal temperatures of all East coast sites were higher than West coast sites (in some case by up to 10°C). In terms of thermotolerance, mortality of L. smaragda occurred at 42°C leading to 100% mortality at 45°C. However, comparison of LT50 showed snails were equally thermotolerant regardless of site of collection. Similar results were found in TDH thermal stability with animals from all sites showing an approximately 80% decrease in enzyme activity after 10min exposure to 42°C. Whilst drop down times were different among sites these were correlated with animal size as opposed to site of collection. Thus, East coast populations of L. smaragda appear no more thermotolerant than their West coast counterparts. Such a result is concerning as maximal temperatures at East coast sites already exceed the LT50 values of L. smaragda recorded in the lab suggesting these populations have less of a thermal safety margin.

  20. Thermal convection and the convective regime diagram in super-Earths

    NASA Astrophysics Data System (ADS)

    Miyagoshi, Takehiro; Kameyama, Masanori; Ogawa, Masaki

    2015-07-01

    Numerical models of bottom-heated thermal convection of highly compressible fluid with strongly temperature-dependent viscosity are presented to understand how the Rayleigh number Ra and the temperature dependence of viscosity exert control over the regimes of thermal convection in massive super-Earths. Thermodynamic properties of mantle materials are pressure dependent, but other material properties including the viscosity are not. A stagnant lid develops along the surface of the planet, when the viscosity contrast across the mantle due to temperature dependence r exceeds 106 at high Rayleigh number relevant to super-Earths. The threshold in r, which increases with increasing Ra, is higher than that expected for the Earth from earlier Boussinesq models. The efficiency of convective heat transport measured by the Nusselt number Nu is considerably lower than that expected from Boussinesq models; Nu depends on Ra and r as Nu = 59 ṡ r- 0.23 ṡ (Ra/109)0.27, when r ≤ 105. Strong adiabatic compression significantly reduces the activity of hot ascending plumes especially at high r. At r relevant for super-Earths, hot ascending plumes lose their buoyancy on their way and hardly reach the surface boundary: hot spot volcanism due to ascending plumes is probably suppressed on super-Earths. The lithosphere is considerably thicker than that suggested by earlier Boussinesq models and is unlikely to show a plate-like behavior.

  1. Ground coupling and single-blow thermal storage in a double-envelope house

    NASA Astrophysics Data System (ADS)

    Ghaffari, H. T.; Jones, R. F.

    1981-04-01

    The possibility of ground thermal storage and coupling in a double shell house was investigated. Temperature distribution in the ground, utilization of measured ground temperatures, and the amount of heat retrieval are assessed. One experimental model and several hypothetical models are introduced, and their affects and advantages are compared.

  2. Ground coupling and single-blow thermal storage in a double-envelope house

    SciTech Connect

    Ghaffari, H T; Jones, R F

    1981-01-01

    The possibility of ground thermal storage and coupling in a double-shell house is investigated. Temperature distribution in the ground, utilizing measured ground temperatures, is obtained, and the amount of heat retrieval is assessed. One experimental model and several hypothetical models are introduced; their effects and advantages are compared.

  3. Miniaturized non-thermal atmospheric pressure plasma jet—characterization of self-organized regimes

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Foest, R.; Ohl, A.; Weltmann, K.-D.

    2009-12-01

    The study reports for the first time on self-organization effects in a radio frequency (RF) plasma generated with a miniaturized non-thermal atmospheric pressure plasma jet. The source is configured as a capacitively coupled RF jet (27.2 MHz) with two outer ring electrodes around a quartz capillary (d = 4.0 mm) between which a gas mixture flows at typical rates of 0.05—5 slm. The application background of this source is the deposition of thin films with a PECVD process. Therefore, thin film producing agents can be added in small quantities downstream the active discharge region. Commonly, the time-resolved observation of the discharge development reveals that the discharge consists of distinct discharge filaments that appear stochastically and evolve alongside the wall of the capillary. This stochastic mode can be easily found under most situations. However, under special conditions, a quasi-laminar flow is established and a controlled number of equidistant filaments develop which form fixed discrete rotating patterns (locked mode). In this paper, a systematic study is performed using Ar as process gas to define the range of existence of the locked mode. The temporal discharge behaviour is studied by performing a low frequency analysis on the optical emission of the plasma. RF power, gas flow rate and electrode distance are interpreted as scaling parameters that are responsible for the self-organization in the non-thermal atmospheric pressure plasma jet. The appearance of the different discharge regimes is described on a phenomenological basis and the collective behavior of the discharge filaments is explained based on the thermal interference of the discharge channels with the gas flow inside the capillary.

  4. Enhanced thermal radiation in terahertz and far-infrared regime by hot phonon excitation in a field effect transistor

    SciTech Connect

    Chung, Pei-Kang; Yen, Shun-Tung

    2014-11-14

    We demonstrate the hot phonon effect on thermal radiation in the terahertz and far-infrared regime. A pseudomorphic high electron mobility transistor is used for efficiently exciting hot phonons. Boosting the hot phonon population can enhance the efficiency of thermal radiation. The transistor can yield at least a radiation power of 13 μW and a power conversion efficiency higher than a resistor by more than 20%.

  5. A Ground-Nesting Galliform’s Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds

    PubMed Central

    Carroll, J. Matthew; Davis, Craig A.; Elmore, R. Dwayne; Fuhlendorf, Samuel D.

    2015-01-01

    The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection. PMID

  6. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  7. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  8. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    USGS Publications Warehouse

    Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.

    2004-01-01

    The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.

  9. The Effect of Long Lasting Floods on the Thermal Regime of the Pampas

    NASA Astrophysics Data System (ADS)

    Jobbagy, E. G.; Di Bella, C. M.; Nosetto, M. D.; Houspanossian, J.

    2014-12-01

    The presence of large water masses influences the thermal regime on the land, with proximity to the ocean or large continental water bodies having a strong effect on local climate. The vast sedimentary plain of the Pampas (Argentina) has extremely low regional slopes and poor surface drainage networks. Under its temperate subhumid climate this region alternates non-flooded periods with flooding cycles of several years that cover up to one third of the landscape with surface water and bring water tables within 1.5 m form the surface in approximately another third. Based on field temperature records for 50 years from 28 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal amplitude and temperature extremes. In non-flooded periods there is a linear increase of mean diurnal thermal amplitude (MDTA) from the coast towards the interior of the region (MDTA raising from 10 to 18 degrees C, 0.97 degrees C/100 km, r2=0.72). During floods the MTDA of flood prone stations declines between 2 to 4 degrees C depending on surface water coverage in the area. At Pehuajo (500 km away from the ocean, most flooded station), MTDA approached typical coastal values during the three flooding cycles recorded in the study period. Frosts-free periods, which are a key driver of the phenology of both natural and cultivated ecosystems, are extended during flooded periods, while heat waves are reduced in frequency and intensity. Temperature records from shallow groundwater (less than 0.5 m of depth) display a substantial diurnal cycle suggesting that waterlogged land complements surface water bodies in its day/night heat transfer role. Reduced thermal amplitude opens an opportunity for longer crop growing periods, including more intense double cropping, which not only contributes to compensates regional production losses caused by floods but opens an opportunity to mitigate them through

  10. Enhanced thermal resistance of Salmonella in marinated whole muscle compared with ground pork.

    PubMed

    Velasquez, Adriana; Breslin, Tasha J; Marks, Bradley P; Orta-Ramirez, Alicia; Hall, Nicole O; Booren, Alden M; Ryser, Elliot T

    2010-02-01

    The internal muscle environment may enhance thermal resistance of bacterial pathogens. Based on the migration of pathogens into whole muscle products during marination, the validity of current thermal inactivation models for whole muscle versus ground products has been questioned. Consequently, the objective of this work was to compare thermal resistance of Salmonella in whole muscle versus ground pork. Irradiated samples of whole and ground pork loin (5.5 to 7.5 g) were exposed to a Salmonella-inoculated (10(8) CFU/ml) marinade (eight serovar cocktail) for 20 min, placed in sterile brass tubes (12.7 mm diameter), sealed, and heated isothermally at 55, 58, 60, 62, or 63 degrees C, and surviving salmonellae were enumerated on Petrifilm aerobic count plates. The thermal lag times and initial bacterial counts were similar for both whole muscle and ground samples (P > 0.05), with all samples having equivalent compositions, inocula, and thermal histories. Heating temperature and physical state of the meat (whole versus ground muscle) affected Salmonella inactivation, with greater thermal resistance observed in whole than in ground muscle (P < 0.05). Assuming log-linear inactivation kinetics, Salmonella was 0.64 to 2.96 times more heat resistant in whole muscle than in ground pork. Therefore, thermal process validations for pork products should also account for the physical state of the product to ensure microbial safety.

  11. Temporal Changes in the Thermal Regime of Devils Hole, Death Valley National Park

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Wilson, K. P.; Gaines, B.; Suarez, F. I.; Tyler, S. W.

    2012-12-01

    Devils Hole, a fracture in the carbonate bedrock underlying the Mojave Desert, is home to a unique ecosystem that includes the only extant population of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). The pupfish inhabit an extremely limited ecosystem (~50 m2) and live near the thresholds of survivability for both temperature (~33.5 °C) and dissolved oxygen (~2.5 mg l-1). These factors combine to make the Devils Hole ecosystem very susceptible to small perturbations in its environment. In the late 1960s, the ecosystem was severely impacted when local groundwater mining dropped the water table below the shallow shelf that provides optimum spawning and foraging habitats in the ecosystem; the population of C. diabolis fell to approximately 100 individuals. Although the water table rose and the pupfish population appeared to recover after the cessation of pumping, a second population decline began in the mid 1990s, leading to surveys that counted as few as 38 individuals. Since water temperature acts as a significant control on pupfish reproduction, it is hypothesized that climate change has contributed to this decline. We examine the past, present, and future thermal regime of the Devils Hole ecosystem using a combination of field data, hydrodynamic simulations, and climate models. The impacts of temperature changes on the annual recruitment of Devils Hole pupfish are discussed, and several potential management strategies are presented to mitigate these effects.

  12. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    NASA Astrophysics Data System (ADS)

    Xing, Guangzheng; Zhao, Yibo; Modestov, Mikhail; Zhou, Cheng; Gao, Yang; Law, Chung K.

    2017-05-01

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities (ρ = 2, 3, and 4 × 107 g cm-3) and of spherical flames (with curvature c = -0.01, 0, 0.01, and 0.05) at a particular density (ρ = 2 × 107 g cm-3) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 107 g cm-3 and temperature of 0.6 × 109 K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  13. Regional warming and the thermal regimes of American crocodile nests in the Tempisque Basin, Costa Rica.

    PubMed

    Murray, Christopher M; Easter, Michael; Padilla, Sergio; Marin, Mahmood Sasa; Guyer, Craig

    2016-08-01

    Spatial variation in global climate change makes population-specific responses to this enigmatic threat pertinent on a regional scale. Organisms with temperature-dependent sex determination (TSD) potentially possess a unique physiological susceptibility that threatens population viability if rapid environmental effects on sex ratios render populations non-viable. A heavily male-biased sex ratio for hatchling American crocodiles of the Tempisque Basin, Costa Rica requires assessment of how nest temperature affects sex determination at this site, how females might compensate for these effects when creating nests, and how current patterns of climate change might alter future sex ratios and survival in hatchling cohorts. We demonstrate high within-nest variation in temperature but predict a female bias at hatching based on nest temperatures quantified here. Further, our data suggest that egg size and metabolic heating associated with this factor outweighs microhabitat parameters and depth in influencing nest thermal regimes. Finally, we document regional warming in the Tempisque Basin over the last 15 years and project that further heating over the next 15 years will not yield hatchling sex ratios as male biased as those currently found at this site. Thus, we find no support for nest temperature or climate change as likely explanations for male-biased American crocodile (Crocodylus acutus) sex ratios in the Tempisque Basin.

  14. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1980-12-01

    The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

  15. Incorporation of phase-change materials into a ground thermal energy storage system: Theoretical study

    SciTech Connect

    Rabin, Y.; Korin, E.

    1996-09-01

    An investigation of a ground thermal energy storage system, which includes storage units containing phase-change materials (PCM), is presented. This study is related to a large-diameter helical heat exchanger, which is placed vertically in the ground. The PCM storage units under consideration have a cylindrical shell shape and are located inside and/or outside the helix. A modified numerical scheme for the solution of heat transfer in the ground, in the PCM units, and within the heat exchanger pipe, is presented. The theoretical results show that the thermal diffusivity of the PCM dominates the thermal performance of the system. Incorporation of PCM storage units containing paraffin wax results in a reduction of the thermal efficiency in comparison with a system not containing these units. However, incorporation of PCM having the same thermal diffusivity as of the soil results in a significant improvement of the thermal performance.

  16. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  17. Effect of snow cover on pan-Arctic permafrost thermal regimes

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Fedorov, Alexander N.; Zheleznyak, Mikhail N.; Konstantinov, Pavel Y.; Walsh, John E.

    2015-05-01

    This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001-2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model's treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N-80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role

  18. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    NASA Astrophysics Data System (ADS)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  19. Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive

    DOE Data Explorer

    Peter E. Thornton; Jitendra Kumar; Colleen M. Iversen; Richard T. Mills; Gautam Bisht; Nathan Collier; Vladimir Romanovsky

    2016-01-27

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at http://www.the-cryosphere-discuss.net/tc-2016-29/. Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  20. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime

    SciTech Connect

    Zhou Yu; Simon, Jason; Liu Jianbin; Shih, Yanhua

    2010-04-15

    In a near-field three-photon correlation measurement, we observed the third-order temporal and spatial correlation functions of chaotic thermal light in the single-photon counting regime. In the study, we found that the probability of jointly detecting three randomly radiated photons from a chaotic thermal source by three individual detectors is 6 times greater if the photodetection events fall in the coherence time and coherence area of the radiation field than if they do not. From the viewpoint of quantum mechanics, the observed phenomenon is the result of three-photon interference. By making use of this property, we measured the three-photon thermal light lensless ghost image of a double spot and achieved higher visibility compared with the two-photon thermal light ghost image.

  1. Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Nakano, H.; Ida, K.; Tsujimura, T. I.; Kubo, S.; Kobayashi, T.; Tanaka, K.; Seki, R.; Takeiri, Y.; Yokoyama, M.; Maeta, S.; Nakata, M.; Yoshinuma, M.; Yamada, I.; Yasuhara, R.; Ido, T.; Shimizu, A.; Tsuchiya, H.; Tokuzawa, T.; Goto, M.; Oishi, T.; Morita, S.; Suzuki, C.; Emoto, M.; Tsumori, K.; Ikeda, K.; Kisaki, M.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Makino, R.; Seki, T.; Kasahara, H.; Saito, K.; Kamio, S.; Nagasaki, K.; Mutoh, T.; Kaneko, O.; Morisaki, T.; the LHD Experiment Group

    2017-08-01

    A simultaneous high ion temperature (T i) and high electron temperature (T e) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of T e/T i by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity {χ\\text{i}}/T\\text{i}1.5 at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in T i in the entire plasma region, even though the core transport was degraded.

  2. ETR, TRA642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN PLACE AND CONDUIT PRESERVED, HIGH-DENSITY CONCRETE IS PLACED BETWEEN THE THERMAL RING AND THE OUTER REACTOR FORM. INL NEGATIVE NO. 56-2400. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Thermal inactivation of Salmonella in whole muscle and ground turkey breast.

    PubMed

    Tuntivanich, V; Orta-Ramirez, A; Marks, B P; Ryser, Elliot T; Booren, A M

    2008-12-01

    The effect of the physical structure of turkey meat (ground and whole muscle) on the thermal resistance of Salmonella was evaluated. Irradiated whole and ground turkey breasts were exposed to a marinade containing eight serovars of Salmonella at approximately 10(8) CFU/ml for 20 min. Inoculated samples then were subjected to isothermal heating at 55, 60, or 62.5 degrees C, for varying times. Salmonella counts before and after the thermal lag time (time to reach the target temperature) were not significantly different (alpha = 0.05). The first-order inactivation rate constants in whole muscle were approximately 50% lower than those in ground muscle of the same composition, at each temperature, indicating that the Salmonella inactivation rate was greater (P < 0.05) in ground samples than in whole-muscle samples. These results suggest that internalization of Salmonella in whole-muscle product leads to enhanced thermal resistance.

  4. Characterizing effects and benefits of beam defocus on high energy laser performance under thermal blooming and turbulence conditions for air-to-ground engagements

    NASA Astrophysics Data System (ADS)

    Long, Scott N.

    2008-10-01

    This dissertation makes contributions towards knowledge of optimizing of laser weapon performance when operating in the air-to-ground (ATG) regime in thermal blooming conditions. Wave optics modeling techniques were used to represent laser weapon performance in a high fidelity sense to allow progress to be made toward improving lower-fidelity scaling laws that can be used in systems level analysis which has need for better representations of thermal blooming. Chemical-oxygen iodine laser (COIL) based weapon systems that operate near the ground will experience thermal blooming due to atmospheric absorption if output power is sufficiently high. The thermal lens in the ATG case is predominantly in the far-field of the optical system which puts the problem outside the envelope for most classical phase correction techniques. Focusing the laser beyond the target (defocus) in the air-to-ground regime is shown to improve irradiance at the target and can be thought of as reducing the thermal blooming distortion number, ND, rather than phase correction. Improvement is shown in a baseline scenario presented and all variations from it explored herein. The Breaux ND is examined for potential use in a defocus scaling law, and a correction factor due to Smith (1977), developed for a different context, is proposed to address deficiencies. Optimal defocus settings and expected improvement are presented as a function of Breaux ND. Also, the generally negative interaction between turbulence and thermal blooming is investigated and shown to further limit performance potential of ATG laser weapons. This negative interaction can impact the weapon design trade space and operational methods for minimizing the interaction and thermal blooming are explored in a case study.

  5. Adaptation to local thermal regimes by crustose coralline algae does not affect rates of recruitment in coral larvae

    NASA Astrophysics Data System (ADS)

    Siboni, Nachshon; Abrego, David; Evenhuis, Christian; Logan, Murray; Motti, Cherie A.

    2015-12-01

    Crustose coralline algae (CCA) are well known for their ability to induce settlement in coral larvae. While their wide distribution spans reefs that differ substantially in temperature regimes, the extent of local adaptation to these regimes and the impact they have on CCA inductive ability are unknown. CCA Porolithon onkodes from Heron (southern) and Lizard (northern) islands on Australia's Great Barrier Reef (separated by 1181 km) were experimentally exposed to acute or prolonged thermal stress events and their thermal tolerance and recruitment capacity determined. A sudden onset bleaching model was developed to determine the health status of CCA based on the rate of change in the CCA live surface area (LSA). The interaction between location and temperature was significant ( F (2,119) = 6.74, p = 0.0017), indicating that thermally driven local adaptation had occurred. The southern population remained healthy after prolonged exposure to 28 °C and exhibited growth compared to the northern population ( p = 0.022), with its optimum temperature determined to be slightly below 28 °C. As expected, at the higher temperatures (30 and 32 °C) the Lizard Island population performed better that those from Heron Island, with an optimum temperature of 30 °C. Lizard Island CCA displayed the lowest bleaching rates at 30 °C, while levels consistently increased with temperature in their southern counterparts. The ability of those CCA deemed thermally tolerant (based on LSA) to induce Acropora millepora larval settlement was then assessed. While spatial differences influenced the health and bleaching levels of P. onkodes during prolonged and acute thermal exposure, thermally tolerant fragments, regardless of location, induced similar rates of coral larval settlement. This confirmed that recent thermal history does not influence the ability of CCA to induce settlement of A. millepora larvae.

  6. Influences on shallow ground temperatures in high flux thermal systems

    NASA Astrophysics Data System (ADS)

    Lubenow, Brady L.; Fairley, Jerry P.; Lindsey, Cary R.; Larson, Peter B.

    2016-09-01

    Ground temperature measurements are a useful indication of subsurface processes and heat flux, particularly in volcanic and hydrothermal systems, but obtaining reliable data at sufficient resolution can be difficult. Investigators commonly use temperature measurements at 1 m depths to minimize land surface boundary impacts; however, these measurements are time-consuming and invasive, limiting the number of points that can be surveyed. Alternatively, shallow ground temperature measurements (≤ 25 cm depth) offer a rapid and minimally-invasive way to collect a large number of observations in a target area. Although this method has obvious appeal, changing atmospheric conditions can impact the observed temperatures, and thus may reasonably be expected to influence interpretations arising from the data. Here we examine the impact of precipitation and changing air temperature on shallow ground temperatures in the vicinity of a group of hot springs located in Yellowstone National Park, Wyoming. We find that the mean, the range, and the skewness of the observed temperatures were decreased by changing atmospheric conditions; however, the model variogram representing data taken after several days of moderate precipitation adequately described the spatial correlation of data taken before precipitation. We therefore conclude that the ability to differentiate between high- and low-flux areas may be somewhat reduced by moderate precipitation and changing atmospheric conditions, but that interpretations made on the basis of characteristics of the inferred variograms are likely to be robust to such perturbations in high heat flux environments.

  7. Estimation of lifespan and economy parameters of steam-turbine power units in thermal power plants using varying regimes

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2016-08-01

    The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.

  8. Monitoring Near-Surface Thermal Properties in Conjunction with Energy and Moisture Budgets to Facilitate the Optimization of Ground-Source Heat Pumps in the Glaciated Midwest

    NASA Astrophysics Data System (ADS)

    Naylor, S. C.; Gustin, A. R.; Ellett, K. M.

    2011-12-01

    By exploiting the near-surface heat reservoir, ground-source heat pumps (GSHP) represent an important renewable energy technology that can be further developed by establishing data sets related to shallow (<100m) thermal regimes. Although computer programs are available for GSHP installers to calculate optimal lengths and configurations of ground-coupling geothermal systems, uncertainties exist for input parameters that must first be determined for these models. Input parameters include earth temperatures and thermal properties of unconsolidated materials. Furthermore, thermal conductivity of sediments varies significantly depending on texture and moisture content, highlighting the need to characterize various unconsolidated materials under varying soil moisture regimes. Regolith texture data can be, and often are, collected for particular installations, and are then used to estimate thermal properties for system design. However, soil moisture and temperature gradients within the vadose zone are rarely considered because of the difficulty associated with collecting a sufficient amount of data to determine predominant moisture and temperature ranges. Six monitoring locations were chosen in Indiana to represent unique hydrogeologic settings and near-surface glacial sediments. The monitoring approach includes excavating trenches to a depth of 2 meters (a typical depth for horizontal GSHP installations) and collecting sediment samples at 0.3-meter intervals to determine thermal conductivity, thermal diffusivity, and heat capacity in the laboratory using the transient line heat source method. Temperature sensors are installed at 0.3-meter intervals to continuously measure thermal gradients. Water-content reflectometers are installed at 0.3, 1, and 2 meters to determine continuous volumetric soil moisture. In-situ thermal conductivity and thermal diffusivity are measured at 1.5 meters using a differential temperature sensor that measures radial differential temperature

  9. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia

    NASA Astrophysics Data System (ADS)

    Westermann, Sebastian; Peter, Maria; Langer, Moritz; Schwamborn, Georg; Schirrmeister, Lutz; Etzelmüller, Bernd; Boike, Julia

    2017-06-01

    Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1-2 °C. Comparison of monthly average temperatures at depths of 2-3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of -0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an

  10. Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert

    2005-01-01

    Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '

  11. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  12. Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime

    SciTech Connect

    Park, Minkyu; Lee, In-Ho; Kim, Yong-Sung

    2014-07-28

    Thermal conductivity of a material is an important physical parameter in electronic and thermal devices, and as the device size shrinks down, its length-dependence becomes unable to be neglected. Even in micrometer scale devices, materials having a long mean free path of phonons, such as crystalline silicon (Si), exhibit a strong length dependence of the thermal conductivities that spans from the ballistic to diffusive thermal transport regime. In this work, through non-equilibrium molecular-dynamics (NEMD) simulations up to 17 μm in length, the lattice thermal conductivities are explicitly calculated for crystalline Si and up to 2 μm for amorphous Si. The Boltzmann transport equation (BTE) is solved within a frequency-dependent relaxation time approximation, and the calculated lattice thermal conductivities in the BTE are found to be in good agreement with the values obtained in the NEMD. The isotopic effects on the length-dependent lattice thermal conductivities are also investigated both in the crystalline and amorphous Si.

  13. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  14. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  15. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    USGS Publications Warehouse

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  16. Quantifying stream thermal regimes at multiple scales: Combining thermal infrared imagery and stationary stream temperature data in a novel modeling framework

    NASA Astrophysics Data System (ADS)

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every ˜100 m of stream length) over a large extent of stream (˜100 km of stream) during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system (validation RMSEs < 1°C). Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  17. Numerical study of dependence of thermally stimulated currents in disordered solids at step heating regime on initial trap occupancy

    NASA Astrophysics Data System (ADS)

    Tomaszewicz, W.; Grygiel, P.

    2011-04-01

    In the present paper numerical investigation of thermally stimulated currents (TSCs) in disordered solids, measured at step heating regime, is performed. The utilized energy distribution of trapping states is the superposition of exponential and Gaussian distributions. The monomolecular carrier recombination regime is assumed. The resulting set of stiff differential equations governing TSCs is solved with the use of Gear's procedure. The calculations are made for several carrier generation and recombination rates. The TSC curves are next analyzed by the methods developed in previous papers and the calculated trap distributions are compared with the input distributions. It is concluded that the methods have satisfactory accuracy solely in the cases of week carrier retrapping or small trap occupancy.

  18. Morphology control on hyporheic zone hydrodynamics: implication on redox and thermal regimes (Invited)

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2013-12-01

    . Through this parameter we are able to define two dimensionless Damköhler numbers DaO, and DaT, which relate river morphology, through τ50, with the redox and the thermal regime within the hyporheic zone, respectively. In particular, DaO quantifies the biogeochemical status of the hyporheic zone through the ratio between τ50 and the time needed to consume dissolved oxygen to a prescribed threshold concentration (τlim), below which reductive reactions are activated: (DaO = τ50/τlim). In addition, DaT quantifies the importance of the temperature daily oscillations of the stream water on hyporheic environment through the ratio between τ50, and the time limit for which the amplitude of daily temperature oscillations of hyporheic waters are 1/e of those at the stream water. Our analysis showed that contrary to popular models such as transient storage, our approach is able to capture the relationship between moments recently proposed by González-Pinzón et al., (2013) in a study analyzing a large dataset of experimental BTCs. Moreover, through the Damköhler numbers we are able to define a new theoretical framework for scaling results at both the morphological-unit and stream-reach scales. González-Pinzón, R., R. Haggerty, and M. Dentz (2013), Scaling and predicting solute transport processes in streams, Water Resour. Res., 49, doi:10.1002/wrcr.20280.

  19. Measuring glacier surface temperatures with ground-based thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Aubry-Wake, Caroline; Baraer, Michel; McKenzie, Jeffrey M.; Mark, Bryan G.; Wigmore, Oliver; Hellström, Robert È.; Lautz, Laura; Somers, Lauren

    2015-10-01

    Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground-based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23-25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground-based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.

  20. No-go theorem for ground state cooling given initial system-thermal bath factorization.

    PubMed

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul

    2013-01-01

    Ground-state cooling and pure state preparation of a small object that is embedded in a thermal environment is an important challenge and a highly desirable quantum technology. This paper proves, with two different methods, that a fundamental constraint on the cooling dynamic implies that it is impossible to cool, via a unitary system-bath quantum evolution, a system that is embedded in a thermal environment down to its ground state, if the initial state is a factorized product of system and bath states. The latter is a crucial but artificial assumption included in numerous tools that treat system-bath dynamics, such as master equation approaches and Kraus operator based methods. Adopting these approaches to address ground state and even approximate ground state cooling dynamics should therefore be done with caution, considering the fundamental theorem exposed in this work.

  1. Ground-Based Experiments on Vibrational Thermal Convection

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.; Rogers, Jeffrey L.

    1999-01-01

    Ground-based experiments on g-jitter effects in fluid flow provide insight that complements both theoretical studies and space-based experiments on this problem. We report preliminary results for experiments on Rayleigh-Benard convection subjected to time-dependent accelerations on a shaker table. For sinusoidal modulation, two qualitatively different pattern forming mechanisms come into play: geometry induced wavenumber selection (as in the standard "no-shake" Rayleigh-Benard problem) and dispersion induced wavenumber selection due to parametric instability (as in the Faraday surface-wave problem). We discuss preliminary results on the competition and co-existence of patterns due to these different instability mechanisms. We also discuss the implications of this work on the general question of pattern formation in the presence of noise.

  2. Thermal regime and potential bedrock weathering in alpine rockwalls of Austria: Results from eight years of monitoring (2006-2014)

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Wecht, Matthias

    2015-04-01

    Bedrock temperature at sites with a minor winter snow cover gives a good indication for the effects of air temperature anomalies on ground thermal conditions as well as for the intensity of near-surface physical weathering in bedrock. In this study we present results from an ongoing bedrock temperature monitoring program initiated in 2006. Within the framework of this program nine surface boreholes in rockwalls with different slope orientations and two additional boreholes at flat bedrock sites were drilled between August and September 2006 and subsequently instrumented. The altogether eleven rock temperature sites (RTS) are located in the alpine periglacial zone of the Austrian Alps at latitude 46°55' to 47°22' and longitude 12°44' to 14°41'. All RTS have been installed in metamorphic rock (5 x mica schist; 6 x gneiss) at elevations between 1960 and 2725 m asl (mean 2491 m asl.). Three temperature sensors (PT1000) have been inserted at each borehole site at vertical depths of 3, 10 and 30-40 cm. At each RTS the three sensors are connected to a 3-channel miniature temperature datalogger (MTD) manufactured by GeoPrecision, Germany. Our analysis focussed on (a) the variation of mean and extreme daily temperatures at the rock surface and at depth, (b) the variation of the daily temperature range, (c) the number of freeze-thaw-cycles (FTC) and (d) effective freeze-thaw cycles for frost shattering (eFTC), (e) the duration and intensity of freeze-thaw-cycles (DI-FTC), (f) the number of hours and days within the so-called frost-cracking-window (FCW), and effects of (g) aspect and (h) snow cover on the thermal regimes in the bedrock. Results show for instance that the number of FTC and eFTC varied substantially during the observation period at all eleven RTS and at all sensor depths. However, this variation differs from site to site related to snow cover condition, elevation and aspect. For instance, at one lower-elevated (2255 m asl) north exposed RTS the number of

  3. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    Treesearch

    M. H. Meeuwig; J. B. Dunham; J. P. Hayes; G. L. Vinyard

    2004-01-01

    The effects of constant (12, 18, and 24°C) and cyclical (daily variation of 15–21 and 12–24 °C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24°C) and more variable daily temperatures (i.e., 12–24°C daily cycle) negatively...

  4. Thermal Coupling between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Smerdon, Jason

    2016-04-01

    The decadal-scale thermal coupling between air and ground temperatures across North America is examined for 32 General Circulation Models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the relationship between air and ground temperatures. Our results show that the transport of energy across the air-ground interface differs from observations, and among GCMs depending on each model's land-surface component. While the decadal variability among GCMs can be explained by the physics and parameterizations of each land-surface model, the spatial variability of the air-ground coupling for the historical and future simulations is associated with model treatment of the soil thermal properties as well as with processes associated with snow and vegetation cover within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is related to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the leaf area index, due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  5. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  6. Thermal history of north-central Utah thrust belt: Significance of sedimentation, thrusting, and compaction-driven ground-water flow

    SciTech Connect

    Deming, D.; Nunn, J.A.; Chapman, D.S. )

    1989-09-01

    The maturation of hydrocarbons is sensitive to the thermal history, which is affected by a variety of geologic processes, all of which may have had significant effects on the thermal regime and thus on the timing and extent of oil and gas generation. Interpretation of vitrinite reflectance data from the Absaroka hanging wall in the Pineview field, through an empirical model that relates vitrinite maturity to an integrated time-temperature function, suggests that surface heat flow in the north-central Utah thrust belt in Late Cretaceous time was about 40 mW/m{sup 2}, significantly lower than a present surface heat flow of 60 mW/m{sup 2}, as estimated from analysis of corrected bottom-hole temperatures and thermal conductivity data. One-dimensional conductive modeling of the thermal history reveals that as much as half of this apparent difference between modern and ancient surface heat flow may be attributed to a transient depression of surface heat flow in the Late Cretaceous by high rates of sedimentation; thus, a constant background thermal state may not be ruled out. Work in progress is aimed at quantitatively evaluating the possible influence of compaction-driven ground-water flow on the paleothermal regimes of overthrust belts.

  7. Progeny of Osmia lignaria from distinct regions differ in developmental phenology and survival under a common thermal regime.

    PubMed

    Pitts-Singer, Theresa L; Cane, James H; Trostle, Glen

    2014-08-01

    Many insects, including some bees, have extensive subcontinental distributions that can differ in climatic conditions. Within and beyond these distributions, humans intentionally transport beneficial insects, including bees, to non-natal geographic locations. Insects also are experiencing unprecedented climatic change in their resident localities. For solitary bees, we know very little about the adaptive plasticity and geographic variation in developmental physiology that accommodates the different climates experienced within distributional ranges. Osmia lignaria Say (Hymenoptera: Megachilidae) is a widely distributed North American spring-emerging bee being developed as a managed pollinator for tree fruit crops, including almonds. We examined the development and survival of O. lignaria progeny that were descended from populations sourced from southern California, western Washington, and northern Utah, and then were reared together under an hourly and weekly temperature regime simulating those of a California almond-growing region. We found that developmental physiologies of Washington and Utah progeny were generally similar. However, California progeny developed slower, were more metabolically active, and survived better under California conditions than did populations native to regions at higher latitudes. Regardless of geographic origin, cocooned adults managed under prescribed thermal regimes emerged faster and lived longer after wintering. Progeny of parents from different regions exhibited some acclimatory plasticity in developmental phenologies to a novel climatic regime, but overall their responses reflected their geographic origins. This outcome is consistent with their developmental phenologies being largely heritable adaptations to regional climates.

  8. Millisecond dynamics of thermal expansion of mechanically controllable break junction electrodes studied in the tunneling regime

    NASA Astrophysics Data System (ADS)

    Kolesnychenko, O. Yu.; Toonen, A. J.; Shklyarevskii, O. I.; van Kempen, H.

    2001-10-01

    The thermal expansion dynamics of W, Pt-Ir, and Au mechanically controllable break junction electrodes was studied in the millisecond range. By measuring a transient tunnel current as a function of time, we found that, at low temperatures, the electrode elongation Δs˜t1/2 due to the large values of thermal diffusivity of metals. The magnitude of Δs varies in direct proportion to the power P dissipated in the electrodes.

  9. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    NASA Astrophysics Data System (ADS)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon

    2017-09-01

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  10. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    DOE PAGES

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; ...

    2017-09-06

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). One part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on themore » beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. Thus, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. Additonally, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.« less

  11. Mountain frozen grounds as small amplitude thermal proxy in southern continental Patagonia

    NASA Astrophysics Data System (ADS)

    Ruiz, Sebastian; Beriain, Eneko; Izagirre, Eñaut; Bockheim, James; Pedro, Cid-Agüero

    2015-04-01

    Frozen grounds are an important element of the cryosphere, covering between a 20-25% of the global area. Frozen grounds are becoming a relevant object of research in the southern hemisphere, being most studies focused mainly on Antarctica. With the exception of seasonally frozen grounds, perennially frozen ground is found in continental South America, for example, in high altitude terrains from 4.600m a.s.l. in central Chile. However, scarce or not information regarding permafrost on Southern Patagonia has been reported. One of the aims of this study was to establish mountain permafrost existence at 1.200m in the southern limit of the Southern Patagonian Ice-Field, a geographically active area surrounded by different kinds of glaciers on fast retreat. The area of study presents several features of past cryogenic activity such as undefined polygonal grounds with a thick clast border and sandy-loam interior. A scarce vegetal cover is limited to lichen and moss communities. The analyzed soil does not represent a thermal barrier that may avoid heat wave dynamic along the ground profile. There was neither significant snow-cover during winter nor a vegetation layer enough to consider as insulation for the analyzed ground. Oscillations above 0°C were evidenced down to 1.8m depth during winter of 2014, ruling out the existence of permafrost at that lower limit. Year round thermal dynamic down to 1.8m in the ground profile is presented as one result of the monitoring. Small amplitude temperature fluctuations were registered upon monitoring. These minimal amplitudes were stable throughout several months and as such serve as an interesting proxy for recent and long-term climatic thermal fluctuation. The influence of winds coming from nearby glaciers highly affects near-surface amplitude. This interaction was studied. The present work is part of an ongoing monitoring network along South America that intends to fill the gap between tropical Andes and the Antarctic Peninsula.

  12. Early Life-Stage Responses of a Eurythemal Estuarine Fish, Mummichog (Fundulus hetereoclitus) to Fixed and Fluctuating Thermal Regimes

    NASA Astrophysics Data System (ADS)

    Shaifer, J.

    2016-02-01

    The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.

  13. ETR, TRA642. ON GROUND FLOOR. OUTER RING OF FOUR THERMAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON GROUND FLOOR. OUTER RING OF FOUR THERMAL SHIELD RINGS IS TO BE LOWERED INTO REACTOR PIT. COOLING WATER WILL FLOW UPWARD THROUGH THE GAPS BETWEEN THE RINGS. INL NEGATIVE NO. 56-2033. Jack L. Anderson, Photographer, 6/14/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Contrasted thermal regimes do not influence digestion and growth rates in a snake from a temperate climate.

    PubMed

    Michel, Catherine Louise; Bonnet, Xavier

    2010-01-01

    Temperature influences almost all life-history traits. For a period of 3 mo, we placed four groups of snakes under four contrasted thermal treatments: (1) a natural regime (NR), based on daily variations (24-h cycle); (2) an accelerated regime (AR), where the thermoperiod fluctuated rapidly (12-h cycle); (3) a slow regime (SR; 48-h cycle); and (4) a cool stable regime (ZR; no fluctuation). The mean temperature, set at 23°C, was identical for the four groups. For the first three groups (NR, AR, SR), ambient temperature fluctuated between 18°C and 28°C. Relative humidity and photoperiod were constant. We recorded feeding success, digestion efficiency, growth rate, activity, and ecdysis events. Differences between groups were expected because of varied exposure to the optimal temperatures, most notably in the ZR group, where the preferred body temperature for digestion (approximately 30°C) would not be reached. Surprisingly, there was no significant effect of the experimental treatment on feeding rate, digestion, body mass increase, and growth rate. Our results do not conform to the paradigm stipulating that maximal body temperature selected by ectotherms necessarily corresponds to the most efficient for resource assimilation and that temperature fluctuations are essential. We propose that increasing the digestive tract's performance through body-temperature elevation trades off against elevated (parasite) energy expenditure from the rest of the body. The main advantage of high body temperatures would be to reduce the amount of time necessary to assimilate prey rather than to improve the net mass gain during digestion.

  15. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  16. Thermal Coupling Between Air and Ground Temperatures in the CMIP5 Historical and Future Simulations

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.; Beltrami, H.

    2015-12-01

    The thermal coupling between air and ground temperatures is investigated herein for General Circulation Models (GCMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). For each simulation, we evaluate the regional relationship between air and ground temperatures to study surface energy fluxes and the attenuation of the annual temperature signal across the air-ground interface and into the shallow subsurface for North America. Our results show that the transport of energy across the air-ground interface and into the shallow subsurface is different across GCMs and is dependent on the land surface models that each employs. The variability of the difference between air and ground temperatures is high among simulations and is not dependent on the depth of the bottom boundary of the subsurface soil model. The difference between air and ground temperatures differs significantly from observations. Additionally, while the variability among GCMs can be explained by the physics of the land surface models, the regional variability of the air-ground coupling is associated with the model treatment of soil properties as well as snow and vegetation processes within GCMs. The difference between air and ground temperatures at high latitudes within the majority of the CMIP5 models is directly proportional to the amount of snow on the ground, due to the insulating effect of snow cover. On the other hand, the difference between air and ground temperatures at low latitudes within some of the CMIP5 models is inversely proportional to the vegetation cover (leaf area index), due to changes in latent and sensible heat fluxes. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model illustrates the need for improving the simulation of air-ground coupling in land-surface models towards a robust simulation of near-surface processes, such as permafrost and soil carbon stability within GCMs.

  17. Detailed predictions of climate induced changes in the thermal and flow regimes in mountain streams of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Santiago, José M.; Muñoz-Mas, Rafael; García de Jalón, Diego; Solana, Joaquín; Alonso, Carlos; Martínez-Capel, Francisco; Ribalaygua, Jaime; Pórtoles, Javier; Monjo, Robert

    2016-04-01

    Streamflow and temperature regimes are well-known to influence on the availability of suitable physical habitat for instream biological communities. General Circulation Models (GCMs) have predicted significant changes in timing and geographic distribution of precipitation and atmospheric temperature for the ongoing century. However, differences in these predictions may arise when focusing on different spatial and temporal scales. Therefore, to perform substantiated mitigation and management actions detailed scales are necessary to adequately forecast the consequent thermal and flow regimes. Regional predictions are relatively abundant but detailed ones, both spatially and temporally, are still scarce. The present study aimed at predicting the effects of climate change on the thermal and flow regime in the Iberian Peninsula, refining the resolution of previous studies. For this purpose, the study encompassed 28 sites at eight different mountain rivers and streams in the central part of the Iberian Peninsula (Spain). The daily flow was modelled using different daily, monthly and quarterly lags of the historical precipitation and temperature time series. These precipitation-runoff models were developed by means of M5 model trees. On the other hand water temperature was modelled at similar time scale by means of nonlinear regression from dedicated site-specific data. The developed models were used to simulate the temperature and flow regime under two Representative Concentration Pathway (RCPs) climate change scenarios (RCP 4.5 and RCP 8.5) until the end of the present century by considering nine different GCMs, which were pertinently downscaled. The precipitation-runoff models achieved high accuracy (NSE>0.7), especially in regards of the low flows of the historical series. Results concomitantly forecasted flow reductions between 7 and 17 % (RCP4.5) and between 8 and 49% (RCP8.5) of the annual average in the most cases, being variable the magnitude and timing at each

  18. Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences

    PubMed Central

    Angilletta, Michael J; Ashley Steel, E; Bartz, Krista K; Kingsolver, Joel G; Scheuerell, Mark D; Beckman, Brian R; Crozier, Lisa G

    2008-01-01

    Dams designed for hydropower and other purposes alter the environments of many economically important fishes, including Chinook salmon (Oncorhynchus tshawytscha). We estimated that dams on the Rogue River, the Willamette River, the Cowlitz River, and Fall Creek decreased water temperatures during summer and increased water temperatures during fall and winter. These thermal changes undoubtedly impact the behavior, physiology, and life histories of Chinook salmon. For example, relatively high temperatures during the fall and winter should speed growth and development, leading to early emergence of fry. Evolutionary theory provides tools to predict selective pressures and genetic responses caused by this environmental warming. Here, we illustrate this point by conducting a sensitivity analysis of the fitness consequences of thermal changes caused by dams, mediated by the thermal sensitivity of embryonic development. Based on our model, we predict Chinook salmon likely suffered a decrease in mean fitness after the construction of a dam in the Rogue River. Nevertheless, these demographic impacts might have resulted in strong selection for compensatory strategies, such as delayed spawning by adults or slowed development by embryos. Because the thermal effects of dams vary throughout the year, we predict dams impacted late spawners more than early spawners. Similar analyses could shed light on the evolutionary consequences of other environmental perturbations and their interactions. PMID:25567632

  19. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    SciTech Connect

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; Moretti, Roberto; Orsi, Giovanni; Gasparini, Paolo

    2016-11-11

    In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions that simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).

  20. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    DOE PAGES

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...

    2016-11-11

    In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less

  1. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; Moretti, Roberto; Orsi, Giovanni; Gasparini, Paolo

    2016-12-01

    We illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions that simulate magma rise from a deep (≥ 8 km depth) to shallow (2-6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. The simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).

  2. The lithosphere thermal regime across the Dead Sea transform in Israel and Jordan

    NASA Astrophysics Data System (ADS)

    Förster, A.; Förster, H.-J.; Stromeyer, D.; Sobolev, S. V.; Oberhänsli, R.

    2003-04-01

    Reevaluation of thermal data (T-logs, thermal conductivity) from the area of the DESERT seismic refraction/reflection profiles in Israel shows that only part of the published heat-flow data correctly portrays the terrestrial heat flow. Taking into account the distortion factors on thermal conditions and discarding shallow (<100 m) boreholes from the database, nine heat-flow values remained yielding an average of 62±7.5 mW/m^2. We suggest that this value more closely approximates the terrestrial heat flow in this part of the African plate than previous values published for Israel, which are considerably lower (52±17.2 mW/m^2 and 40 mW/m^2, resp.). The new average is in good agreement with a surface heat-flow of preliminarily 60 mW/m^2 obtained from a 960-m deep borehole in southeastern Jordan. This well-constrained value is considerably higher than those proposed to represent the overall heat flow in this part of the African plate including Syria and Saudi Arabia (40--45 mW/m^2). Based on (1) newly acquainted data for Jordan on U-Th-K abundances from Pan-African basement rocks and xenoliths entrained in Cenozoic basalts, which allow to infer the radiogenic heat production in the Jordanian crust, (2) respective literature values from Israel, and (3) new seismic data from the DESERT project, the structure and composition of the crust are redefined, and general thermal models for the lithosphere subplates separated by the Dead Sea Transform (DST) are calculated. Considering the temperature and pressure dependence of rock thermal conductivity and present-day surface heat flow, the steady-state geotherm for the Jordan lower crust/upper mantle is higher than in Israel, where it is within the envelope of previous geotherms. The modeled heat flow at the crust/mantle boundary is similar on both sides of the DST and amounts to 30 mW/m^2. However, the xenolith-derived P-T estimates for Israel (close to the DST) and Jordan (not only restricted to the DST) do not meet these

  3. Thermal regimes in impact melts and the petrology of the Apollo 17 Station 6 boulder

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.

    1975-01-01

    A progress report is presented on the petrologic study of the Station 6 boulder, taking into account the implications of its petrographic and geochemical studies to the understanding of the processes of formation and crystallization of impact melts. The interpretation of the data from the boulder suggests processes that appear reasonable for a petrogenetic model of impact events large enough to produce a layer of melt a kilometer or more wide and at most a few tens of meters thick. A summary of the model is presented. The primary difference between the new model and the previous models of Warner et al. (1973, 1974) and Simonds et al. (1973, 1974) is that melt and clasts are derived from distinctly different parts of the cratering regime. The cooling is modeled in two steps, first the rapid equilibration between clasts and matrix, and second, the much slower loss of heat to the surroundings.

  4. Roughness as a Route to the Kraichnan Regime in Thermal Convection

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Succi, Sauro; Wettlaufer, John

    2016-11-01

    We use highly resolved numerical simulations to study turbulent Rayleigh-Bénard convection in a cell with sinusoidally rough upper and lower walls in two dimensions. By varying the wavelength at a fixed amplitude, we find an optimal wavelength for which the Nusselt-Rayleigh scaling relation is (Nu - 1 Ra 0 . 482). This is consistent with (i) the upper bound of Goluskin and Doering (2016) who prove that Nu can grow no faster than O (Ra 1 / 2) as Ra -> ∞ , and thus (ii) the concept that roughness facilitates the attainment of the so-called ultimate regime of Kraichnan (1962). In the limits of very small and very large wavelengths we recover the planar case results, demonstrating how controlling the wall geometry manipulates the interaction between the boundary layers and the core flow.

  5. Conductive heat flux in VC-1 and the thermal regime of Valles caldera, Jemez Mountains, New Mexico ( USA).

    USGS Publications Warehouse

    Sass, J.H.; Morgan, P.

    1988-01-01

    Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors

  6. Characteristics-based methods applied to infinite Prandtl number thermal convection in the hard turbulent regime

    NASA Technical Reports Server (NTRS)

    Malevsky, A. V.; Yuen, D. A.

    1991-01-01

    Characteristics-based methods for the advection-diffusion equation are presented and directly applied to study thermal convection with extremely large Rayleigh number (Ra). It is shown that the operator-splitting method for advection-diffusion problems is very accurate for determining the advected field at extremely high Peclet number (Pe). The technique presented is considered to have great potential for solving advection-dominated problems, while the Langrangian method is more accurate for lower Pe. It is noted that the accuracy of these characteristics-based methods strongly depends on the quality of interpolation. The computational time for the operator-splitting method grows with the number of time steps employed. The Langrangian method was used for simulations of convection at very high Ra, up to 3 x 10 to the 9th, and time-dependent, thermal convection solutions were obtained for infinite Prandtl number.

  7. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime.

    PubMed

    McKay, Aaron; Kitzler, Ondrej; Mildren, Richard P

    2014-01-13

    We report an investigation into a double metal tungstate Raman laser when pumped at elevated average powers. Potassium gadolinium tungstate (KGW) was placed in an external cavity configured for second-Stokes output and pumped at pulse repetition rate of 38 kHz with up to 46 W of average power. For output powers above 3 W, we observe preferential excitation of Hermite-Gaussian transverse modes whose order in the X(1)(') principal direction of the thermal expansion tensor scales linearly with Raman power. We deduce that strong astigmatic thermal lensing is induced in the Raman crystal with a negative component in the X(1)(') direction. At maximum pump power, 8.3 W of output power was obtained at a conversion efficiency of 18%.

  8. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  9. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    USGS Publications Warehouse

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  10. Ray paths near the ground in a realistic thermally stratified atmosphere

    NASA Astrophysics Data System (ADS)

    van Moorhem, W. K.; Ma, Y.; Brown, J. M.

    1986-08-01

    Analytic forms for the acoustic rays in a realistic model of a thermally stratified atmosphere are presented. The present model for the temperature of the atmosphere as a function of height above the ground is in much closer agreement with observed temperature profiles, within a few meters of the ground, than the commonly used linear sound speed or approximate linear temperature profiles. Although the form of the rays is more complicated than in the simple case they are still easily programmable on a calculator or small computer and their behavior also appears to be much more realistic. Both the cases of lapse and inversion temperature profiles are considered.

  11. Changes in soil thermal regime lead to substantial shifts in carbon and energy fluxes in drained Arctic tundra

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S. A.

    2016-12-01

    Climate change impacts in the Arctic will not only depend on future temperature trajectories in this region. In particular, potential shifts in hydrologic regimes, e.g. linked to altered precipitation patterns or changes in topography following permafrost degradation, can dramatically modify ecosystem feedbacks to warming. Here, we analyze how severe drainage affects both biogeochemical and biogeophysical processes within a formerly wet Arctic tundra, with a special focus on the interactions between hydrology and soil temperatures, and related effects on the fluxes of carbon and energy. Our findings are based on year-round observations from a decade-long drainage experiment conducted near Chersky, Northeast Siberia. Through our multi-disciplinary observations we can document that the drainage triggered a suite of secondary changes in ecosystem properties, including e.g. adaptation processes in the vegetation community structure, or shifts in snow cover regime. Most profoundly, a combination of low heat capacity and reduced heat conductivity in dry organic soils lead to warmer soil temperatures near the surface, while deeper soil layers remained colder. These changes in soil thermal regime reduced the contribution of deeper soil layers with older carbon pools to overall ecosystem respiration, as documented through radiocarbon signals. Regarding methane, the observed steeper temperature gradient along the vertical soil profile slowed down methane production in deep layers, while promoting CH4 oxidation near the surface. Taken together, both processes contributed to a reduction in CH4 emissions up to a factor of 20 following drainage. Concerning the energy budget, we observed an intensification of energy transfer to the lower atmosphere, particularly in form of sensible heat, but the reduced energy transfer into deeper soil layers also led to systematically shallower thaw depths. Summarizing, drainage may contribute to slow down decomposition of old carbon from deep

  12. Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain

    PubMed Central

    Bédard, Emilie; Boppe, Inès; Kouamé, Serge; Martin, Philippe; Pinsonneault, Linda; Valiquette, Louis; Racine, Jules; Prévost, Michèle

    2016-01-01

    Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila. PMID:27092528

  13. Influence of the Geometric Parameter on the Regimes of Natural Convection and Thermal Surface Radiation in a Closed Parallelepiped

    NASA Astrophysics Data System (ADS)

    Martyushev, S. G.; Miroshnichenko, I. V.; Sheremet, M. A.

    2015-11-01

    We have performed a numerical analysis of the stationary regimes of thermogravitational convection and thermal surface radiation in a closed differentially heated parallelepiped. The mathematical model formulated in dimensionless natural velocity-pressure-temperature variables was realized numerically in the control volume approach. Analysis of the radiative heat exchange was carried out on the basis of the surface radiation approach with the use of the balance method in the Polyak variant. We have obtained three-dimensional temperature and velocity fields, as well as dependences for the mean Nusselt number reflecting the influence of the geometric parameter, the Rayleigh number, and the reduced emissive factor of the walls on the flow structure and the heat transfer.

  14. Evaluation of thermal regimes for transported ambassador ectotherms: One size does not fit all.

    PubMed

    Tetzlaff, Sasha J; Tetzlaff, Kristin E; Connors, Richard J

    2016-07-01

    Providing appropriate environmental temperatures for captive ectotherms should be a husbandry priority. This can be especially challenging for ectotherms that are routinely transported, such as those used in education programs at zoos, because they are unable to thermoregulate while confined in non-temperature controlled, compact carriers. To assess if ectotherms used in the Fort Wayne Children's Zoo's outreach programs experienced appropriate transit temperatures during cold weather, we placed temperature loggers inside two sizes of transport carriers, half containing a heat source (bottle of hot water) and half not (control). While transport temperatures were appropriate for many ectotherms, this simple procedure failed to meet the thermal preferences of species with relatively low or high preferred temperatures such as the eastern tiger salamander (Ambystoma tigrinum) and the spiny-tailed lizard (Uromastyx maliensis), respectively. We found large heated carriers were warmer than small heated carriers, but the temperatures of control carriers did not differ. Despite considerable interspecific variation, large heated carriers provided higher thermal quality environments than both small heated and control carriers for all species except eastern tiger salamanders. We suggest further thermal monitoring of ectotherms during transit with the aim of identifying appropriate heat sources and developing efficient and effective transportation protocols. This could be achieved by modifying transport carriers so that animals are able to thermoregulate. Limiting or ceasing their use when appropriate temperatures cannot be provided may be necessary. Particular attention should be given to species with temperature preferences markedly different than the majority of others in a given collection. Zoo Biol. 35:339-345, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Arctic Oscillation impact on thermal regime of the Baltic region Eastern part

    NASA Astrophysics Data System (ADS)

    Gecaite, Indre; Pogoreltsev, Aleksandr; Ugryumov, Aleksandr

    2016-04-01

    Statistical estimations of Arctic Oscillation (AO) impact on air temperature regime in the Eastern part of Baltic region are presented. The region is characterized by high inter-annual and inter-seasonal variabilities. It is important to note that in the region of global warming extremely low winter temperatures can be observed on the European territory of Russia. AO is one of large-scale global structures of atmospheric circulation closely associated with weather variability in Northern Europe. AO anomalies occur in the upper atmosphere (stratosphere) and only then transferred to tropospheric lower layers. The anomalies can be preserved during long period up to two months, so they can be predictors in long-range weather forecast. In turn, changes in stratospheric polar vortex and sudden stratospheric warmings can be related to the geomagnetic activity. Perhaps, the geomagnetic activity influences the meridional temperature gradient and then changes in the structure of the stratospheric zonal wind. In turn, the changes have an impact on the tropospheric circulation. The stratosphere-troposphere connection occurs during winter months. Therefore, the paper presents the analysis of extremely cold winter anomalies in the Eastern part of Baltic Sea region. At the same time, we considered atmospheric circulation peculiarities related to AO phase change. The analyzable time interval covers 1951-2014.

  16. Steady state model for the thermal regimes of shells of airships and hot air balloons

    NASA Astrophysics Data System (ADS)

    Luchev, Oleg A.

    1992-10-01

    A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

  17. Roughness as a Route to the Ultimate Regime of Thermal Convection.

    PubMed

    Toppaladoddi, Srikanth; Succi, Sauro; Wettlaufer, John S

    2017-02-17

    We use highly resolved numerical simulations to study turbulent Rayleigh-Bénard convection in a cell with sinusoidally rough upper and lower surfaces in two dimensions for Pr=1 and Ra=[4×10^{6},3×10^{9}]. By varying the wavelength λ at a fixed amplitude, we find an optimal wavelength λ_{opt} for which the Nusselt-Rayleigh scaling relation is (Nu-1∝Ra^{0.483}), maximizing the heat flux. This is consistent with the upper bound of Goluskin and Doering [J. Fluid Mech. 804, 370 (2016)JFLSA70022-112010.1017/jfm.2016.528] who prove that Nu can grow no faster than O(Ra^{1/2}) as Ra→∞, and thus with the concept that roughness facilitates the attainment of the so-called ultimate regime. Our data nearly achieve the largest growth rate permitted by the bound. When λ≪λ_{opt} and λ≫λ_{opt}, the planar case is recovered, demonstrating how controlling the wall geometry manipulates the interaction between the boundary layers and the core flow. Finally, for each Ra, we choose the maximum Nu among all λ, thus optimizing over all λ, to find Nu_{opt}-1=0.01×Ra^{0.444}.

  18. Arctic Oscillation impact on thermal regime of the Baltic region Eastern part

    NASA Astrophysics Data System (ADS)

    Gecaite, Indre; Pogoreltsev, Aleksandr; Ugryumov, Aleksandr

    2016-04-01

    Statistical estimations of Arctic Oscillation (AO) impact on air temperature regime in the Eastern part of Baltic region are presented. The region is characterized by high inter-annual and inter-seasonal variabilities. It is important to note that in the region of global warming extremely low winter temperatures can be observed on the European territory of Russia. AO is one of large-scale global structures of atmospheric circulation closely associated with weather variability in Northern Europe. AO anomalies occur in the upper atmosphere (stratosphere) and only then transferred to tropospheric lower layers. The anomalies can be preserved during long period up to two months, so they can be predictors in long-range weather forecast. In turn, changes in stratospheric polar vortex and sudden stratospheric warmings can be related to the geomagnetic activity. Perhaps, the geomagnetic activity influences the meridional temperature gradient and then changes in the structure of the stratospheric zonal wind. In turn, the changes have an impact on the tropospheric circulation. The stratosphere-troposphere connection occurs during winter months. Therefore, the paper presents the analysis of extremely cold winter anomalies in the Eastern part of Baltic Sea region. At the same time, we considered atmospheric circulation peculiarities related to AO phase change. The analyzable time interval covers 1951-2014.

  19. Roughness as a Route to the Ultimate Regime of Thermal Convection

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Succi, Sauro; Wettlaufer, John S.

    2017-02-01

    We use highly resolved numerical simulations to study turbulent Rayleigh-Bénard convection in a cell with sinusoidally rough upper and lower surfaces in two dimensions for Pr =1 and Ra =[4 ×1 06,3 ×1 09] . By varying the wavelength λ at a fixed amplitude, we find an optimal wavelength λopt for which the Nusselt-Rayleigh scaling relation is (Nu -1 ∝Ra0.483) , maximizing the heat flux. This is consistent with the upper bound of Goluskin and Doering [J. Fluid Mech. 804, 370 (2016), 10.1017/jfm.2016.528] who prove that Nu can grow no faster than O (Ra1 /2) as Ra →∞ , and thus with the concept that roughness facilitates the attainment of the so-called ultimate regime. Our data nearly achieve the largest growth rate permitted by the bound. When λ ≪λopt and λ ≫λopt , the planar case is recovered, demonstrating how controlling the wall geometry manipulates the interaction between the boundary layers and the core flow. Finally, for each Ra, we choose the maximum Nu among all λ , thus optimizing over all λ , to find Nuopt-1 =0.01 ×Ra0.444.

  20. Convective Heat Transfer in Bulk- and Boundary-Dominated Regimes in Turbulent Thermal Convection

    NASA Astrophysics Data System (ADS)

    Wei, Ping; Ni, Rui; Zhao, Xiao-Zheng; Xia, Ke-Qing

    2010-11-01

    We report Nusselt number measurements in Rayleigh-B'enard convection systems with modified boundary conditions and over the range of the Rayleigh number (Ra) spanning from 3x10^8 to 8x10^9 and with the Prandtl number Pr ˜4.3. These measurements were made in three convection cells: (1) both the top and bottom plates of the cell have plat smooth surface; (2) the top plate has a flat smooth surface while the bottom plate has a rough surface in the form of regularly-arrayed pyramids; and (3) the top plate is rough as in (2) but the bottom plate is smooth. All these cells have cylindrical shape with aspect ratio one. The experimental results suggest that the Nu ˜Ra relationship can be represented by the combination of two power laws, corresponding to the bulk-dominant regime (exponent = 1/2) and boundary layer dominant one (exponent =1/4) of the Grossmann-Lohse model. The behaviors of the coefficients of the two power laws suggest that the roughness of the plate can enhance the contribution of bulk and push the system to change from the boundary dominant state to bulk dominant state.

  1. Mapping and modelling of polythermal glacier structure in a meltwater-dominated thermal regime

    NASA Astrophysics Data System (ADS)

    Wilson, N.; Flowers, G. E.; Mingo, L.

    2012-12-01

    We have mapped zones of cold and temperate ice within two small polythermal glaciers in the Saint Elias Mountains of Yukon, Canada using ice-penetrating radar at multiple frequencies. Temperature measurements from instrumented boreholes provide validation of the radar data interpretation. Both glaciers exhibit temperate accumulation zones and cold termini indicating that accumulation zone entrapment and refreezing of meltwater constitute a primary heat source. When forced with a modern climate, a two-dimensional thermomechanically-coupled model based on a first-order momentum balance and an enthalpy method reproduces major features of the observations along the central flowband, such as the arrangement of and the approximate transition between cold and temperate ice. Concentrated rates of strain heating resulting from basal sliding provide a sufficient mechanism for explaining observed lateral heterogeneity in thermal structure. Meltwater entrapment serves as a direct connection between climate and thermal structure. Numerical experiments performed on a synthetic glacier geometry with a range of climatic conditions comparable to the study site reveal that similar glaciers in which meltwater entrapment is the dominant heat source are likely to experience declining temperate ice fractions in a warming climate.

  2. Shallow temperatures and thermal regime in the hydrocarbon province of Tierra del Fuego

    SciTech Connect

    Zielinski, G.W.; Bruchhausen, P.M.

    1983-01-01

    A suite of shallow (<2 m deep) thermal measurements across the San Sebastian oil and gas field, northeastern Tierra del Fuego, indicates at least a 200 mWm/sup -2/ (5 HFU) thermal anomaly over the field. The anomaly appears to be of subsurface origin and, due to its magnitude, must be caused by a localized discharge of deep groundwater. A single published heat flow value and deep bottom hole temperature data for the area suggest a regional heat flow that is at least 20 mWm/sup -2/ (0.5 HFU) higher than the world average for similar tectonic provinces (post-Precambrian non-orogenic). Maturation level estimates based on the heat flow and burial history of sediments suggest considerable lateral migration (at least 100 km) of hydrocarbons from deeper in the Magellan basin. From estimates of the timing of possible oil generation, minimum average migration velocity is within 1 or 2 orders of magnitude of the groundwater velocity required to cause the local and regional heat flow anomalies. This suggests that groundwater moving from deeper in the Magellan basin might simultaneously transport hydrocarbons and heat to the area. Volume flux estimates require hydrocarbon concentrations significantly greater than possible via aqueous molecular solution.

  3. Thermal regime, predation danger and the early marine exit of sockeye salmon Oncorhynchus nerka.

    PubMed

    Katinic, P J; Patterson, D A; Ydenberg, R C

    2015-01-01

    Marine exit timing of sockeye salmon Oncorhynchus nerka populations on the Haida Gwaii Archipelago, British Columbia, Canada, is described, with specific focus on Copper Creek. Marine exit in Copper Creek occurs > 130 days prior to spawning, one of the longest adult freshwater residence periods recorded for any O. nerka population. Copper Creek presents an easy upstream migration, with mild water temperatures (7 to 14°  C), short distance (13·1 km) and low elevation gain (41 m) to the lake where fish hold prior to spawning. An energetic model estimates that <1% of the initial energy reserve is required for upstream migration, compared with 62% for lake holding and 38% for reproductive development. Historical records suggest that it is unlikely that water temperature in any of the O.nerka streams in Haida Gwaii has ever exceeded the presumed temperature threshold (19° C) for early marine exit. Although it is not impossible that the thermal tolerance of Copper Creek O.nerka is very low, the data presented here appear inconsistent with thermal avoidance as an explanation for the early marine exit timing in Copper Creek and in three other populations on the archipelago with early marine exit.

  4. A modeling assessment of the thermal regime for an urban sport fishery

    NASA Astrophysics Data System (ADS)

    Bartholow, John M.

    1991-11-01

    Water temperature is almost certainly a limiting factor in the maintenance of a self-sustaining rainbow trout ( Oncorhynchus mykiss, formerly Salmo gairdneri) and brown trout ( Salmo trutta) fishery in the lower reaches of the Cache la Poudre River near Fort Collins, Colorado, USA. Irrigation diversions dewater portions of the river, but cold reservoir releases moderate water temperatures during some periods. The US Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP) was applied to a 31-km segment of the river using readily available stream geometry and hydrological and meteorological data. The calibrated model produced satisfactory water temperature predictions ( R 2=0.88, P<0.001, N=49) for a 62-day summer period. It was used to evaluate a variety of flow and nonflow alternatives to keep water temperatures below 23.3°C for the trout. Supplemental flows or reduced diversions of 3 m3/sec would be needed to maintain suitable summer temperatures throughout most of the study area. Such flows would be especially beneficial during weekends when current irrigation patterns reduce flows. The model indicated that increasing the riparian shade would result in little improvement in water temperatures but that decreasing the stream width would result in significant temperature reductions. Introduction of a more thermally tolerant redband trout ( Oncorhynchus sp.), or smallmouth bass ( Micropterus dolomieui) might prove beneficial to the fishery. Construction of deep pools for thermal refugia might also be helpful.

  5. A modeling assessment of the thermal regime for an urban sport fishery

    USGS Publications Warehouse

    Bartholow, John M.

    1991-01-01

    Water temperature is almost certainly a limiting factor in the maintenance of a self-sustaining rainbow trout (Oncorhynchus mykiss, formerly Salmo gairdneri) and brown trout (Salmo trutta) fishery in the lower reaches of the Cache la Poudre River near Fort Collins, Colorado, USA. Irrigation diversions dewater portions of the river, but cold reservoir releases moderate water temperatures during some periods. The US Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP) was applied to a 31-km segment of the river using readily available stream geometry and hydrological and meteorological data. The calibrated model produced satisfactory water temperature predictions (R2=0.88,P3/sec would be needed to maintain suitable summer temperatures throughout most of the study area. Such flows would be especially beneficial during weekends when current irrigation patterns reduce flows. The model indicated that increasing the riparian shade would result in little improvement in water temperatures but that decreasing the stream width would result in significant temperature reductions. Introduction of a more thermally tolerant redband trout (Oncorhynchus sp.), or smallmouth bass (Micropterus dolomieui) might prove beneficial to the fishery. Construction of deep pools for thermal refugia might also be helpful.

  6. Thermal regime of shallow water bodies in the coastal tundra zone of the Hudson Bay Lowlands

    NASA Astrophysics Data System (ADS)

    Duguay, C. R.; Soliman, A. S.; Macrae, M. L.

    2011-12-01

    Many shallow lakes and ponds of the Arctic/sub-Arctic contain thick, organic-rich sediments, which have the potential to release significant amounts of CO2 or CH4 to the atmosphere if sediment decomposition rates increase in response to warmer temperatures caused by global warming. This may be exacerbated by a deepening of the seasonal sediment thaw depth in small water bodies that are underlain by permafrost. An important step in linking climatic conditions to rates of organic matter decomposition and gas production from shallow water bodies is an improved understanding of the thermal properties of lake sediments and how sediment temperatures fluctuate in response to changing air temperatures. This knowledge is also important if the ratio of terrestrial to aquatic landscape units in cold regions changes under a warmer climate. One approach that has been used in terrestrial permafrost environments is the examination of how mean annual permafrost surface temperature deviates from mean annual 2-m screen height air temperature (MAAT). The offset between MAAT and the mean annual sediment surface temperature (MASST) has been found to be much larger in deep aquatic systems (greater than 10 m) than in terrestrial permafrost systems due to the presence of the water column that can efficiently transfer heat through mixing. However, the efficiency of heat transfer in shallow water bodies is expected to larger in summer (thawed) than in winter (frozen) conditions, when thermal energy must move by conduction alone. The present study examined the efficiency of sediment heat transfer in shallow water bodies (less than 3 m) during summer and winter periods. Air, sediment and water temperatures of three shallow water bodies in the coastal tundra zone of the Hudson Bay Lowlands near Churchill, Manitoba, Canada were monitored (December 2009-August 2011). Arrays of thermistors and heat pulse probes were placed at 10 cm increments between 20 cm above the water/sediment interface and

  7. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    SciTech Connect

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  8. Redefining Thermal Regimes to Design Reserves for Coral Reefs in the Face of Climate Change

    PubMed Central

    Chollett, Iliana; Enríquez, Susana; Mumby, Peter J.

    2014-01-01

    Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) using the best proxy for acclimatization currently available; (3) including information from several bleaching events, which frequency is likely to increase in the future; (4) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress. PMID:25333380

  9. Redefining thermal regimes to design reserves for coral reefs in the face of climate change.

    PubMed

    Chollett, Iliana; Enríquez, Susana; Mumby, Peter J

    2014-01-01

    Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) using the best proxy for acclimatization currently available; (3) including information from several bleaching events, which frequency is likely to increase in the future; (4) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress.

  10. Exploratory models of the earth's thermal regime during segregation of the core

    NASA Technical Reports Server (NTRS)

    Davies, G. F.

    1980-01-01

    Some simple exploratory theoretical models of the thermal effects of core segregation have been investigated, assuming an initially homogeneous earth and including convective heat transport through a 'parameterized convection' approximation. The results indicate that either (1) mantle temperatures 30% or more above present values may have resulted from the gravitational energy released during core segregation, (2) the earth retained very little of its accretional energy, (3) core segregation lasted for one billion years or more, or (4) the earth accreted heterogeneously. Option 3 seems to be precluded by terrestrial lead isotope data, and the alternatives each raise substantial questions concerning the mechanics, chemistry, and petrology of the earth's early history. There is no recognized evidence for the early hot phase of option 1, and option 4 implies, among other things, an analogous early hot phase. Although it has not been favored, option 2 may be viable.

  11. Influence Of Clear-cutting On Thermal and hydrological Regime In The Active Layer Near Yakutsk, Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Kobayashi, Y.; Machimura, T.; Fedorov, A. N.; Fukuda, M.

    2004-12-01

    Thermal and hydrological conditions in the active layer were investigated simultaneously at a mature larch forest (control site) and a cutover, which experienced clear-cutting in November 2000 during the thawing periods from 2001 to 2003, near Yakutsk, Eastern Siberia. The two sites were located about 100m apart and the cutover was formerly a part of the control larch forest site. The aims were to clarify the characteristics of heat and water budget in the active layer, and to assess the influence of clear-cutting on permafrost and active layer conditions, based on field observations at both intact and clear-cut forest. Clear-cutting enhanced ground thawing and the difference in the active layer thickness between the forest and the cutover (1-year) was 14cm. The soil water content drastically decreased at the forest, while that at the cutover was retained in during the first thawing season after clear-cutting. Marked changes in the active layer conditions were limited only to the first thawing season. The difference in the maximum thaw depth did not expand significantly in the second thawing season despite the increased ground heat flux at the cutover site. Thermal and hydrological analyses of the active layer revealed that the storage of latent heat was a predominant component in the energy balance in the active layer. Thus, the soil moisture condition, especially spring ice content in the active layer, plays an important role in controlling the energy balance of the active layer. Further increases in the maximum thaw depth at the cutover site were inhibited by the thermal inertial effect of the larger amount of ice in the second spring after disturbance.

  12. Hotsotpots and hot moments; the control of structural heterogeneity on the thermal regime of the peatland soil-atmosphere interface.

    NASA Astrophysics Data System (ADS)

    Leonard, Rhoswen; Moore, Paul; Kettridge, Nicholas; Krause, Stefan; Devito, Kevin; Waddington, James Michael

    2017-04-01

    Peat surface temperature acts as a master variable driving non-linear terrestrial biogeochemical, ecohydrological, and micrometeorological processes, inducing short-lived extremes or spatially isolated events across heterogeneous peatland surfaces. Changes to ecosystem structure such as canopy removal may change the temperature extremes and spatio-temporal location of these non-linear processes. In order to understand the impact of structural disturbances on peat surface thermal regimes, we simulate how different ecosystem structural layers (i.e. tree layer, lower vascular layer, bryophyte layer, micro topography) influence the spatial and temporal variability of peatland surface temperatures on a carbon rich forested peatland system. Simulations of peat temperatures are validated using more than 1.9 million peat surface temperature measurements across a 10 m2 area of peatland under un-disturbed, trees removed, and lower vascular vegetation removed conditions (through the use of Fibre Optic Distributed Temperature Sensing Technology). The simulations of peat temperature using different structural complexity allows us to determine how ecosystem layers may simplify or complicate surface thermal patterns and promote or dampen temperature extremes. Our study provides important insight into spatial and temporal variability in peatland biogeochemical functioning and the production of hot spots or hot moments in peatland carbon storage or export.

  13. Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform

    USGS Publications Warehouse

    Artemieva, I.M.

    2003-01-01

    A new mechanism for Paleozoic subsidence of the Russian, or East European, platform is suggested, since a model of lithosphere tilting during the Uralian subduction does not explain the post-Uralian sedimentation record. Alternatively, I propose that the Proterozoic and Paleozoic rifting (when a platform-scale Central Russia rift system and a set of Paleozoic rifts were formed) modified the structure and composition of cratonic lithosphere, and these tectono-magmatic events are responsible for the post-Uralian subsidence of the Russian platform. To support this hypothesis, (a) the thermal regime and the thickness of the lithosphere are analyzed, and (b) lithospheric density variations of non-thermal origin are calculated from free-board constraints. The results indicate that Proterozoic and Paleozoic rifting had different effects on the lithospheric structure and composition. (1) Proterozoic rifting is not reflected in the present thermal regime and did not cause significant lithosphere thinning (most of the Russian platform has lithospheric thickness of 150-180 km and the lithosphere of the NE Baltic Shield is 250-300 km thick). Paleozoic rifting resulted in pronounced lithospheric thinning (to 120-140 km) in the southern parts of the Russian platform. (2) Lithospheric density anomalies suggest that Proterozoic-Paleozoic rifting played an important role in the platform subsidence. The lithospheric mantle of the Archean-early Proterozoic part of the Baltic Shield is ??? 1.4 ?? 0.2% less dense than the typical Phanerozoic upper mantle. However, the density deficit in the subcrustal lithosphere of most of the Russian platform is only about (0.4-0.8) ?? 0.2% and decreases southwards to ???0%. Increased densities (likely associated with low depletion values) in the Russian platform suggest strong metasomatism of the cratonic lithosphere during rifting events, which led to its subsidence. It is proposed that only the lower part of the cratonic lithosphere was

  14. Soil thermal regime on ice-free areas in Livingston Island and James Ross Island, Antarctic Peninsula region

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Oliva, Marc; Láska, Kamil; Ruiz-Fernández, Jesús; Ángel de Pablo, Miguel; Vieira, Gonçalo; Ramos, Miguel; Nývlt, Daniel

    2016-04-01

    Permafrost and active layer are considered prominent components of the Cryosphere, which react very sensitively to small climate variations. The Antarctic Peninsula (AP) region is considered as one of the fastest warming regions on Earth, where mean annual air temperature locally increased more than 2.5°C over the last 60 years. Significant climate differences are found between the eastern and western sides of the AP. While mean annual air temperatures (MAAT) oscillate around -1 to -2 °C and precipitation reach 800 mm w.e. year-1 in the western AP, the MAAT in the eastern AP are below -6 °C and precipitation does not exceed 500 mm. These differences determine different permafrost thickness and spatial distribution in these two regions, as well as diverse patterns of active layer dynamics. With the purpose to better understand the factors controlling the soil thermal regime in maritime permafrost environments, we examine data from 2014 acquired from several sites in Livingston Island (western AP) and James Ross Island (eastern AP). The study sites show similar characteristics in terms of topography (slope < 7°) and altitude (50 to 100 m a.s.l.). Air temperature, soil thermal regime at 5 cm and 75 cm depth, as well as active layer thickness and its evolution were analysed. Mean air temperature over the study period varied between -2.6 to -2.7 °C on the different monitoring sites in Livingston Island, while in James Ross Island ranged from -7.0 to -7.9 °C. Mean soil temperature at 5 cm depth was slightly higher than air temperature in both areas: -0.7 to -1.3 °C in Livingston Island and -6.2 to -6.3 °C in James Ross Island; the same occurred for soil temperature at 75 cm: -0.4 to -0.7 °C in Livingston Island and -6.0 to -6.6 °C James Ross Island. Significantly lower values of mean daily amplitude of soil temperature at 5 cm depth and the freezing n-factor values observed during the freezing season on Livingston Island suggest a pronounced insulating effect

  15. Upper temperature tolerance of loach minnow under acute, chronic, and fluctuating thermal regimes

    USGS Publications Warehouse

    Widmer, A.M.; Carveth, C.J.; Bonar, Scott A.; Simms, J.R.

    2006-01-01

    We used four methods to estimate the upper lethal temperature of loach minnow Rhinichthys cobitis: the lethal thermal method (LTM), chronic lethal method (CLM), acclimated chronic exposure (ACE) method with static temperatures, and ACE method with diel temperature fluctuations. The upper lethal temperature of this species ranged between 32??C and 38??C, depending on the method and exposure time; however, temperatures as low as 28??C resulted in slowed growth compared with the control groups. In LTM trials, we increased temperatures 0.3??C/min and death occurred at 36.8 ?? 0.2??C (mean ?? SE) for fish (37-19 mm total length) acclimated to 30??C and at 36.4 ?? 0.07??C for fish acclimated to 25??C. In CLM trials, temperatures were increased more slowly (1??C/d), allowing fish to acclimate. Mean temperature at death was 33.4 ?? 0.1??C for fish 25-35 mm and 32.9 ?? 0.4??C for fish 45-50 mm. In the ACE experiment with static temperatures, we exposed fish for 30 d to four constant temperatures. No fish (20-40 mm) survived beyond 30 d at 32??C and the 30-d temperature lethal to 50% of the test animals was 30.6??C. Growth at static 28??C and 30??C was slower than growth at 25??C, suggesting that fish were stressed at sublethal temperatures. In ACE trials with diel temperature fluctuations of 4,6, and 10??C and a 32??C peak temperature, over 80% of fish (20-40 mm) survived 30 d. Although brief exposures to 32??C were not lethal, the growth of fish in the three fluctuating-temperature treatments was significantly less than the growth at the ambient temperature (25-29??C). To minimize thermal stress and buffer against temperature spikes, we recommend that loach minnow habitat be managed to avoid water temperatures above 28??C. ?? Copyright by the American Fisheries Society 2006.

  16. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  17. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    PubMed

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10(4) m(2) to ∼10(7) m(2). Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10(2) m(2). We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m(-2) K(-1) s(-1/2) (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  18. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements

    PubMed Central

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-01-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m−2 K−1 s−1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars. PMID:26213666

  19. Estimation of the effect of thermal convection and casing on the temperature regime of boreholes: a review

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Kutasov, I. M.

    2011-03-01

    In a vertical borehole, free heat convection arises when the temperature gradient equals or exceeds the so-called critical gradient. The critical temperature gradient is expressed through the critical Rayleigh number and depends on two parameters: (a) the ratio of formation (casings) to fluid (gas) conductivities (λf/λ) and (b) the convective parameter of the fluid. Both these parameters depend on the temperature (depth). An empirical equation for the critical Rayleigh number as a function of the ratio λf/λ is suggested. For the 0-100 °C range, empirical equations for convective parameters of water and air are proposed. The analysis of the published results of field investigations in deep boreholes and modelling shows that the temperature disturbances caused by thermal convection do not exceed 0.01-0.05 °C. Thus, in deep wells the temperature deviations due to thermal convection are usually within the accuracy of the temperature surveys. However, due to convection cells the geothermal gradient cannot be determined with sufficient accuracy for short well sections. In shallow boreholes the effect of thermal convection is more essential (up to 3-5 °C). To reduce the effect of convection on the temperature regime in shallow observational wells, it is necessary to reduce the diameter of the wellbores and use well fillers (fluids and gases) with low values of the convective parameters. The field observations and numerical calculations indicate that the distorting effect due to casing pipes is small and its influence is localized to the ends of the pipes, and this effect is independent of time.

  20. Multiscale modeling of binary polymer mixtures: Scale bridging in the athermal and thermal regime

    NASA Astrophysics Data System (ADS)

    McCarty, J.; Guenza, M. G.

    2010-09-01

    Obtaining a rigorous and reliable method for linking computer simulations of polymer blends and composites at different length scales of interest is a highly desirable goal in soft matter physics. In this paper a multiscale modeling procedure is presented for the efficient calculation of the static structural properties of binary homopolymer blends. The procedure combines computer simulations of polymer chains on two different length scales, using a united atom representation for the finer structure and a highly coarse-grained approach on the mesoscale, where chains are represented as soft colloidal particles interacting through an effective potential. A method for combining the structural information by inverse mapping is discussed, allowing for the efficient calculation of partial correlation functions, which are compared with results from full united atom simulations. The structure of several polymer mixtures is obtained in an efficient manner for several mixtures in the homogeneous region of the phase diagram. The method is then extended to incorporate thermal fluctuations through an effective χ parameter. Since the approach is analytical, it is fully transferable to numerous systems.

  1. Thermal regime, hydrocarbon maturation and geodynamic events along the western margin of India since late Cretaceous

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Agrawal, P. K.

    2000-11-01

    The passive continental margin of western India and the adjacent offshore region are associated with a transitional type thinned crust. It contains several sedimentary basins where substantial recoverable oil/gas reserves exist. The northern Cambay graben, northern and eastern parts of the Bombay offshore and the Konkan coast region that are situated close to western margin exhibit reasonably high heat flow and geothermal gradients beneath which the asthenosphere is upwarped to a depth of 30-70 km. Temperatures at the depth of 3 km are estimated to be in the range of 105-260°C. Curie depth analysis from MAGSAT studies in an area between latitudes 11°N and 19°N and longitudes 65°E and 73°E also indicates a high geothermal gradient of about 30°C/km within the upper crustal column. We suggest that the occurrence of oil and gas in these areas may be due to catastrophic and geodynamic events which took place in the last 130 Ma. India's super-mobility, continental breakups, possible bolide impact and Deccan volcanic episode at the western margin resulted in substantial lithospheric heating, accompanied by subcrustal melting and rise of isotherms, to eventually enhance the hydrocarbon maturation process. The study indicates that all other sedimentary basins situated on the western margin are also thermally mature and may have high potential for the occurrence of hydrocarbons.

  2. Specific features of thermal regimes in rectangular laser slabs under steady-state pumping

    SciTech Connect

    Alpat'ev, A N; Smirnov, V A; Shcherbakov, Ivan A

    2010-01-31

    We continue to investigate the phenomena related to smoothing of temperature profiles in rectangular laser slabs and to an increase in the thresholds of their breakdown under optical pumping with variations in the slab optical density [the effect of smoothing of thermooptical inhomogeneities (STOI effect)]. It is found that the STOI effect is observed not only with increasing but also with decreasing optical density if this occurs due to a decrease in the sample thickness. The dependence of the maximum temperature difference inside the slab on its optical density at the instant of its thermal breakdown is calculated. It is shown that the variations in the optical density caused by variations in both the absorption coefficient and geometric dimensions of the slab differently affect the order of occurrence of two undesirable events - destruction of the slab or boiling of cooling water - with increasing pump power. The calculated relationships reveal two optical density regions corresponding to different orders of occurrence of these events. The maximum allowable temperatures in each region are determined. (active media)

  3. Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae).

    PubMed

    Falfushynska, H; Gnatyshyna, L; Yurchak, I; Ivanina, A; Stoliar, O; Sokolova, I

    2014-12-01

    Elevated temperature and pollution are common stressors in freshwater ecosystems. We study cellular stress response to acute warming in Anodonta anatina (Unionidae) from sites with different thermal regimes and pollution levels: a pristine area and an agriculturally polluted site with normal temperature regimes (F and A, respectively) and a polluted site with elevated temperature (N) from the cooling pond of an electrical power plant. Animals were exposed to different temperatures for 14 days and stress response markers were measured in gills, digestive gland and hemocytes. Mussels from site N and A had elevated background levels of lactate dehydrogenase activity indicating higher reliance on anaerobic metabolism for ATP production and/or redox maintenance. Exposure to 25°C and 30°C induced oxidative stress (indicated by elevated levels of lipid peroxidation products) in digestive gland and gills of mussels from A and F sites, while in mussels from N sites elevated oxidative stress was only apparent at 30°C. Temperature-induced changes in levels of antioxidants (superoxide dismutase, metallothioneins and glutathione) were tissue- and population-specific. Acute warming led to destabilization of lysosomal membranes and increased frequencies of nuclear lesions in mussels from F and A sites but not in their counterparts from N site. Elevated temperature led to an increase in the frequency of micronuclei in hemocytes in mussels from F and A sites at 25°C and 30°C and in mussels from N site at 30°C. The mussels from N site also demonstrated better survival at elevated temperature (30°C) than their counterparts from the F and A sites. Taken together, these data indicate that long-term acclimation and/or adaptation of A. anatina to elevated temperatures result in increased thermotolerance and alleviate stress response to moderate temperature rise. In contrast, extreme warming (30°C) is harmful to mussels from all populations indicating limit to this induced

  4. Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: Analytical results in the regime of ground-state cooling

    NASA Astrophysics Data System (ADS)

    Jacobs, Kurt; Nurdin, Hendra I.; Strauch, Frederick W.; James, Matthew

    2015-04-01

    We show that in the regime of ground-state cooling, simple expressions can be derived for the performance of resolved-sideband cooling—an example of coherent feedback control—and optimal linear measurement-based feedback cooling for a harmonic oscillator. These results are valid to leading order in the small parameters that define this regime. They provide insight into the origins of the limitations of coherent and measurement-based feedback for linear systems, and the relationship between them. These limitations are not fundamental bounds imposed by quantum mechanics, but are due to the fact that both cooling methods are restricted to use only a linear interaction with the resonator. We compare the performance of the two methods on an equal footing—that is, for the same interaction strength—and confirm that coherent feedback is able to make much better use of the linear interaction than measurement-based feedback. We find that this performance gap is caused not by the back-action noise of the measurement but by the projection noise. We also obtain simple expressions for the maximal cooling that can be obtained by both methods in this regime, optimized over the interaction strength.

  5. Cyclic CO2 emissions during the high temperature pulse of fluctuating thermal regime in eye-pigmented pupae of Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Megachile rotundata, the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the bees’ development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the be...

  6. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: To better understand responses of benthic communities to climate change

    NASA Astrophysics Data System (ADS)

    Bensoussan, Nathaniel; Romano, Jean-Claude; Harmelin, Jean-Georges; Garrabou, Joaquim

    2010-04-01

    In the North West Mediterranean (NWM), mass mortality events (MME) of long-lived benthic species that have occurred over the last two decades have been related to regional warming trend. Gaining robust data sets on thermal regimes is critical to assess conditions to which species have adapted, detect extreme events and critically evaluate biological impacts. High resolution temperature ( T) time series obtained during 1999-2006 from 5 to 40 m depth at four contrasted sites of the NWM were analyzed: Area Marina Protegida de les Illes Medes (NE Spain), Riou (Marseilles, France), Parc National de Port-Cros (France), and Réserve Naturelle de Scandola (Corsica, France). The seasonal pattern showed winter T around 11-13 °C, and summer T mainly around 22-24 °C near surface to 18-20 °C at depth. Stratification dynamics showed recurrent downwellings (>40 m) at Medes, frequent observation (1/3rd of the summer) of deep and cold upwelled waters at Riou, while Scandola exhibited stable summer stratification and highest suprathermoclinal T. Port-Cros showed an intermediate regime that oscillated between Riou and Scandola depending on the occurrence of northern winds. Data distribution study permitted to identify and to characterize 3 large scale positive anomalies concomitant with the mass mortality outbreaks of summers 1999, 2003 and 2006. The analysis of biological surveys on gorgonian populations showed significant impacts during the 3 years with temperature anomalies. Besides the degree of impact showed inter-annual differences which could be related to different T conditions concomitant to mortality events, from slight increase in T extreme of only 1-2 °C over short duration, to lengthened more classical summer conditions. Our results therefore support the hypothesis that shallow NWM populations of long-lived benthic species are living near their upper thermal thresholds. Given actual trends and projections in NWM, the repetition of new MMEs in the next decades is

  7. Thermal performance of gaseous-helium-purged tank-mounted multilayer insulation system during ground-hold and space-hold thermal cycling and exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An experimental investigation was conducted to determine (1) the ground-hold and space-hold thermal performance of a multilayer insulation (MLI) system mounted on a spherical, liquid-hydrogen propellant tank and (2) the degradation to the space-hold thermal performance of the insulation system that resulted from both thermal cycling and exposure to moisture. The propellant tank had a diameter of 1.39 meters (4.57ft). The MLI consisted of two blankets of insulation; each blanket contained 15 double-aluminized Mylar radiation shields separated by double silk net spacers. Nineteen tests simulating basic cryogenic spacecraft thermal (environmental) conditions were conducted. These tests typically included initial helium purge, liquid-hydrogen fill and ground-hold, ascent, space-hold, and repressurization. No significant degradation of the space-hold thermal performance due to thermal cycling was noted.

  8. A case for using ground-based thermal inertia measurements to detect Martian caves.

    PubMed

    Groemer, Gernot; Foresta, Luca; Turetschek, Thomas; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Martian caves are regarded as one of the most interesting locations in which to search for life on the planet. Data obtained during the MARS2013 expedition at Hamar Laghdad Ridge in the Tafilalt region of Morocco indicate that even small cavities can display thermal behavior that is characteristic for caves. For example, temperature in a cavity equaled 14°C±0.1°C before sunrise, which was higher than the temperature of the ambient air (10°C±0.1°C) and proximate rocks (9°C±0.1°C) at the same time. Within 30 min after sunrise, when the temperature of surrounding rocks corresponded to 15°C, this thermal relationship reversed. Measurements were conducted under simulated spaceflight conditions, including near-real-time interpretation of data that were acquired in a complex flight planning environment. We conclude that using ground-based thermal contrast measurements, in 7-14 μm band before and after sunset, is an effective method for Mars astronauts to identify caves, possibly superior to usage of space-based or ground-penetrating data.

  9. THERMAL ESCAPE IN THE HYDRODYNAMIC REGIME: RECONSIDERATION OF PARKER's ISENTROPIC THEORY BASED ON RESULTS OF KINETIC SIMULATIONS

    SciTech Connect

    Volkov, Alexey N.; Johnson, Robert E.

    2013-03-10

    The one-dimensional steady-state problem of thermal escape from a single-component atmosphere of mon- and diatomic gases is studied in the hydrodynamic (blow-off) regime using the direct simulation Monte Carlo method for an evaporative-type condition at the lower boundary. The simulations are performed for various depths into an atmosphere, indicated by a Knudsen number, Kn{sub 0}, equal to the ratio of the mean free path of molecules to the radial position of the source surface, ranging from 10 to 10{sup -5}, and for the range of the source Jeans parameter, {lambda}{sub 0}, equal to the ratio of gravitational and thermal energies, specific to blow-off. The results of kinetic simulations are compared with the isentropic model (IM) and the Navier-Stokes model. It is shown that the IM can be simplified if formulated in terms of the local Mach number and Jeans parameter. The simulations predict that at Kn{sub 0} < {approx} 10{sup -3} the flow includes a near-surface non-equilibrium Knudsen layer, a zone where the flow can be well approximated by the IM, and a rarefied far field. The corresponding IM solutions, however, only approach Parker's critical solution as {lambda}{sub 0} approaches the upper limit for blow-off. The IM alone is not capable for predicting the flow and requires boundary conditions at the top of the Knudsen layer. For small Kn{sub 0}, the scaled escape rate and energy loss rate are found to be independent of {lambda}{sub 0}. The simulation results can be scaled to any single-component atmosphere exhibiting blow-off if the external heating above the lower boundary is negligible, in particular, to sublimation-driven atmospheres of Kuiper belt objects.

  10. MULTISPECTRAL THERMAL IMAGER SCIENCE, DATA PRODUCT AND GROUND DATA PROCESSING OVERVIEW.

    SciTech Connect

    J. SZYMANSKI; L. BALICK; ET AL

    2001-04-01

    The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The system also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data analysis and interpretation . Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. This paper describes the MTI data products and ground processing, as well as the ''how to'' aspects of starting a data center from scratch.

  11. Testing the reference Moon model in respect of the thermal regime and chemical composition of the mantle: Thermodynamics versus seismology

    NASA Astrophysics Data System (ADS)

    Kuskov, O. L.; Kronrod, V. A.; Kronrod, E. V.

    2016-05-01

    The VPREMOON seismic reference Moon model (Garcia et al., 2011) has been tested with respect to the thermal regime and chemical composition of the mantle. Based on a self-consistent thermodynamic approach and petrological models of the lunar mantle covering a wide range of concentrations of CaO, Al2O3, and FeO, we convert the P- and S-wave velocity profiles to the temperature-depth profiles. The solution procedure relies on the method of the Gibbs free energy minimization and the equations of state for the mantle material which take into account the effects of phase transformations, anharmonicity, and anelasticity. We find that regardless of the chemical composition, the positive P- and S-wave velocity gradient in the lunar mantle leads to a negative temperature gradient, which has no physical basis. For adequate mantle temperatures, the P- and S-wave velocities should remain almost constant or slightly decrease with depth (especially V S ) as a result of the effects of the temperature, which grows faster than pressure. These findings underscore the importance of the relationship of the thermodynamics and physics of minerals with seismology.

  12. Numerical modeling of the influence of cool skin on the heat balance and thermal regime of a water body

    NASA Astrophysics Data System (ADS)

    Chechin, D. G.; Repina, I. A.; Stepanenko, V. M.

    2010-08-01

    The influence that cool skin has on the energy exchange between the atmosphere and the ocean is investigated in this work. For this purpose, a series of numerical experiments with the use of the one-dimensional LAKE model of a water body were performed. Three types of cold-skin parameterization were used in this model. The data of in situ measurements in the coastal zone of the Black Sea, in the Arctic Ocean, and over Lake Sparkling served as the boundary and initial conditions. It has been established from the results of experiments that the LAKE model with the incorporated parameterization of the cool skin successfully reproduces cold-skin characteristics, namely, the difference between the temperature of the cool skin surface and the water temperature below the skin. The results of numerical experiments are within the variability of the results of in situ measurements. It has been shown that the presence of a cool skin reduces the heat losses of a body of water. The numerical experiments showed that the presence of a cool skin can change the thermal regime of a water body and its stratification by changing the heat balance at the surface. This result can be important for the modeling of many processes inside a body of water and at its surface, for example, gas and heat exchange.

  13. Ground-based microwave complex for remote sounding of middle atmosphere thermal structure and ozone concentration

    NASA Astrophysics Data System (ADS)

    Shvetsov, Alexander; Kulikov, Mikhail; Feigin, Alexander; Karashtin, Dmitry; Krasilnikov, Alexander; Mukhin, Dmitry; Bolshakov, Oleg; Fedoseev, Lev; Ryskin, Vitaly; Belikovich, Michael; Kukin, Lev

    2012-07-01

    Existing methods of remote sensing of the thermal structure of the atmosphere and the ozone layer are based on measurements from space. However, having great advantage in global coverage of the Earth they cannot provide high spatial and temporal resolution, required to study rapidly occurring phenomena. This problem can be solving by ground-based system of remote sounding. For this purpose ground-based microwave complex for remote sensing of middle atmosphere thermal structure and ozone concentration have been developed in the Institute of Applied Physics of the Russian Academy of Sciences. The complex consists of the microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in the frequency range that include the rotation transition of ozone molecules 6 _{1.5}-6 _{0.6} with resonance frequency 110.836 GHz. Operating frequency range of the stratospheric thermometer is 52.5-54.5 GHz and includes low frequency edge of 5 mm molecular oxygen absorption bands and some relatively weak lines of O _{2} resolved from the ground. Digital fast Fourier transform spectrometer developed by ``Acqiris'' company is employed for signal spectral analysis on intermediate frequency in both spectroradiometers. The spectrometer has frequency range 0.05-1 GHz and realizes the effective resolution about 61~KHz. Retrieval of the atmospheric temperature and ozone profiles is made on the basis of results of the radiation spectrum measurements. The Bayesian approach method is used for combined retrieval of stratosphere temperature and ozone profiles. This method allows statistically correct inclusion of both the measurement noise and the a priori information on the reconstructed profile needed for regularization of the problem. First simultaneous ground-based measurements of self-radiation of atmospheric ozone and oxygen have been made in January, 2012 during the sudden stratospheric warming above Nizhny Novgorod, Russia. Temperature and

  14. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  15. Thermal power and heat energy of cloud-to-ground lightning process

    SciTech Connect

    Wang, Xuejuan; Yuan, Ping; Xue, Simin; Cen, Jianyong

    2016-07-15

    A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with the peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.

  16. Thermal Contributions to the Degradation of Ground-Laboratory- and Space-Irradiated Teflon Investigated

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Martin, Morgana

    2003-01-01

    The Hubble Space Telescope (HST) is covered with two primary types of thermal control materials, radiators and multilayer insulation blankets, which passively control temperatures during orbit. Both of these thermal control materials utilize back-surface metalized Teflon FEP (DuPont, fluorinated ethylene propylene) as the exterior (spacefacing) layer because of its excellent optical properties (low solar absorptance and high thermal emittance). The aluminized-FEP (Al-FEP) outermost layer of the multilayer insulation blankets on the HST has become embrittled while in space, resulting in severe on-orbit cracking (see the photographs). During the second servicing mission, an extremely embrittled piece of Al-FEP was retrieved that had curled, exposing the backsurface aluminum to space (see the photograph on the right). Because the aluminum surface has a lower thermal emittance than the FEP, this curled piece reached 200 C during orbit, 150 C higher than the nominal temperature extreme. To better understand the effect of temperature on the rate of degradation, and on the mechanism of degradation, of this insulation material in the low-Earth-orbit environment, researchers at the NASA Glenn Research Center conducted experiments to determine the effect of heating on the degradation of FEP that has been irradiated in a ground laboratory facility or in space on the HST. For this study, Teflon FEP retrieved from the HST during the third servicing mission after 9.7 years of space exposure was provided to Glenn by the NASA Goddard Space Flight Center.

  17. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  18. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  19. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    PubMed

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  20. Distribution of Io's Volcanic Thermal Emission From Galileo and Ground-Based Data

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Davies, A. G.; Matson, D.; Johnson, T. V.; Williams, D. A.; Radebaugh, J.

    2011-12-01

    Detections of Io's hot spots and identification of volcanic features have been catalogued by various workers [e.g., 1-4]. However, to understand the role played by volcanism in global heat transport, thermal emission from Io's volcanoes has to be quantified, locally, regionally and globally. Only then can robust estimates be made of volcanic advection, which may reveal internal heating patterns controlled by the evolving tidal resonance between Io, Europa and Ganymede. We have completed an analysis of all suitable spacecraft data and, using additional ground-based data, have quantified the thermal emission from all of Io's volcanoes during the Galileo epoch down to the limit of detection [5-7]. Galileo identified many dark features on Io that did not exhibit obvious anomalous thermal emission, yet their low albedo suggested that these features were at least warm (cool, high albedo sulphurous deposits had not formed on them). We used dark areas identified from the recently-published Io Global Map [3] and a knowledge of the detection limit of the Galileo NIMS instrument to quantify the thermal emission from these areas. In all, our analysis includes 272 individual thermal sources yielding ~60 TW. Our "snapshot" of global volcanic activity shows that Io's paterae yield ~80% of this amount, with a preponderance of thermal emission emanating from the northern hemisphere. This is strongly biased by Loki Patera and, to a lesser extent, by recent outburst locations. Of the remaining identified hot spot thermal emission, ~15% comes from active or recent lava flow fields, and the remaining 5% comes from massive outburst eruptions (some in paterae) and very small hot spots. The energy accounted for makes up ~60% of Io's total thermal emission of ~100 TW [8]. It is possible that a multitude of very small hot spots beneath instrument detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds may be responsible for the unaccounted heat flow

  1. Using thermal-infrared imagery to delineate ground-water discharge

    USGS Publications Warehouse

    Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.

    1996-01-01

    On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface

  2. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days of incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to

  3. Statistical significant changes in ground thermal conditions of alpine Austria during the last decade

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2016-04-01

    Longer data series (e.g. >10 a) of ground temperatures in alpine regions are helpful to improve the understanding regarding the effects of present climate change on distribution and thermal characteristics of seasonal frost- and permafrost-affected areas. Beginning in 2004 - and more intensively since 2006 - a permafrost and seasonal frost monitoring network was established in Central and Eastern Austria by the University of Graz. This network consists of c.60 ground temperature (surface and near-surface) monitoring sites which are located at 1922-3002 m a.s.l., at latitude 46°55'-47°22'N and at longitude 12°44'-14°41'E. These data allow conclusions about general ground thermal conditions, potential permafrost occurrence, trend during the observation period, and regional pattern of changes. Calculations and analyses of several different temperature-related parameters were accomplished. At an annual scale a region-wide statistical significant warming during the observation period was revealed by e.g. an increase in mean annual temperature values (mean, maximum) or the significant lowering of the surface frost number (F+). At a seasonal scale no significant trend of any temperature-related parameter was in most cases revealed for spring (MAM) and autumn (SON). Winter (DJF) shows only a weak warming. In contrast, the summer (JJA) season reveals in general a significant warming as confirmed by several different temperature-related parameters such as e.g. mean seasonal temperature, number of thawing degree days, number of freezing degree days, or days without night frost. On a monthly basis August shows the statistically most robust and strongest warming of all months, although regional differences occur. Despite the fact that the general ground temperature warming during the last decade is confirmed by the field data in the study region, complications in trend analyses arise by temperature anomalies (e.g. warm winter 2006/07) or substantial variations in the winter

  4. Monitoring of active layer thermal regime and depth on CALM-S site, James Ross Island, Eastern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Kňažková, Michaela; Nývlt, Daniel; Láska, Kamil; Mueller, Carsten W.; Ondruch, Jakub

    2017-04-01

    ) and -6.7 °C (2015), while the mean annual ground temperature at 5 cm ranged from -5.6 °C (2013) to -5.3 °C (2014). Thawing season started in mid-November between 17th (2013/14) and 24th (2014/15) and ended at the end of February (22nd in 2014/15) and beginning of March (7th in 2013/14). The maximum active layer thickness determined from 0°C isotherm varied from 86 to 87 cm at profile 1, while it reached only 51 to 65 cm at profile 2. The mean probed active layer depth varied between 66 cm (2013/4) and 78 cm (2014/15). The maximum probed active layer depth increased from 100 cm in 2014 to 113 cm in 2016. High variability of active layer depth across CALM-S site was caused by different ground thermal properties of Holocene marine terrace sand and Cretaceous clayey sandstones. These results differ significantly from another CALM-S sites in Antarctica, where the main factors affecting thawing depth variability were snow cover and topography. These results confirmed previous observation from James Ross Island, where variability of active layer depth was related primarily to different ground properties (texture, moisture, physical characteristic) then local climate or snow cover.

  5. Thermal ground-water discharge and associated convective heat flux, Bruneau-Grand View area, southwest Idaho

    USGS Publications Warehouse

    Young, H.W.; Lewis, R.E.; Backsen, R.L.

    1979-01-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho. The area has a rural population dependent on ground-water irrigation. Temperature of the ground water ranges from 15 C to more than 80 C. Ground water for irrigation is obtained from flowing and pumped wells. Discharge of thermal ground water from 104 irrigation wells and from 5 hot springs in 1978 was about 50,500 acre-feet. Convective heat flux from the geothermal system associated with this discharge was 4.97 x 10 to the 7th power calories per second. (Woodard-USGS)

  6. An epidemic model for the interactions between thermal regime of rivers and transmission of Proliferative Kidney Disease in salmonid fish

    NASA Astrophysics Data System (ADS)

    Carraro, Luca; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Strepparava, Nicole; Hartikainen, Hanna; Rinaldo, Andrea

    2015-04-01

    Proliferative kidney disease (PKD) affects salmonid populations in European and North-American rivers. It is caused by the endoparasitic myxozoan Tetracapsuloides bryosalmonae, which exploits freshwater bryozoans (Fredericella sultana) and salmonids as primary and secondary hosts, respectively. Incidence and mortality, which can reach up to 90-100%, are known to be strongly related to water temperature. PKD has been present in brown trout population for a long time but has recently increased rapidly in incidence and severity causing a decline in fish catches in many countries. In addition, environmental changes are feared to cause PKD outbreaks at higher latitude and altitude regions as warmer temperatures promote disease development. This calls for a better comprehension of the interactions between disease dynamics and the thermal regime of rivers, in order to possibly devise strategies for disease management. In this perspective, a spatially explicit model of PKD epidemiology in riverine host metacommunities is proposed. The model aims at summarizing the knowledge on the modes of transmission of the disease and the life-cycle of the parasite, making the connection between temperature and epidemiological parameters explicit. The model accounts for both local population and disease dynamics of bryozoans and fish and hydrodynamic dispersion of the parasite spores and hosts along the river network. The model is time-hybrid, coupling inter-seasonal and intra-seasonal dynamics, the former being described in a continuous time domain, the latter seen as time steps of a discrete time domain. In order to test the model, a case study is conducted in river Wigger (Cantons of Aargau and Lucerne, Switzerland), where data about water temperature, brown trout and bryozoan populations and PKD prevalence are being collected.

  7. Regional Stream Temperature Estimation Using Thermal Infrared Remote Sensing Images From Terra - ASTER And Ground Measurements

    NASA Astrophysics Data System (ADS)

    Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Kay, J. E.; Handcock, R. N.; Gillespie, A.; Booth, D. B.

    2001-12-01

    Stream temperature is a significant water quality concern in the Pacific Northwest, where warm water can be lethal for indigenous fish species and cold water refugia are essential for the survival of threatened and endangered salmon. This necessitates regional-scale assessments of water temperature for compliance monitoring. These assessments have, however, been limited by sparse sampling in both space and time using submerged temperature-recording sensors. In the Puget Sound region, for example, the State of Washington relied on periodic data collected at 76 stations to assess water quality conditions for 12,721 km of streams and rivers (i.e., one station for 167 km of stream). We are evaluating the utility of remotely sensed thermal infrared (TIR) and visible images of streams and stream corridors for increasing the data coverage for stream temperature analysis and assessment. If stream temperatures can be estimated from images with known and acceptable levels of confidence, then regional temperature assessments will be less sensitive to the uncertainty associated with sampling temperature at a relatively small number of ground stations. Stream temperatures, energy and water fluxes are monitored to evaluate their significance to the stream energy balance using a ground-based network of temperature data loggers, stream gauging stations, and meteorological observations. Radiant ("skin") temperatures of streams and rivers are recorded with point measurements to evaluate the relationship between the kinetic and the "skin" temperature of the water in various conditions. TIR images from Terra - ASTER of parts of the Green River basin, Washington State, are processed and analyzed to obtain spatially extensive "skin" water temperature, and to identify the types of stream that are amenable to satellite thermal infrared remote temperature monitoring.

  8. The Influences of Land Surface Properties on Soil Thermal Regimes in the Low Arctic of Northwestern Siberia

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Frost, G. V., Jr.; Matyshak, G. V.; Walker, D. A.; Meakem, V. M.

    2014-12-01

    Understanding the feedbacks among climate, permafrost, and vegetation is crucial for assessments of arctic ecosystem vulnerability and response to climate change, and for development of sustainable engineering and management methods associated with infrastructure. Vegetation, snow cover, and near-surface soil organic layers are key determinants in regulating the energy exchange between the atmosphere and the deeper soils. Here we present high-temporal resolution soil thermal regime data over annual time extents for multiple sites at two locations in the Low Arctic of northwestern Siberia. At a location near Nadym, Russia, we measured soil temperatures at various depths in the soil profile (down to 60 cm) at three sites: 1) a boreal forest stand with lichen understory and a shallow organic layer (8 cm), 2) a young, cryoturbated Sphagnum peatland with soil organic layers to 40 cm depth, and 3) an old Sphagnum peatland with deep organic soil horizons (58+ cm). At a location near Kharp, Russia, we measured soil temperatures at 5 and 20 cm depth for sites along a chronosequence of tall alder shrub expansion, from short-statured tundra to mature and old alder stands, with deeper organic layers. The deeper snow accumulation at the Nadym forest site kept winter soil temperatures dramatically warmer than the peatland soils, up to 8 °C difference, but the shading of the forest tended to cool the surface during the summer. The overall effect of the forest was cooler summer soils in the near-surface layers, yet warmer summer soils at the deeper layers (20-60 cm). The forest location had substantially greater thawing degree days at depth (20-60 cm), compared to the Sphagnum peatlands. At the Kharp site, mature alder shrub stands cooled summer soil temperatures relative to shorter tundra by up to 8 °C (at 20 cm depth), yet warmed winter soils by greater than 10 °C. Mature and old shrubland locations had reduced thawing degree days at 20 cm depth relative to short

  9. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  10. Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth

    SciTech Connect

    Kurzeja, R.J.

    2002-12-06

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

  11. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  12. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  13. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  14. Ground-based thermal imaging of groundwater flow processes at the seepage face

    NASA Astrophysics Data System (ADS)

    Deitchman, Richard S.; Loheide, Steven P.

    2009-07-01

    There is no existing method to quantitatively image groundwater processes along a seepage face. Thus, it is often difficult to quantify the magnitude and spatial variability of groundwater flux. The objective of this work is to assess the use of ground-based thermal remote sensing for fine-scale mapping of groundwater discharge and for locating the water table position along a stream bank seepage face. Seepage faces are poorly understood and often neglected in regional hydrologic studies though they likely exert significant influence on hydrologic and ecologic processes in riparian zones. Although the importance of riparian areas is broadly recognized, our ability to quantify hydrologic, ecologic and biogeochemical processes and ecosystem services is hampered by our inability to characterize spatially variable processes such as groundwater discharge. This work employs a new, transferable, non-invasive method that uses heat as a natural tracer to image spatially-variable groundwater flow processes and distinguish between focused and diffuse groundwater discharge to the surface. We report, for the first time, that thermal remote sensing of groundwater at the seepage face provides indirect imaging of both the saturated zone-unsaturated zone transition and groundwater flux at the centimeter scale, offering insight into flow heterogeneity.

  15. On-ground tests of the LISAPathFinder thermal diagnostics system

    NASA Astrophysics Data System (ADS)

    Lobo, A.; Nofrarias, M.; Ramos-Castro, J.; Sanjuán, J.

    2006-09-01

    Thermal conditions in the LTP, the LISA Technology Package, are required to be very stable, and in such environments precision temperature measurements are also required for various diagnostics objectives. A sensitive temperature gauging system for the LTP is being developed at IEEC, which includes a set of thermistors and associated electronics. In this paper, we discuss the derived requirements applying to the temperature sensing system, and address the problem of how to create in the laboratory a thermally quiet environment, suitable for performing meaningful on-ground tests of the system. The concept is a two-layer spherical body, with a central aluminium core for sensor implantation surrounded by a layer of polyurethane. We construct the insulator transfer function, which relates the temperature at the core to the laboratory ambient temperature, and evaluate the losses caused by heat leakage through connecting wires. The results of the analysis indicate that, in spite of the very demanding stability conditions, a sphere of outer diameter of the order 1 m is sufficient. We provide experimental evidence confirming the model predictions.

  16. Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor

    SciTech Connect

    Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

    2008-10-10

    We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

  17. Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM

    NASA Astrophysics Data System (ADS)

    Gilli, G.; Lebonnois, S.; González-Galindo, F.; López-Valverde, M. A.; Stolzenbach, A.; Lefèvre, F.; Chaufray, J. Y.; Lott, F.

    2017-01-01

    We present here the thermal structure of the upper atmosphere of Venus predicted by a full self-consistent Venus General Circulation Model (VGCM) developed at Laboratoire de Météorologie Dynamique (LMD) and extended up to the thermosphere of the planet. Physical and photochemical processes relevant at those altitudes, plus a non-orographic GW parameterisation, have been added. All those improvements make the LMD-VGCM the only existing ground-to-thermosphere 3D model for Venus: a unique tool to investigate the atmosphere of Venus and to support the exploration of the planet by remote sounding. The aim of this paper is to present the model reference results, to describe the role of radiative, photochemical and dynamical effects in the observed thermal structure in the upper mesosphere/lower thermosphere of the planet. The predicted thermal structure shows a succession of warm and cold layers, as recently observed. A cooling trend with increasing latitudes is found during daytime at all altitudes, while at nighttime the trend is inverse above about 110 km, with an atmosphere up to 15 K warmer towards the pole. The latitudinal variation is even smaller at the terminator, in agreement with observations. Below about 110 km, a nighttime warm layer whose intensity decreases with increasing latitudes is predicted by our GCM. A comparison of model results with a selection of recent measurements shows an overall good agreement in terms of trends and order of magnitude. Significant data-model discrepancies may be also discerned. Among them, thermospheric temperatures are about 40-50 K colder and up to 30 K warmer than measured at terminator and at nighttime, respectively. The altitude layer of the predicted mesospheric local maximum (between 100 and 120 km) is also higher than observed. Possible interpretations are discussed and several sensitivity tests performed to understand the data-model discrepancies and to propose future model improvements.

  18. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  19. Thermal inactivation of Bacillus anthracis Sterne in irradiated ground beef heated in a water bath or cooked on commercial grills

    USDA-ARS?s Scientific Manuscript database

    The thermal stability of heat-shocked and non heat-shocked spores of the virulence-attenuated Sterne strain of Bacillus anthracis was evaluated at select temperatures in irradiated, raw ground beef (25% fat) heated in a water bath or cooked using two different commercial grills. For the former, 3-g ...

  20. The Mw 8.8, 1906 Colombia-Ecuador Subduction Earthquake: Seismic Structure and Thermal Regime of the Plate Boundary.

    NASA Astrophysics Data System (ADS)

    Collot, J.; Marcaillou, B.; Agudelo, W.; Ribodetti, A.; D'Acremont, E.

    2007-05-01

    subduction earthquakes, which occurred beneath the subsiding fore-arc basin. North of latitude 2°30'N, although the trench fill is thinner (~2 km), the Colombian accretionary wedge has developed and reaches 30 km in width at 3°30'N. The zones where each of the 1942, 1958 and 1979 earthquake rupture zones meet with the adjacent rupture zone have been shown to correlate with along strike changes in the fore-arc tectonic regime from uplift (1942) to subsidence (1958), and oblique compression (1979), and with transverse crustal faults that segment the margin. In addition, a fault-bounded outer basement high and a major splay fault that branches upward from the plate interface may control the seaward limit of the 1958 earthquake rupture zone. Thermal modeling, matching bottom simulating reflector (BSR)-derived heat flow, and heat flow measurements, suggests that the 1958 and 1979 earthquakes nucleated within a central to shallow portion of the seismogenic zone, at temperatures estimated to be ~160°C and that the updip limit of the seismogenic zone is controlled by low temperature (60-70°C) processes, with the exception of the 1958 event, where the updip limit is more likely related to prominent structural features fronting the margin.

  1. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    NASA Astrophysics Data System (ADS)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  2. Using a historic drought and high-heat event to validate thermal exposure predictions for ground-dwelling birds.

    PubMed

    Carroll, James M; Davis, Craig A; Elmore, R Dwayne; Fuhlendorf, Samuel D

    2017-08-01

    Deviations from typical environmental conditions can provide insight into how organisms may respond to future weather extremes predicted by climate modeling. During an episodic and multimonth heat wave event (i.e., ambient temperature up to 43.4°C), we studied the thermal ecology of a ground-dwelling bird species in Western Oklahoma, USA. Specifically, we measured black bulb temperature (Tbb) and vegetation parameters at northern bobwhite (Colinus virginianus; hereafter bobwhite) adult and brood locations as well as at stratified random points in the study area. On the hottest days (i.e., ≥39°C), adults and broods obtained thermal refuge using tall woody cover that remained on average up to 16.51°C cooler than random sites on the landscape which reached >57°C. We also found that refuge sites used by bobwhites moderated thermal conditions by more than twofold compared to stratified random sites on the landscape but that Tbb commonly exceeded thermal stress thresholds for bobwhites (39°C) for several hours of the day within thermal refuges. The serendipitous high heat conditions captured in our study represent extreme heat for our study region as well as thermal stress for our study species, and subsequently allowed us to assess ground-dwelling bird responses to temperatures that are predicted to become more common in the future. Our findings confirm the critical importance of tall woody cover for moderating temperatures and functioning as important islands of thermal refuge for ground-dwelling birds, especially during extreme heat. However, the potential for extreme heat loads within thermal refuges that we observed (albeit much less extreme than the landscape) indicates that the functionality of tall woody cover to mitigate heat extremes may be increasingly limited in the future, thereby reinforcing predictions that climate change represents a clear and present danger for these species.

  3. IAP RAS microwave radiometry complex: sounding atmospheric thermal structure from the ground up to 55km.

    NASA Astrophysics Data System (ADS)

    Belikovich, Mikhail; Shvetsov, Alexander; Ryskin, Vitaly; Mukhin, Dmitry; Kulikov, Mikhail; Feigin, Alexander

    2016-04-01

    Thermal structure is the key characteristic of the atmosphere. Depending on the altitude, it is measured by different methods. In troposphere a plethora of in-situ techniques exists while in middle atmosphere remote sensing is primary type of measurement. The remote sensing is conducted in different wavelengths: optical, infrared and microwave. Satellite based measurements are the most popular kind of remote sensing measurements as it provides global coverage. Ground based passive microwave remote sensing technique has its place when one need permanent monitoring with high time resolution in order to study short-term local events like gravity waves. Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) develops multi-purpose radiometry complex for constant atmospheric monitoring. For now, it measures temperature profiles from ground to 55km, tropospheric water vapor and ozone. It consists of several radiometers with spectral bands ranging from 20 to 112 GHz. In 2015 two radiometers were added in order to measure thermal structure at surface level and troposphere: scanning device operating in 55-59GHz, and device at 50-55GHz. The change led to modifying the retrieval software. The work presents the description of the radiometry complex and corresponding retrieval software. The main part is devoted to new radiometers and enhancements in retrieval procedure. The retrieval algorithms are described: for each device separately and for the whole temperature retrieval part of the complex. The use of the single procedure for the group of radiometers helps to merge the profile with each other correctly. The main issue of the single procedure (numerical complexity aside) is dealing with the possible difference in calibration of the devices. Error analysis of the procedures is conducted. The characteristics of the complex and the retrieval algorithms are presented. The capabilities of the algorithms are shown on simulated and real data; the last one was

  4. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    NASA Astrophysics Data System (ADS)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  5. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  6. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    NASA Astrophysics Data System (ADS)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  7. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    NASA Astrophysics Data System (ADS)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  8. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    SciTech Connect

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  9. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  10. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2013-10-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment (λ = 550 nm) for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulfate, nitrate, and elemental carbon. Achieving full optical closure is hampered by limitations in accounting for the role of water vapor in the system, uncertainties in the instruments and the need for further knowledge in the source apportionment of the model's major chemical components. Nonetheless, our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulfate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Consistency between the measured and modeled optical parameters serves as an

  11. The operating regimes and basic control principles of SNPS Topaz''. [Cs

    SciTech Connect

    Makarov, A.N.; Volberg, M.S.; Grayznov, G.M.; Zhabotinsky, E.E.; Serbin, V.I. )

    1991-01-05

    The basic operating regimes of space nuclear power system (SNPS) Topaz'' are considered. These regimes include: prelaunch preparation and launch into working orbit, SNPS start-up to obtain desired electric power, nominal regime, SNPS shutdown. The main requirements for SNPS at different regimes are given, and the control algorithms providing these requirements are described. The control algorithms were chosen on the basis of theoretical studies and ground power tests of the SNPS prototypes. Topaz'' successful ground and flight tests allow to conclude that for SNPS of this type control algorithm providing required thermal state of cesium vapor supply system and excluding any possibility of discharge processes in current conducting elements is the most expedient at the start-up regime. At the nominal regime required electric power should be provided by maintenance of reactor current and fast-acting voltage regulator utilization. The limitation of the outlet coolant temperature should be foreseen also.

  12. Correcting atmospheric effects in thermal ground observations for hyperspectral emissivity estimation

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Buitrago, Maria

    2014-05-01

    Knowledge of Land surface temperature is of crucial importance in energy balance studies and environmental modeling. Accurate retrieval of land surface temperature (LST) demands detailed knowledge of the land surface emissivity. Measured radiation by remote sensing sensors to land surface temperature can only be performed using a-priori knowledge of the emissivity. Uncertainties in the retrieval of this emissivity can cause huge errors in LST estimations. The retrieval of emissivity (and LST) is per definition an underdetermined inversion, as only one observation is made while two variables are to be estimated. Several researches have therefore been performed on measuring emissivity, such as the normalized emissivity method, the temperature-emissivity separation (TES) using the minimum and maximum difference of emissivity and the use of vegetation indices. In each of these approaches atmospherically corrected radiance measurements by remote sensing sensors are correlated to ground measurements. Usually these ground measurements are performed with the ground equivalent of the remote sensing sensors; the CIMEL 312-2 has the same spectral bands as ASTER. This way parameterizations acquired this way are only usable for specific sensors and need to be redone for newer sensors. Recently hyperspectral thermal radiometers, such as the MIDAC, have been developed that can solve this problem. By using hyperspectral observations of emissivity, together with sensor simulators, ground measurements of different satellite sensor can be simulated. This facilitates the production of validation data for the different TES algorithms. However before such measurements can be performed extra steps of processing need to be performed. Atmospheric correction becomes more important in hyperspectral observations than for broadband observations, as energy levels measured per band is lower. As such the atmosphere has a relative larger contribution if bandwidths become smaller. The goal of this

  13. Thermal-infrared imager TIR on Hayabusa2: Result of ground calibration

    NASA Astrophysics Data System (ADS)

    Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Imamura, T.; Senshu, H.; Sekiguchi, T.; Ogawa, Y.; Demura, H.; Sakatani, N.; Horikawa, Y.; Helbert, J.; Mueller, T.; Hagermann, A.; H. TIR-Team

    2014-07-01

    -physical properties of boulders or materials inside huge crates are important targets to observe. Evident thermal measurements are conducted to compare them with thermal model for ground observation, and to investigate Yarkovsky or YORP effects. If the orbiting satellites or dust clouds exist at the surroundings, asteroid mass or dust properties will be determined. Cooperative observation with radiometer on MASCOT is also important to determine the thermo-physical properties precisely. We conducted radiometric and geometric calibration for TIR. We use the cavity black-body and oil-bath based black-body plates for calibration at higher temperature from 25 to 150 °C. We also use the black-body plate inside the vacuum chamber for lower temperature from -40 to +50 °C. Both of appratuses share the temperature region from 25 to 50 °C. For geometrical correction, collimator is used measure the square-shaped target. For cross-calibration, the same targets are used for other instruments: 30 cm diameter serpentine target plate with heater is shared with MARA radiometer on MASCOT, and the same meteorite samples (Murchison CM2 meteorites, Murray CM2 meteorites) are shared with NIRS3 spectrometer and ONC camera. The landscape and the walls of test sites were imaged for demonstration. TIR is able to measure the surface temperature from -40 to 150 °C at the central region of images (a little wider range but less resolution at non-central region). The absolute temperature is less than 2 °C, and the resolution (NETD) is less than 0.3 °C for most of conditions. TIR is well calibrated thermal-infrared imager to take thermal images of asteroid and investigate its thermo-physical properties. This type of instruments will be used in other future missions for scientific and operational purposes.

  14. Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to ballistic regime and its relevance to phonon scattering measurements

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Dames, Chris

    2015-04-01

    The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.

  15. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.

    PubMed

    Choi, Jeunghwan; Bischof, John C

    2010-02-01

    It is well accepted in cryobiology that the temperature history and cooling rates experienced in biomaterials during freezing procedures correlate strongly with biological outcome. Therefore, heat transfer measurement and prediction in the cryogenic regime is central to the field. Although direct measurement of temperature history (i.e. heat transfer) can be performed, accuracy is usually achieved only for local measurements within a given system and cannot be readily generalized to another system without the aid of predictive models. The accuracy of these models rely upon thermal properties which are known to be highly dependent on temperature, and in the case of significant cryoprotectant loading, also on crystallized fraction. In this work, we review the available thermal properties of biomaterials in the cryogenic regime. The review shows a lack of properties for many biomaterials in the subzero temperature domain, and especially for systems with cryoprotective agents. Unfortunately, use of values from the limited data available (usually only down to -40 degrees C) lead to an underestimation of thermal property change (i.e. conductivity rise and specific heat drop due to ice crystallization) with lower temperatures. Conversely, use of surrogate values based solely on ice thermal properties lead to an overestimation of thermal property change for most biomaterials. Additionally, recent work extending the range of available thermal properties to -150 degrees C has shown that the thermal conductivity will drop in both PBS and tissue (liver) due to amorphous/glassy phases (versus crystalline) of biomaterials with the addition of cryoprotective additives such as glycerol. Thus, we investigated the implications of using approximated or constant property values versus measured temperature-dependent values for predicting temperature history during freezing in PBS (phosphate-buffered saline) and porcine liver with and without cryoprotectants (glycerol). Using measured

  16. Microwave complex for ground based ozone and thermal sounding of middle atmosphere

    NASA Astrophysics Data System (ADS)

    Shvetsov, Alexander; Krasil'nikov, Alexander; Kulikov, Mihail; Ryskin, Vitaly; Bolshakov, Oleg; Belikovich, Mihail; Mukhin, Dmitry; Karashtin, Dmitry; Fedoseev, Lev; Feigin, Alexander

    2013-04-01

    Description of the novel ground-based microwave complex for ozone and thermal sounding of middle atmosphere is presented. The instrument include two spectroradiometers operating in the frequency range 110.3-111.3 GHz (ozone line), and in the in the frequency range 52.5 - 54.5 GHz (edge of 5-mm molecular oxygen band), accordingly. The latter includes band slope and four resolved from the earth's surface relatively weak oxygen lines. Both spectroradiometers employ feed cone as antenna with half-power beam width approximately equal 4 degree. Two digital fast Fourier transform spectrometers developed by "Acqiris" are used for signal analysis in the intermediate frequency range 0.05 - 1 GHz with the effective resolution 61 KHz. Both spectroradiometers operate in total power mod with fast internal calibration that realize by electrically controlled noise generator on basis of Shottky barrier diodes. Noise temperature is approximately 3000 K for ozone spectroradiometer and 1400 K for thermometer. Novel method for retrieval vertical profiles of ozone and temperature from radiometric data is applied. The procedure is based on Bayesian approach to inverse problems which assumes a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. At the present time we carry out the experimental campaign aimed to simultaneous measurements temperature and ozone profile above Nizhny Novgorod, Russia. The work was done under support of the RFBR (projects 11-05-97050 and 12-05-00999)

  17. Theoretical regime diagrams for thermally driven flows in a beta-plane channel in the presence of variable gravity

    NASA Technical Reports Server (NTRS)

    Geisler, J. E.; Fowlis, W. W.

    1980-01-01

    The effect of a power law gravity field on baroclinic instability is examined, with a focus on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in spherical geometry by a dielectric force. Growth rates are obtained of unstable normal modes as a function of parameters of the problem by solving a second order differential equation numerically. It is concluded that over the range of parameter space explored, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as parameter.

  18. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology

    PubMed Central

    Choi, Jeunghwan

    2010-01-01

    It is well accepted in Cryobiology that the temperature history and cooling rates experienced in biomaterials during freezing procedures correlate strongly with biological outcome. Therefore, heat transfer measurement and prediction in the cryogenic regime is central to the field. Although direct measurement of heat transfer can be performed, accuracy is usually achieved only for local measurements within a given system and cannot be readily generalized to another system without the aid of predictive models. The accuracy of these models rely upon thermal properties which are known to be highly dependent on temperature, and in the case of significant cryoprotectant loading, also on crystallized fraction. In this work we review the available thermal properties of biomaterials in the cryogenic regime. The review shows a lack of properties for many biomaterials in the subzero temperature domain, and especially for systems with cryoprotective agents. Unfortunately, use of values from the limited data available (usually only down to −40 °C) lead to an underestimation of thermal property change (i.e. conductivity rise and specific heat drop due to ice crystallization) with lower temperatures. Conversely, use of surrogate values based solely on ice thermal properties lead to an overestimation of thermal property change for most biomaterials. Additionally, recent work extending the range of available thermal properties to −150 °C has shown that the thermal conductivity will drop in both PBS and tissue (liver) due to amorphous/glassy phases (vs. ice) of biomaterials with the addition of cryoprotective additives such as glycerol. Thus, we investigated the implications of using approximated or constant property values versus measured temperature-dependent values for predicting heat transfer in PBS (phosphate buffered saline) and porcine liver with and without cryoprotectants (glycerol). Using measured property values (thermal conductivity, specific heat, and latent heat

  19. Thermal process validation for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in ground turkey and beef products.

    PubMed

    Murphy, R Y; Martin, E M; Duncan, L K; Beard, B L; Marcy, J A

    2004-07-01

    At 55 to 70 degrees C, thermal inactivation D-values for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes were 19.05 to 0.038, 43.10 to 0.096, and 33.11 to 0.12 min, respectively, in ground turkey and 21.55 to 0.055, 37.04 to 0.066, and 36.90 to 0.063 min, respectively, in ground beef. The z-values were 5.73, 5.54, and 6.13 degrees C, respectively, in ground turkey and 5.43, 5.74, and 6.01 degrees C, respectively, in ground beef. In both ground turkey and beef, significant (P < 0.05) differences were found in the D-values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes. At 65 to 70 degrees C, D-values for E. coli O157:H7, Salmonella, and L. monocytogenes were also significantly (P < 0.05) different between turkey and beef. The obtained D- and z-values were used in predicting process lethality of the pathogens in ground turkey and beef patties cooked in an air impingement oven and confirmed by inoculation studies for a 7-log (CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.

  20. Controls on the Flow Regime and Thermal Structure of the Subduction Zone Mantle Wedge: A Systematic 2-D and 3-D Investigation

    NASA Astrophysics Data System (ADS)

    Le Voci, Giuseppe; Davies, Rhodri; Goes, Saskia; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Arc volcanism at subduction zones is likely regulated by the mantle wedge's flow regime and thermal structure and, hence, numerous studies have attempted to quantify the principal controls on mantle wedge conditions. Here, we build on these previous studies by undertaking the first systematic 2-D and 3-D numerical investigation, across a wide parameter-space, into how hydration and thermal buoyancy influence the wedge's flow regime and associated thermal structure, above a kinematically driven subducting plate. We find that small-scale convection (SSC), resulting from Rayleigh-Taylor instabilities, or drips, off the base of the overriding lithosphere, is a typical occurrence, if: (i) viscosities are < 5×1018 Pa s; and (ii) hydrous weakening of wedge rheology extends at least 100-150 km from the trench. In 2-D models, instabilities generally take the form of 'drips'. Although along-strike averages of wedge velocities and temperature in 3-D structure are consistent with those in 2-D, fluctuations are larger in 3-D. Furthermore, in 3-D, two separate, but interacting, longitudinal Richter roll systems form (with their axes aligned perpendicular to the trench), the first below the arc region and the second below the back-arc region. These instabilities result in transient and spatial temperature fluctuations of 100-150K, which are sufficient to influence melting, the stability of hydrous minerals and the dehydration of crustal material. Furthermore, they are efficient at eroding the overriding lithosphere, particularly in 3-D and, thus, provide a means to explain observations of high heat flow and thin back-arc lithosphere at many subduction zones, if back-arc mantle is hydrated.

  1. Thermal performance of horizontal closed-loop ground-coupled heat pump systems using flowable-fill

    SciTech Connect

    Jones, W.V. Jr.; Beard, J.T.; Ribando, R.J.; Wilhelm, B.K.

    1996-12-31

    This research evaluates the use of flowable-fill containing fly-ash in place of conventional dirt back-fill in horizontal closed-loop heat exchangers used in ground-source heat pump systems. A computer model was developed to simulate the transient heat transfer response in the fill material and native soil surrounding the heat exchangers. The model consists of a two-dimensional transient conduction model based on the finite-volume method. It simulates the energy extraction from the soil during the heating season and energy addition during the cooling season. A daily system load curve was used to approximate the daily heating and cooling load for a nominal two ton residential application in central Virginia. The computer model determined the thermal performance of various configurations when subjected to seasonal weather conditions. The variation in overall system performance was influenced by earth and fill thermal properties as well as geometric design parameters, such as trench length and depth. Ground-coupled heat pump systems with straight pipe and horizontal Slinky{trademark} configurations were installed at several residential demonstration-sites in Virginia. Temperature measurements were recorded at selected locations surrounding the ground heat exchanger, allowing evaluation of heat exchanger performance. Electrical measurements including heat pump compressor, air handler, and auxiliary electrical resistance energy were used to characterize overall system performance. Experimental measurements and model simulation studies have shown that encasing the ground-loop heat exchangers in flowable-fill rather than in earth backfill improves the overall thermal performance of ground source heat pump systems. Improved performance has been indicated by less extreme fill and soil temperatures and by lower annual electrical energy costs.

  2. Thermal regime along the Antilles subduction zone: Influence of the oceanic lithosphere materials subducted in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Biari, Youssef; Marcaillou, Boris; Klingelhoefer, Frauke; Francis, Lucazeau; Fréderique, Rolandone; Arnauld, Heuret; Thibaud, Pichot; Hélène, Bouquerel

    2017-04-01

    Heat-flow measurements acquired during the Antithesis Cruise in the Northern Lesser Antilles reveal an atypical heat-flow trend, from the trench to the margin forearc, where the subducting crust consists of exhumed and serpentinized mantle rocks (see Marcaillou et al. same session). We investigate the thermal structure of the Lesser Antilles subduction zone along two transects perpendicular to the margin located off Antigua and Martinique Islands. We perform 2-D steady-state finite elements thermal modelling constrained by newly-recorded and existing data: heat flow measurements, deep multichannel reflection and wide angle seismic data as well as earthquake hypocenters location at depth. Along the Martinique profile, the heat-flow decreases from the trench (45 mW.m-2) to minimum in the outer fore-arc (30 mW.m-2) and increases to a plateau (50 mW.m-2) toward the back-arc area. These trend and values are typical for the subduction of a steep 80-MYr old oceanic plate beneath an oceanic margin. As a result, the 150°-350°C temperature range along the interplate contact, commonly associated to the thermally-defined seismogenic zone, is estimated to be located between 200 - 350km from the trench. In contrast, along the Antigua profile, the heat-flow shows an atypical "flat" trend at 40 ± 15 mW.m-2 from the trench to the inner forearc. Purely conductive thermal models fail at fitting both the measured values and the flat trend. We propose that the subducting crust made of serpentinized exhumed mantle rock strongly affecting the heat-flow at the surface and the margin thermal structure. The geothermal gradient in the 5-km-thick serpentinized layer is expected to be low compared to "normal" oceanic crust because of cold water percolation and peridotite alteration. Moreover, from 50km depth, serpentine dehydration reactions provide significant amounts of hot water expelled toward the upper plate, generated heat beneath the forearc. As a result, in our preferred model: 1/ A

  3. Impacts of projected mid-century temperatures on thermal regimes for select specialty and fieldcrops common to the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Elias, E.; Lopez-Brody, N.; Dialesandro, J.; Steele, C. M.; Rango, A.

    2015-12-01

    The impacts of projected temperature increases in agricultural ecosystems are complex, varyingby region, cropping system, crop growth stage and humidity. We analyze the impacts of mid-century temperature increases on crops grown in five southwestern states: Arizona, California,New Mexico, Nevada and Utah. Here we present a spatial impact assessment of commonsouthwestern specialty (grapes, almonds and tomatoes) and field (alfalfa, cotton and corn)crops. This analysis includes three main components: development of empirical temperaturethresholds for each crop, classification of predicted future climate conditions according to thesethresholds, and mapping the probable impacts of these climatic changes on each crop. We use30m spatial resolution 2012 crop distribution and seasonal minimum and maximumtemperature normals (1970 to 2000) to define the current thermal envelopes for each crop.These represent the temperature range for each season where 95% of each crop is presentlygrown. Seasonal period change analysis of mid-century temperatures changes downscaled from20 CMIP5 models (RCP8.5) estimate future temperatures. Change detection maps representareas predicted to become more or less suitable, or remain unchanged. Based upon mid-centurytemperature changes, total regional suitable area declined for all crops except cotton, whichincreased by 20%. For each crop there are locations which change to and from optimal thermalenvelope conditions. More than 80% of the acres currently growing tomatoes and almonds willshift outside the present 95% thermal range. Fewer acres currently growing alfalfa (14%) andcotton (20%) will shift outside the present 95% thermal range by midcentury. Crops outsidepresent thermal envelopes by midcentury may adapt, possibly aided by adaptation technologiessuch as misters or shade structures, to the new temperature regime or growers may elect togrow alternate crops better suited to future thermal envelopes.

  4. Combining Bioenergetic Responses of Fish to Thermal Regimes and Productivity in Reservoirs: Implications for Conservation and Re-Introduction of Anadromous Salmonids

    NASA Astrophysics Data System (ADS)

    Beauchamp, D.

    2014-12-01

    Temperature, food availability, and predation risk form vertical gradients determining growth and survival for fish in lakes and reservoirs. These gradients change on inter-annual, seasonal, and diel temporal scales and are strongly influenced by climatic variability, conflicting water demands and management. Temperatures associated with optimal growth and energy loss vary both among life stages and species of fish, but the quantity and quality of available food resources can significantly alter these thermal responses. Greater understanding of how water management affects the timing, magnitude, and duration of thermal stratification, and how key species and their supporting aquatic resources respond can improve strategies for development and operation of water storage facilities within the context of localized environmental and ecological constraints. An emerging trend for coldwater reservoirs in the Pacific Northwest has been to re-introduce anadromous salmon above historically impassable dams. Thermal regimes and the existing ecological communities in the reservoirs and tributary habitats above these dams will determine the seasonal importance of lotic and lentic habitats for rearing or migration corridors. The feasibility of reservoir rearing and migration can be evaluated by combining mass- and species-specific thermal growth response curves with temporal dynamics in the vertical and longitudinal thermal structure of reservoirs and associated distribution of food resources (primarily zooplankton). The value of reservoirs as rearing habitats or migration corridors could be compared with coincident tributary conditions to predict the likely temporal-spatial distribution of optimal conditions for growth and survival of different species or life stages of salmonids within the watershed and how these conditions might change under different climatic or water management scenarios.

  5. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  6. Thermal Regime in a Building in the Presence of Mixing of Heat Carriers from Delivery and Return Pipelines

    NASA Astrophysics Data System (ADS)

    Sabdenov, K. O.; Unaspekov, B. A.; Erzada, M.; Igembaev, B. A.

    2014-01-01

    We consider the problem of establishing a temperature regime in rooms and a heating system on mixing heat carriers flowing in a delivery and return pipelines. We show that unlimited mixing of heat carriers leads to the leveling of temperatures on the stories of a building and to attainment of a limiting temperature in the building close to the heat carrier temperature in the delivery pipeline of the municipal network. It has been established that if the heat carrier flow rate in the heating system does not change in the process of mixing, the temperature in the heating system and the temperature in the rooms of a building can decrease to the outdoor air temperature.

  7. The sensitivity of ground surface temperature prediction to soil thermal properties Using the Simple Biosphere Model (SiB2)

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohui; Gao, Zhiqiu; Wei, Dongping

    2012-05-01

    Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model by incorporating a revised force-restore method (FRM) to take the vertical heterogeneity of soil thermal diffusivity ( k) into account. The results indicate that (1) the revised FRM alleviates daytime overestimation and nighttime underestimation in modeled ground surface temperature ( T g), and (2) its role in little rainfall events is significant because the vertical gradient of k increases with increasing surface evaporation. Since the original formula of thermal conductivity ( λ) in the SiB2 greatly underestimates soil thermal conductivity, we compared five algorithms of λ involving soil moisture to investigate the cause of overestimation during the day and underestimation at night on the basis of the revised FRM. The results show that (1) the five algorithms significantly improve T g prediction, especially in daytime, and (2) taking one of these five algorithms as an example, the simulated T g values in the daytime are closer to the field measurements than those in the nighttime. The differences between modeled T g and field measurements are mostly within the margin of error of ±2 K during 3 August to 4 September 1998.

  8. Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon; DiFilippo, Frank J.

    1996-01-01

    The probability of atomic oxygen reacting with polymeric materials is orders of magnitude lower at thermal energies (greater than O.1 eV) than at orbital impact energies (4.5 eV). As a result, absolute atomic oxygen fluxes at thermal energies must be orders of magnitude higher than orbital energy fluxes, to produce the same effective fluxes (or same oxidation rates) for polymers. These differences can cause highly pessimistic durability predictions for protected polymers and polymers which develop protective metal oxide surfaces as a result of oxidation if one does not make suitable calibrations. A comparison was conducted of undercut cavities below defect sites in protected polyimide Kapton samples flown on the Long Duration Exposure Facility (LDEF) with similar samples exposed in thermal energy oxygen plasma. The results of this comparison were used to quantify predicted material loss in space based on material loss in ground laboratory thermal energy plasma testing. A microindent hardness comparison of surface oxidation of a silicone flown on the Environmental Oxygen Interaction with Materials-III (EOIM-III) experiment with samples exposed in thermal energy plasmas was similarly used to calibrate the rate of oxidation of silicone in space relative to samples in thermal energy plasmas exposed to polyimide Kapton effective fluences.

  9. Simulating the thermal operating conditions in the thermal wells of ground-source heat-pump heat supply systems. Part I: Porous moisture freezing processes in soil

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Peskov, N. V.; Lichman, V. A.; Gornov, V. F.; Kolesova, M. V.

    2015-08-01

    The mathematical models laid down in the new blocks of the INSOLAR.GSHP.12 software system simulating unsteady operating conditions of ground-source heat-pump (GSHP) heat supply systems are presented. The new model blocks take into account the effect the freezing of porous moisture in soil has on the GSHP system performance efficiency. Illustration is given to the need of taking into account the porous moisture freezing/thawing processes in soil, and the results from investigations devoted to the opening possibilities of constructing adaptive GSHP systems with controlled intensity of heat transfer in the soil-thermal well system are presented. The development of software simulating the porous moisture phase state variation processes in soil was preceded by development of mathematical equations representing the thermal conditions of soil body involving porous moisture freezing/thawing processes. A description of these equations is also given in the article. In constructing the mathematical model, the notion "effective thermal conductivity" of soil was introduced for taking into account the latent heat of phase transition that releases during the freezing of moisture. The above-mentioned effective thermal conductivity of soil involves two components: the soil thermal conductivity coefficient itself and an additional term modifying the thermal conductivity value for taking into account the influence of phase transition. For quantitatively evaluating the soil effective thermal conductivity component that takes into account the influence of phase transition, the soil freezing zone radius around the thermal well was determined. The obtained analytic solutions have been implemented in the form of computer program blocks, after which a "numerical experiment" was carried out for estimating the effect the porous moisture freezing/thawing processes have on the soil thermal conditions. It was demonstrated during that experiment that the soil thermal conductivities determined

  10. Controlling both ground- and excited-state thermal barriers to Bergman cyclization with alkyne termini substitution.

    PubMed

    Nath, Mahendra; Pink, Maren; Zaleski, Jeffrey M

    2005-01-19

    The cross-coupling reaction of 2,3-dibromo-5,10,15,20-tetraphenylporphyrin with corresponding organostannanes in the presence of a Pd0 catalyst in THF at reflux temperature yields free base 2,3-dialkynylporphyrins 1a,c-e. The subsequent deprotection of trimethylsilyl group of 1a with TBAF in THF under aqueous conditions produces the 2,3-diethynyl-5,10,15,20-tetraphenylporphyrins 1b in 87% yield. Compounds 1a-d undergo zinc insertion upon treatment with Zn(OAc)2.2H2O in CHCl3/MeOH to give zinc(II) 2,3-dialkynyl-5,10,15,20-tetraphenylporphyrins (2a-d) in 70-92% yields. Thermal Bergman cyclization of 1a-e and 2a-d was studied in chlorobenzene and approximately 35-fold 1,4-cyclohexadiene at 120-210 degrees C. Compounds 1b and 2b with R = H react at lower temperature (120 degrees C) and produce cyclized products 3b and 4b in higher yields (65-70%) than their propyl, isopropyl, and phenyl analogues, with R = Ph being the most stable. Continuing in this trend, the -TMS derivatives 1a and 2a exhibit no reactivity even after heating at 190 degrees C in chlorobenzene/CHD for 24 h. Photolysis (at lambda >/= 395 nm) of 1b and 2b at 10 degrees C leads the formation of isolable picenoporphyrin products in 15 and 35% yields, respectively, in 72 h, whereas these compounds are stable in solution under same reaction conditions at 25 degrees C in the dark. Unlike thermolysis at 125 degrees C, which did not yield Bergman cyclized product for R = Ph, photolysis generated very small amounts of picenoporphyrin products (3c: 5%; 4c: 8% based on 1H NMR) as well as a mixture of reduced porphyrin products that were not separable. Thus, trends in the barrier to Bergman cyclization in the excited state exhibit the same trend as those observed in the ground state as a function of R-group. Finally, photolysis of 2b at 10 degrees C with lambda >/= 515 or 590 nm in benzene/iPrOH (4:1, 72 h) produces 4b in 15 and 6% isolated yields, indicating that conjugation of the enediyne unit into the

  11. Sensitivity in the Correction of Long-Range Ground-Based Thermal Data.

    NASA Astrophysics Data System (ADS)

    Hancock, Anson; James, Mike; Ganci, Gaetana; Harris, Andrew

    2016-04-01

    Ground-based thermal remote sensing is a valuable tool for the study and monitoring of volcanoes and their hazards. However, permanent monitoring installations often require the camera to be positioned at relatively long ranges from the target (i.e. >1000 m). These types of long-range deployments have been seldom analysed quantitatively due primarily to factors such as atmospheric attenuation and across-image variations in the target path-length resulting in substantial uncertainty in the derived surface temperatures. Here we examine the sensitivity of measurements at three different apparent temperatures (400, 500 and 600 K) to uncertainty in the atmospheric conditions and type of path for the INGV-Catania (Etna, Sicily) permanently installed thermal camera. The camera is located at Mount Cagliato at an elevation of 1154 m asl and looks to the summit area at ˜3000 m asl, over a distance of ˜8.5 km. Analysis was carried out using MODTRAN to calculate atmospheric transmittance and upwelling radiance values for the different scenarios. We then calculated corrected surface temperatures by applying an atmospheric correction using two different temperature-to-radiance methods: a top-hat wavelength integrated based method supplied by FLIR Systems in their ThermaCam Researcher software and a mid-wavelength value method using the Planck equation. Results indicate that calculated surface temperatures between the two methods differ by as much as 382.5 K over a path-length of 8.5 km. Over path lengths between 1 and 8.5 km, changing the atmospheric temperature to 288.15 (15 oC), 293.15 (20 oC) and 298.15 K (25 oC) resulted in increases in calculated surface temperatures of 1.7-72.4 K using the FLIR top-hat method and 1.4-205.5 K using the mid-wavelength method. For relative humidities of 40, 50 and 60 %, increases in calculated surface temperatures of 1.0-58.7 K and 1.0-148.9 K using the FLIR top-hat and mid-wavelength methods, respectively. We also found that calculated

  12. Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging

    USDA-ARS?s Scientific Manuscript database

    Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...

  13. Ground-based thermal and multispectral imaging of limited irrigation crops

    USDA-ARS?s Scientific Manuscript database

    Ground-based methods of remote sensing can be used as ground-truth for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted in ...

  14. Modeling ground thermal conditions and the limit of permafrost within the nearshore zone of the Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Stevens, Christopher W.; Moorman, Brian J.; Solomon, Steve M.

    2010-12-01

    This study examines the interrelated effects of snow and ice on ground thermal conditions beneath regions of shallow water within the nearshore zone of the Mackenzie Delta. Field- and model-based data were used to determine the thermal boundary conditions at the sediment bed surface and to define the contemporary limit of permafrost. Over two consecutive winters, mean sediment bed temperatures deviated up to 9.8°C beneath bottom-fast ice that ranged from 10 cm to 100 cm thick, with intrasite variability as much as 4.7°C. Measured and modeled temperatures were found to exponentially relate to the duration of time ice is bottom-fast with the sediment bed. Mean winter ground temperatures at this boundary were predicted within ±0.25°C of the observed measurements using numerical thermal modeling. As on-ice snow depth decreased, the limit of equilibrium permafrost shifted toward progressively deeper water because of longer durations of ice contact and greater heat loss from the ground. The critical water depth for permafrost under equilibrium conditions was 84 cm (calculated from an ice thickness of 93 cm), which is equivalent to an ice contact time of 142 days. Equilibrium permafrost was mapped beneath 393.8 km2 of bottom-fast ice. An additional 387.9 km2 exhibited seasonal ground freezing in the winter of 2006-2007. Areas affected by bottom-fast ice represent locations that are actively receiving sediment from distributary channels. These results provide the first estimates of contemporary permafrost distribution for shallow water regions of the outer Mackenzie Delta.

  15. Impact of climate change on soil thermal and moisture regimes in Serbia: An analysis with data from regional climate simulations under SRES-A1B.

    PubMed

    Mihailović, D T; Drešković, N; Arsenić, I; Ćirić, V; Djurdjević, V; Mimić, G; Pap, I; Balaž, I

    2016-11-15

    We considered temporal and spatial variations to the thermal and moisture regimes of the most common RSGs (Reference Soil Groups) in Serbia under the A1B scenario for the 2021-2050 and 2071-2100 periods, with respect to the 1961-1990 period. We utilized dynamically downscaled global climate simulations from the ECHAM5 model using the coupled regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model). We analysed the soil temperature and moisture time series using simple statistics and a Kolmogorov complexity (KC) analysis. The corresponding metrics were calculated for 150 sites. In the future, warmer and drier regimes can be expected for all RSGs in Serbia. The calculated soil temperature and moisture variations include increases in the mean annual soil temperature (up to 3.8°C) and decreases in the mean annual soil moisture (up to 11.3%). Based on the KC values, the soils in Serbia are classified with respect to climate change impacts as (1) less sensitive (Vertisols, Umbrisols and Dystric Cambisols) or (2) more sensitive (Chernozems, Eutric Cambisols and Planosols).

  16. Structural controls, alteration, permeability and thermal regime of Dixie Valley from new-generation MT/galvanic array profiling

    SciTech Connect

    Philip E. Wannamaker

    2007-11-30

    State-of-the-art MT array measurements in contiguous bipole deployments across the Dixie Valley thermal area have been integrated with regional MT transect data and other evidence to address several basic geothermal goals. These include 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), infer ultimate heat and fluid sources for the thermal area; and 4), from a generic technique standpoint, investigate the capability of well-sampled electrical data for resolving subsurface structure. Three dense lines cross the Senator Fumaroles area, the Cottonwood Creek and main producing area, and the low-permeability region through the section 10-15 area, and have stand-alone MT soundings appended at one or both ends for local background control. Regularized 2-D inversion implies that shallow pediment basement rocks extend for a considerable distance (1-2 km) southeastward from the topographic scarp of the Stillwater Range under all three dense profiles, but especially for the Senator Fumaroles line. This result is similar to gravity interpretations in the area, but with the intrinsic depth resolution possible from EM wave propagation. Low resistivity zones flank the interpreted main offsetting fault especially toward the north end of the field which may be due to alteration from geothermal fluid outflow and upflow. The appended MT soundings help to substantiate a deep, subvertical conductor intersecting the base of Dixie Valley from the middle crust, which appears to be a hydrothermal conduit feeding from deep crustal magmatic underplating. This may supply at least part of the high temperature fluids and explain enhanced He-3 levels in those fluids.

  17. Thermal Contraction Crack Polygon Classification and Distribution: Morphological Variations in Northern Hemisphere Patterned Ground

    NASA Astrophysics Data System (ADS)

    Levy, J.; Head, J.; Marchant, D.

    2008-09-01

    Polygonally patterned ground has been identified on Mars since the Viking era [1], and has long been interpreted as a signal of the presence of subsurface ice deposits [2-4]. The origin of ice in the shallow martian subsurface, whether by cyclical vapour diffusion or primary deposition, remains an area of active inquiry [5- 9]. Recent modelling suggests that high-latitude terrains on Mars may support buried ice sheets and glaciers, produced by direct atmospheric deposition within the past 5 My [5], overlain by a sublimation lag deposit ranging in thickness from 10s to 100s of cm [8]. These results are consistent with coarse-resolution (100s of km per pixel) neutron-spectrometer results correlating highlatitude patterned ground with subsurface water [4, 10, 11], as well as a suite of geomorphological observations linking young terrains to recently deposited, ice-rich units [5-7]. Polygon classification in terrestrial polar environments is based on morphology, structure, and origin processes. On Earth, thermal contraction crack polygons can be divided into three types: ice-wedge, sand-wedge, and sublimation polygons; each of which forms under a unique set of climate and substrate-composition conditions [12-14]. Although the thermal contraction cracking process under martian conditions is well understood [15], classification systems for polygonally patterned ground on Mars have until now relied primarily on imaging data at resolutions comparable to the scale of the polygons of interest [3]. We build on the identification of sublimation polygons in the NASA Phoenix landing area [16], and preliminary classification of polygons into morphological species (groups distinguishable by characteristic surface morphologies) [17] across the northern hemisphere of Mars. We present an integrated assessment of martian polygon morphological variation as a function of latitude, and suggest links between polygon morphology, origin timing, and global climate conditions. This analysis

  18. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  19. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.

    PubMed

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey

    2015-05-19

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.

  20. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea

    PubMed Central

    Falfushynska, Halina I.; Phan, Tuan; Sokolova, Inna M.

    2016-01-01

    Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20–41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8–12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC. PMID:27995990

  1. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea.

    PubMed

    Falfushynska, Halina I; Phan, Tuan; Sokolova, Inna M

    2016-12-20

    Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20-41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8-12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC.

  2. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea

    NASA Astrophysics Data System (ADS)

    Falfushynska, Halina I.; Phan, Tuan; Sokolova, Inna M.

    2016-12-01

    Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20–41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8–12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC.

  3. Environmental effects of solar-thermal-power systems. Systematic status of the Mojave ground squirrel, Spermophilus mohavensis (subgenus Xerospermophilus)

    SciTech Connect

    Hafner, D.J.; Yates, T.L.

    1982-06-01

    The Mojave ground squirrel, Spermophilus mohavensis, is listed as a rare species by the California Fish and Game Commission. Its well-being has emerged as an environmental concern associated with deployment of solar thermal power systems in western parts of the Mojave Desert. The more common round-tailed ground squirrel, Spermophilus tereticaudus, also occurs in the Mojave Desert, and this species closely resembles S. mohavensis. In some areas it may be extremely difficult, on the basis of external characters, to identify the species present. The systematic status of the sibling species Spermophilus mohavensis and S. tereticaudus (subgenus Xerosphermophilus) was investigated throughout the range of the subgenus, based on allozymic and chromosomal data. Hybridization of the two species was detected only at a single disturbed site, while allelic introgression was confined to an estimated 60 km reach of the Mojave River wash. In the absence of an analysis of a zone of natural sympatry, the two taxa are retained as full biological species. The population of ground squirrels just east of Solar One, the 10 MWe pilot solar thermal power plant, is composed of individuals referable to S. tereticaudus based on both allozymic and chromosomal criteria.

  4. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    SciTech Connect

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.

    2012-12-21

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  5. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  6. The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream

    USGS Publications Warehouse

    Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.

    2013-01-01

    Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.

  7. Survival, development, and growth of Snake River fall Chinook salmon Embryos, Alevins, and Fry Exposed to Variable Thermal and Dissolved Oxygen Regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Hells Canyon reach of the Snake River, Idaho (rkm 240-397), at water temperatures above 16 C. This temperature exceeds the states of Idaho and Oregon water quality standards for salmonid spawning. These standards are consistent with results from studies of embryos exposed to a constant thermal regime, while salmon eggs in the natural environment are rarely exposed to a constant temperature regime. The objective of this study was to assess whether variable temperatures (i.e., declining after spawning) affected embryo survival, development, and growth of Snake River fall Chinook salmon alevins and fry. In 2003, fall Chinook salmon eggs were exposed to initial incubation temperatures ranging from 11-19 C in 2 C increments, and in 2004 eggs were exposed to initial temperatures of 13 C, 15 C, 16 C, 16.5 C, and 17 C. In both years, temperatures were adjusted downward approximately 0.2 C/day to mimic the thermal regime of the Snake River where these fish spawn. At 37-40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures >17 C in both years. A logistic regression model estimated that a 50% reduction in survival from fertilization to emergence would occur at an initial incubation temperature of {approx}16 C. The laboratory results clearly showed a significant reduction in survival between 15 C and 17 C, which supported the model estimate. Results from 2004 showed a rapid decline in survival occurred between 16.5 C and 17 C, with no significant differences in survival at initial incubation temperatures <16.5 C. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. Differences in egg mass among females (notably 2003) most likely masked any

  8. 3D numerical modelling of the steady-state thermal regime constrained by surface heat flow data: a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Mather, B.; Moresi, L. N.; Cruden, A. R.

    2014-12-01

    Uncertainty of the lithospheric thermal regime greatly increases with depth. Measurements of temperature gradient and crustal rheology are concentrated in the upper crust, whereas the majority of the lithospheric measurements are approximated using empirical depth-dependent functions. We have applied a Monte Carlo approach to test the variation of crustal heat flow with temperature-dependent conductivity and the redistribution of heat-producing elements. The dense population of precision heat flow data in Victoria, Southeast Australia offers the ideal environment to test the variation of heat flow. A stochastically consistent anomalous zone of impossibly high Moho temperatures in the 3D model (> 900°C) correlates well with a zone of low teleseismic velocity and high electrical conductivity. This indicates that transient heat transfer has perturbed the thermal gradient and therefore a steady-state approach to 3D modelling is inappropriate in this zone. A spatial correlation between recent intraplate volcanic eruption points (< 5 Ma) and elevated Moho temperatures is a potential origin for additional latent heat in the crust.

  9. Thermal transfer and pressure regime across a rifted margin in the presence of evaporites, with consequences for the hydrocarbon potential: A modeling approach in the Provencal basin

    SciTech Connect

    Burrus, J.; Audebert, F.

    1988-08-01

    Modeling the hydrocarbon potential of a sedimentary basin requires one to at least reconstruct the burial, the thermal history, and the pressure regime in the sediments. This is complicated, in the case of the western Mediterranean basins, by two problems: (1) Reconstruction of the temperature history is dependent on the rifted nature of these basins and on the particular distribution of thermal gradients linked with the presence of the high-conductivity evaporitic layers deposited in the late Miocene. (2) Reconstruction of pore pressure must account for the high sedimentation rate generally observed in the Pliocene-Quaternary and the presence of hydraulic barriers which correspond to the evaporitic layers. The negligible permeability of these rocks created a significant undercompaction of the sediments underneath, associated with high excess pressures. The authors present the result of a modeling study of these effects using a 2-D code (Themis) developed at IFP. The model describes simultaneously the geodynamic evolution of the margin during and after rifting and the phenomena of heat redistribution and abnormal compaction in the sediments. This is applied to the evolution of the Gulf of Lions margin (Provencal basin, northwestern Mediterranean). The effects of these processes for the level of maturation of organic matter and pattern of migration are discussed.

  10. Increases in the mean and variability of thermal regimes result in differential phenotypic responses among genotypes during early ontogenetic stages of lake sturgeon (Acipenser fulvescens).

    PubMed

    Dammerman, Kari J; Steibel, Juan P; Scribner, Kim T

    2016-12-01

    Climate change is affecting thermal conditions worldwide. Understanding organismal responses associated with predicted changes are essential for predicting population persistence. Few studies have examined the effects of both increased mean and variance in temperature on organismal traits, particularly during early life stages. Using lake sturgeon (Acipenser fulvescens) from Black Lake, MI, we tested whether phenotypic variation differed among families reared in two constant (10 and 18°C) and two fluctuating-temperature treatments (10-19°C) representing temperatures experienced in the river and a simulated anthropogenic disturbance. Body length, body area, and yolk-sac area were quantified at hatch. Family-by-treatment interactions explained up to 50% of the variance observed among families in offspring hatch traits. Families incubated in 18°C and the fluctuating anthropogenic treatment had 6-10 times higher variance in traits than those incubated at 10°C. Hatched larvae were placed in raceways with ambient river water. Emergence body length, emergence timing, and growth were quantified upon emergence. Families differed in time to emergence and growth with the greatest range observed in the 18°C treatment. Results demonstrate that differential responses among genotypes to changes in the mean and variability of thermal incubation regimes can affect traits at hatch as well as a subsequent ontogenetic stage.

  11. VALIDATION OF COOKING TIMES AND TEMPERATURES FOR THERMAL INACTIVATION OF YERSINIA PESTIS STRAINS KIM5 AND CDC-A1112 IN GROUND BEEF

    USDA-ARS?s Scientific Manuscript database

    The thermal stability of Yersinia pestis inoculated into retail ground beef (25 per cent fat) and heated in a temperature-controlled water bath or cooked on commercial grills was evaluated. Irradiated ground beef (3-g portions) was inoculated with ca. 6.7 log10 CFU/g of Y. pestis strain KIM5 and hea...

  12. Environmental effects of solar-thermal power systems. Systematic status of the Mojave ground squirrel, Spermophilus mohavensis (subgenus Xerospermophilus)

    SciTech Connect

    Hafner, D.J.; Yates, T.L.

    1982-06-01

    The Mojave ground squirrel, Spermophilus mohavensis, is listed as a rare species by The California Fish and Game Commission. Its well-being has emerged as an environmental concern associated with deployment of solar thermal power systems in western parts of the Motave Desert. The more common round-tailed ground squirrel, Spermophilus tereticaudus, also occurs in the Mojave Desert, and this species closely resembles S. mohavensis. The systematic status of the sibling species was investigated using allozymic and chromosomal data. Karyotypically, the two species differ in diploid number while they share a level of genic similarity reported for other mammalian semispecies. Hybridization was detected only at a single disturbed site, while allelic introgression was confined to an estimated 60 km reach. The two taxa are retained as full biological species.

  13. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    USGS Publications Warehouse

    Hurwitz, S.; Farrar, C.D.; Williams, C.F.

    2010-01-01

    Long Valley Caldera in eastern California formed 0.76Ma ago in a cataclysmic eruption that resulted in the deposition of 600km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~290MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40MWe. The RD in the center of the caldera was uplifted by ~80cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50??C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7??C and 129.5??C and bottom hole temperatures range between 99.4??C and 129.5??C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate

  14. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Farrar, Christopher D.; Williams, Colin F.

    2010-12-01

    Long Valley Caldera in eastern California formed 0.76 Ma ago in a cataclysmic eruption that resulted in the deposition of 600 km 3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~ 290 MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40 MWe. The RD in the center of the caldera was uplifted by ~ 80 cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158 m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50 °C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7 °C and 129.5 °C and bottom hole temperatures range between 99.4 °C and 129.5 °C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles

  15. Field mapping for heat capacity mapping determinations: Ground support for airborne thermal surveys

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1976-01-01

    Thermal models independently derived by Watson, Outcalt, and Rosema were compared using similar input data and found to yield very different results. Each model has a varying degree of sensitivity to any specified parameter. Data collected at Pisgah Crater-Lavic Lake was re-examined to indicate serious discrepancy in results for thermal inertia from Jet Lab Propulsion Laboratory calculations, when made using the same orginal data sets.

  16. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    PubMed

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  17. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  18. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  19. In vitro and in vivo thermal activation of steroid-receptor complexes from rats and ground squirrels (Spermophilus citellus).

    PubMed

    Zivadinović, D; Andjus, R K

    1995-02-01

    Using 3H-labelled triamcinolone acetonide (3HTA, synthetic steroid hormone), it was shown that the in vitro time course kinetics of thermal activation of 3HTA-receptor complexes exhibited the same temperature dependence in liver cytosols prepared from hibernating ground squirrels (Spermophilus citellus) as in cytosols from the rat. When 3HTA was injected in vivo to animals hibernating with a body temperature of 3 degrees C, the activation and nuclear uptake of the in vivo formed steroid-receptor complexes proceeded at a slow rate, comparable to the one predicted by in vitro studies. In the hibernator, the results are not indicative of adaptive modifications at the level of thermal activation, but prove that steroid action does proceed at a temperature incompatible with hypothermic survival in the nonhibernator.

  20. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems

    PubMed Central

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-01-01

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach. PMID:26938534

  1. The response of the Mediterranean gorgonian Eunicella singularis to thermal stress is independent of its nutritional regime.

    PubMed

    Ezzat, Leïla; Merle, Pierre-Laurent; Furla, Paola; Buttler, Alexandre; Ferrier-Pagès, Christine

    2013-01-01

    Over the last few decades, sessile benthic organisms from the Mediterranean Sea have suffered from the global warming of the world's oceans, and several mass mortality events were observed during warm summers. It has been hypothesized that mortality could have been due to a nutrient (food) shortage following the stratification of the water column. However, the symbiotic gorgonian Eunicella singularis has also presented a locally exceptional mortality, despite its autotrophic capacities through the photosynthesis of its dinoflagellate symbionts. Thus, this study has experimentally investigated the response of E. singularis to a thermal stress (temperature increase from 18 to 26°C), with colonies maintained more than 2 months under four nutritional diets: autotrophy only (AO), autotrophy and inorganic nitrogen addition (AN), autotrophy and heterotrophy (AH), heterotrophy only (HO). At 18°C, and contrary to many other anthozoans, supplementation of autotrophy with either inorganic nitrogen or food (heterotrophy) had no effect on the rates of respiration, photosynthesis, as well as in the chlorophyll, lipid and protein content. In the dark, heterotrophy maintained the gorgonian's metabolism, except a bleaching (loss of pigments), which did not affect the rates of photosynthesis. At 24°C, rates of respiration, and photosynthesis significantly decreased in all treatments. At 26°C, in addition to a decrease in the lipid content of all treatments, a bleaching was observed after 1 week in the AO treatment, while the AH and AN treatments resisted three weeks before bleaching. These last results suggest that, temperatures above 24°C impair the energetic reserves of this species and might explain the mortality events in the Mediterranean.

  2. Hesperian polythermal glaciation in Isidis Planitia, Mars - Ice sheet dynamics and thermal regime inferred from numerical modeling

    NASA Astrophysics Data System (ADS)

    Souček, Ondřej; Bourgeois, Olivier; Pochat, Stéphane; Guidat, Thomas

    2015-04-01

    We test the hypothesis that the Thumbprint Terrain observed on the floor of Isidis Planitia, a giant impact crater located close to the martian equator, is a landform assemblage inherited from a glaciation during the Hesperian. For this purpose, we perform numerical simulations with a coupled thermo-mechanical model of ice sheet dynamics. We use surface temperatures and ice accumulation/ablation patterns predicted by a climatic Global Circulation Model, and values of the geothermal heat flux provided by a global model of planetary thermal evolution. We find that, with atmospheric physical properties similar to the current ones and under favorable orbital conditions, net ice accumulation in the northwestern part of Isidis Planitia leads within a few Ma to the development of a massive ice sheet, as much as 4.9 km in thickness, over the entire basin. The modeled ice sheet is polythermal: its center and its periphery are permanently frozen to the base, while the pressure melting point is reached episodically in an intermediate ring. Our simulations suggest that the propagation of thermo-mechanical melting waves in this ring is responsible for the formation of the Thumbprint Terrain, a probable martian equivalent of terrestrial ribbed moraines. They support the interpretation that sinuous ridges and linear valleys observed at the periphery of the basin are parts of a subglacial network of eskers and tunnel valleys that drained glacial meltwater outwards, across the cold-based outer part of the ice sheet. This work strengthens the hypothesis that massive glaciers covered large portions of the martian surface before the Amazonian and that basal melting below the wet-based portions of these ice sheets contributed significantly to the production and flow of liquid water in the ancient martian history.

  3. A 3 Ga old polythermal ice sheet in Isidis Planitia, Mars: Dynamics and thermal regime inferred from numerical modeling

    NASA Astrophysics Data System (ADS)

    Souček, Ondřej; Bourgeois, Olivier; Pochat, Stéphane; Guidat, Thomas

    2015-09-01

    Isidis Planitia is a 1350 km wide impact crater located close to the martian equator. To test the hypothesis that the 2.8 to 3.4 Ga old Thumbprint Terrain preserved on the floor of this basin is a glacial landform assemblage, we perform a numerical simulation of glaciation with a thermo-mechanically coupled model of ice sheet dynamics. As model inputs, we use surface temperatures and ice accumulation patterns predicted by a General Circulation Model based on the present-day atmospheric characteristics, and values of the geothermal heat flux provided by a global model of planetary thermal evolution. We find that, under favorable orbital conditions, an ice sheet covering the entire basin can develop in 2 to 5 Ma, with a maximum thickness of 4.9 km. The modeled ice sheet is polythermal: it is permanently cold-based in the periphery and, due to a negative heat-flux anomaly, also in the center, while the pressure melting point is reached in an intermediate ring. Our simulation is consistent with the interpretation that the Thumbprint Terrain is a martian equivalent of terrestrial ribbed moraines and has formed below a wet-based ice sheet. It supports also the interpretation that sinuous ridges and linear valleys observed at the periphery of the basin are parts of a subglacial network of eskers and tunnel valleys that drained the glacial meltwater outwards, across the cold-based periphery of the ice sheet. This work strengthens the hypothesis that glaciers thick as much as several km may have existed on Mars several Ga ago and that glacial basal melting may have contributed to the production and flow of surface liquid water at that time, under an atmosphere no thicker than the present-day one.

  4. Influence of thermal regime and land use on benthic invertebrate communities inhabiting headwater streams exposed to contrasted shading.

    PubMed

    Dohet, Alain; Hlúbiková, Daša; Wetzel, Carlos E; L'Hoste, Lionel; Iffly, Jean François; Hoffmann, Lucien; Ector, Luc

    2015-02-01

    Headwaters account for a high proportion of total freshwater stream-channel length in a drainage basin and are critical habitats for rare, endangered, and specialized species. In the context of climate warming, increasing water temperatures may be an ultimate threat to cold-adapted species even in temperate ecosystems. Climate change effects on streams may interact with other pressures such as pollution or habitat fragmentation, confounding their real impact on biological communities. Three headwater streams exposed to contrasted shading and land use conditions were sampled over a three-year period in spring and autumn (2010-2012). Five stations distributed along the longitudinal continuum were chosen in the upstream part of each stream. In addition to benthic invertebrate sampling, water temperature was recorded continuously using data loggers. Results showed that the riparian woodland associated with forested land use throughout the catchment clearly moderated winter temperature minima, summer temperature maxima and thermal variability compared to open river channels with narrow or absent riparian tree cover. Although, the variability in macroinvertebrate species distribution was mainly attributed to anthropogenic land use in the catchment, a significant part of the variability was explained by temperature descriptors such as the number of cumulative degree-days in summer and extremes in winter temperature. Trichoptera species preferring headwaters and cold water temperatures were found exclusively in the forested unimpacted stream. Conservation issues are discussed in relation to the predicted loss of the potential future distributions of these Trichoptera cold-adapted species. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Coordinated in situ and orbital observations of ground temperature by the Mars Science Laboratory Ground Temperature Sensor and Mars Odyssey Thermal Emission Imaging System: Implications for thermal modeling of the Martian surface

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Vasavada, A. R.; Christensen, P. R.; Mischna, M. A.; Team, M.

    2013-12-01

    Diurnal variations in Martian ground surface temperature probe the physical nature (mean particle size, lateral/vertical heterogeneity, cementation, etc.) of the upper few centimeters of the subsurface. Thermal modeling of measured temperatures enables us to make inferences about these physical properties, which in turn offer valuable insight into processes that have occurred over geologic timescales. Add the ability to monitor these temperature/physical variations over large distances and it becomes possible to infer a great deal about local- to regional scale geologic processes and characteristics that are valuable to scientific and engineering studies. The Thermal Emission Imaging System (THEMIS) instrument measures surface temperatures from orbit at a restricted range of local times (~3:00 - 6:00 am/pm). The Rover Environmental Monitoring Station Ground Temperature Sensor (REMS GTS) on the Mars Science Laboratory (MSL) acquires hourly temperature measurements in the vicinity of the rover. With the additional information that MSL's full diurnal coverage offers, we are interested in correlating the thermophysical properties inferred from these local-scale measurements with those obtained from MSL's visible images and orbital THEMIS measurements at only a few times of day. To optimize the comparisons, we have been acquiring additional REMS observations simultaneously with Mars Odyssey overflights during which THEMIS is able to observe MSL's location. We also characterize surface particle size distributions within the field of view of the GTS. We will present comparisons of the temperatures derived from GTS and THEMIS, focusing on eight simultaneous observations of ground temperature acquired between sols 100 and 360. These coordinated observations allow us to cross-check temperatures derived in situ and from orbit, and compare rover-scale observations of thermophysical and particle size properties to those made at remote sensing scales.

  6. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    SciTech Connect

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  7. Thermal regime of a continental permafrost associated gas hydrate occurrence a continuous temperature profile record after drilling

    NASA Astrophysics Data System (ADS)

    Henninges, J.; Huenges, E.; Mallik Working Group

    2003-04-01

    Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower

  8. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  9. The thermal structure of Saturn: Inferences from ground-based and airborne infrared observations

    NASA Technical Reports Server (NTRS)

    Tokunaga, A.

    1978-01-01

    Spectroscopic and photometric infrared observations of Saturn are reviewed and compared to the expected flux from thermal structure models. Large uncertainties exist in the far-infrared measurements, but the available data indicate that the effective temperature of the disk of Saturn is 90 + or - 5 K. The thermal structure models proposed by Tokunaga and Cess and by Gautier et al. (model 'N') agree best with the observations. North-South limb scans of Saturn at 10 and 20 micrometers show that the temperature inversion is much stronger at the South polar region than at the equator.

  10. Ground-Based Testing of Replacement Thermal Control Materials for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; McClendon, Mark W.; deGroh, Kim K.; Banks, Bruce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon FEP thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. A Failure Review Board was established to investigate the damage to the MLI and identify a replacement material. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain mechanical integrity for at least ten years. Ten candidate materials were selected and exposed to ten-year HST-equivalent doses of simulated orbital environments. Samples of the candidates were exposed sequentially to low and high energy electrons and protons, atomic oxygen, x-ray radiation, ultraviolet radiation and thermal cycling. Following the exposures, the mechanical integrity and optical properties of the candidates were investigated using Optical Microscopy, Scanning Electron Microscopy (SEM), a Laboratory Portable Spectroreflectometer (LPSR) and a Lambda 9 Spectroreflectometer. Based on the results of these simulations and analyses, the Failure Review Board selected a replacement material and two alternates that showed the highest likelihood of providing the requisite thermal properties and surviving for ten years in orbit.

  11. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    USGS Publications Warehouse

    Young, H.W.; Lewis, R.E.

    1980-01-01

    In southwestern Idaho and north-central Nevada, thermal groundwater occurs under artesian conditions in igneous or sedimentary rocks of Tertiary age. Temperatures of the groundwater range from 30 degrees to more than 80 degrees Celsius. Thermal waters are a sodium carbonate or bicarbonate type; nonthermal waters are a calcium bicarbonate. Chemical geothermometers indicate maximum reservoir temperatures near 100 degrees Celsius. Stable-isotope data indicate recharge to the system occurred when climate averaged 3 degrees to 5 degrees Celsius colder than at present; such conditions existed during Holocene glacial advances 3,000 and more than 8,000 years ago. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3,400 to 6,800 years. Considering estimates of heat flux in and heat discharged by conduction and convection, about 25.0 cubic feet per second, or about 18,000 acre-feet per year, of 50 degrees Celsius water is required to transport excess heat from the system advectively in groundwater. The conceptual model is one where water has circulated thousands, even tens of thousands, of years. Within model constraints, reservoir thermal energy for this geothermal system is 130x10 to the 18th power calories. (USGS)

  12. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  13. Carvacrol and cinnamaldehyde facilitate thermal destruction of Escherichia coli O157:H7 in raw ground beef.

    PubMed

    Juneja, Vijay K; Friedman, Mendel

    2008-08-01

    The heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of the antimicrobials carvacrol and cinnamaldehyde was tested at temperatures ranging from 55 to 62.5 degrees C. Inoculated meat packaged in bags was completely immersed in a circulating water bath, cooked for 1 h to an internal temperature of 55, 58, 60, or 62.5 degrees C, and then held for predetermined lengths of time ranging from 210 min at 55 degrees C to 5 min at 62.5 degrees C. The surviving bacteria were enumerated by spiral plating onto tryptic soy agar overlaid with sorbitol MacConkey agar. Inactivation kinetics of the pathogens deviated from first-order kinetics. D-values (time for the bacteria to decrease by 90%) in the control beef ranged from 63.90 min at 55 degrees C to 1.79 min at 62.5 degrees C. D-values determined by a logistic model ranged from 43.18 min (D1, the D-value of a major population of surviving cells) and 89.84 min (D2, the D-value of a minor subpopulation) at 55 degrees C to 1.77 (D1) and 0.78 min (D2) at 62.5 degrees C. The thermal death times suggested that to achieve a 4-D reduction, contaminated processed ground beef should be heated to an internal temperature of 60 degrees C for at least 30.32 min. Significantly increased sensitivity to heat (P < 0.05) was observed with the addition and/or increasing levels of carvacrol or cinnamaldehyde from 0.5 to 1.0%. The observed thermal death times may facilitate the design of acceptance limits at critical control points for ground beef at lower times and temperatures of heating.

  14. Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors

    NASA Astrophysics Data System (ADS)

    Harris, Robert N.; Grevemeyer, Ingo; Ranero, CéSar R.; Villinger, Heinrich; Barckhausen, Udo; Henke, Thomas; Mueller, Christian; Neben, Soenke

    2010-12-01

    The thermal structure of convergent margins provides information related to the tectonics, geodynamics, metamorphism, and fluid flow of active plate boundaries. We report 176 heat flow measurements made with a violin bow style probe across the Costa Rican margin at the Middle America Trench. The probe measurements are collocated with seismic reflection lines. These seismic reflection lines show widespread distribution of bottom-simulating reflectors (BSRs). To extend the spatial coverage of heat flow measurements we estimate heat flow from the depth of BSRs. Comparisons between probe measurements and BSR-derived estimates of heat flow are generally within 10% and improve with distance landward of the deformation front. Together, these determinations provide new information on the thermal regime of this margin. Consistent with previous studies, the margin associated with the northern Nicoya Peninsula is remarkably cool. We define better the southern boundary of the cool region. The northern extent of the cool region remains poorly determined. A regional trend of decreasing heat flow landward of the deformation front is apparent, consistent with the downward advection of heat by the subducting Cocos Plate. High wave number variability at a scale of 5-10 km is significantly greater than the measurement uncertainty and is greater south of the northern Nicoya Peninsula. These heat flow anomalies vary between approximately 20 and 60 mW m-2 and are most likely due to localized fluid flow through mounds and faults on the margin. Simple one-dimensional models show that these anomalies are consistent with flow rates of 7-15 mm yr-1. Across the margin toe variability is significant and likely due to fluid flow through deformation structures associated with the frontal sedimentary prism.

  15. GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM CoRoT-1b AND WASP-12b

    SciTech Connect

    Zhao Ming; Swain, Mark R.; Monnier, John D.; Barman, Travis; Hinkley, Sasha

    2012-01-10

    We report a new detection of the H-band thermal emission of CoRoT-1b and two confirmation detections of the Ks-band thermal emission of WASP-12b at secondary eclipses. The H-band measurement of CoRoT-1b shows an eclipse depth of 0.145% {+-} 0.049% with a 3{sigma} percentile between 0.033% and 0.235%. This depth is consistent with the previous conclusions that the planet has an isothermal region with inefficient heat transport from day side to night side, and has a dayside thermal inversion layer at high altitude. The two Ks-band detections of WASP-12b show a joint eclipse depth of 0.299% {+-} 0.065%. This result agrees with the measurement of Croll and collaborators, providing independent confirmation of their measurement. The repeatability of the WASP-12b measurements also validates our data analysis method. Our measurements, in addition to a number of previous results made with other telescopes, demonstrate that ground-based observations are becoming widely available for characterization of atmospheres of hot Jupiters.

  16. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect

    Rowley, J.; Hawkins, W.; Gardner, J.

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  17. Mycoplasmal upper respiratory tract disease across the range of the threatened Mojave Desert tortoise: associations with thermal regime and natural antibodies.

    PubMed

    Sandmeier, Franziska C; Tracy, C Richard; Hagerty, Bridgette E; DuPré, Sally; Mohammadpour, Hamid; Hunter, Kenneth

    2013-03-01

    Most research of upper respiratory tract disease (mycoplasmal URTD) in the threatened Mojave Desert tortoise (Gopherus agassizii) has worked under the hypothesis that the pathogen, Mycoplasma agassizii, has a relatively consistent and predictable effect on tortoise populations across their natural range. In contrast, we hypothesized that multiple factors influence the prevalence of disease and analyzed biological and environmental variables that vary significantly across the Mojave Desert. We used multiple regression models to analyze associations between mycoplasmal URTD and the genetic structure of 24 tortoise populations, levels of natural antibody (NAb) to M. agassizii in tortoises (one component of the innate immune system), precipitation, and colder thermal regimes. We detected a significant, positive association between mean levels of NAb and seroprevalence to M. agassizii. We hypothesized that NAbs may provide tolerance to mycoplasmal infections and that more tolerant populations may act as host reservoirs of disease. We also detected significant associations between colder winters and mycoplasmal URTD, suggesting that colder winters may depress tortoise immune resistance against M. agassizii or enhance conditions for the growth of M. agassizii.

  18. The Zero Boil-Off Tank Experiment Ground Testing and Verification of Fluid and Thermal Performance

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad; Kahwaji, Michel; Kieckhafer, Alexander

    2016-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale International Space Station (ISS) experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the work that has been done to demonstrate that the ZBOT experiment is capable of performing the functions required to produce a meaningful and accurate results, prior to its launch to the International Space Station. Main systems discussed are expected to include the thermal control system, the optical imaging system, and the tank filling system.This work is sponsored by NASAs Human Exploration Mission Directorates Physical Sciences Research program.

  19. Thermal destruction of Escherichia coli O157:H7 in sous-vide cooked ground beef as affected by tea leaf and apple skin powders.

    PubMed

    Juneja, Vijay K; Bari, M L; Inatsu, Y; Kawamoto, S; Friedman, Mendel

    2009-04-01

    We investigated the heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of white and green tea powders and an apple skin extract. Inoculated meat was cooked using the sous-vide technique, i.e., the meat was packaged in sterile bags and completely immersed in a circulating water bath at low temperature for a period of time. The bags were cooked for 1 h to an internal temperature of 55, 58, 60, or 62.5 degrees C, and then held from 240 min at 55 degrees C to 10 min at 62.5 degrees C. The surviving bacteria were enumerated by spiral plating onto tryptic soy agar overlaid with sorbitol-MacConkey agar. Inactivation kinetics of the pathogens deviated from first-order kinetics. D-values (time, in minutes, required for the bacteria to decrease by 90%) in the control beef ranged from 67.79 min at 55 degrees C to 2.01 min at 62.5 degrees C. D-values determined by a logistic model ranged from 36.22 (D1, the D-value of a major population of surviving cells) and 112.79 (D2, the D-value of a minor subpopulation) at 55 degrees C to 1.39 (D1) and 3.00 (D2) at 62.5 degrees C. A significant increase (P < 0.05) in the sensitivity of the bacteria to heat was observed with the addition of 3% added antimicrobials. D-value reductions of 62 to 74% were observed with apple powder and 18 to 58% with tea powders. Thermal death times from this study will assist the retail food industry to design cooking regimes that ensure the safety of beef contaminated with E. coli O157:H7.

  20. Communication: spin-boson model with diagonal and off-diagonal coupling to two independent baths: ground-state phase transition in the deep sub-Ohmic regime.

    PubMed

    Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang

    2014-04-28

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.

  1. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.

    2017-06-01

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

  2. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE PAGES

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...

    2017-06-09

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  3. Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat.

    PubMed

    Dehnad, Danial; Mirzaei, Habibollah; Emam-Djomeh, Zahra; Jafari, Seid-Mahdi; Dadashi, Saeed

    2014-08-30

    Chitosan-nanocellulose biocomposites were prepared from chitosan having molecular weight of 600-800 kDa, nanocellulose with 20-50 nm diameters and various levels of 30, 60 and 90% (v/wCHT) for glycerol. Agitation and sonication were used to facilitate even dispersion of particles in the polymer matrix. The nanocomposites were examined by differential scanning calorimetry, X-ray diffraction and agar disc diffusion tests; finally, the film was applied on the surface of ground meat to evaluate its performance in real terms. Chitosan-nanocellulose nanocomposites showed high Tg range of 115-124°C and were able to keep their solid state until the temperature (Tm) range of 97-99°C. XRD photographs revealed that nanocellulose peak completely disappeared after their addition to chitosan context. Agar disc diffusion method proved that the nancomposite had inhibitory effects against both gram-positive (S. aureus) and gram-negative (E. coli and S. enteritidis) bacteria through its contact area. Application of chitosan-nanocellulose nanocomposite on the ground meat decreased lactic acid bacteria population compared with nylon packaged samples up to 1.3 and 3.1 logarithmic cycles at 3 and 25°C after 6 days of storage, respectively.

  4. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; hide

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  5. Ground truth data for test sites (SL-3). [solar radiation and thermal radiation brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.

  6. Integration of thermal infrared satellite data with ground-based geophysical data for understanding volcanic processes

    NASA Astrophysics Data System (ADS)

    Steffke, Andrea M.

    This dissertation examines the tools and applications available for investigating volcanic phenomenon using satellite thermal infrared remote sensing data. Various algorithms have been developed to automatically detect volcanic thermal anomalies. A contextual (VAST), fixed threshold (MODVOLC) and temporal (RAT), the three main types of algorithms, are compared to determine how effective they are at detecting thermal anomalies caused by various types of volcanic activity (lava flows, lava domes, strombolian activity, and fumarolic activity). Each of the algorithms operates with the highest accuracy for the types of activity that they were designed to detect and no algorithm is 100 percent accurate. With the current data restrictions no algorithm ever will be, therefore user interaction is key. Results from the automated algorithms are then applied to determine discharge rates and cumulative volumes of erupted lava during the Stromboli 2007 eruption. Blinding applying the result can cause errors up to an order of magnitude with the main cause of errors coming from the inclusion of cloudy data and not identifying the most radiant pixels. From the manual results it was determined the 2007 eruption was a typical Strombolian effusive eruption caused by tapping a pressurized magma source. The satellite derived discharge rates and SO2 flux supply rates are then calculated and compared at Etna from 2002-2006. Differences in the supply rate of magma and erupted volume of lava occur from eruption to eruption and also vary throughout individual eruptions, indicating a complex supply system within Etna. Thermal satellite data is also used to estimate plume heights at Tungurahua volcano from 2006-2008. Heights are compared with acoustic power. Good correlation between plume height and acoustic power was found. By integrating the two data sets it is possible to distinguish between different eruption styles and aids in classification of eruption types. Although satellite data is a

  7. Cassini CIRS and Ground-Based Observations of Ephemeral Thermal Waves in Saturn

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Flasar, F. Michael; Achterberg, Richard K.; Yanamandra-Fisher, Padma

    One of the goals of the Cassini CIRS experiment was to detect and characterize zonally variable temperature waves in Saturn's atmosphere. Such waves are commonplace in Jupiter, particu-larly at mid-latitudes, and they were also detected in Saturn's atmosphere in 2003 and 2004 from ground-based mid-infrared observations that are sensitive to temperatures in Saturn's tro-posphere and stratosphere. However, from ground-based observations immediately preceding the Cassini arrival at Saturn in 2005 and in Cassini CIRS observations from 2005 through 2006, no such waves were detectable in either the troposphere or stratosphere. Finally such waves were detected: first in the stratosphere in 2006 and then in the troposphere in 2008, although tropospheric waves were difficult to detect in 2009. Throughout 2004-2009, amplitudes of these waves are generally higher in the southern hemisphere than in the north. Most of the power in these waves is in wavenumbers 8-10, and they are contiguous in longitude, but there are also some instances of limited wavetrains. For 2008, when waves were apparent in both troposphere and stratosphere, they were longitudinally coincident, although stratospheric waves were spread over a wider latitude range than in the troposphere. The time variability of the wave amplitudes is clearly varying on much shorter time scales than the Saturn's seasonal variability, which is on the order of decades. Similarly, there is no apparent relationship between the behavior of these waves and Saturn's low-latitude semi-annual oscillations (Orton et al. 2008 Nature 453, 196; Fouchet et al. 2008 Nature 453, 200).

  8. Use and usability of experimental monitoring data and temperature modeling to inform adaptive management of the Colorado River's thermal regime for native fish conservation below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Melis, T. S.

    2014-12-01

    Seasonal thermal variability of the Colorado River in Grand Canyon was severely decreased by closure of Glen Canyon Dam and filling of Lake Powell reservoir that was achieved in 1980. From 1973 to 2002, downstream summer river temperatures at Lees Ferry were about 18°C below pre-dam conditions, and limited juvenile native fish growth and survival. A large-scale flow experiment to improve the river's thermal regime for spawning and rearing habitat of endangered native humpback chub and other native fish in eastern Grand Canyon was conducted in Water Year 2000. Monitoring revealed warming, but well below the 16-18°C optimum for chub 124 km below the dam near the Little Colorado River confluence, and no measurable chub population increase in Grand Canyon. Fall-timed stable flow experiments to improve shoreline chub nursery habitat (2008-12) were also inconclusive relative to juvenile chub growth and recruitment. Field studies also showed that daytime warming of shoreline habitats used by fish under steady flows is limited by high daily exchange rates with main channel water. Monthly averaged and higher resolution temperature models have also been developed and used to support more recent experimental management planning. Temperature simulations have been useful for screening dam release scenarios under varied reservoir storage conditions with and without use of previously proposed but never constructed multilevel intake structures on the dam's hydroelectric units. Most importantly, modeling revealed the geophysical limits on downstream warming under existing water management and dam operating policies. Hourly unsteady flow simulations in 2006 predicted equivalent levels of average downstream river warming under either fluctuating or steady flows for a given monthly release volume. River warming observed since 2002, has resulted from reduced Lake Powell storage resulting from drier upper basin hydrology. In support of new environmental compliance on dam operations

  9. Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom E.; Bayumy, Dina A.

    2016-06-01

    Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.

  10. Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes

    NASA Astrophysics Data System (ADS)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Ottolini, Luisa; Hamada, Morihisa

    2017-10-01

    Replacive mantle dunites are considered to be shallow pathways for extraction of mantle melts from their source region. Dunites offer a unique possibility to unravel the compositional variability of the melts produced in the upper mantle, before mixing and crystal fractionation modify their original signature. This study includes a quantification of H2O, Li and trace elements (Ni, Mn, Co, Sc, V, Ti, Zr, Y and HREE) in olivine from large replacive dunite bodies (>20 m) within a mantle section exposed in the Western Italian Alps (Lanzo South ophiolite). On the basis of olivine, clinopyroxene and spinel compositions, these dunites were previously interpreted to be formed by melts with a MORB signature. Variations in Ni, Mn, Co and Ca contents in olivine from different dunite bodies suggested formation by different melt batches. The variable H2O and Li contents of these olivines agree with this idea. Compared to olivine from residual peridotites and olivine phenocrysts in MORB (both having H2O <5 ppm; Li >1 ppm), the Lanzo South dunite olivine has high H2O (18-40 ppm) and low Li (0.35-0.83 ppm) contents. Geochemical modelling suggests that the dunite-forming melts were produced by low melting degrees of a mixed garnet-pyroxenite-peridotite mantle source, with a contribution of a garnet pyroxenite component variable from 20 to 80%. The Lanzo dunites experienced migration of melts geochemically enriched and mainly produced in the lowermost part of the melting region. Extraction of enriched melts through dunite channels are probably characteristic of cold thermal regimes, where low temperatures and a thick mantle lithosphere inhibit mixing with melts produced at shallower depths.

  11. Thermalization of fast cesium 5D{sub 3sol2} atoms in collisions with ground-state cesium atoms

    SciTech Connect

    Marks, A.; Hickman, A. P.; Huennekens, J.; Streater, A. D.

    2005-01-01

    We have investigated collisions involving fast, excited Cs atoms produced by photodissociating Cs{sub 2} molecules with a pulsed dye laser. The velocities of the atoms in the 5D state formed by the process Cs{sub 2}(X {sup 1}{sigma}{sub g}{sup +})+({Dirac_h}/2{pi}){omega}{sub pump}{yields}Cs{sub 2}{sup *}{yields}Cs(5D)+Cs(6S) are much greater than typical thermal velocities associated with the cell temperature. Using a narrow-band cw probe laser to observe the increased Doppler broadening of the 5D{sub 3/2}{yields}5F{sub 5/2} excitation line shape, we are able to monitor the time evolution of the velocity distribution of these 5D atoms. We analyze the data using a model that predicts the time-dependent excitation line shape of the fast atoms. Because the photons used to dissociate the molecules have a well-defined energy, the velocity distribution of the excited atoms in the early time after they are produced can be fairly well determined. Over time, velocity-changing collisions with ground-state Cs atoms cause the velocity distribution of excited atoms to approach the thermal limit. An analysis based on the strong-collision model leads to a prediction that the observed line shape at intermediate times will be a linear combination of contributions from distinct 'fast' and 'thermalized' atomic populations. By fitting our data to this model, a rate coefficient for velocity-changing collisions of fast Cs(5D{sub 3/2}) atoms with ground-state Cs atoms has been determined. The result k{sub VCC}=(6.1{+-}1.2)x10{sup -10} cm{sup 3} s{sup -1} corresponds to an effective velocity-changing collision cross section of {sigma}{sub VCC}{sup Cs,eff}=(1.2{+-}0.2)x10{sup -14} cm{sup 2}.

  12. Thermal Contributions to the Degradation of Ground Laboratory and Space Irradiated Teflon

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Martin, Morgana

    2003-01-01

    The aluminized Teflon fluorinated ethylene propylene outer most layer of the multilayer insulation blankets on the Hubble Space Telescope has become embrittled resulting in severe on-orbit cracking. During the second servicing mission, a piece of aluminized fluorinated ethylene propylene was retrieved that had curled, exposing the back-surface aluminum to space. This extremely embrittled piece reached 200 C on-orbit, 150 C higher than the nominal temperature extreme. Therefore, experiments have been conducted to determine the effect of heating on the degradation of fluorinated ethylene propylene that has been irradiated in a ground laboratory facility or in space on Hubble Space Telescope. Samples of pristine, x-ray irradiated and Hubble Space Telescope retrieved fluorinated ethylene propylene were heat treated from 50 to 200 C at 25 C intervals in a high vacuum facility and tensile tested. Density measurements were also obtained. Results indicate that heating does not embrittle non-irradiated Teflon. However, there is a significant dependence of the embrittlement of irradiated Teflon on heating temperature, with near complete loss of elongation at 100 C and higher. Rate of degradation changes, which were consistent with the glass transition temperature for fluorinated ethylene propylene, were present in the data. The results support chain scission as the primary mechanism of degradation of fluorinated ethylene propylene on Hubble Space Telescope, and indicate the significance of the on-orbit temperature of fluorinated ethylene propylene with respect to its degradation in the space environment.

  13. Ground-Atmosphere Interactions at Gale: Determination of the Surface Energy Budget, Thermal Inertia and Water Sorption on the Regolith

    NASA Astrophysics Data System (ADS)

    Martinez, German; Renno, Nilton; Fischer, Erik; Borlina, Caue; Hallet, Bernard; De la Torre Juarez, Manuel; Vasavada, Aswhin; Gomez-Elvira, Javier

    2014-05-01

    The analysis of the Surface Energy Budget (SEB) yields insights into the local climate and the soil-atmosphere interactions, while the analysis of the thermal inertia of the shallow subsurface augments surface observations, providing information about the local geology. The Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System have measured near subsurface thermal inertia from orbit at scales of ~104 m2 to ~10 km2. Here we report analysis of the thermal inertia at a few locations at Gale Crater at scales of 100 m2. The thermal inertia is calculated by solving the heat conduction equation in the soil using hourly measurements by the Rover Environmental Station (REMS) ground temperature sensor as an upper boundary condition. Three Sols representative of different environmental conditions and soil properties, namely, Sol 82 at Rocknest (RCK), Sol 112 at Point Lake (PL) and Sol 139 at Yellowknife Bay (YKB) are analyzed in detail. The largest thermal inertia (I) value is found at YKB, I = 445 J m-2 K-1 s-1/2 or 445 tiu (thermal inertia unit), followed by PL with I= 300 tiu and RCK withI = 280 tiu [1]. These values are consistent with the type of terrain imaged by MastCam and with previous satellite estimates at Gale Crater [2,3]. The SEB is calculated by using all REMS data products as well as dust opacity values derived from MastCam measurements, whereas previously, the SEB has been calculated using numerical models only [4]. At each location and during the daytime, the SEB is dominated by the downwelling shortwave (SW) solar radiation (~450-500 W/m2) and the upwelling longwave (LW) radiation emitted by the surface (~300-400 W/m2). The sum of these two terms accounts for at least 70% of the net surface heating rate between 0900 and 1400 local solar time. At nighttime, the SEB is dominated by the upwelling LW radiation emitted by the surface (~50-100 W/m2) and the downwelling LW radiation from the atmosphere (~50 W/m2

  14. Properties of Slowly Moving Thermal Waves in Saturn from Cassini CIRS and Ground-Based Thermal Observations from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, L. N.; Flasar, F.; Achterberg, R. K.; Yanamandra-Fisher, P. A.; Lewis, M.; Fujiyoshi, T.; Bell, J.; Christian, J.; Brown, S. K.

    2013-10-01

    Hemispherical maps of Saturn’s atmosphere made both by Cassini’s Composite Infrared Spectrometer (CIRS, 7-1000 µm) and ground-based mid-infrared observations (7-25 µm) were surveyed for the presence and properties of zonal thermal waves and their variability in time. The most inclusive CIRS surveys, FIRMAPs (15 cm-1 spectral resolution), covered the planet from the equator to either north or south pole, sweeping through the latitude range while the planet rotated beneath over its ~10-hour rotation. Ground-based observations were made at the Infrared Telescope Facility using the MIRSI instrument, the Very Large Telescope using VISIR and the Subaru Telescope using COMICS. We sampled spectral ranges dominated both by upper-tropospheric emission (80-200 mbar) and by stratospheric emission (0.5-3 mbar). We examined data that were taken between 2003 and Saturn’s spring equinox in 2009. During this time, the strongest waves were found between planetographic latitudes of 30° - 45°S and 0° - 30°N. Some low-wavelength components cover all 360° in longitude, similar to the slowly moving thermal waves in Jupiter’s atmosphere, but the strongest waves were found in “trains” that covered less than 180°. In 2005, tropospheric waves had a mean peak-to-peak variance that was the equivalent of temperature variability of about 1 K. Between 2005 and 2007, they had subsided to about 0.5 K. During and after 2008, they soared to over 3 K. During this entire period, similar waves in the northern hemisphere were never larger than 0.8 K. In the stratosphere, waves followed a similar time sequence, with southern hemisphere waves in 2005 reaching amplitudes as high as 3.5 K in brightness temperature, subsequently decreasing, then growing in 2008-2009 to over 5 K. Stratospheric waves in the northern hemisphere were nearly constant ~2 K, but with an instance of 6 K at one epoch in 2008. We were able to track the phase of some of the waves in the southern hemisphere, which

  15. Ground-based thermal imaging of lava lakes at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Calkins, J.; Oppenheimer, C.; Kyle, P. R.

    2008-11-01

    Mount Erebus, a large intraplate stratovolcano dominating Ross Island, Antarctica, hosts the world's only active phonolite lava lakes. The main manifestation of activity at Erebus volcano in December 2004 was as the presence of two convecting lava lakes within an inner crater. The long-lived Ray Lake, ~ 1400 m 2 in area, was the site of up to 10 small Strombolian eruptions per day. A new but short-lived, ~ 1000-1200 m 2 lake formed at Werner vent in December 2004 sourced by lava flowing from a crater formed in 1993 by a phreatic eruption. We measured the radiative heat flux from the two lakes in December 2004 using a compact infrared (IR) imaging camera. Daily thermal IR surveys from the Main Crater rim provide images of the lava lake surface temperatures and identify sites of upwelling and downwelling. The radiative heat outputs calculated for the Ray and Werner Lakes are 30-35 MW and 20 MW, respectively. We estimate that the magma flux needed to sustain the combined heat loss is ~ 250-710 kg s - 1 , that the minimum volume of the magma reservoir is 2 km 3, and that the radius of the conduit feeding the Ray lake is ~ 2 m.

  16. Ground-based detection of thermal emission from the exoplanet WASP-19b

    NASA Astrophysics Data System (ADS)

    Gibson, N. P.; Aigrain, S.; Pollacco, D. L.; Barros, S. C. C.; Hebb, L.; Hrudková, M.; Simpson, E. K.; Skillen, I.; West, R.

    2010-05-01

    We present an occultation of the newly discovered hot Jupiter system WASP-19, observed with the High Acuity Wide-field K-band Imager instrument on the VLT, in order to measure thermal emission from the planet's dayside at ~2μm. The light curve was analysed using a Markov Chain Monte Carlo method to find the eclipse depth and the central transit time. The transit depth was found to be 0.366 +/- 0.072 per cent, corresponding to a brightness temperature of 2540 +/- 180 K. This is significantly higher than the calculated (zero-albedo) equilibrium temperature and indicates that the planet shows poor redistribution of heat to the night side, consistent with models of highly irradiated planets. Further observations are needed to confirm the existence of a temperature inversion and possibly molecular emission lines. The central eclipse time was found to be consistent with a circular orbit. Based on observations collected with the HAWK-I instrument at the Very Large Telescope/UT4 Yepun telescope at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (Programme: 282.C-5019). E-mail: Neale.Gibson@astro.ox.ac.uk

  17. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target

    NASA Technical Reports Server (NTRS)

    Madhavan, Sriharsha; Brinkmann, Jake; Wenny, Brian N.; Wu, Aisheng; Xiong, Xiaoxiong

    2017-01-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, a polar orbiting Earth remote sensing instrument built using a strong MODIS background, employs a similarly designed on-board calibrating source - a V-grooved blackbody for the thermal emissive bands (TEB). The central wavelengths of most VIIRS TEBs are very close to those of MODIS with the exception of the 10.7 micron channel. To ensure the long term continuity of climate data records derived using VIIRS and MODIS TEB, it is necessary to assess any systematic differences between the two instruments, including scenes with temperatures significantly lower than blackbody operating temperatures at approximately 290 K. Previous work performed by the MODIS Characterization Support Team (MCST) at NASAGSFC used the frequent observations of the Dome Concordia site located in Antarctica to evaluate the calibration stability and consistency of Terra and Aqua MODIS over the mission lifetime. The near-surface temperature measurements from an automatic weather station (AWS) provide a direct reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same technique is applied to the VIIRS TEB and the results are compared with those from the matched MODIS TEB. The results of this study show a small negative bias when comparing the matching VIIRS and Aqua MODIS TEB, implying a higher scene temperature retrieval for S-VIIRS at the cold end. Statistically no significant drift is observed for VIIRS TEB performance over the first 3.5 years of the mission.

  18. Characteristics of Saturn's Atmosphere from Ground-Based Thermal Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fisher, B.; Yanamandra-Fisher, P.; Baines, K.; Ressler, M.; Beach-Kimball, B.; Jackson, B.; Gezari, D.; Varosi, F.

    2003-12-01

    Several years of observations of Saturn, obtained primarily at NASA's Infrared Telescope Facility, establish a baseline against which data from the Cassini Composite Infrared Spectrometer (CIRS) and other remote-sensing instruments can be compared. Thermal emission at 5.2 μ m, sensitive to clouds near and above the 2--3 bar level, finds them to be strikingly inhomogeneous with large zonal variations near the equator and 45oS. At longer wavelengths, stratospheric temperatures near 10 mbar are sensed by 7.85-μ m CH4 emission and (with C2H6 abundance variations sensed by 12.2 μ m C2H6 emission). Trosospheric temperatures near 100--400 mbar are sensed by H2 collision-induced emission between 17 and 24 μ m. Strong seasonal forcing of stratospheric temperatures is evident, with temperatures tracking the insolation variations with little time delay, inconsistent with purely radiative equilibrium condistions. Stratospheric temperature (or C2H6 abundance) peaked sharply poleward of 81oS latitude in a high-resolution Keck image in 1998. Meridional variations of stratospheric and tropospheric temperature are not strongly correlated with one another. Planetary-scale zonal waves as large as 1 Kelvin amplitude are seen in the stratospheric temperature field, with some evidence for even larger-amplitude waves in the troposphere. Similar to vortices in Titan and Jupiter, we might expect Cassini to detect a polar vortex (e.g. a region of depressed temperatures with a sinusoidal boundary), if driven by the seasonal loss of insolation poleward of its arctic circle. This work was supported by funds from NASA to the Jet Propulsion Laboratory, California Institute of Technology and the Goddard Space Flight Center. Brett Beach-Kimball was supported by the Undergraduate Student Researcher Program (USRP); Brian Jackson was supported by JPL as a Caltech Summer Undergraduate Research Fellow.

  19. Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus kochii subsp. plenissima, to contrasting decapitation regimes.

    PubMed

    Wildy, Dan T; Pate, John S

    2002-08-01

    Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3,000 on 4- to 5-year-old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140-170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1.7-2.5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one-third that of uncut control trees and shoot:root dry mass ratios of coppiced plants were still low (1.5-2.0) compared with those of the controls (average ratio of 3.1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below-ground biomass fell quickly following decapitation and remained low for a 12-18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production.

  20. Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface

    NASA Astrophysics Data System (ADS)

    Meadows, V. S.; Crisp, D.

    We used ground-based near-infrared (NIR) observations of thermal emission from the Venus nightside to determine the temperature structure and water vapor distribution between the surface and the 6-km level. We show that emission from spectral windows near 1.0, 1.1, and 1.18 μm originates primarily from the surface and lowest scale height (~16 km). These windows include absorption by weak H2O and CO2 lines and by the far wings of lines in strong nearby CO2 bands. Rayleigh scattering by the 90-bar CO2 atmosphere and Mie scattering by the H2SO4 clouds attenuate this emission, but add little to its spectral dependence. Surface topography also modulates this NIR thermal emission because high-elevation regions are substantially cooler and emit less thermal radiation than the surrounding plains. These contributions to the emission are clearly resolved in moderate-resolution (λ/Δλ~400) spectral image cubes of the Venus nightside acquired with the infrared imaging spectrometer (IRIS) on the Anglo-Australian Telescope (AAT) in 1991. To analyze these observations, we used a radiative transfer model that includes all of the radiative processes listed above. Synthetic spectra for several topographic elevations were combined with Pioneer Venus altimetry data to generate spatially resolved maps of the NIR thermal emission. Comparisons between these synthetic radiance maps and the IRIS observations indicate no near-infrared signature of the surface emissivity differences seen at microwave wavelengths by the Magellan orbiter. Assuming constant surface emissivity in the near-infrared, we derive nightside averaged temperature lapse rates of -7 to -7.5 K/km in the lowest 6 km. These lapse rates are smaller and indicate much greater static stability than those inferred from earlier measurements and greenhouse models (-8 to -8.5 K/km) [Seiff, 1983]. An acceptable fit to the data was obtained with an H2O mixing ratio profile which increases from 20 ppmv at the cloud base to 45 ppmv

  1. Neural network model for thermal inactivation of Salmonella Typhimurium to elimination in ground chicken: Acquisition of data by WSE-mMPN

    USDA-ARS?s Scientific Manuscript database

    Predictive models are valuable tools for assessing food safety. Existing thermal inactivation models for Salmonella and ground chicken do not provide predictions above 71 degrees C, which is below the recommended final cooked temperature of 73.9 degrees C. They also do not predict when all Salmone...

  2. Thermal inactivation and post-treatment growth during storage of multiple Salmonella serotypes in ground beef as affected by sodium lactate and oregano oil

    USDA-ARS?s Scientific Manuscript database

    We assessed the heat resistance of Salmonella in raw ground beef in both the absence and presence of sodium lactate or oregano oil, and with combinations of these two GRAS-listed ingredients, and determined their bactericidal or bacteriostatic activities during post-thermal treatment storage at 15C....

  3. Ground-based High Spectral Resolution Observations of the Terrestrial Thermal Spectrum Under Extremely Dry Conditions

    SciTech Connect

    Turner, D. D.; Mlawer, E. J.; Bianchini, G.; Cadeddu, M. P.; Crewell, S.; Delamere, J. S.; Knuteson, J. O.; Maschwitz, G.; Mlynzcak, M.; Paine, S.; Palchetti, L.; Tobin, D. C.

    2012-05-01

    A field experiment was conducted in northern Chile at an altitude of 5.3 km to evaluate the accuracy of line­by-­line radiative transfer models in regions of the spectrum that are typically opaque at sea level due to strong water vapor absorption. A suite of spectrally resolved radiance instruments collected simultaneous observations that, for the first time ever, spanned the entire terrestrial thermal spectrum (i.e., from 10 to 3000 cm-1, or 1000 to 3.3 μm). These radiance observations, together with collocated water vapor and temperature profiles, are used to provide an initial evaluation of the accuracy of water vapor absorption in the far-­infrared of two line-­by­line radiative transfer models. These initial results suggest that the more recent of the two models is more accurate in the strongly absorbing water vapor pure rotation band. This result supports the validity of the Turner et al. (2012) study that demonstrated that the use of the more recent water vapor absorption model in climate simulations resulted in significant radiative and dynamical changes in the simulation relative to the older water vapor model.

  4. Ground Penetrating Radar and thermal imager applied to San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Reese, E.A.; Kato, T.T.; Berry, W.H.; O'Farrell, T.P.

    1992-10-01

    Ground Penetrating Radar and thermal infrared imaging were used to evaluate the effects of military activities conducted at Camp Roberts Army National Guard Training Site. The Ground Penetrating Radar was used to identify underground burrows of San Joaquin kit fox (Vulpes velox macrotis) dens in an attempt to evaluate the impact of tracked vehicles on the integrity of kit fox dens. The thermal imaging was used to identify kit foxes within the live-fire impact area. The ground penetrating radar equipment was initially unsuccessfull in detecting burrows in the hard, compacted soils. Changes in antenna systems and sampling methods resulted in small improvements, but the data were inadequate to test for effects of military vehicles on dens. Further refinements would have required the intentional destruction of dens, or the redesign of the ground penetrating radar hardware and software. Thermal imaging was useful in observing kit foxes at close range but was not suitable for detecting foxes in the impact area because the images were not clear enough for conclusive species identification.

  5. Ground Penetrating Radar and thermal imager applied to San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Reese, E.A.; Kato, T.T.; Berry, W.H.; O`Farrell, T.P.

    1992-10-01

    Ground Penetrating Radar and thermal infrared imaging were used to evaluate the effects of military activities conducted at Camp Roberts Army National Guard Training Site. The Ground Penetrating Radar was used to identify underground burrows of San Joaquin kit fox (Vulpes velox macrotis) dens in an attempt to evaluate the impact of tracked vehicles on the integrity of kit fox dens. The thermal imaging was used to identify kit foxes within the live-fire impact area. The ground penetrating radar equipment was initially unsuccessfull in detecting burrows in the hard, compacted soils. Changes in antenna systems and sampling methods resulted in small improvements, but the data were inadequate to test for effects of military vehicles on dens. Further refinements would have required the intentional destruction of dens, or the redesign of the ground penetrating radar hardware and software. Thermal imaging was useful in observing kit foxes at close range but was not suitable for detecting foxes in the impact area because the images were not clear enough for conclusive species identification.

  6. Thermal mapping: the hydrothermal system of a volcano used to map faults and palaeostructures within stratified ground. The Yasur-Yenkahe volcanic complex (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Amin Douillet, Guilhem; Peltier, Aline; Finizola, Anthony; Brothelande, Elodie; Garaebiti, Esline

    2014-05-01

    Subsurface thermal measurements provide a valuable tool to map hydrothermal-fluid release zones in activevolcanic areas. On explosive volcanoes, where ash fall layers deposit parallel to the ground surface, hydrothermal fluids are trapped in the stratification due to the variations in permeability in deposits of the different explosive phases. Thermal fluids thus travel parallel to the surface close to the ground. This horizontal flux can only escape when faults break the seals of stratification. On the Yasur-Yenkahe volcanic complex (Tanna Island, Vanuatu archipelago), fumaroles andhot springs abound, signs of upraising heat fluxes associated to a well-developed hydrothermal activity. Combinationof high resolution mapping of ground thermal anomalies with geomorphological analysis allows thecharacterization of the structural relationships between the active Yasur volcano and the Yenkahe resurgent dome. A complex system of heat release and hydrothermal fluid circulation below the Yasur-Yenkahe complex isevidenced. Circulation, though propagating vertically as a whole, is funneled by stratification. Thus, the main thermal fluid release is almost exclusively concentrated along structural limits that break the seals inducedby the stratified nature of the ground. Three types of medium/high temperature anomalies have beenevidenced: (1) broad hydrothermalized areas linked with planar stratification that favor lateral spreading,(2) linear segments that represent active faults, and (3) arcuate segments related to paleo-crater rims. Thelimit between the Yasur volcano and the Yenkahe resurgent dome is characterized by an active fault systemaccommodating both the rapid uplift of the Yenkahe block and the overloading induced by the volcanoweight. In such a setting, faults converge below the cone of Yasur, which acts as a focus for the faults. Evidenceof such structures, sometimes hidden in the landscape but detected by thermal measurements, iscritical for risk assessment of

  7. Mean Thermal and Compositional Properties of Uranus from Combined Spitzer, ISO, Herschel and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Feuchtgruber, Helmut; Fletcher, Leigh; Moreno, Raphael; Moses, Julianne; Hofstadter, Mark; Lellouch, Emmanuel; Schaeffer, Jochem

    2013-04-01

    We derived models for the mean thermal structure and composition of the atmosphere of Uranus from a suite of spacecraft and ground-based observations. A family of models of the atmospheric temperature and composition derived from the Spitzer Infrared Spectrometer (IRS) data (Orton et al. 2013, submitted to Icarus) have been updated to include the significant influence of H2-H2 dimers on collision-induced absorption that was used to constrain the vertical temperature profile in the upper troposphere down to the 2-bar pressure level. IRS observations of H2 quadrupole lines provided additional constraints on temperatures in the lower stratosphere at pressures less than 100 mbar. We applied additional constraints on this family of models from Hershel PACS observations of HD (Feuchtgruber et al. 2013, Astron. & Astrophys. in press). We have also constrained the He/H2 ratio that characterizes the bulk composition of the atmosphere from previously unpublished observations by the ISO Short-Wavelength Spectrometer (SWS) and confirmed values originally derived by the Voyager IRIS and Radio Sub-System experiment (Conrath et al. 1987. J. Geophys. Res. 92, 15003). We have coupled observational constraints on the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing that are consistent with the mixing ratios of hydrocarbons whose abundances are primarily influenced by dynamics rather than chemistry. Spitzer and Hershel data provide substantial constraints on the abundances and distributions of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, strategic ground-based observations from the United Kingdom Infrared Telescope (UKIRT) and Caltech Submillimeter Observatory (CSO) atop Mauna Kea, Hawaii, provide evidence that an additional opacity source in Uranus is required besides (i) the H2 collision-induced and absorption, including significant dimer contributions, and (ii) the NH3 absorption that is consistent with the

  8. The use of a dispersive ground electrode with a loosely wound helical coil for interstitial radiofrequency thermal therapy.

    PubMed

    McCann, Claire; Sherar, Michael D

    2006-08-07

    We have developed a novel, thermal therapy device designed to improve local control of large solid tumours using heat in the range 55-90 degrees C. The device is a helical coil designed to be loosely wound inside a tumour and excited with radiofrequency energy at 27.12 MHz. This design exploits the size and uniformity of the electric fields generated by magnetic induction inside this solenoidal geometry for heating and coagulating a large target volume. The use of the electrically conductive shape memory alloy Nitinol for the coil and an external ground plane permit the minimally invasive percutaneous insertion of the coil through a single cannulating delivery needle. To demonstrate the feasibility of this device, phantom models and finite-element models using COMSOL 3.2 were used to characterize uniformity of the radial and axial ARD (absorption rate density) profiles of different monopolar coil geometries. COMSOL 3.2 was also used to calculate temperature profiles and distributions produced by these coils in a non-perfused tissue-mimicking domain following a 10 min heating period. ARD results showed that optimum radial and axial uniformities were achieved with a 0.75 cm pitch and 3 cm length for a 1.5 cm diameter coil, and a 1.4 cm pitch and 4.2 cm length for a 2 cm diameter coil. These coils were able to produce lesions in excised bovine liver of 4 cm x 4.5 cm and 3.5 cm x 6.5 cm, respectively. Predicted temperature profiles showed similar profile sizes and shapes in a non-perfused domain, with the absolute temperature rise determined by the source input to the coil. These results demonstrate the potential of this interstitial, monopolar induction coil device for heating large tumours using a single applicator delivered through a single needle insertion.

  9. Ground support data from July 10 to July 29, 1978, for HCMM thermal satellite data of the Powder River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Hummer-Miller, S.; Watson, K.; Kipfinger, R. (Principal Investigator)

    1980-01-01

    Radiometric and meteorological data acquired at three ground stations located approximately 150 km apart in the Powder River Basin, Wyoming, are summarized. The data were collected between July 10 and July 29, 1978, to support the HCMM thermal satellite data acquired during this time period. The parameters measured are direct solar radiance, total solar radiance, sky radiance, air temperature, relative humidity, wind speed, and wind direction. A tabulation of the measurement accuracies is presented.

  10. Martian thermal boundary layers: Subhourly variations induced by radiative-conductive heat transfer within the dust-laden atmosphere-ground system

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.; Dannevik, W. P.; Frisella, S. P.

    1973-01-01

    Radiative-conductive heat transfer has been investigated for the ground-atmosphere system of the planet Mars. The basic goal was the quantitative determination of time dependent vertical distributions of temperature and static stability for Southern-Hemispheric summer season and middle and polar latitudes, for both dust-free and dust-laden atmospheric conditions. The numerical algorithm which models at high spatial and temporal resolution the thermal energy transports in the dual ground-atmosphere system, is based on solution of the applicable heating rate equation, including radiative and molecular-conductive heat transport terms. The two subsystems are coupled by an internal thermal boundary condition applied at the ground-atmosphere interface level. Initial data and input parameters are based on Mariner 4, 6, 7, and 9 measurements and the JPL Mars Scientific Model. Numerical experiments were run for dust-free and dust-laden conditions in the midlatitudes, as well as ice-free and ice-covered polar regions. Representative results and their interpretation are presented. Finally, the theoretical framework of the generalized problem with nonconservative Mie scattering and explicit thermal-convective heat transfer is formulated, and applicable solution algorithms are outlined.

  11. Simulating the thermal operating conditions in the thermal wells of ground-source heat-pump heat supply systems. Part II: Consideration of porous moisture phase transitions in soil

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Peskov, N. V.; Lichman, V. A.; Gornov, V. F.; Kolesova, M. V.

    2015-10-01

    The mathematical model describing unsteady thermal operating conditions of ground-source heat-pump (GSHP) heat supply systems that takes into account porous moisture condensation/evaporation processes and that is laid down in the basis of the corresponding block of the INSOLAR.GSHP.12 software system is considered. The results of numerical and laboratory experiments confirming that the GSHP performance efficiency depends essentially on the phase transition processes of moisture contained in the soil strata porous space are presented. The problem of correctly taking into account the heat of porous moisture condensation/evaporation phenomena in simulating the thermal processes occurring in the soil strata surrounding GSHP thermal wells is considered. A mathematical description of porous moisture condensation/evaporation processes for a vertical thermal well in the cylindrical coordinate system is given. A numerical experiment on estimating the effect the porous moisture condensation/evaporation processes have on the soil thermal conditions was carried out after the mathematical model had been implemented in a software block. The presented results obtained from the performed numerical experiment show that the temperature levels of soil adjacent to the thermal well determined with and without taking the heat of porous moisture condensation processes may differ from each other by more than 3°C. The results from experimentally approbating the application of a so-called effective soil thermal conductivity coefficient that takes into account the latent heat of porous moisture phase transitions in soil in modeling the GSHP thermal operating conditions are presented. The results of the performed experiments show that porous moisture phase transitions may have a very significant influence on the effective thermal conductivity of soil. The effective thermal conductivity values of soil may differ from each other by several times depending on the soil system operating

  12. Regimes of strong light-matter coupling under incoherent excitation

    SciTech Connect

    Valle, E. del; Laussy, F. P.

    2011-10-15

    We study a two-level system (atom, superconducting qubit, or quantum dot) strongly coupled to a single photonic mode of a cavity, in the presence of incoherent pumping and including detuning and dephasing. This system displays a striking quantum-to-classical transition. On the grounds of several approximations that reproduce to various degrees exact results obtained numerically, we separate five regimes of operations, that we term ''linear,''''quantum,''''lasing,''''quenching,'' and ''thermal.'' In the fully quantized picture, the lasing regime arises as a condensation of dressed states and manifests itself as a Mollow triplet structure in the direct emitter photoluminescence spectrum, which embeds fundamental features of the full-field quantization description of light-matter interaction.

  13. Enhancing the thermal destruction of Escherichia coli O157:H7 in ground beef patties by trans-cinnamaldehyde

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effect of trans-cinnamaldehyde, an active ingredient in cinnamon, for inactivating E. coli O157:H7 in undercooked ground beef patties. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (90% lean and 10% fat) at approximately 7.0 log CFU/g, followed ...

  14. The Results of Ground-based and In-flight Testing of Charge-dissipative and Conducting EKOM Thermal Control Paints

    NASA Astrophysics Data System (ADS)

    Kleiman, J. I.; Iskanderova, Z.; Issoupov, V.; Grigorevskiy, A. V.; Kiseleva, L. V.; Finckenor, M.; Naumov, S. F.; Sokolova, S. P.; Kurilenok, A. O.

    2009-01-01

    An international program on comparative evaluation of space durability of thermal control paints from a number of countries was initiated a few years ago at ITL with coatings from Russia, France and USA being studied. This paper describes the results of the study on space durability of three types of charge-dissipative and conductive Russian advanced polymer-based EKOM thermal control paints. Extensive ground-based testing in fast atomic oxygen (FAO) beam facilities was used to test the space durability of these paints and the enhancement of their atomic oxygen erosion resistance by a surface modification technology, Photosil™. All pristine EKOM paints were also tested in a direct materials exposure experiment on Russian module "Zvezda" onboard the International Space Station. Space durability and change of the major physical properties were evaluated after these experiments using a number of analytical techniques. Both, the ground-based testing and the flight experiments indicated signs of surface erosion with some changes of thermal optical properties. Therefore, the paints were also modified by a surface treatment technology, Photosil™, to increase their erosion resistance to atomic oxygen, tested in the same ground-based FAO facilities up to high FAO fluencies and compared with testing results of pristine materials. The comparison indicated that the surface-modified paints exhibit reduced mass loss, full stabilization and no surface morphology changes, thus indicating at full protection from the high FAO fluencies. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints, to enhance the low Earth orbit (LEO) environment resistance of external thermal control coatings in long-term space missions.

  15. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols

    PubMed Central

    Chidawanyika, Frank; Nyamukondiwa, Casper; Strathie, Lorraine; Fischer, Klaus

    2017-01-01

    Temperature and resource availability are key elements known to limit the occurrence and survival of arthropods in the wild. In the current era of climate change, critical thermal limits and the factors affecting these may be of particular importance. We therefore investigated the critical thermal maxima (CTmax) of adult Zygogramma bicolorata beetles, a biological control agent for the invasive plant Parthenium hysterophorus, in relation to thermal acclimation, hardening, age, and food availability using static (constant) and dynamic (ramping) protocols. Increasing temperatures and exposure times reduced heat survival. In general, older age and lack of food reduced heat tolerance, suggesting an important impact of resource availability. Acclimation at constant temperatures did not affect CTmax, while fluctuating thermal conditions resulted in a substantial increase. Hardening at 33°C and 35°C improved heat survival in fed young and mid-aged but only partly in old beetles, while CTmax remained unaffected by hardening throughout. These findings stress the importance of methodology when assessing heat tolerance. Temperature data recorded in the field revealed that upper thermal limits are at least occasionally reached in nature. Our results therefore suggest that the occurrence of heat waves may influence the performance and survival of Z. bicolorata, potentially impacting on its field establishment and effectiveness as a biological control agent. PMID:28052099

  16. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols.

    PubMed

    Chidawanyika, Frank; Nyamukondiwa, Casper; Strathie, Lorraine; Fischer, Klaus

    2017-01-01

    Temperature and resource availability are key elements known to limit the occurrence and survival of arthropods in the wild. In the current era of climate change, critical thermal limits and the factors affecting these may be of particular importance. We therefore investigated the critical thermal maxima (CTmax) of adult Zygogramma bicolorata beetles, a biological control agent for the invasive plant Parthenium hysterophorus, in relation to thermal acclimation, hardening, age, and food availability using static (constant) and dynamic (ramping) protocols. Increasing temperatures and exposure times reduced heat survival. In general, older age and lack of food reduced heat tolerance, suggesting an important impact of resource availability. Acclimation at constant temperatures did not affect CTmax, while fluctuating thermal conditions resulted in a substantial increase. Hardening at 33°C and 35°C improved heat survival in fed young and mid-aged but only partly in old beetles, while CTmax remained unaffected by hardening throughout. These findings stress the importance of methodology when assessing heat tolerance. Temperature data recorded in the field revealed that upper thermal limits are at least occasionally reached in nature. Our results therefore suggest that the occurrence of heat waves may influence the performance and survival of Z. bicolorata, potentially impacting on its field establishment and effectiveness as a biological control agent.

  17. Thermal Monitoring at Volcán de Colima, Mexico: Characterizing the Activity and Studying the Transition Between Explosive and Effusive Regimes

    NASA Astrophysics Data System (ADS)

    Varley, N. R.; Johnson, J.

    2005-12-01

    Volcán de Colima has significantly increased in its activity during the last few years. Explosive activity during 2005 produced pyroclastic flows which reached up to 5.44 km, distances which not been recorded since the last Plinian eruption (1913). Monitoring is being improved by the introduction of thermal, infrasound and scanning UV spectrometer systems. Seismic monitoring has been enhanced by the use of pattern recognition techniques for rapid evaluation. The techniques are being utilized to characterize and quantify both explosive and effusive activity to enable improved modelling and understand the transition between styles. Thermal imaging using an infrared camera has enabled the temporal variation in fumarole temperature to be monitored remotely. Precursory activity has been identified prior to large explosive events: swarms of low frequency (< 10 Hz) seismic events and an increase in fumarole temperatures. The distribution of the seismic events has been analysed, showing the relationship between the swarm and the magnitude of the associated explosion. Increasing temperatures reflect the uprising of the magma body and pressurization within the conduit. Explosive activity has been examined in detail, comparing the thermal characteristics of the plume with its ascent rate, gas flux, ash content and associated seismicity. The thermal evolution of some of the larger events was captured with an installed sensor. The arrival of the relatively cool pyroclastic flows was also registered. A poor correlation has been observed between certain variables, which has important implications for both numeric modelling of this type of activity and for monitoring, where seismic amplitudes are often used to quantify explosive events. Thermal monitoring during episodes of effusion enables the study of the evolution of the dome and flows, which can assist in the forecasting of collapse events. It is clear that the integration of thermal monitoring with various other geophysical

  18. NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY

    SciTech Connect

    Croll, Bryce; Albert, Loic; Lafreniere, David; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-20

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.

  19. Applications of a New England stream temperature model to evaluate distribution of thermal regimes and sensitivity to change in riparian condition

    EPA Science Inventory

    We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that ext...

  20. Applications of a New England stream temperature model to evaluate distribution of thermal regimes and sensitivity to change in riparian condition

    EPA Science Inventory

    We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that ext...

  1. The Jameson Land basin (east Greenland): a fission track study of the tectonic and thermal evolution in the Cenozoic North Atlantic spreading regime

    NASA Astrophysics Data System (ADS)

    Hansen, Kirsten; Bergman, Steven C.; Henk, Bo

    2001-02-01

    The Late Mesozoic and Cenozoic thermal history of the Jameson Land basin is constrained by new apatite and zircon fission track (FT) data of surface Permian to Jurassic sedimentary rocks. The results show a general regional thermal evolution related to burial to temperatures close to and in excess of the maximum temperatures of the apatite annealing interval (∼125°C) followed by cooling mainly due to Cenozoic uplift and erosion. Faulting and differential movements in the basin generally occurred after cooling below the apatite partial annealing zone (PAZ: ∼75-125°C). However, in the northern part of the basin the data suggest a thicker sediment cover or localized heating related to an earlier fracture zone. Both apatite FT analysis and vitrinite reflectance values reveal a postmature signature for the studied rocks in the northeastern Jameson Land and premature to mature for the western, central and southern Jameson Land rocks with respect to generation of hydrocarbons. The chemical variations of apatite enhance the possibility of recognizing sample positions near maximum temperatures in the PAZ. Furthermore, the Pb-Zn mineralization pattern closely follows the Tertiary maturity trend given by the FT data. The type and distribution of mineralization suggest that it was influenced by the regional thermal evolution of the basin. In the northeast domain, circulating fluids may have overprinted the regional thermal record before ca. 20 Ma. Basaltic dyke and sill intrusions (55-45 Ma) locally caused resetting of apatite FT ages, but generally the direct influence from upper crustal magmatic activity played only a minor role. The thermal evolution in northeast Jameson Land is related to the late tectonic evolution of the Northeast Atlantic involving a change in ridge position at ca. 25 Ma which followed the passage of the proto-Icelandic mantle plume at 63-40 Ma.

  2. Visco-elastic effects with simultaneous thermal and mass diffusion in MHD free convection flow near an oscillating plate in the slip flow regime

    NASA Astrophysics Data System (ADS)

    Das, Bandita; Choudhury, Rita

    2016-06-01

    The present study analyzes the influence of visco-elastic flow of fluid through a porous medium bounded by an oscillating porous plate with heat source in the slip flow regime. Effects of heat transfer, mass transfer and chemical reaction are also taken into account. The porous plate is subjected to a transverse suction velocity. The dimensionless governing equations of the problem are solved by regular perturbation technique. The analytical expressions for the velocity, temperature, concentration, and Shearing stress have been obtained and illustrated graphically for different values of physical parameters involved in the problem. The investigation reveals that the visco-elastic fluid has significant effects on the considered flow field in comparison with Newtonian fluid flow phenomenon.

  3. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures.

    PubMed

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J; Katzgraber, Helmut G

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  4. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures

    NASA Astrophysics Data System (ADS)

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J.; Katzgraber, Helmut G.

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  5. Thermal stress imposed by prototype bilayer and current ground crew chemical defense ensembles: a limited laboratory comparison. Final report, 30 June 1986-1 January 1987

    SciTech Connect

    Krock, L.P.; Navalta, R.; Myhre, L.G.

    1988-07-01

    An open bilayer ground-crew chemical defense ensemble (CDE) was proposed to reduce the thermal burden during vapor-only exposure periods. This study compared the thermal-stress profile of the proposed ensemble to that produced by the currently employed closed CDE. Four subjects, alternating ensembles on separate days, walked on a treadmill in an environmental chamber at 5.3 km/h (3.3 mph) and 2% grade (an energy expenditure of 350 kcal/h) for alternating work/rest to achieve significant recovery. Mean total sweat production was lower (1.38 vs. 2.50 liters) and percent sweat evaporation greater (65.7% vs. 30.0%) in the prototype ensemble than in the CDE. The prototype ensemble provided greater heat dissipation and allowed more-efficient sweat evaporation which had the double benefit of reducing heat storage and limiting dehydration.

  6. Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.

    1973-01-01

    A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.

  7. Sensitivity analysis for joint inversion of ground-penetratingradar and thermal-hydrological data from a large-scale underground heatertest

    SciTech Connect

    Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

    2007-06-25

    We describe a joint inversion approach that combinesgeophysical and thermal-hydrological data for the estimation of (1)thermal-hydrological parameters (such as permeability, porosity, thermalconductivity, and parameters of the capillary pressure and relativepermeability functions) that are necessary for predicting the flow offluids and heat in fractured porous media, and (2) parameters of thepetrophysical function that relates water saturation, porosity andtemperature to the dielectric constant. The approach incorporates thecoupled simulation of nonisothermal multiphase fluid flow andground-penetrating radar (GPR) travel times within an optimizationframework. We discuss application of the approach to a large-scale insitu heater test which was conducted at Yucca Mountain, Nevada, to betterunderstand the coupled thermal, hydrological, mechanical, and chemicalprocesses that may occur in the fractured rock mass around a geologicrepository for high-level radioactive waste. We provide a description ofthe time-lapse geophysical data (i.e., cross-borehole ground-penetratingradar) and thermal-hydrological data (i.e., temperature and water contentdata) collected before and during the four-year heating phase of thetest, and analyze the sensitivity of the most relevantthermal-hydrological and petrophysical parameters to the available data.To demonstrate feasibility of the approach, and as a first step towardcomprehensive inversion of the heater test data, we apply the approach toestimate one parameter, the permeability of the rock matrix.

  8. Post subduction thermal regime of the western North America and effects on the Great Valley, Sierra Nevada and northern Baja California provinces

    NASA Astrophysics Data System (ADS)

    Erkan, Kamil

    Tectonic evolution of the transform margin of western North America has attracted great interest. This boundary formed as the fault-fault-trench type Mendocino triple junction has moved north. The tectonic transition is expected to have a significant thermal signature because the subduction zones are quite distinct from any other plate boundary zones with their depressed heat flow in the outer arc regions. There is a significant amount of heat flow data in most of California covering the Great Valley and Sierra Nevada regions where were part of the outer arc of the Farallon subduction was located. The heat flow in a very large area covering all over the Great Valley and western Sierra Nevada shows the consistent pattern of a recent subduction. The unique pattern of the heat flow distribution indicates the tectonic origin of the data which has a potential to reveal the nature of the tectonic transition after the cessation of subduction 30 Ma. In this collection, the first two papers deal with the interpretation of heat flow data using forward thermal models of the lithosphere. The two proposed tectonic scenarios, namely the slab window and the stalled slab models, were compared in terms of the thermal consequences. The low heat flow in the Great Valley and the narrow transition zone toward the Coast Ranges rules out opening of a slab window in a conventional sense and is therefore indicative of a stalled slab type transition. Therefore, the high heat flow in the Coast Ranges must be explained by a mechanism other than opening of a slab window beneath the Coast Ranges. The low (reduced) heat flow in the Western Sierra Nevada which extends to the south end of the region where the subduction ceased more than 15 My ago is important in understating the thermal history of the lithosphere after the cessation of subduction. The thermal data are also in close agreement with the seismic cut-out depth where sufficient seismic activity is present. The numerical thermal model of

  9. TEA LEAF AND APPLE SKIN POWDERS FACILITATE THERMAL DESTRUCTION OF ESCHERICHIA COLI O157:H7 IN RAW GROUND BEEF

    USDA-ARS?s Scientific Manuscript database

    We investigated the heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of white and green tea powders and an apple skin extract. Inoculated meat, packaged in bags, was completely immersed in a circulating water bath and cooked fo...

  10. Carvacrol and Cinnamaldehyde Facilitate Thermal Destruction of Escherichia coli O157:H7 in Raw Ground Beef

    USDA-ARS?s Scientific Manuscript database

    The heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of the natural antimicrobials, carvacrol and cinnamaldehyde, was tested at temperatures ranging from 55 to 62.5C. Inoculated meat, packaged in bags, was completely immersed i...

  11. Limiting thermal regimes of active disk elements under steady-state pumping and two-dimensional temperature distribution inside the disk

    SciTech Connect

    Alpat'ev, A N; Lis, Denis A; Smirnov, V A; Shcherbakov, Ivan A

    2010-09-10

    An analytic expression describing the stationary two-dimensional axially symmetric temperature distribution in a disk active element (AE) is derived upon pumping the entire disk whose thickness is 0.01 cm {<=} h {<=} 0.3 cm and the diameter-to-thickness ratio is 1 {<=} d/h {<=} 100. Thermomechanical stresses are calculated. It is shown that from the point of view of the disk damage, the tangential stress on the disk side face constitutes the major threat. For different scaling parameters x =d/h, the limiting lasing powers P{sub las} are estimated in multimode approximation, which can be obtained using a disk AE in the case of end and side cooling for different heat exchange coefficients a (by the example of an Nd : YAG crystal). It is found that the side cooling can decrease P{sub las} in some situations. The priority regions are established in the space of the parameters h, x, and a which, while increasing the pump intensity, are accompanied by one of the three events violating the normal operation of the laser: deterioration of spectral and luminescent AE parameters due to heating, malfunctioning of the cooling regime, or thermomechanical damage of the disk. It is shown that an increase in the scaling parameter x smoothes the radial temperature profile and the thermoelastic stress distribution profile. (lasers)

  12. A note on the effect of reflected solar radiation on airborne and ground measurements in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Whitehead, V. S.

    1971-01-01

    The magnitude of thermal solar radiation reflected from water surfaces is considered. It is shown both theoretically and by field observation that, for instruments with small fields of view, the reflected thermal solar radiation can contribute significantly to the measured energy. Comparison of thermal scanner data taken from aircraft at a 16 deg azimuth angle from the mirror point of the sun over the open ocean with data taken at a 164 deg anzimuth angle from the mirror point of the sun at the same angle from nadir is indicative of a difference of 2.8 K in the equivalent black body radiation temperature. Observations taken from a surface vessel into sunglint 80 deg from nadir are indicative of an equivalent black body radiation temperature that is 34 K warmer than the temperature obtained at a similar nadir angle away from the sunglint.

  13. Effects of free air carbon dioxide enrichment and drought stress on the feed value of maize silage fed to sheep at different thermal regimes.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Manderscheid, Remy; Weigel, Hans-Joachim; Erbs, Martin; Flachowsky, Gerhard; Dänicke, Sven

    2012-08-01

    Information about the effects of rising atmospheric CO2 concentration and drought on the feed value of maize silage and interactions with the thermal environment during feeding is limited. A free air carbon dioxide enrichment facility was operated in a maize field to generate an elevated CO2 concentration of 550 ppm. Drought was induced by the exclusion of precipitation in one half of all experimental plots. Plants were harvested, chopped and ensiled. In a balance experiment on sheep, the nutrient digestibility was determined for three climatic treatments (temperate, temperature humidity index (THI) 57-63; mild heat, THI 68-71; severe heat, THI 75-80). The CO2 concentration and drought did not alter the crude nutrient content of silage dry matter (DM) or nutrient and organic matter (OM) digestibility. Drought increased the concentration of deoxynivalenol (DON, p < 0.001). The drought-associated increase of DON was reduced by CO2 enrichment (p = 0.003). The lowest digestibility of acid detergent fibre (p = 0.024) and neutral detergent fibre (p = 0.005) was observed during the coldest climate. OM digestibility increased during mild heat (p = 0.023). This study did not indicate considerable alterations of the feed value of maize silage due to increased atmospheric CO2 and drought. Enriched CO2 may decrease DON contaminations during drought. The thermal environment during the balance experiment did not interact with feeding maize silage grown under elevated CO2, but may affect cell wall and OM digestibility.

  14. In vitro digestibility, crystallinity, rheological, thermal, particle size and morphological characteristics of pinole, a traditional energy food obtained from toasted ground maize.

    PubMed

    Carrera, Y; Utrilla-Coello, R; Bello-Pérez, A; Alvarez-Ramirez, J; Vernon-Carter, E J

    2015-06-05

    Flour obtained from toasted ground maize grains is widely consumed by different ethnic groups of Northern Mexico and Southwest USA as an energy source. In this work the in vitro digestibility, crystallinity, rheological, thermal, particle size distribution and morphological characteristics of toasted ground white and blue maize flours were studied. X-ray diffraction studies showed that the crystallinity content was reduced, but that the hydrolysis rate and the in vitro digestibility of starch were greatly improved by the toasting process. The relative amount of rapidly digestible starch showed an important increase at the expense of resistant starch content reduction. The thermal properties of white maize starch increased slightly, but those of the blue maize starch decreased slightly after toasting. Aqueous dispersions formed with 10% (w/w) flour were heated at 90°C for 5min to induce starch gelling, in order to resemble thin porridges. The dispersed gels exhibited higher elastic modulus (G') than loss modulus (G'') in the linear viscoelastic region, with blue maize dispersions displaying higher moduli magnitudes. At higher shear strain amplitudes, G' decreased but G'' first increased and then decreased (overshoot phenomenon). The effects of toasting on the structure and functionality of maize starch are explained on the basis of limited gelatinization of the granules. The results in this work provide insights for understanding the extensive use of pinole by impoverished ethnic groups, and more recently by high performance ultra-runners and athletes, as an energy food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of Metmyoglobin Reducing Activity and Thermal Stability of NADH-Dependent Reductase and Lactate Dehydrogenase on Premature Browning in Ground Beef.

    PubMed

    Djimsa, Blanchefort A; Abraham, Anupam; Mafi, Gretchen G; VanOverbeke, Deborah L; Ramanathan, Ranjith

    2017-02-01

    Premature browning is a condition wherein ground beef exhibits a well-done appearance before reaching the USDA recommended internal cooked meat temperature of 71.1 °C; however, the mechanism is unclear. The objectives of this study were: (1) to determine the effects of packaging and temperature on metmyoglobin reducing activity (MRA) of cooked ground beef patties and (2) to assess the effects of temperature and pH on thermal stability of NADH-dependent reductase, lactate dehydrogenase (LDH), and oxymyoglobin (OxyMb) in-vitro. Beef patties (lean: fat = 85:15) were packaged in high-oxygen modified atmosphere (HiOX-MAP) or vacuum (VP) and cooked to either 65 or 71 °C. Internal meat color and MRA of both raw and cooked patties were determined. Purified NADH-dependent reductase and LDH were used to determine the effects of pH and temperature on enzyme activity. MRA of cooked patties was temperature and packaging dependent (P < 0.05). Vacuum packaged patties cooked to 71 °C had greater (P < 0.05) MRA than HiOX-MAP counterparts. Thermal stability of OxyMb, NADH-dependent reductase, and LDH were different and pH-dependent. LDH was able to generate NADH at 84 °C; whereas NADH-dependent reductase was least stable to heat. The results suggest that patties have MRA at cooking temperatures, which can influence cooked meat color.

  16. Hydrologic and Thermal Regimes of Coarse Blocky Materials and Imbalance in Seasonal Snowpack Contribution to the Total River Runoff in Tien Shan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Romanovsky, V. E.; Gorbunov, A. P.

    2011-12-01

    Central Asia is a water-stressed area where projected climate change could further decrease stream flow and groundwater recharge (IPCC, 2007). General circulation models suggest that the increase in summer diurnal temperatures over Central Asia is likely to be higher relative to that in other regions (IPCC, 2007). Therefore, we expect a further degradation of glaciers and alpine permafrost and decrease in snow cover. Under continued atmospheric warming the decrease in snowfall will lead to a decline in snow melt contribution to river runoff. Increased glacier melting will compensate this process for some period of time. But eventually, a further decrease in glacial area would lead to a decline in the contribution of glacier melting to the river runoff. Under continuing warming and permafrost degradation in Central Asia, the ground ice could increase future water supply, and the melt waters from permafrost could become an increasingly important source of fresh water in this region in the near future. Mountain permafrost and associated periglacial landforms contain large quantities of stored fresh water in the form of ice. The moraines, rock glaciers and other coarse blocky materials have especially high ice content (30-70% by volume). Recent observations indicate a warming of permafrost in many mountain regions with the resulting degradation of ice-rich permafrost. Permafrost temperature has increased by 0.5 to 1.5 deg C in Tien Shan Mountains, Central Asia during the last 35 years. At the same time, the average active-layer thickness increased by 23% in comparison to the early 1970s. Runoff from the active layer contributes a significant amount of water during the summer time, when snowmelt has finished and the ground ice melt starts and intensifies. The thickness of the active layer is one of the dominant factors controlling the subsurface flow conditions. Air temperature, precipitation and ground structure are other components influencing water flow. Blocky

  17. Zoning of the territory of Russia by the effectiveness of low-potential heat of the ground and atmospheric air for heating buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Kolesova, M. V.; Gornov, V. F.; Yurchenko, I. A.

    2016-06-01

    The article represents the results of researches to zone the territory of Russia and Europe division into districts of by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence of the long-term extraction of geothermal heat energy on the ground heat regime has been taken into account as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. Also considered were the sinking of temperatures of ground massif by long-term extraction of the heat energy from the ground as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massif temperatures.

  18. Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Embry, Ashton F.

    1998-06-01

    Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that

  19. RECIPES FOR WRITING ALGORITHMS FOR ATMOSPHERIC CORRECTIONS AND TEMPERATURE/EMISSIVITY SEPARATIONS IN THE THERMAL REGIME FOR A MULTI-SPECTRAL SENSOR

    SciTech Connect

    C. BOREL; W. CLODIUS

    2001-04-01

    This paper discusses the algorithms created for the Multi-spectral Thermal Imager (MTI) to retrieve temperatures and emissivities. Recipes to create the physics based water temperature retrieval, emissivity of water surfaces are described. A simple radiative transfer model for multi-spectral sensors is developed. A method to create look-up-tables and the criterion of finding the optimum water temperature are covered. Practical aspects such as conversion from band-averaged radiances to brightness temperatures and effects of variations in the spectral response on the atmospheric transmission are discussed. A recipe for a temperature/emissivity separation algorithm when water surfaces are present is given. Results of retrievals of skin water temperatures are compared with in-situ measurements of the bulk water temperature at two locations are shown.

  20. Mass Diffusion and Thermal Diffusivity of the Decane-pentane Mixture Under High Pressure as a Ground-based Study for SCCO Project

    NASA Astrophysics Data System (ADS)

    Lizarraga, Ion; Giraudet, Cédric; Croccolo, Fabrizio; Bou-Ali, M. Mounir; Bataller, Henri

    2016-10-01

    Thermodiffusion experiments on isomassic binary mixture of decane and pentane in the liquid phase have been performed between 25 ∘C and 50 ∘C and for pressures from 1MPa until 20MPa. By dynamic analysis of the light scattered by concentration non-equilibrium fluctuations in the binary mixture we obtained the mass diffusion coefficients of the mixture at each temperature and pressure. For the first time we were able to apply similar analysis to thermal fluctuations thus getting a simultaneous measurement of the thermal diffusivity coefficient. While mass diffusion coefficients decrease linearly with the pressure, thermal diffusivity coefficients increase linearly. In principle the proposed method can be used also for measuring the Soret coefficients at the same time. However, for the present mixture the intensity of the optical signal is limited by the optical contrast factor. This affects our capability of providing a reliable estimate of the Soret coefficient by means of dynamic Shadowgraph. Therefore the mass diffusion coefficients measurements would need to be combined with independent measurements of the thermodiffusion coefficients, e.g. thermogravitational column, to provide Soret coefficients. The obtained values constitute the on-ground reference measurements for one of the mixture studied in the frame of the project SCCO-SJ10, which aims to measure the Soret coefficients of multicomponents mixtures under reservoir conditions. Microgravity experiments will be performed on the Chinese satellite SJ10 launched in April 2016.

  1. Visible and thermal spectrum synthetic image generation with DIRSIG and MuSES for ground vehicle identification training

    NASA Astrophysics Data System (ADS)

    May, Christopher M.; Maurer, Tana O.; Sanders, Jeffrey S.

    2017-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROCV) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach that has been developed to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  2. The influence of snow cover thickness on the thermal regime of Tête Rousse Glacier (Mont Blanc range, 3200 m a.s.l.): consequences for water storage, outburst flood hazards and glacier response to global warming

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Vincent, C.; Wagnon, P.; Thibert, E.; Rabatel, A.

    2012-04-01

    Tête Rousse Glacier (French Alps) was responsible for an outburst flood in 1892 that devastated the village of St Gervais-Le Fayet close to Chamonix, causing 175 fatalities. In 2010, geophysical surveys of this glacier revealed a subglacial lake that was subsequently drained artificially. The processes controlling the thermal regime of the glacier have been investigated on the basis of measurements and snow cover and heat flow models using meteorological data covering the last 200 years. Temperature measurements show a polythermal structure with subglacial water trapped by the cold lowest part of the glacier (-2°C). The modeling approach shows that the polythermal structure results mainly from changes in the depth of the snow cover with time at the glacier surface. Paradoxically, periods with negative mass balances, associated with warmer air temperature, tend to cool the glacier because the warmer temperatures reduce the snowpack depth and extent, thereby decreasing the insulation of the glacier from the cold and the amount of latent heat introduced by meltwater refreezing. Conversely years with colder temperatures, associated with positive mass balances, tend to increase the glacier temperature by maintaining a thick snowpack all year round at the glacier surface. The thermal effect of the subglacial lake is evaluated and suggests that the lake existed before 1980. Modeling shows that the glacier will cool again in the future. This study provides insight into the thermal processes responsible for water storage inside a small static glacier which can lead to catastrophic outburst floods such as the 1892 event or potentially dangerous situations as in 2010.

  3. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant "Hanhikivi-1" on the local thermal regime

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.

    2017-04-01

    The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1 upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  4. Automatic Detection of Changes in Volcanic Activity Using Ground Based Near-Infrared Cameras to Monitor Thermal Incandescence

    NASA Astrophysics Data System (ADS)

    Harrild, Martin C.

    An increase in thermal activity is a common precursor of volcanic eruptions and, if identified, can be used to advise local observatories to disseminate the appropriate advanced warnings. As continuously operating near-infrared (NIR) cameras are becoming more readily available at active volcanoes around the world, this investigation explores the use of identifying changes in pixel brightness in webcam imagery resulting from increased thermal incandescence. A fast, efficient, and fully automated Python algorithm has been developed with a primary focus on effective volcano monitoring and reducing overall financial costs. The algorithm includes three important tests (statistical analysis, edge detection, and Gaussian mixture model) to identify changes in activity in near-real time. The developed algorithm can be installed locally with a webcam or at a central location, with no need for additional costs. This algorithm approach was preliminarily tested on data from a permanently installed thermal infrared camera at Stromboli volcano, with a successful detection rate of 75.34%. The algorithm based methodology was further developed and applied to freely available online webcam imagery from Shiveluch volcano, with an overall accuracy of 96.0%, and a critical success index (CSI) of 76.7%. Further refinements to the algorithm were made to reduce the false alarm rate (FAR) and number of missed events, and applied to four additional image datasets at Shiveluch, Fuego, Popocatepetl, and Stromboli. The algorithm successfully identified two large eruptions at Shiveluch, between 40 minutes and 2.5 hours prior to other satellite remote sensing methods, correctly identified the beginning of a large eruption at Fuego, which corresponded with local seismic data, and successfully identified a 90-minutes window of increased activity leading to a large paroxysm event at Popocatepetl, which was describe by the local observatory as having 'little to no warning'. The algorithm

  5. Enhancing the thermal destruction of Escherichia coli O157:H7 in ground beef patties by trans-cinnamaldehyde.

    PubMed

    Amalaradjou, Mary Anne Roshni; Baskaran, Sangeetha Ananda; Ramanathan, Ranjith; Johny, Anup Kollanoor; Charles, Anu Susan; Valipe, Satyender Rao; Mattson, Tyler; Schreiber, David; Juneja, Vijay K; Mancini, Richard; Venkitanarayanan, Kumar

    2010-09-01

    The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 degrees C for 5 days or at -18 degrees C for 7 days. The patties were cooked to an internal temperature of 60 or 65 degrees C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P<0.05) E. coli O157:H7 counts, by >5.0log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 degrees C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08min, respectively) were significantly lower (P<0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P<0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.

  6. Improving Long-Range Ground-Based Thermal Data: A Study of the 12 August 2011 Paroxysmal Event of Mount Etna.

    NASA Astrophysics Data System (ADS)

    Hancock, A. B.; James, M. R.; Ganci, G.

    2015-12-01

    Ground-based thermal remote sensing is a valuable tool for the study and monitoring of volcanoes and their hazards. Unlike satellite-based sensors, ground-based thermal cameras can be placed and operated as situations demand, covering restricted areas in high detail, or enabling broad but continuous monitoring of activity. While ground-based sensors have been used extensively at short distances (e.g. <1000 m), there have been few instances where cameras have been used to capture data at the substantially long ranges which facilitate permanent installation and monitoring. This is due primarily to factors such as atmospheric attenuation and across-image variations in the target path-length resulting in substantial uncertainty in the derived surface temperatures. Here we present a methodology for correcting and analysing long-range thermal data using MODTRAN transmissivity values calculated for path-lengths >4 km and under different atmospheric conditions (temperature and relative humidity). These corrections have been applied on a per-pixel basis to selected data from the 12 August 2011 paroxysmal event at Mount Etna, Sicily, to calculate lava flow area, flow volume and radiant heat flux. We examined the sensitivity of low, medium, and high apparent temperature pixels to uncertainty in the atmospheric conditions. We then examined how this variability affects the resulting calculations for flow area, volume and radiant heat flux. This was achieved by introducing a fractional error into the measured values for relative humidity. Fractional errors representing 5-25% (with a step value of 2.5%) of the measured relative humidity value were used. Over this range a maximum change of 9.8% was seen in total number of detected hot pixels, 9.1% for values for area and volume, and 8.8% for maximum radiant heat flux. We also examined the effect of changes in the atmospheric temperature has on these calculations. Using a minimum value of 10 C and a maximum value of 26.5 C (maximum

  7. Thermal inactivation of Escherichia coli O157:H7 isolated from ground beef and bovine feces, and suitability of media for enumeration.

    PubMed

    Clavero, M R; Beuchat, L R; Doyle, M P

    1998-03-01

    Rates of thermal inactivation of five strains of Escherichia coli O157:H7 isolated from ground beef implicated in outbreaks of hemorrhagic colitis and five strains isolated from bovine feces were determined. Ground beef (22% fat, 10 g), inoculated with individual test strains at populations ranging from 6.85 to 7.40 log10 CFU g-1 of beef, was formed into patties (0.3 cm thick and 8.0 cm in diameter) and sealed in polyethylene bags. For each strain and treatment temperature (54.4, 58.9, 62.8, 65.6, or 68.3 degrees C), 6 bags were simultaneously immersed into a recirculating water bath. Viable cells in patties heated for various lengths of time were enumerated by plating diluted samples on sorbitol MacConkey agar supplemented with 4-methylumbelliferyl-beta-D-glucuronide (MSMA) and modified eosin methylene blue (MEMB) agar. Regardless of strain or treatment temperature, higher numbers of E. coli O157:H7 cells were generally recovered on MEMB agar than on MSMA, indicating the inferiority of MSMA as a recovery medium for quantitative determination of E. coli O157:H7 cells in heat-processed ground beef. Significantly (P < or = 0.05) higher D values when enumeration was done using MEMB agar compared with MSMA. Mean D values for combined strain data at 54.4, 58.9, 62.8, and 65.6 degrees C from cultures on MEMB agar were 123.90, 6.47, 0.62, and 0.20 min, respectively, whereas D values of 25.5, 5.21, and 0.18 min were obtained at the same temperatures from cultures on MSMA. Results suggest that cooking ground beef patties to an internal temperature of 68.3 degrees C for 40 s will inactivate at least 99.99% of E. coli O157:H7 cells; z values of 4.0 and 5.1 degrees C were calculated from mean D values obtained from MEMB agar and MSMA, respectively, as recovery media. Differences in D values existed among strains but rates of thermal inactivation do not appear to be correlated with the sources of the isolates.

  8. Cross-Laboratory Comparative Study of the Impact of Experimental and Regression Methodologies on Salmonella Thermal Inactivation Parameters in Ground Beef.

    PubMed

    Hildebrandt, Ian M; Marks, Bradley P; Juneja, Vijay K; Osoria, Marangeli; Hall, Nicole O; Ryser, Elliot T

    2016-07-01

    Isothermal inactivation studies are commonly used to quantify thermal inactivation kinetics of bacteria. Meta-analyses and comparisons utilizing results from multiple sources have revealed large variations in reported thermal resistance parameters for Salmonella, even when in similar food materials. Different laboratory or regression methodologies likely are the source of methodology-specific artifacts influencing the estimated parameters; however, such effects have not been quantified. The objective of this study was to evaluate the effects of laboratory and regression methodologies on thermal inactivation data generation, interpretation, modeling, and inherent error, based on data generated in two independent laboratories. The overall experimental design consisted of a cross-laboratory comparison using two independent laboratories (Michigan State University and U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center [ERRC] laboratories), both conducting isothermal Salmonella inactivation studies (55, 60, 62°C) in ground beef, and each using two methodologies reported in prior studies. Two primary models (log-linear and Weibull) with one secondary model (Bigelow) were fitted to the resultant data using three regression methodologies (two two-step regressions and a one-step regression). Results indicated that laboratory methodology impacted the estimated D60°C- and z-values (α = 0.05), with the ERRC methodology yielding parameter estimates ∼25% larger than the Michigan State University methodology, regardless of the laboratory. Regression methodology also impacted the model and parameter error estimates. Two-step regressions yielded root mean square error values on average 40% larger than the one-step regressions. The Akaike Information Criterion indicated the Weibull as the more correct model in most cases; however, caution should be used to confirm model robustness in application to real-world data. Overall, the

  9. Reconstruction of the 500-year ground surface temperature history of northern Awaji Island, southwest Japan, using a layered thermal property model

    NASA Astrophysics Data System (ADS)

    Goto, Shusaku; Yamano, Makoto

    2010-12-01

    Changes in the ground surface temperature (GST), propagating underground, can be recorded as thermal perturbations to the background thermal field. This paper presents a forward model of conductive propagation of GST in a layered material model with uniform thermal properties in each layer and a series of step functions as GST history. This model, which is expressed using the same mathematical form of that for a uniform thermal property model with a series of step functions as GST history, calculates subsurface temperature perturbations that originate from the GST change by superimposing numerically solved solutions of the model with surface boundary condition of a unit function. Using this model, we reconstruct the recent 500-year GST history from borehole temperature data in northern Awaji Island, southwest Japan, by Bayesian inversion. The reconstructed GST history shows the onset of warming in the mid-18th century to the early 19th century and an increase of 1.1-1.3 K up to the mid-20th century. From the middle to late 20th century, the GST decreased by about 0.2 K. The GST change in the 20th century fits the trend of mean annual surface air temperature records in Kobe, opposite the coast of northern Awaji Island. The GST history in northern Awaji Island differs from that in Ulsan, in the southeastern Republic of Korea, which is located at the same latitude as northern Awaji Island. Differences of the GST histories of these regions most likely reflect differences in sea surface temperatures in these regions.

  10. Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China.

    PubMed

    Huang, Tinglin; Li, Xuan; Rijnaarts, Huub; Grotenhuis, Tim; Ma, Weixing; Sun, Xin; Xu, Jinlan

    2014-07-01

    Jinpen Reservoir is a deep, stratified reservoir in Shaanxi province, located in a warm temperate zone of Northwest China. Influenced by a temperate monsoon climate, more than 60% of the annual precipitation is concentrated from late summer to autumn (July-September). In recent years, extreme rainfall events occurred more frequently and strongly affected the thermal structure, mixing layer depth and evolution of stratification of Jinpen Reservoir. The reservoir's inflow volume increased sharply after heavy rainfall during the flooding season. Large volumes of inflow induced mixing of stratified water zones in early autumn and disturbed the stratification significantly. A temporary positive effect of such disturbance was the oxygenation of the water close to the bottom of the reservoir, leading to inhibition of the release of nutrients from sediments, especially phosphate. However, the massive inflow induced by storm runoff with increased oxygen-consuming substances led to an increase of the oxygen consumption rate. After the bottom water became anaerobic again, the bottom water quality would deteriorate due to the release of pollutants from sediments. Heavy rainfall events could lead to very high nutrient input into the reservoir due to massive erosion from the surrounding uninhabited steep mountains, and the particulate matter contributed to most nutrient inputs. Reasonably releasing density flow is an effective way to reduce the amounts of particulate associated pollutants entering the reservoir. Significant turbid density flow always followed high rainfall events in Jinpen Reservoir, which not only affected the reservoir water quality but also increased costs of the drinking water treatment plant. Understanding the effects of the storm runoff on the vertical distributions of water quality indicators could help water managers to select the proper position of the intake for the water plant in order to avoid high turbidity outflow.

  11. Mars: The initial emplacement of ground ice in response to the thermal evolution of its early crust

    NASA Astrophysics Data System (ADS)

    Clifford, Stephen M.

    1993-03-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the martian valley networks to terrestrial runoff channels, and their almost exclusive occurrence in the planet's ancient (approximately 4 billion year old) heavily cratered terrain, is often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was ground water sapping, a process that does not require that surface water exist in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered from two perspectives: (1) that the early climate started warm and wet, but gradually cooled with time; and (2) that it never differed substantially from that of today.

  12. Mars: The initial emplacement of ground ice in response to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    Given the geomorphic evidence for the widespread occurrence of water and ice in the early martian crust, and the difficulty involved in accounting for this distribution given the present climate, it has been suggested that the planet's early climate was originally more Earth-like, permitting the global emplacement of crustal H2O by direct precipitation as snow or rain. The resemblance of the martian valley networks to terrestrial runoff channels, and their almost exclusive occurrence in the planet's ancient (approximately 4 billion year old) heavily cratered terrain, is often cited as evidence of just such a period. An alternative school of thought suggests that the early climate did not differ substantially from that of today. Advocates of this view find no compelling reason to invoke a warmer, wetter period to explain the origin of the valley networks. Rather, they cite evidence that the primary mechanism of valley formation was ground water sapping, a process that does not require that surface water exist in equilibrium with the atmosphere. However, while sapping may successfully explain the origin of the small valleys, it fails to address how the crust was initially charged with ice as the climate evolved towards its present state. Therefore, given the uncertainty regarding the environmental conditions that prevailed on early Mars, the initial emplacement of ground ice is considered from two perspectives: (1) that the early climate started warm and wet, but gradually cooled with time; and (2) that it never differed substantially from that of today.

  13. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles✰

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Lebonnois, Sebastien; Mahieux, Arnaud; Pätzold, Martin; Bougher, Steven; Bruinsma, Sean; Chamberlain, Sarah; Clancy, R. Todd; Gérard, Jean-Claude; Gilli, Gabriella; Grassi, Davide; Haus, Rainer; Herrmann, Maren; Imamura, Takeshi; Kohler, Erika; Krause, Pia; Migliorini, Alessandra; Montmessin, Franck; Pere, Christophe; Persson, Moa; Piccialli, Arianna; Rengel, Miriam; Rodin, Alexander; Sandor, Brad; Sornig, Manuela; Svedhem, Håkan; Tellmann, Silvia; Tanga, Paolo; Vandaele, Ann C.; Widemann, Thomas; Wilson, Colin F.; Müller-Wodarg, Ingo; Zasova, Ludmila

    2017-09-01

    The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components. The differences

  14. Effects of a Ground Source Heat Pump in Discontinuous Permafrost

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Garber-Slaght, R.; Daanen, R. P.

    2015-12-01

    A ground source heat pump (GSHP) was installed in a discontinuous permafrost region of Fairbanks Alaska in 2013 with the primary aim of determining the effect of different ground cover options on the long-term subterranean temperature regime. Three different surface treatments were applied to separate loops of the GSHP; grass, sand, and gravel, and temperature monitoring was established at several depths above and below the heat sink loops. The GSHP has been actively utilized to supplement the heat in a hydronic heating system of a neighboring 5000 ft2 research facility. The ground immediately surrounding the GSHP was not permafrost when initially installed. Numerical modeling simulations were used to predict the long-term ground temperature regime surrounding the GSHP loops, and results indicate that permafrost would begin to form after the first year. A pseudo-steady state temperature regime would establish in approximately 8 years with a yearly fluctuation of -14°C to -2°C. Simulations also indicate that permafrost could be prevented with a 15 W/m recharge during the summer, such as from a solar thermal system. The ground surface treatments have negligible effect on the ground temperature below 1 meter and therefore have no long-term effect on the active region the GSHP. Data collected from thermistors in the two years since installation indicate that permafrost has not yet been established, although the ground is now becoming seasonally frozen due to the GSHP energy removal. Yearly average temperatures are declining, and extrapolation indicates that permafrost will establish in future years. The GSHP coefficient of performance (COP) was initially 3.6 and is declining with the decreasing ground temperatures. Economic modeling indicates that the system may become uneconomical in future years, although volatile energy costs have a substantial effect of the prediction.

  15. Pioneer 10 and 11 and ground-based infrared data on Jupiter - The thermal structure and He-H2 ratio

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Ingersoll, A. P.

    1976-01-01

    Temperature profiles for four midlatitude regions on Jupiter and an improved value of the H2 molar mixing ratio are obtained from Pioneer 11 IR radiometer data and ground-based IR spectral data. The investigated regions include two in the Southern Hemisphere and two in the Northern Hemisphere, all of which consist of an adjacent belt and zone. The temperature profiles for the pressure regime between 0.1 and 1.0 bar are plotted along with the emitted net flux, flux divergence, and cooling rate for a temperature profile that is an average of those derived for the South Equatorial Belt and a 'cloudy' model of the South Tropical Zone. Averaging of the results obtained with clear and cloudy zone models yields a weighted mean value of 0.88 for the H2 molar mixing ratio, which corresponds to a He/H2 ratio of 0.14. It is emphasized that this value depends on perfect validity of the adopted opacity model, the absence of systematic errors in the data, and other factors. Local effective temperatures for each region are found to range from 124.2 to 127.6 K, which are close to the model-independent global average of 125 K.

  16. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    NASA Astrophysics Data System (ADS)

    Harrild, M.; Webley, P.; Dehn, J.

    2014-12-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  17. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    NASA Astrophysics Data System (ADS)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  18. NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE

    SciTech Connect

    Croll, Bryce; Jayawardhana, Ray; Albert, Loic; Lafreniere, David; Fortney, Jonathan J.

    2010-07-10

    We present near-infrared Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-2b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect its thermal emission with an eclipse depth of 0.062{sup +0.013}{sub -0.011}% (5{sigma}). Our best-fit secondary eclipse is consistent with a circular orbit (a 3{sigma} upper limit on the eccentricity, e, and argument or periastron, {omega}, of |e cos {omega}| < 0.0090), in agreement with mid-infrared detections of the secondary eclipse of this planet. A secondary eclipse of this depth corresponds to a dayside Ks-band brightness temperature of T{sub B} = 1636{sup +79}{sub -88} K. Our thermal emission measurement, when combined with the thermal emission measurements using Spitzer/IRAC from O'Donovan and collaborators, suggests that this planet exhibits relatively efficient dayside to nightside redistribution of heat and a near isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. It is unclear if the atmosphere of TrES-2b requires a temperature inversion; if it does it is likely due to chemical species other than TiO/VO as the atmosphere of TrES-2b is too cool to allow TiO/VO to remain in gaseous form. Our secondary eclipse has the smallest depth of any detected from the ground, at around 2 {mu}m, to date.

  19. A model for the maximum credible hourly impact on any ground receptor from point sources with thermal plume rise.

    PubMed

    Economopoulos, A P

    1991-01-01

    A pollutant dispersion model is developed, allowing fast evaluation of the maximum credible 1-h average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with buoyant plumes in urban or rural areas. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height. The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings, respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the buoyant plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights. The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. It is also suited for regulatory purposes, as it can be used to define the minimum stack size requirements for a given source as a function of the exit gas volume and temperature, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.

  20. Thermal energy supply optimization for aberdeen proving ground - edgewood area. Distribution system condition assessment and recommendations. Final report

    SciTech Connect

    VanBlaricum, V.L.; Marsh, C.P.; Hock, V.F.

    1995-05-01

    This report documents the results of a study by the U.S. Army Construction Engineering Research Laboratories to assess the condition of the steam heat distribution system at Aberdeen Proving Ground (APG)-Edgewood Area (EA), MD. This report documents the portion of the study that addressed widespread corrosion and deterioration existing throughout the aging system. A physical inventory of the steam distribution system piping and manholes was conducted. A visual condition assessment of a significant portion of the system was performed. Factors that impact the deterioration of the system were assessed, including soil chemistry, cathodic protection, and chemistry of the products conveyed by the system. The authors developed a detailed set of recommendations that includes (1) replacement or rehabilitation of severely deteriorated, unsafe or improperly functioning components. (2) implementation of an effective ongoing maintenance program tailored to the specific corrosion and deterioration problems at APG-EA, and (3) recommendations to ensure that new construction is performed in accordance with current Army standards and guidance.

  1. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Harris, Andrew; Bombrun, Maxime; Del Bello, Elisabetta; Ricci, Tullio

    2017-03-01

    Puffing, i.e., the frequent (1 s ca.) release of small (0.1-10 m3), over-pressurized pockets of magmatic gases, is a typical feature of open-conduit basaltic volcanoes worldwide. Despite its non-trivial contribution to the degassing budget of these volcanoes and its recognized role in volcano monitoring, detection and metering tools for puffing are still limited. Taking advantage of the recent developments in high-speed thermal infrared imaging, we developed a specific processing algorithm to detect the emission of individual puffs and measure their duration, size, volume, and apparent temperature at the vent. As a test case, we applied our method at Stromboli Volcano (Italy), studying "snapshots" of 1 min collected in the years 2012, 2013, and 2014 at several vents. In all 3 years, puffing occurred simultaneously at three or more vents with variable features. At the scale of the single vent, a direct relationship links puff temperature and radius, suggesting that the apparent temperature is mostly a function of puff thickness, while the real gas temperature is constant for all puffs. Once released in the atmosphere, puffs dissipate in less than 20 m. On a broader scale, puffing activity is highly variable from vent to vent and year to year, with a link between average frequency, temperature, and volume from 136 puffs per minute, 600 K above ambient temperature, 0.1 m3, and the occasional ejection of pyroclasts to 20 puffs per minute, 3 K above ambient, 20 m3, and no pyroclasts. Frequent, small, hot puffs occur at random intervals, while as the frequency decreases and size increases, an increasingly longer minimum interval between puffs, up to 0.5 s, appears. These less frequent and smaller puffs also display a positive correlation between puff volume and the delay from the previous puff. Our results suggest an important role of shallow bubble coalescence in controlling puffing activity. The smaller and more frequent puffing at "hotter" vents is in agreement with

  2. Broad-band transmission spectrum and K-band thermal emission of WASP-43b as observed from the ground

    NASA Astrophysics Data System (ADS)

    Chen, G.; van Boekel, R.; Wang, H.; Nikolov, N.; Fortney, J. J.; Seemann, U.; Wang, W.; Mancini, L.; Henning, Th.

    2014-03-01

    Aims: WASP-43b is the closest-orbiting hot Jupiter, and it has high bulk density. It causes deep eclipse depths in the system's light curve in both transit and occultation that is attributed to the cool temperature and small radius of its host star. We aim to secure a broad-band transmission spectrum and to detect its near-infrared thermal emission in order to characterize its atmosphere. Methods: We observed one transit and one occultation event simultaneously in the g', r', i', z', J, H, K bands using the GROND instrument on the MPG/ESO 2.2-m telescope, where the telescope was heavily defocused in staring mode. After modeling the light curves, we derived wavelength-dependent transit depths and flux ratios and compared them to atmospheric models. Results: From the transit event, we have independently derived WASP-43's system parameters with high precision and improved the period to be 0.81347437(13) days based on all the available timings. No significant variation in transit depths is detected, with the largest deviations coming from the i'-, H-, and K-bands. Given the observational uncertainties, the broad-band transmission spectrum can be explained by either (i) a flat featureless straight line that indicates thick clouds; (ii) synthetic spectra with absorption signatures of atomic Na/K, or molecular TiO/VO that in turn indicate cloud-free atmosphere; or (iii) a Rayleigh scattering profile that indicates high-altitude hazes. From the occultation event, we detected planetary dayside thermal emission in the K-band with a flux ratio of 0.197 ± 0.042%, which confirms previous detections obtained in the 2.09 μm narrow band and KS-band. The K-band brightness temperature 1878+108-116 K favors an atmosphere with poor day- to nightside heat redistribution. We also have a marginal detection in the i'-band (0.037+0.023-0.021%), corresponding to TB = 2225+139-225 K, which is either a false positive, a signature of non-blackbody radiation at this wavelength, or an

  3. Evaluation of Thermal Control Coatings and Polymeric Materials Exposed to Ground Simulated Atomic Oxygen and Vacuum Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.

    1995-01-01

    Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

  4. Ground based impact testing of Orbiter thermal protection system materials in support of the Columbia accident investigation

    NASA Astrophysics Data System (ADS)

    Kerr, Justin Hamilton

    On January 16, 2003, the Space Shuttle Columbia (OV-102) was launched for a nominal 16-day mission of microgravity research. Fifteen days and 20 hours after launch, and just 16 minutes before its scheduled landing, the OV-102 vehicle disintegrated during its descent. The entire crew was lost. Film and video cameras located around the launch complex captured images of the vehicle during its ascent. Of note were data that showed a piece of debris strike the port wing at approximately 82 sec after lift-off (T+82). As resulting analysis would show, the source of the debris was the left bipod ramp of the Shuttle external tank. This foam debris struck the Orbiter leading edge at sufficient velocity to breech the thermal protection system (TPS). During reentry at the end of the mission, the hot plasma impinged inside the Orbiter wing and aerodynamic forces ultimately failed the wing structure. This thesis documents the activities conducted to evaluate the effects of foam impact on Orbiter TPS. These efforts were focused on, to the greatest extent practical, replicating the impact event during the STS-107 mission ascent. This thesis fully documents the test program development, methodology, results, analysis, and conclusions to the degree that future investigators can reproduce the tests and understand the basis for decisions made during the development of the tests.

  5. Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.; Bernardo, C.

    2009-09-01

    Volcanoes can emit fine-sized ash particles (1-10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7-14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1-10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight.

  6. Thermal inactivation of Escherichia coli O157:H7 (ECOH) in frozen ground beef patties following cooking on commerical open-flame gas and electric clam-shell grills

    USDA-ARS?s Scientific Manuscript database

    Both the prevalence and levels of serotype O157:H7 strains of Escherichia coli (ECOH) are quite low, yet this pathogen continues to cause food borne illness due to consumption of undercooked ground/non-intact beef. Thus, further studies are warranted to comparatively quantify thermal destruction of ...

  7. CSDP: The seismology of continental thermal regimes

    SciTech Connect

    Aki, K.

    1991-05-01

    The past year continued to be extremely productive following up two major breakthroughs made in the preceding year. One of the breakthroughs was the derivation of an integral equation for time- dependent power spectra, which unified all the existing theories on seismic scattering including the radiative transfer theory for total energy and single-multiple scattering theories based on the ray approach. We successfully applied the method to the data from the USGS regional seismic arrays in central California, Long Valley and Island of Hawaii, and obtained convincing results on the scattering Q{sup {minus}1} and intrinsic Q{sup {minus}1} in these areas for the frequency range from 1 Hz to 20 Hz. The frequency dependence of scattering Q{sup {minus}1} is, then, interpreted in terms of random medium with continuous or discrete scatterers. The other breakthrough was the application of T-matrix formulation to the seismic scattering problem. We are currently working on 2-dimensional inclusions with high and low velocity contrast with the surrounding medium. In addition to the above two main lines of research, we were able to use so-called T-phase'' observed on the Island of Hawaii to map the Q value with a good spatial resolution. We found that we can eliminate remarkably well the frequency dependent recording site effect from the T-phase amplitude using the amplification factor for coda waves, further confirming the fundamental separability of source, path and site effects for coda waves, and proving the effectiveness of stochastic modeling of high-frequency seismic waves. 70 refs., 24 figs.

  8. The 2013-2014 Effusive Eruption of Sinabung Volcano, Sumatra, Indonesia: Satellite Thermal Observations and Ground-Based Photogrammetry of a Growing Lava Lobe

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Vanderkluysen, L.; Clarke, A. B.

    2014-12-01

    Sinabung is a 2460 m high andesitic volcano located in northern Sumatra, Indonesia. Sinabung had no confirmed historical activity until a small (VEI 2) explosive eruption in August-September 2010. In September 2013, explosions began again and were accompanied by lava dome growth and subsequent dome-collapse generated pyroclastic flows (Bulletin of the Global Volcanism Network 35:07; 39:01). The Center for Volcanology and Geological Hazard Mitigation (Indonesia) estimated dome growth at 3.5 m3/s in late December 2013. From January to March 2014 lava extrusion continued and formed a lobe down Sinabung's south flank. As of this writing, effusion and growth of the lava lobe continues, but at a much slower rate. Pyroclastic flows generated by collapse of the steep sides of the lobe remain a hazard. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectroradiomter (MODIS) to observe volcanic activity at Sinabung during the 2013-2014 eruption and estimate effusion rates following the methods of Harris & Ripepe (2007, Geophys. Res. Let. 34). We also use new analysis of those thermal images to characterize style of activity, distinguishing pyroclastic flow activity from pure lava lobe growth. Preliminary results from satellite images show an average effusion rate of 1.1 m3/s during January-March 2014, with peak effusion rates from individual TIR images of 4-7 m3/s in mid-January. These numbers are in good agreement with the ground-based estimates, and they provide improved temporal resolution of the activity as it evolved. Since March, effusion rates have decreased to below 0.01 m3/s on average. Using the MODIS images, we estimate the maximum possible total erupted volume to be 7 million m3, and have constrained the accuracy of this estimate using Structure-from-Motion (SfM) photogrammetry from ground-based visual images of the lava lobe. Following explosions in 2010 and 2013 and high effusion rates from January to March 2014, the ongoing slow

  9. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun

    2017-10-01

    Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.

  10. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    SciTech Connect

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; Pannetier, Romain; Harp, Dylan; Frampton, Andrew; Painter, Scott L.; Lyon, Steve W.

    2016-02-05

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels were observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.

  11. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    NASA Astrophysics Data System (ADS)

    Sjöberg, Ylva; Coon, Ethan; Sannel, A. Britta K.; Pannetier, Romain; Harp, Dylan; Frampton, Andrew; Painter, Scott L.; Lyon, Steve W.

    2016-03-01

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this study we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels were observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. As sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.

  12. Thermal Quantum Annealing on the D-Wave device

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Vinci, Walter; Albash, Tameem; Warburton, Paul; Lidar, Daniel

    2014-03-01

    We report on new experimental results supporting previous work concluding that the D-Wave processor implements quantum annealing. We introduce techniques adopted to the D-Wave programmable annealer to correct for systematic fabrication and control errors. Correcting for systematic errors allows us to explore the behavior of the annealer at low energy scales, which were previously inaccessible. We describe the behavior of the annealer as we investigate the effect of thermal noise on the programmed Ising Hamiltonian. Thermal noise becomes dominant when we scale down the overall energy of the final-time Ising Hamiltonian, or increase the total annealing time. We found three qualitatively different thermal noise regimes; a high energy scale where ground state statistics dominates, a moderate noise regime regime where low lying excited states contribute, and a high thermal noise regime where the system dynamics are dominated by thermalization effects. The qualitative results are robust to increasing the size (number of qubits) of the benchmark Hamiltonian. We additionally investigated auto-correlations in the final state statistics.

  13. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  14. Constraints on the Bulk Composition of Uranus from Herschel PACS and ISO LWS Photometry, SOFIA FORCAST Photometry and Spectroscopy, and Ground-Based Photometry of its Thermal Emission

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Mueller, Thomas; Burgdorf, Martin; Fletcher, Leigh; de Pater, Imke; Atreya, Sushil; Adams, Joseph; Herter, Terry; Keller, Luke; Sidher, Sunil; Sinclair, James; Fujiyoshi, Takuya

    2016-04-01

    We present thermal infrared observations of the disk of Uranus at 17-200 μm to deduce its global thermal structure and bulk composition. We combine 17-200 μm filtered photometric measurements by the Herschel PACS and ISO LWS instruments and 19-35 μm filtered photometry and spectroscopy by the SOFIA FORCAST instrument, supplemented by 17-25 μm ground-based photometric filtered imaging of Uranus. Previous analysis of infrared spectroscopic measurements of the disk of Uranus made by the Spitzer IRS instrument yielded a model for the disk-averaged temperature profile and stratospheric composition (Orton et al. 2014a Icarus 243,494; 2014b Icarus 243, 471) that were consistent with submillimeter spectroscopy by the Herschel SPIRE instrument (Swinyard et al. 2014, MNRAS 440, 3658). Our motivation to observe the 17-35 μm spectrum was to place more stringent constraints on the global para-H2 / ortho-H2 ratio in the upper troposphere and lower stratosphere than the ISO SWS results of Fouchet et al. (2003, Icarus 161, 127), who examined H2 quadrupole lines. We will discuss the consistency of these observations with a higher para-H2 fraction than implied by local thermal equilibrium, which would resolve a discrepancy between the Spitzer-based model and observations of HD lines by the Herschel PACS experiment (Feuchtgruber et al. 2013 Astron. & Astrophys. 551, A126). Constraints on the global para-H2 fraction allow for more precise analysis of the far-infrared spectrum, which is sensitive to the He:H2 ratio, a quantity that was not constrained by the Spitzer IRS spectra. The derived model, which assumed the ratio derived by the Voyager-2 IRIS/radio-science occultation experiment (Conrath et al. 1987 J. Geophys. Res. 92, 15003), is inconsistent with 70-200 μm PACS photometry (Mueller et al. 2016 Astron. & Astrophys. submittted) and ISO LWS photometric measurements. However, the model can be made consistent with the observations if the fraction of He relative to H2 were

  15. Thermal tolerance of O157 and non-O157 Shiga toxigenic strains of Escherichia coli, Salmonella, and potential pathogen surrogates, in frankfurter batter and ground beef of varying fat levels.

    PubMed

    Vasan, Akhila; Geier, Renae; Ingham, Steve C; Ingham, Barbara H

    2014-09-01

    The non-O157 Shiga toxigenic Escherichia coli (STEC) serogroups most commonly associated with illness are O26, O45, O103, O111, O121, and O145. We compared the thermal tolerance (D55°C) of three or more strains of each of these six non-O157 STEC serogroups with five strains of O157:H7 STEC in 7% fat ground beef. D55°C was also determined for at least one heat-tolerant STEC strain per serogroup in 15 and 27% fat ground beef. D55°C of single-pathogen cocktails of O157 and non-O157 STEC, Salmonella, and potential pathogen surrogates, Pediococcus acidilactici and Staphylococcus carnosus, was determined in 7, 15, and 27% fat ground beef and in frankfurter batter. Samples (25 g) were heated for up to 120 min at 55°C, survivors were enumerated, and log CFU per gram was plotted versus time. There were significant differences in D55°C across all STEC strains heated in 7% fat ground beef (P < 0.05), but no non-O157 STEC strain had D55°C greater than the range observed for O157 STEC. D55°C was significantly different for strains within serogroups O45, O145, and O157 (P < 0.05). D55°C for non-O157 STEC strains in 15 and 27% fat ground beef were less than or equal to the range of D55°C for O157. D55°C for pathogen cocktails was not significantly different when measured in 7, 15, and 27% fat ground beef (P ≥ 0.05). D55°C of Salmonella in frankfurter batter was significantly less than for O157 and non-O157 STEC (P < 0.05). Thermal tolerance of pathogen cocktails in ground beef (7, 15, or 27% fat) and frankfurter batter was significantly less than for potential pathogen surrogates (P < 0.05). Results suggest that thermal processes in beef validated against E. coli O157:H7 have adequate lethality against non-O157 STEC, that thermal processes that target Salmonella destruction may not be adequate against STEC in some situations, and that the use of pathogen surrogates P. acidilactici and S. carnosus to validate thermal processing interventions in ground beef and

  16. Ground-based and airborne thermal imagery of 2D and 3D forest structure for estimating sub-canopy longwave radiation during snowmelt

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Westoby, Matt; Rutter, Nick; Dunning, Stuart; Jonas, Tobias

    2017-04-01

    The radiation budget at the snow surface is often the main driver of spring snowmelt in forested environments. The shading, absorption and emission of radiation by vegetation cause significant spatial and temporal variation of emitted longwave radiation to the snow surface. This variability is markedly different from adjacent unforested areas and is largely influenced by the canopy temperature. Improvements in estimating the incoming longwave radiation component of the forest energy budget have been developed using direct measurements of canopy surface temperatures, however these methods are impractical for modelling beyond the tree trunk scale. As an alternative method, this study presents ground-based and airborne infrared thermal imagery collected at a discontinuous forest site near Davos in Switzerland during the 2015 and 2016 snowmelt seasons. Repeat imagery demonstrates changes in spatial distributions of forest temperatures that are consistent with canopy warming from direct solar radiation. In shaded areas, average canopy temperature increased with increasing height, reaching air temperature close to the top of the canopy. These vertical profiles reflect the increased exposure to solar radiation at the top of the canopy and increased shading in the lower areas of the canopy. In contrast, sun-lit edges of the canopy were shown to be consistently warmer than air temperature throughout the vertical profile. Improvements in the accuracy of modelling the sub-canopy longwave radiation flux to the snow surface are therefore most important in sun-exposed areas of the canopy during sunny and clear sky periods.

  17. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  18. Ignitability of materials in transitional heating regimes

    Treesearch

    Mark A. Dietenberger

    2004-01-01

    Piloted ignition behavior of materials, particularly wood products, during transitions between heating regimes is measured and modeled in a cone calorimetry (ISO 5660) heating environment. These include (1) effect of material thickness, density, moisture content, and paint coating variations on thermal response characteristics, (2) effect of fire retardant treatment...

  19. The thermal conditions of Venus

    NASA Technical Reports Server (NTRS)

    Zharkov, Vladimir N.; Solomatov, V. S.

    1991-01-01

    Models of Venus' thermal evolution are examined. The following subject areas are covered: (1) modified approximation of parameterized convection; (2) description of the model; (3) numerical results and asymptotic solution of the MAPC equations; (4) magnetism and the thermal regime of the cores of Earth and Venus; and (5) the thermal regime of the Venusian crust.

  20. Advantages of Unfair Quantum Ground-State Sampling.

    PubMed

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  1. Day and night cloud occurrence climatology for space-to-ground optical communication feasibility: the advantages of a thermal infrared sky imager

    NASA Astrophysics Data System (ADS)

    Liandrat, O.; Bertin, C.; Cros, S.; Saint-Antonin, L.

    2016-12-01

    Day and night cloud cover imaging of the sky vault from the surface has several applications such as cloud properties climatological studies or cloud cover monitoring for air traffic… Real-time hemispheric observations of cloud cover also helps to manage optical communications between a satellite and an optical ground station (OGS). Indeed, it permits to predict an eventual cloud obstruction to continue instantaneously the transmission by using an alternative OGS located in a cloud-free area of the satellite communication zone. Sky imager with a thermal infrared (TIR) camera is a convenient solution to observe continuously cloud cover evolution. The spectral broadband comprised between 7.5 and 13.5 µm permits to detect cloud, night and day, without any significant disturbance due to sunshine. This sky radiation signature has also the potential to retrieve some cloud physical properties (ceil altitude, cloud optical depth…) In this work, we propose a method to retrieve the cloud presence on a given pixel of the sky vault TIR image acquired by the SIONS-T developed by Reuniwatt and experimented by IRT Saint-Exupery. First, we estimate the clear sky radiance by selecting the pixel presenting the minimal radiance for a given set of airmass intervals. Then, this clear sky radiance is subtracted from the observed radiance in order to obtain a residual radiance, assuming this latter is only driven by cloud thermal emission. Finally, a pixel is classified as cloud if the residual radiance is 5% higher than the clear sky radiance. The method has been performed on a 1-year time-series of TIR images acquired at Côte d'Azur Observatory (France) in 2015-2016. Day time cloud images with about 2000 manually indexed pixels observed with a co-located visible sky imager have been used as truth data. Our cloud detection classify pixel correctly in more than 98 % of the cases. Variations of this accuracy according to viewing angle and cloud cover conditions are discussed.

  2. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    NASA Astrophysics Data System (ADS)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  3. Wind circulation regimes at Venus' cloud tops : Ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS

    NASA Astrophysics Data System (ADS)

    Machado, P.; Widemann, T.; Luz, D.; Peralta, J.

    2014-12-01

    We present new results based on ground-based Doppler spectroscopic measurements, obtained with the ESPaDOnS spectrograph at Canada-France-Hawaii telescope (CFHT) and simultaneous observations of velocity fields, obtained from space by the VIRTIS-M instrument on board the Venus Express spacecraft. These measurements are based on high-resolution spectra of Fraunhofer lines in the visible to NIR range (0.37-1.05 μm) acquired on Feb. 19-21, 2011 at a resolution of about 80,000, measuring Venus' winds at 70 km, using incoming solar radiation scattered by cloud top particles in the observer's direction (Widemann et al., 2007, 2008). The zonal wind field has been characterized by latitudinal bands, at a phase angle Φ = (68.7 ± 0.3)°, between +10^°N and 60^°S, by steps of 10^°, and from [ φ - φ_{E}] = -50^° to sub-Earth longitude φ_{E} = 0^°, by steps of 12^°. From space, VIRTIS-M UV (0.38 μm) imaging exposures on the dayside were acquired simultaneously in orbit 1786, providing the first simultaneous cloud-tracking measurements with Doppler velocimetry. From the ground, we measured a zonal mean background velocity of overline{v}_{z} = (117.3 ± 18.0) m s^{-1} on Feb. 19, and overline{v}_{z} = (117.5 ± 14.5) m s^{-1} on Feb. 21. We detect an unambiguous poleward meridional flow on the morning dayside hemisphere of (18.8 ± 12.3) m s^{-1} on Feb. 19/21. Latitudinal variations of the zonal and meridional winds are further compared with the simultaneous VIRTIS data. We discuss temporal variability as well as its statistical significance (Machado et al., 2014).

  4. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  5. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  6. Modelling Seasonally Freezing Ground Conditions.

    DTIC Science & Technology

    1987-07-01

    Ground temperature Surface thermal emissivity (i.e. snow/soll) albedo saturation thermal diffusivity heat conductivity Vegetation cover (fraction) state ... living or dead) thermal emissivity absorptivity height Altitude Precipitation Catchment area Aerial photographs or maps of snowcover are needed as an

  7. Regimes of Helium Burning

    NASA Astrophysics Data System (ADS)

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-01

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Döring (ZND) detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of ~108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at ~107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below ~107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at ~5×104 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction.

  8. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  9. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  10. Thermal analysis of the position of the freezing front around an LNG in-ground storage tank with a heat barrier

    NASA Astrophysics Data System (ADS)

    Watanabe, O.; Tanaka, M.

    A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.

  11. Ground energy coupling

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  12. Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Z. J.; Niu, F. J.; Fang, J. H.; Luo, J.; Yin, G. A.

    2017-01-01

    Thermokarst is a term associated with the thaw of ice-rich permafrost and the resulting formation of irregular depressions in the landscape from thaw settlement. Thermokarst lakes may subsequently develop from ponds formed in depressions. These lakes commonly have collapsing shorelines, and the development of thermokarst terrain and associated thermal